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Preface 
Textbooks on microprocessors are sometimes hard to un¬ 

derstand. This text attempts to present the various aspects 

of microprocessors in ways that are understandable and 

interesting. The only prerequisite to using this textbook is 

an understanding of diodes and transistors. 

A unique aspect of this text is its wide range. Whether 

you are interested in the student-constructed SAP (simple - 

as-possible) microprocessor, the 6502, the 6800/6808, the 

8080/8085/Z80, or the 8086/8088, this textbook can meet 

your needs. 

The text is divided into four parts. These parts can be 

used in different ways to meet the needs of a wide variety 

of students, classrooms, and instructors. 

Part 1, Digital Principles, is composed of Chapters 1 to 

9. Featured topics include number systems, gates, boolean 

algebra, flip-flops, registers, counters, and memory. This 

information prepares the student for the microprocessor 

sections which follow. 

Part 2, which consists of Chapters 10 to 12, presents the 

SAP (simple-as-possible) microprocessor. The student con¬ 

structs this processor using digital components. The SAP 

processor contains the most common microprocessor func¬ 

tions. It features an instruction set which is a subset of that 

of the Intel 8085—leading naturally to a study of that 

microprocessor. 

Part 3, Programming Popular Microprocessors (Chapters 

13 to 23), simultaneously treats the MOS/Rockwell 6502, 

the Motorola 6800/6808, the Intel 8080/8085 and Zilog 

Z80, and the 16-bit Intel 8086/8088. Each chapter is divided 

into two sections. The first section presents new concepts; 

second section applies the new concepts to each micropro¬ 

cessor family. Discussion, programming examples, and 

problems are provided. The potential for comparative study 

is excellent. 

This part of the text takes a strong programming approach 

to the study of microprocessors. Study is centered around 

the microprocessor’s instruction set and programming model. 

The 8-bit examples and homework problems can be per¬ 

formed by using either hand assembly or cross-assemblers. 

The 16-bit 8086/8088 examples and problems can be per¬ 

formed by using either an assembler or the DOS DEBUG 

utility. 

Part 4 is devoted to the presentation of the instruction 

sets of each microprocessor family in table form. Several 

tables are provided for each microprocessor family, per¬ 

mitting instructions to be looked up alphabetically, by op 

code, or by functional category, with varying levels of 

detail. The same functional categories are correspondingly 

used in the chapters in Part 3. This coordination between 

parts makes the learning process easier and more enjoyable. 

Additional reference tables are provided in the appen¬ 

dixes. Answers to odd-numbered problems for Chapters 1 

to 16 follow the appendixes. 

A correlated laboratory manual, Experiments for Digital 

Computer Electronics by Michael A. Miller, is available 

for use with this textbook. It contains experiments for every 

part of the text. It also includes programming problems for 

each of the featured microprocessors. 

A teacher’s manual is available which contains answers 

to all of the problems and programs for every micropro¬ 

cessor. In addition, a diskette (MS-DOS 360K 5!/4-inch 

diskette) containing cross-assemblers is included in the 

teacher’s manual. 

Special thanks to Brian Mackin for being such a patient 

and supportive editor. To Olive Collen for her editorial 

work. To Michael Miller for his work on the lab manual. 

And to Thomas Anderson of Speech Technologies Inc. for 

the use of his cross-assemblers. Thanks also to reviewers 

Lawrence Fryda, Illinois State University; Malachi Mc¬ 

Ginnis, ITT Technical Institute, Garland Texas; and Ben¬ 

jamin Suntag. 

Albert Paul Malvino 

Jerald A. Brown 

A man of true science uses but few hard words, 

and those only when none other will answer his purpose; 

whereas the smatterer in science thinks that 

by mouthing hard words he understands hard things. 

Herman Melville 



PART 1 
DIGITAL PRINCIPLES 

Number Systems 
and Codes 

Modem computers don’t work with decimal numbers. 

Instead, they process binary numbers, groups of Os and Is. 

Why binary numbers? Because electronic devices are most 

reliable when designed for two-state (binary) operation. 

This chapter discusses binary numbers and other concepts 

needed to understand computer operation. 

1-1 DECIMAL ODOMETER 

Rene Descartes (1596-1650) said that the way to learn a 

new subject is to go from the known to the unknown, from 

the simple to the complex. Let’s try it. 

The Known 

Everyone has seen an odometer (miles indicator) in action. 

When a car is new, its odometer starts with 

00000 

After 1 mile the reading becomes 

00001 

Successive miles produce 00002, 00003, and so on, up to 

00009 

A familiar thing happens at the end of the tenth mile. 

When the units wheel turns from 9 back to 0, a tab on this 

wheel forces the tens wheel to advance by 1. This is why 

the numbers change to 

00010 

Reset-and-Carry 

The units wheel has reset to 0 and sent a carry to the tens 

wheel. Let’s call this familiar action reset-and-carry. 

The other wheels also reset and carry. After 999 miles 

the odometer shows 

00999 

What does the next mile do? The units wheel resets and 

carries, the tens wheel resets and carries, the hundreds 

wheel resets and carries, and the thousands wheel advances 

by 1, to get 

01000 

Digits and Strings 

The numbers on each odometer wheel are called digits. 

The decimal number system uses ten digits, 0 through 9. 

In a decimal odometer, each time the units wheel runs out 

of digits, it resets to 0 and sends a carry to the tens wheel. 

When the tens wheel runs out of digits, it resets to 0 and 

sends a carry to the hundreds wheel. And so on with the 

remaining wheels. 

One more point. A string is a group of characters (either 

letters or digits) written one after another. For instance, 

734 is a string of 7, 3, and 4. Similarly, 2C8A is a string 

of 2, C, 8, and A. 

1-2 BINARY ODOMETER 

Binary means two. The binary number system uses only 

two digits, 0 and 1. All other digits (2 through 9) are 

thrown away. In other words, binary numbers are strings 

of 0s and Is. 

An Unusual Odometer 

Visualize an odometer whose wheels have only two digits, 

0 and 1. When each wheel turns, it displays 0, then 1, then 

1 



back to 0, and the cycle repeats. Because each wheel has 

only two digits, we call this device a binary odometer. 

In a car a binary odometer starts with 

0000 (zero) 

After 1 mile, it indicates 

0001 (one) 

The next mile forces the units wheel to reset and carry; so 

the numbers change to 

0010 (two) 

The third mile results in 

0011 (three) 

What happens after 4 miles? The units wheel resets and 

carries, the second wheel resets and carries, and the third 

wheel advances by 1. This gives 

0100 (four) 

Successive miles produce 

0101 (five) 

0110 (six) 

0111 (seven) 

After 8 miles, the units wheel resets and carries, the 

second wheel resets and carries, the third wheel resets and 

carries, and the fourth wheel advances by 1. The result is 

1000 (eight) 

The ninth mile gives 

1001 (nine) 

and the tenth mile produces 

1010 (ten) 

(Try working out a few more readings on your own.) 

You should have the idea by now. Each mile advances 

the units wheel by 1. Whenever the units wheel runs out 

of digits, it resets and carries. Whenever the second wheel 

runs out of digits, it resets and carries. And so for the other 

wheels. 

Binary Numbers 

A binary odometer displays binary numbers, strings of 0s 

and Is. The number 0001 stands for 1, 0010 for 2, 0011 

for 3, and so forth. Binary numbers are long when large 

amounts are involved. For instance, 101010 represents 

decimal 42. As another example, 111100001111 stands for 

decimal 3,855. 
Computer circuits are like binary odometers; they count 

and work with binary numbers. Therefore, you have to 

learn to count with binary numbers, to convert them to 

decimal numbers, and to do binary arithmetic. Then you 

will be ready to understand how computers operate. 

A final point. When a decimal odometer shows 0036, 

we can drop the leading 0s and read the number as 36. 

Similarly, when a binary odometer indicates 0011, we can 

drop the leading 0s and read the number as 11. With the 

leading 0s omitted, the binary numbers are 0, 1, 10, 11, 

100, 101, and so on. To avoid confusion with decimal 

numbers, read the binary numbers like this: zero, one, one- 

zero, one-one, one-zero-zero, one-zero-one, etc. 

1-3 NUMBER CODES 

People used to count with pebbles. The numbers 1, 2, 3 

looked like • , •••. Larger numbers were worse: 

seven appeared as •••••••. 

Codes 

From the earliest times, people have been creating codes 

that allow us to think, calculate, and communicate. The 

decimal numbers are an example of a code (see Table 

1-1). It’s an old idea now, but at the time it was as 

revolutionary; 1 stands for •, 2 for ##, 3 for ###, 

and so forth. 

Table 1-1 also shows the binary code. 1 stands for #, 10 

for ##, 11 for ###, and so on. A binary number and a 

decimal number are equivalent if each represents the same 

amount of pebbles. Binary 10 and decimal 2 are equivalent 

because each represents ##. Binary 101 and decimal 5 are 

equivalent because each stands for #####. 

TABLE 1-1. NUMBER CODES 

Decimal Pebbles Binary 

0 None 0 

1 • 1 

2 •• 10 

3 ••• 11 

4 •••• 100 

5 ••••• 101 

6 •••••• 110 

7 ••••••• 111 

8 1000 

9 1001 

2 Digital Computer Electronics 



Equivalence is the common ground between us and 

computers; it tells us when we’re talking about the same 

thing. If a computer comes up with a binary answer of 101, 

equivalence means that the decimal answer is 5. As a start 

to understanding computers, memorize the binary-decimal 

equivalences of Table 1-1. 

EXAMPLE 1-1 

Figure 1-1 a shows four light-emitting diodes (LEDs). A 

dark circle means that the LED is off; a light circle means 

it’s on. To read the display, use this code: 

©o o 
(a) (b) 

Fig. 1-1 LED display of binary numbers. 

TABLE 1-2. BINARY-TO-DECIMAL 
EQUIVALENCES 

Decimal Binary Decimal Binary 

0 0000 8 1000 

1 0001 9 1001 

2 0010 10 1010 

3 0011 11 1011 
4 0100 12 1100 
5 0101 13 1101 
6 0110 14 1110 

7 0111 15 mi 

Therefore, you should memorize the equivalences of Table 
1-2. 

LED Binary 

Off 0 

On 1 

What binary number does Fig. 1-la indicate? Fig. 1-16? 

SOLUTION 

Figure 1-la shows off-off-on-on. This stands for binary 

0011, equivalent to decimal 3. 

Figure 1-16 is off-on-off-on, decoded as binary 0101 and 

equivalent to decimal 5. 

EXAMPLE 1-2 

A binary odometer has four wheels. What are the successive 

binary numbers? 

SOLUTION 

As previously discussed, the first eight binary numbers are 

0000, 0001, 0010, 0011,0100, 0101, 0110, and 0111. On 

the next count, the three wheels on the right reset and carry; 

the fourth wheel advances by one. So the next eight numbers 

are 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111. 

The final reading of 1111 is equivalent to decimal 15. The 

next mile resets all wheels to 0, and the cycle repeats. 

Being able to count in binary from 0000 to 1111 is 

essential for understanding the operation of computers. 

1-4 WHY BINARY NUMBERS 
ARE USED 

The word “computer” is misleading because it suggests a 

machine that can solve only numerical problems. But a 

computer is more than an automatic adding machine. It can 

play games, translate languages, draw pictures, and so on. 

To suggest this broad range of application, a computer is 

often referred to as a data processor. 

Program and Data 

Data means names, numbers, facts, anything needed to 

work out a problem. Data goes into a computer, where it 

is processed or manipulated to get new information. Before 

it goes into a computer, however, the data must be coded 

in binary form. The reason was given earlier: a computer’s 

circuits can respond only to binary numbers. 

Besides the data, someone has to work out a program, 

a list of instructions telling the computer what to do. These 

instructions spell out each and every step in the data 

processing. Like the data, the program must be coded in 

binary form before it goes into the computer. 

So the two things we must input to a computer are the 

program and the data. These are stored inside the computer 

before the processing begins. Once the computer run starts, 

each instruction is executed and the data is processed. 

Hardware and Software 

The electronic, magnetic, and mechanical devices of a 

computer are known as hardware. Programs are called 

software. Without software, a computer is a pile of ‘ ‘dumb” 
metal. 

Chapter 1 Number Systems and Codes 3 



An analogy may help. A phonograph is like hardware 

and records are like software. The phonograph is useless 

without records. Furthermore, the music you get depends 

on the record you play. A similar idea applies to computers. 

A computer is the hardware and programs are the software. 

The computer is useless without programs. The program 

stored in the computer determines what the computer will 

do; change the program and the computer processes the 

data in a different way. 

Transistors 

Computers use integrated circuits (ICs) with thousands of 

transistors, either bipolar or MOS. The parameters (pdc, 

Ico, gm>etc.)can vary more than 50 percent with temperature 

change and from one transistor to the next. Yet these 

computer ICs work remarkably well despite the transistor 

variations. How is it possible? 

The answer is two-state design, using only two points 

on the load line of each transistor. For instance, the common 

two-state design is the cutoff-saturation approach; each 

transistor is forced to operate at either cutoff or saturation. 

When a transistor is cut off or saturated, parameter variations 

have almost no effect. Because of this, it’s possible to 

design reliable two-state circuits that are almost independent 

of temperature change and transistor variations. 

Transistor Register 

Here’s an example of two-state design. Figure 1-2 shows 

a transistor register. (A register is a string of devices that 

store data.) The transistors on the left are cut off because 

the input base voltages are 0 V. The dark shading symbolizes 

the cutoff condition. The two transistors on the right have 

base drives of 5 V. 

The transistors operate at either saturation or cutoff. A 

base voltage of 0 V forces each transistor to cut off, while 

a base voltage of 5 V drives it into saturation. Because of 

this two-state action, each transistor stays in a given state 

until the base voltage switches it to the opposite state. 

Another Code 

Two-state operation is universal in digital electronics. By 

deliberate design, all input and output voltages are either 

low or high. Here’s how binary numbers come in: low 

voltage represents binary 0, and high voltage stands for 

binary 1. In other words, we use this code: 

Voltage Binary 

Low 0 

High 1 

For instance, the base voltages of Fig. 1-2 are low-low- 

high-high, or binary 0011. The collector voltages are high- 

high-low-low, orbinary 1100. By changing the base voltages 

we can store any binary number from 0000 to 1111 (decimal 

0 to 15). 

Bit 

Bit is an abbreviation for binary digit. A binary number 

like 1100 has 4 bits; 110011 has 6 bits; and 11001100 has 

8 bits. Figure 1-2 is a 4-bit register. To store larger binary 

numbers, it needs more transistors. Add two transistors and 

you get a 6-bit register. With four more transistors, you’d 

have an 8-bit register. 

Nonsaturated Circuits 

Don’t get the idea that all two-state circuits switch between 

cutoff and saturation. When a bipolar transistor is heavily 

saturated, extra carriers are stored in the base region. If the 

base voltage suddenly switches from high to low, the 

transistor cannot come out of saturation until these extra 

carriers have a chance to leave the base region. The time 

it takes for these carriers to leave is called the saturation 

delay time td. Typically, td is in nanoseconds. 

In most applications the saturation delay time is too short 

to matter. But some applications require the fastest possible 

Fig. 1-2 Transistor register. 
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switching time. To get this maximum speed, designers have 

come up with circuits that switch from cutoff (or near 

cutoff) to a higher point on the load line (but short of 

saturation). These nonsaturated circuits rely on clamping 

diodes or heavy negative feedback to overcome transistor 

variations. 

Remember this: whether saturated or nonsaturated circuits 

are used, the transistors switch between distinct points on 

the load line. This means that all input and output voltages 

are easily recognized as low or high, binary 0 or binary 1. 

(a) 

Fig. 1-3 Core register. 

Magnetic Cores 

Early digital computers used magnetic cores to store data. 

Figure l-3a shows a 4-bit core register. With the right- 

hand rule, you can see that conventional current into a wire 

produces a clockwise flux; reversing the current gives a 

counterclockwise flux. (The same result is obtained if 

electron-flow is assumed and the left-hand rule is used.) 

The cores have rectangular hysteresis loops; this means 

that flux remains in a core even though the magnetizing 

current is removed (see Fig. 1-3b). This is why a core 

register can store binary data indefinitely. For instance, 

let’s use the following code: 

Flux Binary 

Counterclockwise 0 

Clockwise 1 

Other Two-State Examples 

The simplest example of a two-state device is the on-off 

switch. When this switch is closed, it represents binary 1; 

when it’s open, it stands for binary 0. 

Punched cards are another example of the two-state 

concept. A hole in a card stands for binary 1, the absence 

of a hole for binary 0. Using a prearranged code, a card- 

punch machine with a keyboard can produce a stack of 

cards containing the program and data needed to run a 

computer. 

Magnetic tape can also store binary numbers. Tape 

recorders magnetize some points on the tape (binary 1), 

while leaving other points unmagnetized (binary 0). By a 

prearranged code, a row of points represents either a coded 

instruction or data. In this way, a reel of tape can store 

thousands of binary instructions and data for later use in a 

computer. 

Even the lights on the control panel of a large computer 

are binary; a light that’s on stands for binary 1, and one 

that’s off stands for binary 0. In a 16-bit computer, for 

instance, a row of 16 lights allows the operator to see the 

binary contents in different computer registers. The operator 

can then monitor the overall operation and, when necessary, 

troubleshoot. 

In summary, switches, transistors, cores, cards, tape, 

lights, and almost all other devices used with computers 

are based on two-state operation. This is why we are forced 

to use binary numbers when analyzing computer action. 

EXAMPLE 13 

Figure 1-4 shows a strip of magnetic tape. The black circles 

are magnetized points and the white circles unmagnetized 

points. What binary number does each horizontal row 

represent? 

Then, the core register of Fig. 1-3b stores binary 1001, 

equivalent to decimal 9. By changing the magnetizing 

currents in Fig. 1-3a we can change the stored data. 

To store larger binary numbers, add more cores. Two 

cores added to Fig. 1-3a result in a 6-bit register; four more 

cores give an 8-bit register. 

The memory is one of the main parts of a computer. 

Some memories contain thousands of core registers. These 

registers store the program and data needed to run the 

computer. 

Fig. 1-4 Binary numbers on magnetic tape. 

SOLUTION 

The tape stores these binary numbers: 

Row 1 00001111 Row 5 11100110 
Row 2 10000110 Row 6 01001001 
Row 3 10110111 Row 7 11001101 
Row 4 00110001 

Chapter 1 Number Systems and Codes 5 



(Note: these binary numbers may represent either coded 

instructions or data.) 

A string of 8 bits is called a byte. In this example, the 

magnetic tape stores 7 bytes. The first byte (row 1) is 

00001 111. The second byte (row 2) is 10000110. The third 

byte is 10110111. And so on. 

A byte is the basic unit of data in computers. Most 

computers process data in strings of 8 bits or some multiple 

(16, 24, 32, and so on). Likewise, the memory stores data 

in strings of 8 bits or some multiple of 8 bits. 

(1 x 24) + (1 X 23) + (0 X 22) + (0 X V) 

+ (1 x 2°) = 16 + 8 + 0 + 0 + 1 = 25 

Binary 11001 is therefore equivalent to decimal 25. 

As another example, the byte 11001100 converts to 

decimal as follows: 

(1 x 27) + (1 x 26) T (0 x 25) + (0 x 24) 

+ (1 X 23) + (1 X 22) + (0 x V) + (0 X 2°) 

= 128 + 64 + 0 + 0 + 8 + 4 + 0 + 0 = 204 

1-5 BINARY-TO-DECIMAL 
CONVERSION 

You already know how to count to 15 using binary numbers. 

The next thing to learn is how to convert larger binary 

numbers to their decimal equivalents. 

5 7 0 3 4 1 1 0 0 1 

104 103 102 101 10° 24 23 22 21 2° 

(a) (b) 

Fig. 1-5 (a) Decimal weights; (b) binary weights. 

Decimal Weights 

The decimal number system is an example of positional 

notation; each digit position has a weight or value. With 

decimal numbers the weights are units, tens, hundreds, 

thousands, and so on. The sum of all digits multiplied by 

their weights gives the total amount being represented. 

For instance, Fig. 1 -5a illustrates a decimal odometer. 

Below each digit is its weight. The digit on the right has a 

weight of 10° (units), the second digit has a weight of 10' 

(tens), the third digit a weight of 102 (hundreds), and so 

forth. The sum of all units multiplied by their weights is 

So, binary 11001100 is equivalent to decimal 204. 

Fast and Easy Conversion 

Here’s a streamlined way to convert a binary number to its 

decimal equivalent: 

1. Write the binary number. 

2. Write the weights 1, 2, 4, 8, ... , under the binary 

digits. 

3. Cross out any weight under a 0. 

4. Add the remaining weights. 

For instance, binary 1101 converts to decimal as follows: 

1. 1 1 0 1 
2. 8 4 2 1 

3. 8 4 0 1 

4. 8 + 4 + 0+1 = 13 

(Write binary number) 

(Write weights) 

(Cross out weights) 

(Add weights) 

You can compress the steps even further: 

110 1 (Step 1) 

8 4 t 1 —> 13 (Steps 2 to 4) 

As another example, here’s the conversion of binary 

1110101 in compressed form: 

(5 x 104) + (7 x 103) + (0 X 102) + (3 x 101) 

+ (4x 10°) = 50,000 + 7000 + 0 + 30 + 4 
= 57,034 

Binary Weights 

Positional notation is also used with binary numbers because 

each digit position has a weight. Since only two digits are 

used, the weights are powers of 2 instead of 10. As shown 

in the binary odometer of Fig. 1-5b, these weights are 2° 

(units), 21 (twos), 22 (fours), 23 (eights), and 24 (sixteens). 

If longer binary numbers are involved, the weights continue 

in ascending powers of 2. 

The decimal equivalent of a binary number equals the 

sum of all binary digits multiplied by their weights. For 

instance, the binary reading of Fig. 1-5b has a decimal 
equivalent of 

1 1 10 10 1 
64 32 16 0 4 % 1 —^ 117 

Base or Radix 

The base or radix of a number system equals the number 

of digits it has. Decimal numbers have a base of 10 because 

digits 0 through 9 are used. Binary numbers have a base 

of 2 because only the digits 0 and 1 are used. (In terms of 

an odometer, the base or radix is the number of digits on 

each wheel.) 

A subscript attached to a number indicates the base of 

the number. 1002 means binary 100. On the other hand, 

100lo stands for decimal 100. Subscripts help clarify equa¬ 

tions where binary and decimal numbers are mixed. For 

instance, the last two examples of binary-to-decimal con¬ 

version can be written like this: 
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11012 = 1310 

11101012 - 117,0 

In this book we will use subscripts when necessary for 

clarity. 

1-6 MICROPROCESSORS 

What is inside a computer? What is a microprocessor? What 

is a microcomputer? 

Computer 

The five main sections of a computer are input, memory, 

arithmetic and logic, control, and output. Here is a brief 

description of each. 

Input This consists of all the circuits needed to get 

programs and data into the computer. In some computers 

the input section includes a typewriter keyboard that converts 

letters and numbers into strings of binary data. 

Memory This stores the program and data before the 

computer run begins. It also can store partial solutions 

during a computer run, similar to the way we use a scratchpad 

while working out a problem. 

Control This is the computer’s center of gravity, analo¬ 

gous to the conscious part of the mind. The control section 

directs the operation of all other sections. Like the conductor 

of an orchestra, it tells the other sections what to do and 

when to do it. 

Arithmetic and logic This is the number-crunching sec¬ 

tion of the machine. It can also make logical decisions. 

With control telling it what to do and with memory feeding 

it data, the arithmetic-logic unit (ALU) grinds out answers 

to number and logic problems. 

Output This passes answers and other processed data to 

the outside world. The output section usually includes a 

video display to allow the user to see the processed data. 

Microprocessor 

The control section and the ALU are often combined 

physically into a single unit called the central processing 

unit (CPU). Furthermore, it’s convenient to combine the 

input and output sections into a single unit called the input- 

output (I/O) unit. In earlier computers, the CPU, memory, 

and I/O unit filled an entire room. 

With the advent of integrated circuits, the CPU, memory, 

and I/O unit have shrunk dramatically. Nowadays the CPU 

can be fabricated on a single semiconductor chip called a 

microprocessor. In other words, a microprocessor is nothing 

more than a CPU on a chip. 

Likewise, the I/O circuits and memory can be fabricated 

on chips. In this way, the computer circuits that once filled 

a room now fit on a few chips. 

Microcomputer 

As the name implies, a microcomputer is a small computer. 

More specifically, a microcomputer is a computer that uses 

a microprocessor for its CPU. The typical microcomputer 

has three kinds of chips: microprocessor (usually one chip), 

memory (several chips), and TO (one or more chips). 

If a small memory is acceptable, a manufacturer can 

fabricate all computer circuits on a single chip. For instance, 

the 8048 from Intel Corporation is a one-chip microcomputer 

with an 8-bit CPU, 1,088 bytes of memory, and 27 I/O 

lines. 

Powers of 2 

Microprocessor design started with 4-bit devices, then 

evolved to 8- and 16-bit devices. In our later discussions 

of microprocessors, powers of 2 keep coming up because 

of the binary nature of computers. For this reason, you 

should study Table 1-3. It lists the powers of 2 encountered 

in microcomputer analysis. As shown, the abbreviation K 

stands for 1,024 (approximately l,000).f Therefore, IK 

means 1,024, 2K stands for 2,048, 4K for 4,096, and so 
on. 

Most personal microcomputers have 640K (or greater) 

memories that can store 655,360 bytes (or more). 

TABLE 1-3. POWERS OF 2 

Powers of 2 Decimal equivalent Abbreviation 

2° 1 

21 2 

22 4 

23 8 

24 16 

25 32 

26 64 

27 128 

28 256 

29 512 

210 1,024 IK 

211 2,048 2K 

212 4,096 4K 

213 8,192 8K 

214 16,384 16K 

215 32,768 32K 

216 65,536 64K 

t The abbreviations IK, 2K, and so on, became established 
before K- for kilo- was in common use. Retaining the capital K 
serves as a useful reminder that K only approximates 1,000. 

Chapter 1 Number Systems and Codes 7 



1-7 DECIMAL-TO-BINARY 
CONVERSION 

Next, you need to know how to convert from decimal to 

binary. After you know how it’s done, you will be able to 

understand how circuits can be built to convert decimal 

numbers into binary numbers. 

Double-Dabble 

Double-dabble is a way of converting any decimal number 

to its binary equivalent. It requires successive division by 

2, writing down each quotient and its remainder. The 

remainders are the binary equivalent of the decimal number. 

The only way to understand the method is to go through 

an example, step by step. 

Here is how to convert decimal 13 to its binary equivalent. 

Step 1. Divide 13 by 2, writing your work like this: 

6 1 —> (first remainder) 

2 7T3 

The quotient is 6 with a remainder of 1. 

Step 2. Divide 6 by 2 to get 

3 0 —» (second remainder) 

2 J6 1 

2 Jl3 

This division gives 3 with a remainder of 0. 

Step 3. Again you divide by 2: 

1 1 —> (third remainder) 

2 J3 0 

2 F6 1 

2 Jl3 

Here you get a quotient of 1 and a remainder of 1. 

Step 4. One more division by 2 gives 

Read 

down 

0 1 

2 FT i 

2 F3 0 

2 F6 1 

2 Fl3 

In this final division, 2 does not divide into 1; therefore, 

the quotient is 0 with a remainder of 1. 

Whenever you arrive at a quotient of 0 with a remainder 

of 1, the conversion is finished. The remainders when read 

downward give the binary equivalent. In this example, 

binary 1101 is equivalent to decimal 13. 

Double-dabble works with any decimal number. Pro¬ 

gressively divide by 2, writing each quotient and its 

remainder. When you reach a quotient of 0 and a remainder 

of 1, you are finished; the remainders read downward are 

the binary equivalent of the decimal number. 

Streamlined Double-Dabble 

There’s no need to keep writing down 2 before each division 

because you’re always dividing by 2. From now on, here’s 

how to show the conversion of decimal 13 to its binary 

equivalent: 

0 1 

n i 

Jl 0 

J~6 1 w 

2 FI3 

EXAMPLE 1-4 

Convert decimal 23 to binary. 

SOLUTION 

The first step in the conversion looks like this: 

11 1 

2 F23 

After all divisions, the finished work looks like this: 

0 1 

FT 0 

12 1 

FT 1 

m 1 

2 J23 / 

This says that binary 10111 is equivalent to decimal 23. 
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1-8 HEXADECIMAL NUMBERS 

Hexadecimal numbers are extensively used in micropro¬ 

cessor work. To begin with, they are much shorter than 

binary numbers. This makes them easy to write and 

remember. Furthermore, you can mentally convert them to 

binary form whenever necessary. 

An Unusual Odometer 

Hexadecimal means 16. The hexadecimal number system 

has a base or radix of 16. This means that it uses 16 digits 

to represent all numbers. The digits are 0 through 9, and 

A through F as follows: 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, 

C, D, E, and F. Hexadecimal numbers are strings of these 

digits like 8A5, 4CF7, and EC58. 

An easy way to understand hexadecimal numbers is to 

visualize a hexadecimal odometer. Each wheel has 16 digits 

on its circumference. As it turns, it displays 0 through 9 

as before. But then, instead of resetting, it goes on to 

display A, B, C, D, E, and F. 

The idea of reset and carry applies to a hexadecimal 

odometer. When a wheel turns from F back to 0, it forces 

the next higher wheel to advance by 1. In other words, 

when a wheel runs out of hexadecimal digits, it resets and 

carries. 

If used in a car, a hexadecimal odometer would count 

as follows. When the car is new, the odometer shows all 

Os: 

0000 (zero) 

The next 9 miles produce readings of 

0001 (one) 

0002 (two) 

0003 (three) 

0004 (four) 

0005 (five) 

0006 (six) 

0007 (seven) 

0008 (eight) 

0009 (nine) 

The next 6 miles give 

000A (ten) 

000B (eleven) 

000C (twelve) 

000D (thirteen) 

000E (fourteen) 

000F (fifteen) 

At this point the least significant wheel has run out of 

digits. Therefore, the next mile forces a reset-and-carry to 

get 

0010 (sixteen) 

The next 15 miles produce these readings: 0011, 0012, 

0013, 0014, 0015, 0016, 0017, 0018, 0019, 001A, 001B, 

001C, 001D, 001E, and 001F. Once again, the least 

significant wheel has run out of digits. So, the next mile 

results in a reset-and-carry: 

0020 (thirty-two) 

Subsequent readings are 0021, 0022, 0023, 0024, 0025, 

0026, 0027, 0028, 0029, 002A, 002B, 002C, 002D, 002E, 

and 002F. 

You should have the idea by now. Each mile advances 

the least significant wheel by 1. When this wheel runs out 

of hexadecimal digits, it resets and carries. And so on for 

the other wheels. For instance, if the odometer reading is 

835F 

the next reading is 8360. As another example, given 

5FFF 

the next hexadecimal number is 6000. 

Equivalences 

Table 1-4 shows the equivalences between hexadecimal, 

binary, and decimal digits. Memorize this table. It’s essential 

that you be able to convert instantly from one system to 

another. 

TABLE 1-4. EQUIVALENCES 

Hexadecimal Binary Decimal 

0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

A 1010 10 

B 1011 11 

C 1100 12 

D 1101 13 

E 1110 14 

F mi 15 
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1-9 HEXADECIMAL-BINARY 
CONVERSIONS 

After you know the equivalences of Table 1-4, you can 

mentally convert any hexadecimal string to its binary 

equivalent and vice versa. 

Hexadecimal to Binary 

To convert a hexadecimal number to a binary number, 

convert each hexadecimal digit to its 4-bit equivalent, using 

Table 1-4. For instance, here’s how 9AF converts to binary: 

9 A F 

l' "i 'i 
looi ioio mi 

As another example, C5E2 converts like this: 

C 5 E 2 

>1 >t >L 
1100 0101 1110 0010 

Incidentally, for easy reading it’s common practice to leave 

a space between the 4-bit strings. For example, instead of 

writing 

C5E216 - 11000101111000102 

we can write 

C5E2i6 = 1100 0101 1110 00102 

Binary to Hexadecimal 

To convert in the opposite direction, from binary to 

hexadecimal, you again use Table 1-4. Here are two 

examples. The byte 1000 1100 converts as follows: 

1000 1100 

i i 
8 C 

The 16-bit number 1110 1000 1101 0110 converts like this: 

1110 1000 1101 0110 

't >1 i' >i 
E 8 D 6 

In both these conversions, we start with a binary number 

and wind up with the equivalent hexadecimal number. 

EXAMPLE 1-5 

Solve the following equation for x: 

r16 = mi mi mi nn2 

SOLUTION 

This is the same as asking for the hexadecimal equivalent 

of binary 1111 1111 1111 1111. Since hexadecimal F is 

equivalent to 1111, x = FFFF. Therefore, 

ffff16 = mi mi nil nn2 

EXAMPLE 1-6 

As mentioned earlier, the memory contains thousands of 

registers (core or semiconductor) that store the program and 

data needed for a computer run. These memory registers 

are known as memory locations. A typical microcomputer 

may have up to 65,536 memory locations, each storing 1 

byte. 

Suppose the first 16 memory locations contain these 

bytes: 

0011 1100 

1100 1101 

0101 0111 

0010 1000 

ini oooi 
0010 1010 

1101 0100 

0100 0000 

0111 0111 

1100 0011 

1000 0100 

0010 1000 

0010 0001 

0011 1010 

0011 1110 

oooi nil 

Convert these bytes to their hexadecimal equivalents. 

SOLUTION 

Here are the stored bytes and their hexadecimal equivalents: 

Memory Contents Hex Equivalents 

0011 1100 3C 

1100 1101 CD 

01010111 57 

0010 1000 28 

1111 0001 FI 

10 Digital Computer Electronics 



0010 1010 2A 

1101 0100 D4 

0100 0000 40 

0111 0111 77 

1100 0011 C3 

1000 0100 84 

0010 1000 28 

0010 0001 21 

0011 1010 3A 

0011 1110 3E 

0001 1111 IF 

What’s the point of this example? When talking about 

the contents of a computer memory, we can use either 

binary numbers or hexadecimal numbers. For instance, we 

can say that the first memory location contains 0011 1100, 

or we can say that it contains 3C. Either string gives the 

same information. But notice how much easier it is to say, 

write, and think 3C than it is to say, write, and think 0011 

1100. In other words, hexadecimal strings are much easier 

for people to work with. This is why everybody working 

with microprocessors uses hexadecimal notation to represent 

particular bytes. 

What we have just done is known as chunking, replacing 

longer strings of data with shorter ones. At the first memory 

location we chunk the digits 0011 1100 into 3C. At the 

second memory location we chunk the digits 1100 1101 

into CD, and so on. 

EXAMPLE 1-7 

The typical microcomputer has a typewriter keyboard that 

allows you to enter programs and data; a video screen 

displays answers and other information. 

Suppose the video screen of a microcomputer displays 

the hexadecimal contents of the first eight memory locations 

as 

A7 

28 

C3 

19 

5A 

4D 

2C 

F8 

What are the binary contents of the memory locations? 

SOLUTION 

Convert from hexadecimal to binary to get 

1010 0111 

0010 1000 

1100 0011 

0001 1001 

0101 1010 

0100 1101 

0010 1100 

mi iooo 

The first memory location stores the byte 1010 0111, the 

second memory location stores the byte 0010 1000, and so 

on. 

This example emphasizes a widespread industrial prac¬ 

tice. Microcomputers are programmed to display chunked 

data, often hexadecimal. The user is expected to know 

hexadecimal-binary conversions. In other words, a computer 

manufacturer assumes that you know that A7 represents 

1010 0111, 28 stands for 0010 1000, and so on. 

One more point. Notice that each memory location in 

this example stores 1 byte. This is typical of first-generation 

microcomputers because they use 8-bit microprocessors. 

1-10 HEXADECIMAL-TO-DECIMAL 
CONVERSION 

You often need to convert a hexadecimal number to its 

decimal equivalent. This section discusses methods for 

doing it. 

Hexadecimal to Binary to Decimal 

One way to convert from hexadecimal to decimal is the 

two-step method of converting from hexadecimal to binary 

and then from binary to decimal. For instance, here’s how 

to convert hexadecimal 3C to its decimal equivalent. 

Step 1. Convert 3C to its binary equivalent: 

3 C 

i i 
0011 1100 

Step 2. Convert 0011 1100 to its decimal equivalent: 

0 0 1 1110 0 
M 32 16 8 4 % /->60 

Therefore, decimal 60 is equivalent to hexadecimal 3C. As 

an equation, 

3C16 = 0011 11002 = 6010 

Positional-Notation Method 

Positional notation is also used with hexadecimal numbers 

because each digit position has a weight. Since 16 digits 

are used, the weights are the powers of 16. As shown in 
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□ 8 E □ 
163 162 161 

Fig. 1 -6 Hexadecimal weights. 

the hexadecimal odometer of Fig. 1-6, the weights are 16°, 

161, 162, and 163. If longer hexadecimal numbers are 

involved, the weights continue in ascending powers of 16. 

The decimal equivalent of a hexadecimal string equals 

the sum of all hexadecimal digits multiplied by their weights. 

(In processing hexadecimal digits A through F, use 10 

through 15.) For instance, the hexadecimal reading of Fig. 

1-6 has a decimal equivalent of 

(F X 163) + (8 x 162) + (E x 161) + (6x 16°) 

= (15 x 163) + (8 x 162) + (14 x 161) + (6 x 16°) 

= 61,440 + 2,048 + 224 + 6 

= 63,718 

In other words, 

F8E616 = 63,718,0 

0000 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

0008 

0009 

000A 

000 B 

00 0C 

000D 

000E 

000F 

3C 

CD 

57 

28 

FI 

2A 

D4 

40 

77 

C3 

84 

28 

21 

3A 

3E 

IF 

16 
locations 

0000 

FFFF 

65,536 
locations 

<a> (b) 

Fig. 1-7 (a) First 16 words in memory; (b) 64K memory. 

Memory Locations and Addresses 

If a certain microcomputer has 64K memory, meaning 

65,536 memory locations, each is able to store 1 byte. The 

different memory locations are identified by hexadecimal 

numbers called addresses. For instance, Fig. I -la shows 

the first 16 memory locations; their addresses are from 0000 
to 000F. 

The address of a memory location is different from its 

stored contents, just as a house address is different from 
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the people living in the house. Figure I -la emphasizes the 

point. At address 0000 the stored contents are 3C (equivalent 

to 0011 1100). At address 0001 the stored contents are CD, 

at address 0002 the stored contents are 57, and so on. 

Figure 1-7b shows how to visualize a 64K memory. The 

first address is 0000, and the last is FFFF. 

Table of Binaiy-Hexadecimal-Decimal 
Equivalents 

A 64K memory has 65,536 hexadecimal addresses from 

0000 to FFFF. The equivalent binary addresses are from 

0000 0000 0000 0000 

to 

mi mi nil nil 

The first 8 bits are called the upper byte (UB); the second 

8 bits are the lower byte (LB). If you have to do a lot of 

binary-hexadecimal-decimal conversions, use the table of 

equivalents in Appendix 2, which shows all the values for 
a 64K memory. 

Appendix 2 has four headings: binary, hexadecimal, UB 

decimal, and LB decimal. Given a 16-bit address, you 

convert the upper byte to its decimal equivalent (UB 

decimal), the lower byte to its decimal equivalent (LB 

decimal), and then add the two decimal equivalents. For 

instance, suppose you want to convert 

1101 0111 1010 0010 

to its decimal equivalent. The upper byte is 1101 0111, or 

hexadecimal D7; the lower byte is 1010 0010, or A2. Using 

Appendix 2, find D7 and its UB decimal equivalent 

D7 55,040 

Next, find A2 and its LB decimal equivalent 

A2 —» 162 

Add the UB and LB decimal equivalents to get 

55,040 + 162 = 55,202 

This is the decimal equivalent of hexadecimal D7A2 or 

binary 1101 0111 1010 0010. 

Once familiar with Appendix 2, you will find it enor¬ 

mously helpful. It is faster, more accurate, and less tiring 

than other methods. The only calculation required is adding 

the UB and LB decimal, easily done mentally, with pencil 

and paper, or if necessary, on a calculator. Furthermore, if 

you are interested in converting only the lower byte, no 

calculation is required, as shown in the next example. 



EXAMPLE 1-8 

Convert hexadecimal 7E to its decimal equivalent. 

SOLUTION 

When converting only a single byte, all you are dealing 

with is the lower byte. With Appendix 2, look up 7E and 

its LB decimal equivalent to get 

7E —» 126 

In other words, Appendix 2 can be used to convert single 

bytes to their decimal equivalents (LB decimal) or double 

bytes to their decimal equivalents (UB decimal + LB 

decimal). 

1-11 DECIMAL-TO-HEXADECIMAL 
CONVERSION 

One way to perform decimal-to-hexadecimal conversion is 

to go from decimal to binary then to hexadecimal. Another 

way is hex-dabble. The idea is to divide successively by 

16, writing down the remainders. (Hex-dabble is like double- 

dabble except that 16 is used for the divisor instead of 2.) 

Here’s an example of how to convert decimal 2,479 into 

hexadecimal form. The first division is 

154 15 F 

16 ) 2,479 

The next step is 

9 10 A 

) 154 15 F 

16 )2,479 

The final step is 

Read 

down 
0 9 9 

J9 10 A 

) 154 15 F 

16 ) 2,479 

Notice how similar hex-dabble is to double-dabble. Also, 

remainders greater than 9 have to be changed to hexadecimal 

digits (10 becomes A, 15 becomes F, etc.). 

If you prefer, use Appendix 2 to look up the decimal- 

hexadecimal equivalents. The next two examples show 

how. 

EXAMPLE 1-9 

Convert decimal 141 to hexadecimal. 

SOLUTION 

Whenever the decimal number is between 0 and 255, all 

you have to do is look up the decimal number and its 

hexadecimal equivalent. With Appendix 2, you can see at 

a glance that 

8D <- 141 

EXAMPLE 1-10 

Convert decimal 36,020 to its hexadecimal equivalent. 

SOLUTION 

If the decimal number is between 256 and 65,535, you 

need to proceed as follows. First, locate the largest UB 

decimal that is less than 36,020. In Appendix 2, the largest 

UB decimal is 

UB decimal = 35,840 

which has a hexadecimal equivalent of 

8C <- 35,840 

This is the upper byte. 

Next, subtract the UB decimal from the original decimal 

number: 

36,020 - 35,840 - 180 

The difference 180 has a hexadecimal equivalent 

B4 <- 180 

This is the lower byte. 

By combining the upper and lower bytes, we get the 

complete answer: 8CB4. This is the hexadecimal equivalent 

of 36,020. 

After a little practice, you will find Appendix 2 to be 

one of the fastest methods of decimal-hexadecimal conver¬ 

sion. 

1-12 BCD NUMBERS 

A nibble is a string of 4 bits. Binary-coded-decimal (BCD) 

numbers express each decimal digit as a nibble. For instance, 

decimal 2,945 converts to a BCD number as follows: 
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2 9 4 5 

't >1 I' 'i 
0010 1001 0100 0101 

As you see, each decimal digit is coded as a nibble. 

Here’s another example: 9,86310 converts like this: 

9 8 6 3 

'l I' 'l >1 
1001 1000 0110 0011 

Therefore, 1001 1000 0110 0011 is the BCD equivalent of 

9,86310. 

The reverse conversion is similar. For instance, 0010 

1000 0111 0100 converts as follows: 

0010 1000 0111 0100 

1 l' 'l >i 
2 8 7 4 

Applications 

BCD numbers are useful wherever decimal information is 

transferred into or out of a digital system. The circuits 

inside pocket calculators, for example, can process BCD 

numbers because you enter decimal numbers through the 

keyboard and see decimal answers on the LED or liquid- 

crystal display. Other examples of BCD systems are elec¬ 

tronic counters, digital voltmeters, and digital clocks; their 

circuits can work with BCD numbers. 

BCD Computers 

BCD numbers have limited value in computers. A few 

early computers processed BCD numbers but were slower 

and more complicated than binary computers. As previously 

mentioned, a computer is more than a number cruncher 

because it must handle names and other nonnumeric data. 

In other words, a modem computer must be able to process 

alphanumerics (alphabet letters, numbers, and other sym¬ 

bols). This why modem computers have CPUs that process 

binary numbers rather than BCD numbers. 

Comparison of Number Systems 

Table 1-5 shows the four number systems we have discussed. 

Each number system uses strings of digits to represent 

quantity. Above 9, equivalent strings appear different. For 

instance, decimal string 128, hexadecimal string 80, binary 

string 1000 0000, and BCD string 0001 0010 1000 are 

equivalent because they represent the same number of 

pebbles. 

Machines have to use long strings of binary or BCD 

numbers, but people prefer to chunk the data in either 

decimal or hexadecimal form. As long as we know how to 
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TABLE 1-5. NUMBER SYSTEMS 

Decimal Hexadecimal Binary BCD 

0 0 0000 0000 0000 0000 0000 
1 1 0000 0001 0000 0000 0001 
2 2 0000 0010 0000 0000 0010 

3 3 0000 0011 0000 0000 0011 
4 4 0000 0100 0000 0000 0100 

5 5 0000 0101 0000 0000 0101 

6 6 0000 0110 0000 0000 0110 
7 7 0000 0111 0000 0000 0111 
8 8 0000 1000 0000 0000 1000 
9 9 0000 1001 0000 0000 1001 

10 A 0000 1010 0000 0001 0000 

11 B 0000 1011 0000 0001 0001 
12 C 0000 1100 0000 0001 0010 

13 D 0000 1101 0000 0001 0011 

14 E 0000 1110 0000 0001 0100 
15 F oooo mi 0000 0001 0101 
16 10 0001 0000 0000 0001 0110 
32 20 0010 0000 0000 0011 0010 
64 40 0100 0000 0000 0110 0100 

128 80 1000 0000 0001 0010 1000 
255 FF mi nil 0010 0101 0101 

convert from one number system to the next, we can always 

get back to the ultimate meaning, which is the number of 

pebbles being represented. 

1-13 THE ASCII CODE 

To get information into and out of a computer, we need to 

use numbers, letters, and other symbols. This implies some 

kind of alphanumeric code for the I/O unit of a computer. 

At one time, every manufacturer had a different code, 

which led to all kinds of confusion. Eventually, industry 

settled on an input-output code known as the American 

Standard Code for Information Interchange (abbreviated 

ASCII). This code allows manufacturers to standardize 

I/O hardware such as keyboards, printers, video displays, 
and so on. 

The ASCII (pronounced ask'-ee) code is a 7-bit code 

whose format (arrangement) is 

X6X5X4X3X2X1X0 

where each X is a 0 or a 1. For instance, the letter A is 

coded as 

1000001 

Sometimes, a space is inserted for easier reading: 

100 0001 



TABLE 1-6. THE ASCII CODE More examples are 

(b) 

(c) 
(d) 

X3X2XjXo 
x6x5x4 

010 Oil 100 101 110 in 

0000 SP 0 @ p p 
0001 ! 1 A Q a q 
0010 

rr 2 B R b r 

0011 # 3 c s c s 

0100 $ 4 D T d t 

0101 % 5 E U e u 

0110 & 6 F V f V 

0111 ’ 7 G w g w 

1000 ( 8 H X h x 

1001 ) 9 I Y i y 
1010 * J Z j z 

1011 + * K k 

1100 > < L 1 

1101 - = M m 

1110 • > N n 

mi / ? O 0 

Table 1-6 shows the ASCII code. Read the table the 

same as a graph. For instance, the letter A has an X6X5X4 

of 100 and an X3X2XJXQ of 0001. Therefore, its ASCII 

code is 

100 0001 (A) 

Table 1-6 includes the ASCII code for lowercase letters. 

The letter a is coded as 

110 0001 (a) 

1100010 

110 0011 

1100100 

and so on. 

Also look at the punctuation and mathematical symbols. 

Some examples are 

010 0100 ($) 
0101011 ( + ) 
0111101 ( = ) 

In Table 1-6, SP stands for space (blank). Hitting the space 

bar of an ASCII keyboard sends this into a microcomputer: 

010 0000 (space) 

EXAMPLE 1-11 

With an ASCII keyboard, each keystroke produces the 

ASCII equivalent of the designated character. Suppose you 

type 

PRINT X 

What is the output of an ASCII keyboard? 

SOLUTION 

P (101 0000), R (101 0010), I (100 1001), N (100 1110), 

T (101 0100), space (010 0000), X (101 1000). 

GLOSSARY 

address Each memory location has an address, analogous 

to a house address. Using addresses, we can tell the computer 

where desired data is stored. 

alphanumeric Letters, numbers, and other symbols. 

base The number of digits (basic symbols) in a number 

system. Decimal has a base of 10, binary a base of 2, and 

hexadecimal a base of 16. Also called the radix. 

bit An abbreviation for binary digit. 

byte A string of 8 bits. The byte is the basic unit of binary 

information. Most computers process data with a length of 

8 bits or some multiple of 8 bits. 

central processing unit The control section and the arith¬ 

metic-logic section. Abbreviated CPU. 

chip An integrated circuit. 

chunking Replacing a longer string by a shorter one. 

data Names, numbers, and any other information needed 

to solve a problem. 

digital Pertains to anything in the form of digits, for 

example, digital data. 

hardware The electronic, magnetic, and mechanical de¬ 

vices used in a computer. 

hexadecimal A number system with a base of 16. Hexa¬ 

decimal numbers are used in microprocessor work. 

input-output Abbreviated I/O. The input and output sec¬ 

tions of a computer are often lumped into one unit known 

as the I/O unit. 

microcomputer A computer that uses a microprocessor 

for its central processing unit (CPU). 

microprocessor A CPU on a chip. It contains the control 

and arithmetic-logic sections. Sometimes abbreviated MPU 

(microprocessor unit). 

nibble A string of 4 bits. Half of a byte. 

program A sequence of instructions that tells the computer 

how to process the data. Also known as software. 

register A group of electronic, magnetic, or mechanical 

devices that store digital data. 

software Programs. 

string A group of digits or other symbols. 
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SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1* Binary means-Binary numbers have a 

base of 2. The digits used in a binary number 

system are_and_ 

2. (two; 0, 1) Names, numbers, and other information 

needed to solve a problem are called_ 

The-is a sequence of instructions that 

tells the computer how to process the data. 

3. (data, program) Computer ICs work reliably be¬ 

cause they are based on_design. When 

a transistor is cut off or saturated, transistor 

-have almost no effect. 

4. (two-state, variations) A_is a group of 

devices that store digital data._is an 

abbreviation for binary digit. A byte is a string of 

_bits. 

5. (register, Bit, 8) The control and arithmetic-logic 

sections are called the_(CPU). A micro¬ 

processor is a CPU on a chip. A microcomputer 

is a computer that uses a_for its CPU. 

6. (central processing unit, microprocessor) The ab¬ 

breviation K indicates units of approximately 1,000 

or precisely 1,024. Therefore, IK means 1,024, 2K 

means 2,048, 4K means_and 64 K 

means_ 

7. (4,096, 65,536) The hexadecimal number system is 

widely used in analyzing and programming_ 

The hexadecimal digits are 0 to 9 and A to_ 

The main advantage of hexadecimal numbers is the 

ease of conversion from hexadecimal to_ 

and vice versa. 

8. (microprocessors, F, binary) A typical microcom¬ 

puter may have up to 65,536 registers in its mem¬ 

ory. Each of these registers, usually called a_, 

stores 1 byte. Such a memory is specified as a 64- 

kilobyte memory, or simply a_memory. 

9. (memory location, 64K) Binary-coded-decimal 

(BCD) numbers express each decimal digit as a_ 

BCD numbers are useful whenever_in¬ 

formation is transferred into or out of a digital 

system. Equipment using BCD numbers includes 

pocket calculators, electronic counters, and digital 

voltmeters. 

10. (nibble, decimal) The ASCII code is a 7-bit code 

for-(letters, numbers, and other sym¬ 

bols). 

11. (alphanumerics) With the typical microcomputer, 

you enter the program and data with typewriter 

keyboard that converts each character into ASCII 

code. 

PROBLEMS 

1-1. How many bytes are there in each of these num¬ 

bers? 

a. 1100 0101 

b. 1011 1001 0110 1110 

c. 1111 1011 0111 0100 1010 

1-2. What are the equivalent decimal numbers for each 

of the following binary numbers: 10, 110, 111, 

1011, 1100, and 1110? 

1-3. What is the base for each of these numbers? 

a. 348 io 

b. 1100 01012 

c. 23125 

d. F4C316 

1-4. Write the equation 

2 + 2 — 4 

using binary numbers. 

1-5. What is the decimal equivalent of 210? What does 

4K represent? Express 8,192 in K units. 

1-6. A 4-bit register has output voltages of high-low- 

high-low. What is the binary number stored in the 

register? The decimal equivalent? 
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Fig. 1-8 An 8-bit LED display. 

1-7. Figure 1-8 shows an 8-bit LED display. A light 

circle means that a LED is on (binary 1) and a 

dark circle means a LED is off (binary 0). What 

is the binary number being displayed? The deci¬ 

mal equivalent? 

1-8. Convert the following binary numbers to decimal 

numbers: 

a. 00111 

b. 11001 

c. 10110 

d. 11110 

1-9. Solve the following equation for x: 

x10 = 110010012 

1-10. An 8-bit transistor register has this output: 

low-high-low-high-low-high-low-high 

What is the equivalent decimal number being 

stored? 



Fig- 1-9 An 8-bit core register. 

1-11. 

Fig. 1 

1-12. 

M3. 
1-14. 
1-15. 

1-16. 

1-17. 

1-18. 

1-19. 

1-20. 

In Fig. 1-9 clockwise flux stands for binary 1 and 

counterclockwise flux for binary 0. What is the 

binary number stored in the 8-bit core register? 

Convert this byte to an equivalent decimal 

number. 

10 A 5-bit switch register. 

Figure 1-10 shows a 5-bit switch register. By 

opening and closing the switches you can set up 

different binary numbers. As usual, high output 

voltage stands for binary 1 and low output voltage 

for binary 0. What is the binary number stored in 

the switch register? The equivalent decimal num¬ 

ber? 

Convert decimal 56 to its binary equivalent. 

Convert 7210 to a binary number. 

An 8-bit transistor register stores decimal 150. 

What is the binary output of the register? 

How would you set the switches of Fig. 1-10 to 

get a decimal output of 27? 

A hexadecimal odometer displays F52A. What are 

the next six readings? 

The reading on a hexadecimal odometer is 27FF. 

What is the next reading? Miles later, you see a 

reading of 8AFC. What are the next six readings? 

Convert each of the following hexadecimal num¬ 

bers to binary: 

a. FF 

b. ABC 

c. CD42 

d. F329 

Convert each of these binary numbers to an 

equivalent hexadecimal number: 

a. 1110 1000 

b. 1100 1011 

c. 1010 11110110 

d. 1000 1011 1101 0110 

1-21. Here is a program written for the 8085 micro¬ 

processor: 

Address Hex Contents 

2000 3E ! 1 

2001 0E 

2002 D3 

2003 20 

2004 76 

Convert the hex contents to equivalent binary 

numbers. 

1-22. Convert each of these hexadecimal numbers to its 

decimal equivalent: 
a. FF 

b. A4 

c. 9B 

d. 3C 

1-23. Convert the following hexadecimal numbers to 

their decimal equivalents: 

a. 0FFF 

b. 3FFF 

c. 7FE4 

d. B3D8 

1-24. A microcomputer has memory locations from 

0000 to 0FFF. Each memory location stores 1 

byte. In decimal, how many bytes can the micro¬ 

computer store in its memory ? How many kilo¬ 

bytes is this? 

1-25. Suppose a microcomputer has memory locations 

from 0000 to 3FFF, each storing 1 byte. How 
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many bytes can the memory store? Express this in 

kilobytes. 

1-26. A microcomputer has a 32K memory. How many 

bytes does this represent? If 0000 stands for the 

first memory location, what is the hexadecimal 

notation for the last memory location? 

1-27. If a microcomputer has a 64K memory, what are 

the hexadecimal notations for the first and last 

memory locations? 

1-28. Convert the following decimal numbers to hexa¬ 

decimal: 

a. 4,095 

b. 16,383 

c. 32,767 

d. 65,535 

1-29. Convert each of the following decimal numbers to 

hexadecimal numbers: 

a. 238 

b. 7,547 

c. 15,359 

d. 47,285 

1-30. How many nibbles are there in each of the fol¬ 

lowing: 

/j a. 1000 0111- * 

b. 10QJ OODO 01(10 0011 

c. 0101 1001 0111 0010 0110 01K) 

1-31. If the numbers in Prob. 1-30 are BCD numbers, 

what are the equivalent decimal numbers? 

1-32. What is the ASCII code for each of the following: 

a. 7 

b. W 

c. f 

d. y 

1-33. Suppose you type LIST with an ASCII keyboard. 

What is the binary output as you strike each 

letter? 

1-34. For each of the following rows, provide the miss¬ 

ing numbers in the bases indicated. 

Base 2 Base 10 Base 16 

a 0100 0001 

b. 200 

C. 3CD 

d. 125 

noi mo mi 

f. FFFF 

g. 
2,000 
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Gates 

For centuries mathematicians felt there was a connection 

between mathematics and logic, but no one before George 

Boole could find this missing link. In 1854 he invented 

symbolic logic, known today as boolean algebra. Each 

variable in boolean algebra has either of two values: true 

or false. The original purpose of this two-state algebra was 

to solve logic problems. 

Boolean algebra had no practical application until 1938, 

when Claude Shannon used it to analyze telephone switching 

circuits. He let the variables represent closed and open 

relays. In other words, Shannon came up with a new 

application for boolean algebra. Because of Shannon’s 

work, engineers realized that boolean algebra could be 

applied to computer electronics. 

This chapter introduces the gate, a circuit with one or 

more input signals but only one output signal. Gates are 

digital (two-state) circuits because the input and output 

signals are either low or high voltages. Gates are often 

called logic circuits because they can be analyzed with 

boolean algebra. 

2-1 INVERTERS 

An inverter is a gate with only one input signal and one 

output signal; the output state is always the opposite of the 

• input state. 

Transistor Inverter 

Figure 2-1 shows a transistor inverter. This common-emitter 

amplifier switches between cutoff and saturation. When VIN 

is low (approximately 0 V), the transistor cuts off and FGut 

is high. On the other hand, a high VIN saturates the transistor, 

forcing Vol]T to go low. 

Table 2-1 summarizes the operation. A low input produces 

a high output, and a high input results in a low output. 

Table 2-2 gives the same information in binary form; binary 

0 stands for low voltage and binary 1 for high voltage. 

An inverter is also called a not gate because the output 

is not the same as the input. The output is sometimes called 

the complement (opposite) of the input. 

+5 V 

Fig. 2-1 Example of inverter design. 

TABLE 2-1 TABLE 2-2 

(c) (d) 

Fig. 2-2 Logic symbols: (a) inverter; (b) another inverter symbol; 
(c) double inverter; (d) buffer. 

Inverter Symbol 

Figure 2-2a is the symbol for an inverter of any design. 

Sometimes a schematic diagram will use the alternative 

symbol shown in Fig. 2-2b\ the bubble (small circle) is on 
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the input side. Whenever you see either of these symbols, 

remember that the output is the complement of the input. 

Noninverter Symbol 

If you cascade two inverters (Fig. 2-2c), you get a nonin¬ 

verting amplifier. Figure 2-2d is the symbol for a nonin¬ 

verting amplifier. Regardless of the circuit design, the action 

is always the same: a low input voltage produces a low 

output voltage, and a high input voltage results in a high 

output voltage. 

The main use of noninverting amplifier is buffering 

(isolating) two other circuits. More will be said about 

buffers in a later chapter. 

EXAMPLE 2-1 

i 1 -TSq_u A \s° 

B 
0 

B 0 rso -1 
[y° 

0 
0 h>o 1 

6 bit 6-bit l/° 
register 

D 
1 register 

r> 1 ISo 0 U 
ly° 

0 p 0 ISo 1 B o 
ly° 

F 
1 

F 
■ 1>° ■ 

(a) (b) 

Fig. 2-3 Example 2-1. 

Figure 2-3a has an output, A to F, of 100101. Show how 

to complement each bit. 

SOLUTION 

Easy. Use an inverter on each signal line (Fig. 2-3b). The 

final output is now 011010. 

A hex inverter is a commercially available IC containing 

six separate inverters. Given a 6-bit register like Fig. 2-3a, 

we can connect a hex inverter to complement each bit as 

shown in Fig. 2-3b. 

One more point. In Fig. 2-3a the bits may represent a 

coded instruction, number, letter, etc. To convey this variety 

of meaning, a string of bits is often called a binary word 

or simply a word. In Fig. 2-3b the word 100101 is 

complemented to get the word 011010. 

2-2 OR GATES 

The or gate has two or more input signals but only one 

output signal. If any input signal is high, the output signal 

is high. 

A O 

B O 

Fig. 2-4 A 2 -input diode or gate. 

Diode or Gate 

Figure 2-4 shows one way to build an or gate. If both 

inputs are low, the output is low. If either input is high, 

the diode with the high input conducts and the output is 

high. Because of the two inputs, we call this circuit a 2- 

input or gate. 

Table 2-3 summarizes the action; binary 0 stands for low 

voltage and binary 1 for high voltage. Notice that one or 

more high inputs produce a high output; this is why the 

circuit is called an or gate. 

-1>\- 

B o-£>(-n- 

CO-W- 

Fig. 2-5 A 3-input diode or gate. 

More than Two Inputs 

Figure 2-5 shows a 3-input or gate. If all inputs are low, 

all diodes are off and the output is low. If 1 or more inputs 

are high, the output is high. 

Table 2-4 summarizes the action. A table like this is 

called a truth table; it lists all the input possibilities and 

the corresponding outputs. When constructing a truth table, 

always list the input words in a binary progression as shown 

(000, 001, 010, . . . , 111); this guarantees that all input 

possibilities will be accounted for. 

An or gate can have as many inputs as desired; add one 

diode for each additional input. Six diodes result in a 6- 

TABLE 2-3. 
TWO INPUT 
OR GATE 

A B Y 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

TABLE 2-4. THREE- 
INPUT or GATE 

A B c Y 

0 0 0 0 
0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 
1 0 1 1 

1 1 0 1 
1 1 1 1 
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input or gate, nine diodes in a 9-input or gate. No matter 

how many inputs, the action of any or gate is summarized 

like this: one or more high inputs produce a high output. 

Bipolar transistors and MOSFETs can also be used to 

build or gates. But no matter what devices are used, or 

gates always produce a high output when one or more 

inputs are high. Figure 2-6 shows the logic symbols for 

2-, 3-, and 4-input or gates. 

(a) (b) (c) 

Fig. 2-6 OR-gate symbols. 

EXAMPLE 2-3 

How many inputs words are in the truth table of an 8-input 

or gate? Which input words produce a high output? 

SOLUTION 

The input words are 0000 0000, 0000 0001, . . . , 1111 

1111. With the formula of the preceding example, the total 

number of input words is 2" = 28 = 256. 

In any or gate, 1 or more high inputs produce a high 

output. Therefore, the input word of 0000 0000 results in 

a low output; all other input words produce a high output. 

EXAMPLE 2-2 

Show the truth table of a 4-input or gate. 

SOLUTION 

Let Y stand for the output bit and A, B, C, D for input bits. 

Then the truth table has input words of 0000, 0001, 0010, 

. . . , 1111, as shown in Table 2-5. As expected, output Y 

is 0 for input word 0000; Y is 1 for all other input words. 

As a check, the number of input words in a truth table 

always equals 2", where n is the number of input bits. A 

2-input or gate has a truth table with 22 or 4 input words; 

a 3-input or gate has 23 or 8 input words; and a 4-input 

or gate has 24 or 16 input words. 

TABLE 2-5. FOUR-INPUT or 

GATE 

A B c D Y 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 j 1 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

- ■ \ 
\ i \ ; 

EXAMPLE 2-4 

+5 V 

Fig. 2-7 Decimal-to-binary encoder. 

The switches of Fig. 2-7 are push-button switches like those 

of a pocket calculator. The bits out of the or gates form a 

4-bit word, designated Y3Y2Y!Y0. What does the circuit 

do? 

SOLUTION 

Figure 2-7 is a decimal-to-binary encoder, a circuit that 

converts decimal to binary. For instance, when push button 

3 is pressed, the Yx and Y0 or gates have high inputs; 

therefore, the output word is 

Y3Y2Y1Y0 = 0011 
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If button 5 is keyed, the V2 and Y0 or gates have high 

inputs and the output word becomes 
TABLE 2-6. TWO- 

INPUT and GATE 

Y3Y2Y,Y0 = 0101 

When switch 9 is pressed, 

Y3Y2Y,Yo = 1001 

Check the other input switches to convince yourself that 

the output word always equals the binary equivalent of the 

switch being pressed. 

2-3 AND GATES 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 2-6 summarizes the action. As usual, binary zero 

stands for low voltage and binary 1 for high voltage. As 

you see, A and B must be high to get a high output; this is 

why the circuit is called an and gate. 

The and gate has two or more input signals but only one 

output signal. All inputs must be high to get a high output. 

+5 v 

fa) 

+5 V 

+5 V +5 V 

Fig. 2-8 A 2-input and gate, (a) circuit; (b) both inputs low; (t*)l 
low input, 1 high; (d) both inputs high. 

+5 V 

Fig. 2-9 A 3-input and gate. 

More than Two Inputs 

Figure 2-9 is a 3-input and gate. If all inputs are low, all 

diodes conduct and pull the output down to a low voltage. 

Even one conducting diode will pull the output down to a 

low voltage; therefore, the only way to get a high output 

is to have all inputs high. When all inputs are high, all 

diodes are nonconducting and the supply voltage pulls the 

output up to a high voltage. 

Table 2-7 summarizes the 3-input and gate. The output 

is 0 for all input words except 111. That is, all inputs must 

be high to get a high output. 

and gates can have as many inputs as desired; add one 

diode for each additional input. Eight diodes, for instance, 

result in an 8-input and gate; sixteen diodes in a 16-input 

Diode and Gate 

Figure 2-8a shows one way to build an and gate. In this 

circuit the inputs can be either low (ground) or high (4- 5 

V). When both inputs are low (Fig. 2-8b), both diodes 

conduct and pull the output down to a low voltage. If one 

of the inputs is low and the other high (Fig. 2-8c), the 

diode with the low input conducts and this pulls the output 

down to a low voltage. The diode with the high input, on 

the other hand, is reverse-biased or cut off, symbolized by 

the dark shading in Fig. 2-8c. 

When both inputs are high (Fig. 2-8d), both diodes are 

cut off. Since there is no current in the resistor, the supply 

voltage pulls the output up to a high voltage (-1-5 V). 

TABLE 2-7. THREE- 
INPUT and GATE 

A B c Y 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 
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(a) (b) (c) 

Fig. 2-10 AND-gate symbols. 

and gate. No matter how many inputs an and gate has, 

the action can be summarized like this: All inputs must be 

high to get a high output. 

Figure 2-10 shows the logic symbols for 2-, 3-, and 4- 

input and gates. 

EXAMPLE 2-5 

Describe the truth table of an 8-input and gate. 

SOLUTION 

The input words are from 0000 0000 to 1111 1111, following 

the binary progression. The total number of input words is 

2* = 28 = 256 

The first 255 input words produce a 0 output. Only the last 

word, 111 1 1111, results in a 1 output. This is because all 

inputs must be high to get a high output. 

For instance, when 

ENABLE = 0 

each and gate has a low ENABLE input. No matter what 

the register contents, the output of each and gate must be 

low. Therefore, the final word is 

Y5Y4Y3Y2Y1Yo = oooooo 

As you see, a low ENABLE blocks the register contents 

from the final output. 

On the other hand, when 

ENABLE = 1 

the output of each and gate depends on the data inputs (A, 
B, C, . . .); a low data input results in a low output, and 

a high data input in a high output. For example, if ABCDEF 

= 100100, a high ENABLE gives 

Y5Y4Y3Y2Y1Yo = 100100 

In general, a high ENABLE transmits the register contents 

to the final output to get 

Y5Y4Y3Y2Y1Y0 = ABCDEF 

EXAMPLE 2-6 

Fig. 2-11 Using and gates to block or transmit data. 

The 6-bit register of Fig. 2-11 stores the word ABCDEF. 

The ENABLE input can be low or high. What does the 

circuit do? 

SOLUTION 

One use of and gates is to transmit data when certain 

conditions are satisfied. In Fig. 2-11 a low ENABLE blocks 

the register contents from the final output, but a high 

ENABLE transmits the register contents. 

2-4 BOOLEAN ALGEBRA 

As mentioned earlier, Boole invented two-state algebra to 

solve logic problems. This new algebra had no practical 

use until Shannon applied it to telephone switching circuits. 

Today boolean algebra is the backbone of computer circuit 

analysis and design. 

Inversion Sign 

In boolean algebra a variable can be either a 0 or a 1. For 

digital circuits, this means that a signal voltage can be 

either low or high. Figure 2-12 is an example of a digital 

circuit because the input and output voltages are either low 

or high. Furthermore, because of the inversion, Y is always 

the complement of A. 

Fig. 2-12 Inverter. 

A word equation for Fig. 2-12 is 

Y = NOT A (2-1) 
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If A is 0, 

Y = NOT 0 = 1 

On the other hand, if A is 1, 

Y = not I = 0 

In boolean algebra, the overbar stands for the NOT 

operation. This means that Eq. 2-1 can be written 

Y = A (2-2) 

Read this as ‘7 equals not A” or ‘T equals the complement 

of A. ” Equation 2-2 is the standard way to write the output 

of an inverter. 

Using the equation is easy. Given the value of A, substitute 

and solve for Y. For instance, if A is 0, 

Y = A = 0=1 

because not 0 is 1. On the other hand, if A is 1, 

Y = A = I = 0 

because not 1 is 0. 

Fig. 2-13 or gate. 

or Sign 

A word equation for Fig. 2-13 is 

Y = A or B (2-3) 

Given the inputs, you can solve for the output. For instance, 

if A = 0 and B — 0, 

Y = 0 or 0 = 0 

because 0 comes out of an or gate when both inputs are 

0s. 

As another example, if A = 0 and B = 1, 

Y = 0 or 1 = 1 

because 1 comes out of an or gate when either input is 1. 

Similarly, if A = 1 and # = 0, 

r = i or o = i 

If A — 1 and B = 1, 

Y = ] OR 1 = 1 

In boolean algebra the + sign stands for the or operation. 

In other words, Eq. 2-3 can be written 

Y = A + B (2-4) 

Read this as ‘T equals A or ZT” Equation 2-4 is the 

standard way to write the output of an or gate. 

Given the inputs, you can substitute and solve for the 

output. For instance, if A = 0 and B — 0, 

Y = A + B = 0 + 0 = 0 

If A = 0 and B = 1, 

F = A+ 5 = 0+ l = l 

because 0 ORed with 1 results in 1. If A = 1 and B — 0, 

y=A+S=l+0=l 

If both inputs are high, 

y = A + 5 = 1 + 1 = 1 

because 1 ORed with 1 gives 1. 

Don’t let the new meaning of the + sign bother you. 

There’s nothing unusual about symbols having more than 

one meaning. For instance, 44pot” may mean a cooking 

utensil, a flower container, the money wagered in a card 

game, a derivative of cannabis sativa and so forth; the 

intended meaning is clear from the sentence it’s used in. 

Similarly, the + sign may stand for ordinary addition or 

or addition; the intended meaning comes across in the way 

it’s used. If we’re talking about decimal numbers, + means 

ordinary addition, but when the discussion is about logic 

circuits, + stands for or addition. 

and Sign 

A word equation for Fig. 2-14 is 

Y = A AND B (2-5) 

In boolean algebra the multiplication sign stands for the 

and operation. Therefore, Eq. 2-5 can be written 

Y = A * B 

or simply 

Y — AB (2-6) 
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Read this as ‘T equals A and 5.” Equation 2-6 is the 

standard way to write the output of an and gate. 

Given the inputs, you can substitute and solve for the 

output. For instance, if both inputs are low, 

F = A£ = 0- 0 = 0 

because 0 ANDed with 0 gives 0. If A is low and B is high, 

Y = AB = 0-1=0 

because 0 comes out of an and gate if any input is 0. If A 
is 1 and B is 0, 

Y = AB = 1-0 = 0 

When both inputs are high, 

Y = AB = 1-1 = 1 

because 1 ANDed with 1 gives 1. 

Decision-Making Elements 

The inverter, or gate, and and gate are often called 

decision-making elements because they can recognize some 

input words while disregarding others. A gate recognizes a 

word when its output is high; it disregards a word when its 

output is low. For example, the and gate disregards all 

words with one or more 0s; it recognizes only the word 
whose bits are all Is. 

Notation 

In later equations we need to distinguish between bits that 

are ANDed and bits that are part of a binary word. To do 

this we will use italic (slanted) letters (A, B, Y, etc.) for 

ANDed bits and roman (upright) letters (A, B, Y, etc.) for 

bits that form a word. 

For example, Y2Y2YXY0 stands for the logical product 

(ANDing) of y3, Y2, Y]9 and Y0. If Y3 = 1, Y2 = 0, Yx = 

0, and Y0 = 1, the product Y3Y2YXY0 will reduce as follows: 

y3y2y1y0 = 1 • 0 • 0 • 1 = 0 O' ■ 

In this case, the italic letters represent bits that are being 
ANDed. 

On the other hand, Y3Y2Y1Y0 is our notation for a 4-bit 

word. With the Y values just given, we can write 

Y3Y2YjY0 = 1001 

In this equation, we are not dealing with bits that are 

ANDed; instead, we are dealing with bits that are part of a 
word. 

The distinction between italic and roman notation will 

become clearer when we get to computer analysis. 

Positive and Negative Logic 

A final point. Positive logic means that 1 stands for the 

more positive of the two voltage levels. Negative logic 
means that 1 stands for the more negative of the two voltage 

levels. For instance, if the two voltage levels are 0 and -5 

V, positive logic would have 1 stand for 0 V and 0 for -5 

V, whereas negative logic would have 1 stand for - 5 V 
and 0 for 0 V. 

Ordinarily, people use positive logic with positive supply 

voltages and negative logic with negative supply voltages. 

Throughout this book, we will be using positive logic. 

EXAMPLE 2-7 

(a) 

:=D-£>— 
(b) 

Fig. 2-15 Logic circuits. 

What is the boolean equation for Fig. 2-15a? The output if 

both inputs are high? 

SOLUTION 

A is inverted before it reaches^ the or gate; therefore, the 

upper input to the or gate is A. The final output is 

Y = A + 5 

This is the boolean equation for Fig. 2-15a. 

To find the output when both inputs are high, either of 

two approaches can be used. First, you can substitute 

directly into the foregoing equation and solve for Y 

f = a + z? = T+ i = o+ i = 1 

Alternatively, you can analyze the operation of Fig. 2-15a 

like this. If both inputs are high, the inputs to the or gate 

are 0 and 1. Now, 0 ORed with 1 gives 1. Therefore, the 

final output is high. 

EXAMPLE 2-8 

What is the boolean equation for Fig. 2-15bl If both inputs 
are high, what is the output? 
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SOLUTION TABLE 2-8. TRUTH TABLE 
FOR Y = AB + CD 

The and gate forms the logical product AB, which is 

inverted to get 

Y = AB 

Read this as “Y equals not AB” or “F equals the 

complement of AB.” 

If both inputs are high, direct substitution into the equation 

gives 

Y = AB = I7! = 1 = 0 

Note the order of operations: the ANDing is done first, then 

the inversion. 

Instead of using the equation, you can analyze Fig. 

2-15B as follows. If both inputs are high, the and gate has 

a high output. Therefore, the final output is low. 

EXAMPLE 2-9 

Fig. 2-16 Logic circuits. 

What is the boolean equation for Fig. 2-16a! The truth 

table? Which input words does the circuit recognize? 

SOLUTION 

The upper and gate forms the logical product AB, and the 

lower and gate gives CD. ORing these products results in 

Y = AB + CD 

Read this as “T equals AB or CD.” 

Next, look at Fig. 2-16a. The final output is high if the 

or gate has one or more high inputs. This happens when 

AB is 1, CD is 1, or both are Is. In turn, AB is 1 when 

A = 1 and B = 1 

A B c D Y 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

CD is 1 when 

C = 1 and D = 1 

Both products are Is when 

A — l B = 1 C = 1 and D = 1 

Therefore, the final output is high when A and B are Is, 

when C and D are Is, or when all inputs are Is. 

Table 2-8 summarizes the foregoing analysis. From this 

it’s clear that the circuit recognizes these input words: 0011, 

0111, 1011, 1100, 1101, 1110, and 1111. 

EXAMPLE 2-10 

Write the boolean equation for Fig. 2-16b. If all inputs are 

high, what is the output? 

SOLUTION 

The OR gate forms the logical sum B + C. This sum is 

ANDed with A to get 

Y = A(B + C) 

(Parentheses indicate ANDing.) 

One way to find the output when all inputs are high is 

to substitute and solve as follows: 

Y = A(B + C) = 1(1 + 1) = 1(1) = 1 
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Alternatively, you can analyze Fig. 2-166 like this. If all 

inputs are high, the OR gate has a high output; therefore, 

both inputs to the and gate are high. Since all high inputs 

to an and gate result in a high output, the final output is 
high. 

EXAMPLE 2-11 

Fig. 2-17 A l-of-10 decoder. 

What is the boolean equation for each Y output in Fig. 
2-17 ? 

SOLUTION 

Each and gate forms the logical product of its input signals. 

The inputs to the top and gate are A, B, C and D; therefore, 

To = ABCD 

The inputs to the next and gate are A, B, C and D: this 
means that 

T, = ABCD 

Analyzing the remaining gates gives 

Y2 = ABCD 

T3 = ABCD 

Y4 = ABCD 

Y5 = ABCD 

Y6 = ABCD 

Y7 = ABCD 

T8 = ABCD 

Y9 = ABCD 

EXAMPLE 2-12 

What does the circuit of Fig. 2-17 do? 

SOLUTION 

This is a binary-to-decimal decoder, a circuit that converts 

from binary to decimal. For instance, when the register 

contents are 0011, the T3 and gate has all high inputs; 

therefore, T3 is high. Furthermore, register contents of 0011 

mean that all other and gates have at least one low input. 

As a result, all other and gates have low outputs. (Analyze 

the circuit to convince yourself.) 

If the register contents change to 0100, only the Y4 and 

gate has all high inputs; therefore, only Y4 is high. If the 

register contents change to 0111, Y7 is the only high output. 

In general, the subscript of the high output equals the 

decimal equivalent of the binary number stored in the 

register. This is why the circuit is called a binary-to-decimal 
decoder. 

The circuit of this example is also called a 4-line-to-10- 

line decoder because there are 4 input lines and 10 output 

lines. Another name for it is a l-of-10 decoder because 

only 1 of 10 output lines has a high voltage. 

GLOSSARY 

AND gate A logic circuit whose output is high only when boolean algebra Originally known as symbolic logic, this 

all inputs are high. modem algebra uses the set of numbers 0 and 1. The 
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operations or, and, and not are sometimes called union, 
intersection, and inversion. Boolean algebra is ideally suited 

to digital circuit analysis. 

complement The output of an inverter. 

gate A logic circuit with one or more input signals but 

only one output signal. 

inverter A gate with only 1 input and 1 output. The output 

is always the complement of the input. Also known as a 

not gate. 

logic circuit A circuit whose input and output signals are 

two-state, either low or high voltages. The basic logic 

circuits are or, and, and not gates. 

OR gate A logic circuit with 2 or more inputs and only 1 

output; 1 or more high inputs produce a high output. 

truth table A table that shows all input and output 

possibilities for a logic circuit. The input words are listed 

in binary progression. 

word A string of bits that represent a coded instruction 

or data. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. A gate is a logic circuit with one or more input 

signals but only_output signal. These 

signals are either-or high. 

2. (one, low) An inverter is a gate with only- 

input; the output is always in the opposite state from 

the input. An inverter is also called a- 

gate. Sometimes the output is referred to as the 

complement of the input. 

3. (7, not) The or gate has two or more input signals. 

If any input is_, the output is high. The 

number of input words in a truth table always equals 

_, where n is the number of input bits. 

4. (high, 2n) The __-___- gate has two or more 

input signals. All inputs must be high to get a high 

output. 
5. (and) In boolean algebra, the overbar stands for the 

not operation, the plus sign stands for the- 

operation, and the times sign for the- 

operation. 

6. (or, and) The inverter, or gate, and and gate are 

called decision-making elements because they can 

recognize some input-while disregarding 

others. A gate recognizes a word when its output is 

7. (words, high) A binary-to-decimal decoder is also 

called a 4-line-to-10-line decoder because it has 4 

input lines and 10 output lines. Another name for it 

is the l-of-10 decoder because only 1 of its 10 output 

lines is high at a time. 

PROBLEMS 

2-1. How many inputs signals can a gate have? How 

many output signals? 

2-2. If you cascade seven inverters, does the overall 

circuit act like an inverter or noninverter? 

2-3. Double inversion occurs when two inverters are 

cascaded. Does such a connection act like an 

inverter or noninverter? 

2-4. The contents of the 6-bit register in Fig. 2-3b 

change to 101010. What is the decimal equivalent 

of the register contents? The decimal equivalent 

out of the hex inverter? 

2-5. An or gate has 6 inputs. How many input words 

are in its truth table? What is the only input word 

that produces a 0 output? 

2-6. Figure 2-18 shows a hexadecimal encoder, a cir¬ 

cuit that converts hexadecimal to binary. Press¬ 

ing each push-button switch results in a differ¬ 

ent output word Y3Y2Y1Y0. Starting with switch 

0, what are the output words? (Note: The new 

symbol in Fig. 2-18 is another way to draw an or 

gate. 
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2-7. In Fig. 2-18 what switches would you press to 

produce 

0011 1001 1100 1111 

(Work from left to right.) 

2-8. What is the 4-bit output in Fig. 2-18 when switch 

A is pressed? Switch 4? Switch E? Switch 6? 

2-9. An and gate has 7 inputs. How many input 

words are in its truth table? What is the only 

input word that produces a 1 output? 

2-10. Visualize the register contents of Fig. 2-19 as the 

word A7A6 • • • A0, and the final output as the 

word Y7Y6 • • • Y0. What is the output word for 

each of the following conditions: 

a. A7A6 • A0 = 1100 1010, ENABLE = 0. 

b. a7a6 • ,* • • Aq = 0101 1101, ENABLE = 1. 

c. A7A6 • • A0 = 1111 0000, ENABLE = 1. 

d. A7A6 ■ • A0 = 1010 1010, ENABLE = 0. 



+ 5 V 

Fig. 2-18 Hexadecimal encoder. 

ENABLE 

Fig. 2-20 

(a) 

BcE^y~£>°—r 

(b) 

2-11. The 8-bit register of Fig. 2-19 stores 59I0. What 

is the decimal equivalent of the final output word 

if ENABLE = 0? If ENABLE - 1? 

2-12. Answer these questions: 

a. What input words does a 6-input or gate 

recognize? What word does it disregard? 

b. What input word does an 8-input and gate 

recognize? What words does it disregard? 

2-13. What is the boolean equation for Fig. 2-20a? The 

output if both inputs are high? 

2-14. If all inputs are high in Fig. 2-206, what is the 

output? The boolean equation for the circuit? 

What is the only ABC input word the circuit 

recognizes? 

2-15. If you constructed the truth table for Fig. 2-206, 

how many input words would it contain? 

Chapter 2 Gates 29 





2-16. What is the boolean equation for Fig. 2-21 at The 

output if both inputs are high? 

2-17. If all inputs are high in Fig. 2-21 b, what is the 

output? What is the boolean equation of the cir¬ 

cuit? What ABC input words does the circuit 

recognize? What is the only word it disregards? 

2-18. What is the boolean equation for Fig. 2-22al The 

output if all inputs are Is? If you were to con¬ 

struct the truth table, how many input words 

would it have? 

2-19. Write the boolean equation for Fig. 2-22b. If all 

inputs are Is, what is the output? 

2-20. If both inputs are high in Fig. 2-23, what is the 

output? What is the boolean equation for the cir¬ 

cuit? Describe the truth table. 

2-21. What is the boolean equation for Fig. 2-24? How 

many ABCD input words are in the truth table? 

Which input words does the circuit recognize? 

2-22. Because of the historical connection between bool¬ 

ean algebra and logic, some people use the words 

“true” and “false” instead of “high” and 

“low” when discussing logic circuits. For in¬ 

stance, here’s how an and gate can be described. 

If any input is false, the output is false; if all 

inputs are true, the output is true. 

a. If both inputs are false in Fig. 2-23, what is 

the output? 

b. What is the output in Fig. 2-23 if one input is 

false and the other true? 

c. In Fig. 2-23 what is the output if all inputs are 

true? 

2-23. Figure 2-25 shows a l-of-16 decoder. The signals 

coming out of the decoder are labeled LDA, 

ADD, SUB, and so on. The word formed by the 4 

leftmost register bits is called the OP CODE. As 

an equation, 

OP CODE = I15I14I13I12 

a. If LDA is high, what does OP CODE equal? 

b. If ADD is high, what does it equal? 

c. When OP CODE = 1001, which of the output 

signals is high? 

d. Which output signal is high if OP CODE = 

mi? 

2-24. In Fig. 2-25, list the OP CODE words and the 

corresponding high output signals. (Start with 

0000 and proceed in binary to 1111.) 

2-25. In the following equations the equals sign means 

“is equivalent to.” Classify each of the following 

as positive or negative logic: 

a. 0 = 0 V and 1 = +5 V. 

b. 0 = +5 V and 1 = 0 V. 

c. 0 = —5 V and 1 = 0 V. 

d. 0 = 0 V and 1 = — 5 V. 

2-26. In Fig. 2-25 four output lines come from the 

decoder. Is it possible to add more op codes 

without increasing the number of output lines? 

2-27. How many output lines from the decoder would 

be needed to have 256 op codes? 
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More Logic Gates 
This chapter introduces nor and nand gates, devices that 

are widely used in industry. You will also learn about De 

Morgan’s theorems; they help you to rearrange and simplify 

logic circuits. 

3-1 NOR GATES 

The nor gate has two or more input signals but only one 

output signal. All inputs must be low to get a high output. 

In other words, the NOR gate recognizes only the input 

word whose bits are all Os. 

Fig. 3-1 nor gate: (a) logical meaning; (b) standard symbol. 

TABLE 3-1. TWO- 
INPUT nor GATE 

A B A + B 

0 0 1 
0 1 0 
1 0 0 
1 1 0 

Incidentally, the boolean equation for a 2-input nor gate 

is 

Y = AT~B (3-1) 

Read this as ‘T equals not A or B.” If you use this 

equation, remember that the ORing is done first, then the 

inversion. 

Two-Input Gate 

Figure 3-1 a shows the logical structure of a nor gate, 

which is an or gate followed by an inverter. Therefore, 

the final output is not the or of the inputs. Originally 

called a not-or gate, the circuit is now referred to as a 

nor gate. 

Figure 3-lb is the standard symbol for a nor gate. Notice 

that the inverter triangle has been deleted and the small 

circle or bubble moved to the OR-gate output. The bubble 

is a reminder of the inversion that follows the ORing. 

With Fig. 3-la and b the following ideas are clear. If 

both inputs are low, the final output is high. If one input 

is low and the other high, the output is low. And if both 

inputs are high, the output is low. 

Table 3-1 summarizes the circuit action. As you see, the 

nor gate recognizes only the input word whose bits are all 

Os. In other words, all inputs must be low to get a high 

output. 

Three-Input Gate 

Regardless of how many inputs a NOR gate has, it is still 

logically equivalent to an or gate followed by an inverter. 

For instance, Fig. 3-2a shows a 3-input nor gate. The 3 

inputs are ORed, and the result is inverted. Therefore, the 

boolean equation is 

Y = A + B + C (3-2) 

The analysis of Fig. 3-2a goes like this. If all inputs are 

low, the result of ORing is low; therefore, the final output 
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TABLE 3-2. THREE-INPUT 
nor GATE 

A B c A + B + C 

0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 0 

is high. If one or more inputs are high, the result of ORing 

is high; so the final output is low. 

Table 3-2 summarizes the action of a 3-input nor gate. 

As you see, the circuit recognizes only the input word 

whose bits are Os. In other words, all inputs must be low 

to get a high output. 

Four-Input Gate 

Figure 3-2b is the symbol for a 4-input nor gate. The 

inputs are ORed, and the result is inverted. For this reason, 

the boolean equation is 

Y=A+B+C+D (3-3) 

The corresponding truth table has input words from 0000 

to 1111. Word 0000 gives a 1 output; all other words 

produce a 0 output. (For practice, you should construct the 

truth table of the 4-input nor gate.) 

3-2 DE MORGAN’S FIRST THEOREM 

Most mathematicians ignored boolean algbebra when it first 

appeared; some even ridiculed it. But Augustus De Morgan 

saw that it offered profound insights. He was the first to 

acclaim Boole’s great achievement. 

Always a warm and likable man, De Morgan himself 

had paved the way for boolean algebra by discovering two 

important theorems. This section introduces the first theo¬ 
rem. 

The First Theorem 

Figure 3-3a is a 2-input nor gate, analyzed earlier. As you 

recall, the boolean equation is 

Y = A + B 

and Table 3-3 is the truth table. 

D— 
(a) 

Fig. 3-3 De Morgan’s first theorem: («) nor gate; (b) and gate 
with inverted inputs. 

Figure 3-3b has the inputs inverted before they reach the 

and gate. Therefore, the boolean equation is 

Y = AB 

If both inputs are low in Fig. 3-3b, the and gate has high 

inputs; therefore, the final output is high. If one or more 

inputs are high, one or more AND-gate inputs must be low 

and the final output is low. Table 3-4 summarizes these 
ideas. 

TABLE 3-3 TABLE 3-4 

A B A B AB A + B 

0 0 1 0 0 1 
0 1 0 0 1 0 
1 0 0 1 0 0 
1 1 0 1 1 0 

Compare Tables 3-3 and 3-4. They’re identical. This 

means that the two circuits are logically equivalent; given 

the same inputs, the outputs are the same. In other words, 

the circuits of Fig. 3-3 are interchangeable. 

De Morgan discovered the foregoing equivalence long 

before logic circuits were invented. His first theorem says 

A + B = AB (3-4) 

The left member of this equation represents Fig. 3-3a; the 

right member, Fig. 3-3b. Equation 3-4 says that Fig. 3-3« 

and b are equivalent (interchangeable). 

Bubbled and Gate 

Figure 3-4a shows an and gate with inverted inputs. This 

circuit is so widely used that the abbreviated logic symbol 

of Fig. 3-4b has been adopted. Notice that the inverter 

triangles have been deleted and the bubbles moved to the 
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:=D-' 
(b) 

Fig. 3-4 AND gate with inverted inputs: (a) circuit; (b) abbreviated 

symbol. 

AND-gate inputs. From now on, we will refer to Fig. 

3-4b as a bubbled and gate; the bubbles are a reminder of 

the inversion that takes place before ANDing. 

Fig. 3-5 De Morgan’s first theorem. 

Figure 3-5 is a graphic summary of De Morgan’s first 

theorem. A nor gate and a bubbled and gate are equivalent. 

As shown later, because the circuits are interchangeable, 

you can often reduce complicated logic circuits to simpler 

forms. 

Here’s what really counts. Equation 3-5 says that a 3- 

input nor gate and a 3-input bubbled and gate are equivalent 

(see Fig. 3-6a). Equation 3-6 means that a 4-input nor 

gate and a 4-input bubbled and gate are equivalent (Fig. 

3-6b). Memorize these equivalent circuits; they are a visual 

statement of De Morgan’s first theorem. 

Notice in Fig. 3-6b how the input edges of the NOR gate 

and the bubbled and gate have been extended. This is 

common drafting practice when there are many input signals. 

The same idea applies to any type of gate. 

EXAMPLE 3-1 

Prove that Fig. 3-la and c are equivalent. 

Fig. 3-7 Equivalent De Morgan circuits. 

SOLUTION 

More than Two Inputs 

When 3 inputs are involved, De Morgan’s first theorem is 

written 

A + B + C = ABC (3-5) 

For 4 inputs 

A + B + C + D = ABCD (3-6) 

In both cases, the theorem says that the complement of a 

sum equals the product of the complements. 

Fig. 3-6 De Morgan’s first theorem: (a) 3-input circuits; (b) 4- 
input circuits. 

The final nor gate in Fig. 3-7a is equivalent to a bubbled 

and gate. This allows us to redraw the circuit as shown in 

Fig. 3-lb. 
Double inversion produces noninversion; therefore, each 

double inversion in Fig. 3-lb cancels out, leaving the 

simplified circuit of Fig. 3-7c. Figure 3-la and c are 

therefore equivalent. 

Remember the idea. Given a logic circuit, you can replace 

any nor'gate by a bubbled and gate. Then any double 

inversion (a pair of bubbles in a series path) cancels out. 

Sometimes you wind up with a simpler logic circuit than 

you started with; sometimes not. 
But the point remains. De Morgan’s first theorem enables 

you to rearrange a logic circuit with the hope of finding a 

simpler equivalent circuit or perhaps getting more insight 

into how the original circuit works. 

3-3 NAND GATES 

The nand gate has two or more input signals but only one 

output signal. All input signals must be high to get a low 

output. 
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Ial (b) 
Fig. 3-8 nand gate: (a) logical meaning; (b) standard symbol. 

Two-Input Gate 

Figure 3-8a shows the logical structure of a nand gate, an 

and gate followed by an inverter. Therefore, the final 

output is not the and of the inputs. Originally called a 

not-and gate, the circuit is now referred to as a nand 

gate. 

Figure 3-8£ is the standard symbol for a nand gate. The 

inverter triangle has been deleted and the bubble moved to 

the AND-gate output. If one or more inputs are low, the 

result of ANDing is low; therefore, the final inverted output 

is high. Only when all inputs are high does the ANDing 

produce a high signal; then the final output is low. 

Table 3-5 summarizes the action of a 2-input nand gate. 

As shown, the nand gate recognizes any input word with 

one or more Os. That is, one or more low inputs produce 

a high output. The boolean equation for a 2-input nand 

gate is 

Y = AB (3-7) 

TABLE 3-5. 
TWO-INPUT 
nand GATE 

A B AB 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Four-Input Gate 

TABLE 3-6. THREE- 
INPUT nand GATE 

A B c ABC 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

Figure 3-9b is the symbol for a 4-input nand gate. The 

inputs are ANDed, and the result is inverted. Therefore, the 

boolean equation is 

Y = ABCD (3-9) 

If you construct the truth table, you will have input words 

from 0000 to 1111. All words from 0000 through 1110 

produce a 1 output; only the word 1111 gives a 0 output. 

Read this as ‘T equals not AB” If you use this equation, 3-4 DE MORGAN'S SECOND 
remember that the ANDing is done first then the inversion. THEOREM 

4—1 
A - 
B - 
c- 

> 
>o-y * — 
^ c- 

D- 
zy~Y 

M (b) 

Fig. 3-9 nand gates: (a) 3-input; (b) 4-input. 

Three-Input Gate 

Regardless of how many inputs a nand gate has, it’s still 

logically equivalent to an and gate followed by an inverter. 

For example, Fig. 3-9a shows a 3-input nand gate. The 

inputs are ANDed, and the product is inverted. Therefore, 

the boolean equation is 

The proof of De Morgan’s second theorem is similar to the 

proof given for the first theorem. What follows is a brief 

explanation. 

The Second Theorem 

When two inputs are used, De Morgan’s second theorem 

says that 

AB = A + B (3-10) 
> 

In words, the complement of a product equals the sum of 

the complements. The left member of this equation repre¬ 

sents a nand gate (Fig. 3-10a); the right member stands 

Y = ABC (3-8) 

Here is the analysis of Fig. 3-9a. If one or more inputs 

are low, the result of ANDing is low; therefore, the final 

output is high. If all inputs are high, the ANDing gives a 

high signal; so the final output is low. 

Table 3-6 is the truth table for a 3-input nand gate. As 

indicated, the circuit recognizes words with one or more 

0s. This means that one or more low inputs produce a high 
output. 

(c) 

Fig. 3-10 De Morgan’s second theorem: (a) nand gate; (b) or 

gate with inverted inputs; (c) bubbled or gate. 
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for an or gate with inverted inputs (Fig. 3-106). Therefore, 

De Morgan's second theorem boils down to the fact that 

Fig. 3-10a and 6 are equivalent. 

=0 ■ =£> 
Fig. 3-11 De Morgan’s second theorem. 

Bubbled or Gate 

The circuit of Fig. 3-10b is so widely used that the 

abbreviated logic symbol of Fig. 3-10c has been adopted. 

From now on we will refer to Fig. 3-10c as a bubbled or 

gate; the bubbles are a reminder of the inversion that takes 

place before ORing. 

Figure 3-11 is a visual statement of De Morgan’s second 

theorem: a nand gate and a bubbled OR gate are equivalent. 

This equivalence allows you to replace one circuit by the 

other whenever desired. This may lead to a simpler logic 

circuit or give you more insight into how the original circuit 

works. 

More than Two Inputs 

When 3 inputs are involved, De Morgan’s second theorem 

is written 

ABC = A + B + C (3-11) 

If 4 inputs are used, 

ABCD =A+£+C+D (3-12) 

These equations say that the complement of a product 

equals the sum of the complements. 

(a) 

(b) 
Fig. 3-12 De Morgan’s second theorem: (a) 3-input circuits; (b) 
4-input circuits. 

Figure 3-12 is a visual summary of the second theorem. 

Whether 3 or 4 inputs are involved, a nand gate and a 

bubbled or gate are equivalent (interchangeable). 

EXAMPLE 3-2 

Prove that Fig. 3-13a and c are equivalent. 

(c) 

Fig. 3-13 Equivalent circuits. 

SOLUTION 

Replace the final nand gate in Fig. 3-13a by a bubbled or 
gate. This gives Fig. 3-136. The double inversions cancel 

out, leaving the simplified circuit of Fig. 3-13c. Figure 

3-13a and c are therefore equivalent. Driven by the same 

inputs, either circuit produces the same output as the other. 

So if you’re loaded with nand gates, build Fig. 3-13a. If 

your shelves are full of and and or gates, build Fig. 

3-13c. 
Incidentally, most people find Fig. 3-13b easier to analyze 

than Fig. 3-13a. For this reason, if you build Fig. 3-13a, 
draw the circuit like Fig. 3-136. Anyone who sees Fig. 

3-136 on a schematic diagram knows that the bubbled or 

gate is the same as a nand gate and that the built-up circuit 

is two nand gates working into a nand gate. 

EXAMPLE 3-3 

Figure 3-14 shows a circuit called a control matrix. At first, 

it looks complicated, but on closer inspection it is relatively 

simple because of the repetition of nand gates. De Morgan’s 

theorem tells us that nand gates driving nand gates are 

equivalent to and gates driving or gates. 

The upper set of inputs T] to T6 are called timing signals; 
only one of them is high at a time. goes high first, then 

72, then T3, and so on. These signals control the rate and 

sequence of computer operations. 

The lower set of inputs LDA, ADD, SUB, and OUT are 

computer instructions; only one of them is high at a time. 

The outputs CP, EP, LM, . . . , to L0 control different 

registers in the computer. 

Answer the following questions about the control matrix: 

a. Which outputs are high when 7, is high? 

b. If T4 and LDA are high, which outputs are high? 

c. When T6 and SUB are high, which outputs are high? 
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SOLUTION 

a. Visualize T{ high. You can quickly check out each 

gate and realize that EP and LM are the only high 

outputs. 

b. This time T4 and LDA are high. Check each gate and 

you can see that LM and Ej are the only high outputs. 

c. When T6 and SUB are high, the high outputs are LA, 
and E\j. 

3-5 EXCLUSIVE-OR GATES 

An or gate recognizes words with one or more Is. The 

exclusive-or gate is different; it recognizes only words 

that have an odd number of Is. 

Two Inputs 

Figure 3-15a shows one way to build an exclusive-or 

gate, abbreviated xor. The upper and gate forms the 

product AB, and the lower and gate gives AB. Therefore, 

the boolean equation is 

Y = AB + AB (3-13) 

Here’s what the circuit does. In Fig. 3-15a two low 

inputs mean both and gates have low outputs; so the final 

output is low. If A is low and B is high, the upper and 

gate has a high output; therefore, the final output is high. 

Likewise, a high A and low B result in a final output that 

is high. If both inputs are high, both and gates have low 

outputs and the final output is low. 

Table 3-7 shows the truth table for a 2-input exclusive- 

or gate. The output is high when A or B is high but not 

both; this is why the circuit is known as an exclusive-or 

gate. In other words, the output is a 1 only when the inputs 
are different. 
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TABLE 3-7* TWO- 

INPUT xor GATE 

A B AB + AB 

0 0 0 
0 1 1 
1 o : 1 
1 i 0 

Logic Symbol and Boolean Sign 

Figure 3-15b is the standard symbol for a 2-input xor gate. 

Whenever you see this symbol, remember the action: the 

inputs must be different to get a high output. 

A word equation for Fig. 3-15b is 

Y = A xor B (3-14) 

In boolean algebra the sign © stands for xor addition. 

This means that Eq. 3-14 can be written 

Y = A © B (3-15) 

Read this as “F equals A xor B." 
Given the inputs, you can substitute and solve for the 

output. For instance, if both inputs are low, 

Y = 0 © 0 = 0 

because 0 xoRed with 0 gives 0. If one input is low and 

the other high, 

y = o ® i = i 

because 0 xoRed with 1 produces 1. And so on. 

Here’s a summary of the four possible xor additions: 

0 © 0 = 0 

0© 1 = 1 
1 © 0 = I 
1 © 1 = 0 

Remember these four results; we will be using xor addition 

when we get to arithmetic circuits. 

Four Inputs 

In Fig. 3- 16a the upper gate produces A © B, while the 

lower gate gives C © D. The final gate xors both of these 

sums to get 

Y = (A® B)@(C@D) (3-16) 
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(a) 

(b) 

Fig. 3-16 A 4-input exclusive-or gate: (a) circuit with 2-input 
xor gates; (b) logic symbol. 

It’s possible to substitute input values into the equation and 

solve for the output. For instance, if A through C are low 

and D is high, 

Y = (0 © 0) © (0 © 1) 

= 0© 1 
= 1 

One way to get the truth table is to plow through all the 

input possibilities. 

Alternatively, you can analyze Fig. 3-16a as follows. If 

all inputs are 0s, the first two gates have 0 outputs; so the 

final gate has a 0 output. If A to C are 0s and D is a 1, the 

upper gate has a 0 output, the lower gate has a 1 output, 

and the final gate has a 1 output. In this way, you can 

analyze the circuit action for all input words. 

Table 3-8 summarizes the action. Here is an important 

property: each input word with an odd number of Is 

produces a 1 output. For instance, the first input word to 

produce a 1 output is 0001; this word has an odd number 

of Is. The next word with a 1 output is 0010; again an odd 

number of Is. A 1 output also occurs for these words: 

0100, 0111, 1000, 1011, 1101, and 1110, all of which 

have an odd number of Is. 

The circuit of Fig, 3-16a recognizes words with an odd 

number of Is; it disregards words with an even number of 

Is. Figure 3-16a is a 4-input xor gate. In this book, we 

will use the abbreviated symbol of Fig. 3-16b to represent 

a 4-input xor gate. When you see this symbol, remember 

the action: the circuit recognizes words with an odd number 

of Is. 

Any Number of Inputs 

Using 2-input xor gates as building blocks, we can make 

xor gates with any number of inputs. For example, Fig. 



TABLE 3-8. FOUR-INPUT 
xor GATE 

Comment A B c D Y 

Even 0 0 0 0 0 
Odd 0 0 0 1 1 
Odd 0 0 1 0 1 
Even 0 0 1 1 0 
Odd 0 1 0 0 1 
Even 0 1 0 1 0 
Even 0 1 1 0 0 
Odd 0 1 1 JL- 
Odd 1 0. ~0 0 1 
Even 1 0 0 1 o 
Even 1 0 1 0 0 
Odd 1 0 1 1 l 
Even 1 1 0 0 0 
Odd 1 1 0 1 i 
Odd 1 1 1 0 i 
Even 1 1 1 1 0 

(3) (b) 

Fig. 3-17 xor gates: {a) 3-input; (b) 6-input. 

3-11 a shows the abbreviated symbol for a 3-input xor gate, 

and Fig. 3-17b is the symbol for a 6-input xor gate. The 

final output of any xor gate is the xor sum of the inputs: 

Y = A ®B © C • • • (3-17) 

What you have to remember for practical work is this: 

an xor gate, no matter how many inputs, recognizes only 

words with an odd number of Is. 

Parity 

Even parity means a word has an even number of Is. For 

instance, 110011 has even parity because it contains four 

Is. Odd parity means a word has an odd number of Is. As 

an example, 110001 has odd parity because it contains 
three Is. 

Here are two more examples: 

1111 0000 1111 0011 (Even parity) 

1111 0000 1111 0111 (Odd parity) 

The first word has even parity because it contains ten Is; 

the second word has odd parity because it contains eleven 
Is. 

xor gates are ideal for testing the parity of a word, xor 

gates recognize words with an odd number of Is. Therefore, 

even-parity words produce a low output and odd-parity 

words produce a high output. 

EXAMPLE 3-4 

What is the output of Fig. 3-18 for each of these input 
words? 

a. 1010 1100 1000 1100 

b. 1010 1100 1000 1101 

16 bits 

ODD 

Fig. 3-18 Odd-parity tester. 

SOLUTION 

a. The word has seven Is, an odd number. Therefore, 

the output signal is 

ODD =.1 

b. The word has eight Is, an even number. Now 

ODD = 0 

This is an example of an odd-parity tester. An even- 

parity word produces a low output. An odd-parity word 

results in a high output. 

EXAMPLE 3-5 

The 7-bit register of Fig. 3-19 stores the letter A in ASCII 

form. What does the 8-bit output word equal? 
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bit Instruction or data bits 

8-bit word with odd parity 

Fig. 3-19 Odd-parity generator. 

SOLUTION 

The ASCII code for letter A is 

100 0001 

(see Table 1-6 for the ASCII code). This word has an even 

parity, which means that the xor gate has a 0 output. 

Because of the inverter, the overall output of the circuit is 

the 8-bit word 

Because of the 1-bit error, we receive letter C when letter 

A was actually sent. 
One solution is to transmit an odd-parity bit along with 

the data word and have an xor gate test each received 

word for odd parity. For instance, with a circuit like Fig. 

3-19 the letter A would be transmitted as 

1100 0001 

An XOR gate will test this word when it is received. If no 

error has occurred, the xor gate will recognize the word. 

On the other hand, if a 1-bit error has crept in, the xor 

gate will disregard the received word and the data can be 

rejected. 

A final point. When errors come, they are usually 1-bit 

errors. This is why the method described catches most of 

the errors in transmitted data. 

EXAMPLE 3-6 

What does the circuit of Fig. 3-20 do? 

Fig. 3-20 

SOLUTION 

1100 0001 

Notice that this has odd parity. 

The circuit is called an odd-parity generator because it 

produces an 8-bit output word with odd parity. If the register 

word has even parity, 0 comes out of the xor gate and the 

odd-parity bit is 1. On the other hand, if the register word 

has odd parity, a 1 comes out of the xor gate and the odd- 

parity bit is 0. No matter what the register contents, the 

odd-parity bit and the register bits form a new 8-bit word 

that has odd parity. 

What is the practical application? Because of transients, 

noise, and other disturbances, 1-bit errors sometimes occur 

in transmitted data. For instance, the letter A may be 

transmitted over phone lines in ASCII form: 

100 0001 (A) 

Somewhere along the line, one of the bits may be changed. 

If the X\ bit changes, the received data will be 

When INVERT = 0 and A = 0, 

Y - 0 © 0 = 0 

When INVERT = 0 and A = 1, 

Y = 0©1 = 1 

In either case, the output is the same as A; that is, 

Y = A 

for a low INVERT signal. 

On the other hand, when INVERT = 1 and A = 0, 

Y = 1 © 0 = 1 

When INVERT = 1 and A = 1, 

100 0011 (C) Y = 1 © 1 = 0 
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This time, the output is the complement of A. As an 

equation, 

Y = A 

for a high INVERT signal. 

To summarize, the circuit of Fig. 3-20 does either of 

two things. It transmits A when INVERT is 0 and A when 

INVERT is 1. 

3-6 THE CONTROLLED INVERTER 

The preceding example suggests the idea of a controlled 
inverter, a circuit that transmits a binary word or its Es 
complement. 

The l's Complement 

Complement each bit in a word and the new word you get 

is the l’s complement. For instance, given 

1100 0111 

the 1 ’s complement is 

0011 1000 

Each bit in the original word is inverted to get the l’s 

complement. 

The Circuit 

The xor gates of Fig. 3-21 form a controlled inverter 
(sometimes called a programmed inverter). This circuit can 

transmit the register contents or the l’s complement of the 

register contents. As demonstrated in Example 3-6, each 

xor gate acts like this. A low INVERT results in 

Y„ = A„ 

and a high INVERT gives 

' Yn = A„ U 

So each bit is either transmitted or inverted before reaching 

the final output. 

Visualize the register contents as a word A7A6 ■ • • A0 

and the final output as a word Y7Y6 • • • Y0. Then a low 

INVERT means 

Y7Y6 • Y0 = A7A6 * * * A0 

On the other hand, a high INVERT results in 

Y7Y6 Y0 = A7A6 * * A0 

As a concrete example, suppose the register word is 

A7A6 • • • Ao = 1110 0110 

Then, a low INVERT gives an output word of 

y7y6 ■ • • Y0 = 1110 0110 

and a high INVERT produces 

Y7Y6 • • • Y0 = 0001 1001 

The controlled inverter of Fig. 3-21 is important. Later 

you will see how it is used in solving arithmetic and logic 

problems. For now, all you need to remember is the key 

idea. The output word from a controlled inverter equals the 
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input word when INVERT is low; the output word equals 

the l’s complement when INVERT is high. 

Boldface Notation 

After you understand an idea, it simplifies discussions and 

equations if you use a symbol, letter, or other sign to 

represent the idea. From now on, boldface letters will stand 

for binary words. 

For instance, instead of writing 

A7A6 • • • A0 = 1110 0110 

we can write 

A = 1110 0110 

Likewise, instead of 

Y7Y6 • • • Y0 = 0001 1001 

the simpler equation 

Y = 0001 1001 

can be used. 

This is another example of chunking. We are replacing 

long strings like A7A6 • • • A0 and Y7Y6 ♦ • • Y0 by A and 

Y. This chunked notation will be convenient when we get 

to computer analysis. 

This is how to summarize the action of a controlled 

inverter: 

[A when INVERT = 0 

Y “ [A when INVERT = 1 

(Note: A boldface letter with an overbar means that each 

bit in the word is complemented; if A is a word, A is its 

l’s complement.) 

3-7 EXCLUSIVE-NOR GATES 

The exclusive-nor gate, abbreviated xnor, is logically 

equivalent to an xor gate followed by an inverter. For 

example, Fig. 3-22a shows a 2-input xnor gate. Figure 

3-22b is an abbreviated way to draw the same circuit. 

(a) (b) 

Fig. 3 -22 A 2-input xnor gate: (a) circuit; (b) abbreviated symbol. 

TABLE 3-9. 

TWO-INPUT 
xnor GATE 

A B 
F 

0 0 
1 

; 1 

0 1 0 

1 0 0 

1 1 1 

Because of the inversion on the output side, the truth 

table of an xnor gate is the complement of an xor truth 

table. As shown in Table 3-9, the output is high when the 

inputs are the same. For this reason, the 2-input xnor gate 

is ideally suited for bit comparison, recognizing when two 

input bits are identical. (Example 3-7 tells you more about 

bit comparison.) 

(a) (b) 

Fig. 3-23 xnor gates: (a) 3-input; (b) 4-input. 

Figure 3-23a is the symbol for a 3-input xnor gate, and 

Fig. 3-23 b is the 4-input xnor gate. Because of the inversion 

on the output side, these xnor gates perform the comple¬ 

mentary function of xor gates. Instead of recognizing odd- 

parity words, xnor gates recognize even-parity words. 

EXAMPLE 3-7 

What does the circuit of Fig. 3-24 do? 

SOLUTION 

The circuit is a word comparator; it recognizes two identical 

words. Here is how it works. The leftmost xnor gate 

compares A5 and B5\ if they are the same, Y5 is a 1. The 

second xnor gate compares A4 and #4; if they are the same, 

Y4 is a 1. In turn, the remaining xnor gates compare the 

bits that are left, producing a 1 output for equal bits and a 

0 output for unequal bits. 

If the words A and B are identical, all xnor gates have 

high outputs and the and gate has a high EQUAL. If words 

A and B differ in one or more bit positions, the and gate 

has a low EQUAL. 
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Fig. 3-24 Word comparator. 

GLOSSARY 

controlled inverter This circuit produces the l’s comple¬ 

ment of the input word. One application is binary subtrac¬ 

tion. It is sometimes called a programmed inverter. 

De Morgan’s theorems The first theorem says that a nor 

gate is equivalent to a bubbled and gate. The second 

theorem says that a nand gate is equivalent to a bubbled 

or gate. 

even parity An even number of Is in a binary word. 

nand gate Equivalent to an and gate followed by an 

inverter. All inputs must be high to get a low output. 

nor gate Equivalent to an or gate followed by an inverter. 

All inputs must be low to get a high output. 

odd parity An odd number of Is in a binary word. 

parity generator A circuit that produces either an odd- or 

even-parity bit to go along with the data. 

xnor gate Equivalent to an exclusive-or gate followed 

by an inverter. The output is high only when the input word 

has even parity. 

xor gate An exclusive-or gate. It has a high output 

only when the input word has odd parity. For a 2-input 

xor gate, the output is high only when the inputs are 

different. 

SELF TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. A nor gate has two or more input signals. All inputs 

must be_to get a high output. A nor 

gate recognizes only the input word whose bits are 

_The nor gate is logically equivalent to 

an or gate followed by an_ 

2. (low, Os, inverter) De Morgan's first theorem says 

that a nor gate is equivalent to a bubbled_ 

gate. 

3. (and) A nand gate is equivalent to an and gate 

followed by an inverter. All inputs must be_ 

to get a low output. De Morgan's second theorem 

says that a nand gate is equivalent to a bubbled 

-gate. 

4. (high, or) An xor gate recognizes only words with 

an_number of Is. The 2-input xor gate 

has a high output only when the input bits are 

_xor gates are ideal for testing parity 

because even-parity words produce a_ 

output and odd-parity words produce a_ 

output. 

5. (odd, different, low, high) An odd-parity generator 

produces an odd-parity bit to go along with the data. 
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The parity of the transmitted data is_An 7. (7' s) The exclusive-nor gate is equivalent to an 

XOR gate can test each received word for parity, XOR gate followed by an inverter. Because of this, 

rejecting words with_parity. even-parity words produce a high output. 

6. (odd, even) A controlled inverter is a logic circuit 

that transmits a binary word or its_com¬ 

plement. 

PROBLEMS 

3-1. In Fig. 3-25a the two inputs are connected to¬ 

gether. If A is low, what is Y1 If A is high, what 

is F? Does the circuit act like a noninverter or an 

inverter? 

3-5. The outputs in Fig. 3-27 are cross-coupled back 

to the inputs of thejvior gates. If R = 0 and S ■ 
1, what do Q and Q equal? 

3-2. What is the output in Fig. 3-25b if both inputs are 

low? If one is low and the other high? If both are 

high? Does the circuit act like an or gate or an 

and gate? 

3-3. Figure 3-26 shows a NOR-gate crossbar switch. If 

all X and Y inputs are high, which of the Z 

outputs is high? If all inputs are high except Xx 
and Z2, which Z output is high? If X2 and Y0 are 

low and all other inputs are high, which Z output 

is high? 

3-4. In Fig. 3-26, you want Z7 to be 1 and all other Z 

outputs to be 0. What values must the X and Y 
inputs have? 

R * 

Fig. 3-27 Cross-coupled nor gates. 

3-6. If R = 1 and S = 0 in Fig. 3-27, what does Q 
equal? Q1 

3-7. Prove that Fig. 3-28a and b are equivalent. 

3-8. What is the output in Fig. 3-28a if all inputs are 

Os. If all inputs are Is? 

3-9. What is the output in Fig. 3-28b if all inputs are 

Os. If all inputs are Is? 

3-10. A nor has 6 inputs. How many input words are 

in its truth table? What is the only input word that 

produces a 1 output? 

3-11. In Fig. 3-28a how many input words are there in 

the truth table? 

3-12. What is the output in Fig. 3-29 if all inputs are 

low? If all inputs are high? 
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Fig. 3-28 n /? 

Fig. 3-29 

How many words are in the truth table of Fig. 

3-29. What is the value of Y for each of the 

following? 

a. ABCD = 0011 

b. ABCD = 0110 

c. ABCD = 1001 

d. ABCD = 1100 

Which ABCD input words does the circuits of 

Fig. 3-29 recognize? 

In Fig. 3-30a the two inputs are connected to¬ 

gether. If A = 0 what does Y equal? If A = 1, 

what does Y equal? Does the circuit act like a 

noninverter or an inverter? 

b. If all inputs are low except X2 and Yu which 

Z output is low? 

c. If all inputs are low except X0 and Y2, which 

Z output is low? 

d. To get a low Z8 output, which inputs must be 

high? 

3-18. In Fig. 3-31, what are the outputs if R = 0 and 

5=1? 

Fig. 3-31 Cross-coupled nand gates. 

3-19. If R = J. and S = 0 in Fig. 3-31, what does Q 
equal? Q? 

3-20. What is the output in Fig. 3-32a if all inputs are 

0s? If all inputs are Is? 

3-21. How many input words are there in the truth table 

of Fig. 3-32al ^ .. Ai M , * , - -. 

Fig. 3-30 

What is the output in Fig. 3-30Z? if both inputs are 

low? If one input is low and the other high? If 

both are high? Does the circuit act like an or gate 

or an and gate? 

Suppose the nor gates of Fig. 3-26 are replaced 

by nand gates. Then you’ve got a NAND-gate 

crossbar switch. 

a. If all X and Y inputs are low, which Z output 
is low? Fig. 3-32 
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3-22. Prove that Fig. 3-32a and b are equivalent. 

3-23. What is the output in Fig. 3-33 if all inputs are 
low? If they are all high? 

3-24. How many words are in the truth table of Fig. 

3-33? What does Y equal for each of the follow¬ 

ing: 

a. ABCDE = 00111 

b. ABCDE = 10110 

c. ABCDE - 11010 

d. ABCDE = 10101 

3-25. In Fig. 3-34 the inputs are 74, JMP, JAM, JAZ, 
AM9 and Az; the output is LP. What is the output 

for each of these input conditions? 

a. All inputs are 0s. 

b. All inputs are low except T4 and JMP. 

Fig. 3-33 

c. All inputs are low except T4, JAZ, and Az. 

d. The only high inputs are T4, JAM, and AM, 
3-26. Figure 3-35 shows the control matrix discussed in 

Example 3-3. Only one of the timing signals Tx to 

T6 is high at a time. Also, only one of the instruc¬ 

tions, LDA to OUT, is high at a time. Which are 

the high outputs for each of the following condi- 

tions? 

a. T, high g- T5 and ADD high 

b. T2 high h. T6 and ADD high 

c. f3 high i. T4 and SUB high 

d. 74 and LDA high j* T5 and SUB high 

e. Ts and LDA high k. T6 and SUB high 

f. r4 and ADD high 1. T4 and OUT high 

T2 r3 ta T5 t6 
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3-27. Figure 3-36 shows a binary-to-Gray-code con¬ 

verter. (Gray code is a special code used in ana- 

log-to-digital conversions.) The input word is 

X4X3 • • • X0, and the output word is Y4Y3 • * • 

Y0. What does the output word equal for each of 

these inputs? 

a. X4X3 • • x0 = 10011 
b. X4X3 • • Xo = 01110 
c. X4X3 • • ■ x0 = 10101 
d. X4X3 • • • ■ Xo = 11100 

Fig. 3-36 Binary-to-Gray-code converter. 

3-28. How many input words are there in the truth table 

of an 8-input xor gate? 

3-29. How can you modify Fig. 3-19 so that it produces 

an 8-bit output word with even parity? 

3-30. In the controlled inverter of Fig. 3-21, what is the 

output word Y for each of these conditions? 

a. A = 1100 1111 and INVERT = 0 

b. A = 0101 0001 and INVERT = 1 

c. A = 1110 1000 and INVERT = 1 

d. A = 1010 0101 and INVERT = 0 

3-31. The inputs A and B of Fig. 3-37 produce outputs 

of CARRY and SUM. What are the values of 

CARRY and SUM for each of these inputs? 

a. A = 0 and B ~ 0 

b. A = 0 and B = 1 

c. A = 1 and B - 0 

d. A = 1 and B = 1 

A B 

Fig. 3-37 

3-32. In Fig. 3-37, what is the boolean equation for 

CARRY? For SUM? 
3-33. What is the l’s complement for each of these 

numbers? 

a. 1100 0011 
b. 1010 11110011 
c. 1110 0001 1010 0011 
d. 0000 1111 0010 1101 

3-34. What is the output of a 16-input xnor gate for 

each of these input words? 

a. 0000 0000 0000 1111 
b. 1111 0101 1110 1100 
c. 0101 1100 0001 0011 
d. 1111 0000 1010 0110 

3-35. The boolean equation for a certain logic circuit is 

Y = AB + CD + AC. What does Y equal for 

each of the following: 

a. ABCD - 0000 
b. ABCD = 0101 
C. ABCD - 1010 
d. ABCD = 1001 
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TTL Circuits 
In 1964 Texas Instruments introduced transistor-transistor 
logic (TTL), a widely used family of digital devices. TTL 

is fast, inexpensive, and easy to use. This chapter concen¬ 

trates on TTL because once you are familiar with it, you 

can branch out to other logic families and technologies. 

4-1 DIGITAL INTEGRATED 
CIRCUITS 

Using advanced photographic techniques, a manufacturer 

can produce miniature circuits on the surface of a chip (a 

small piece of semiconductor material). The finished net¬ 

work is so small you need a microscope to see the 

connections. Such a circuit is called an integrated circuit 
(IC) because the components (transistors, diodes, resistors) 

are an integral part of the chip. This is different from a 

discrete circuit, in which the components are individually 

connected during assembly. 

Levels of Integration 

Small-scale integration (SSI) refers to ICs with fewer than 

12 gates on the same chip. Medium-scale integration (MSI) 

means from 12 to 100 gates per chip. And large-scale 
integration (LSI) refers to more than 100 gates per chip. 

The typical microcomputer has its microprocessor, memory, 

and I/O circuits on LSI chips; a number of SSI and MSI 

chips are used to support the LSI chips. 

Technologies and Families 

The two basic technologies for manufacturing digital ICs 

are bipolar and MOS. The first fabricates bipolar transistors 

on a chip; the second, MOSFETS. Bipolar technology is 

preferred for SSI and MSI because it is faster. MOS 

technology dominates the LSI field because more MOSFETs 

can be packed on the same chip area. 

A digital family is a group of compatible devices with 

the same logic levels and supply voltages (“compatible” 

means that you can connect the output of one device to the 

input of another). Compatibility permits a large number of 

different combinations. 

Bipolar Families 

In the bipolar category are these basic families: 

DTL Diode-transistor logic 

TTL Transistor-transistor logic 

ECL Emitter-coupled logic 

DTL uses diodes and transistors; this design, once popular, 

is now obsolete. TTL uses transistors almost exclusively; 

it has become the most popular family of SSI and MSI 

chips. ECL, the fastest logic family, is used in high-speed 

applications. 

MOS Families 

In the MOS category are these families: 

PMOS p-Channel MOSFETs 

NMOS n-Channel MOSFETs 

CMOS Complementary MOSFETs 

PMOS, the oldest and slowest type, is becoming obsolete. 

NMOS dominates the LSI field, being used for micropro¬ 

cessors and memories. CMOS, a push-pull arrangement of 

n- and p-channel MOSFETs, is extensively used where low 

power consumption is needed, as in pocket calculators, 

digital wristwatches, etc. 

4-2 7400 DEVICES 

The 7400 series, a line of TTL circuits introduced by Texas 

Instruments in 1964, has become the most widely used of 

all bipolar ICs. This TTL family contains a variety of SSI 

and MSI chips that allow you to build all kinds of digital 

circuits and systems. 
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Fig. 4-1 Standard TTL nand gate. 

Standard TTL 

Figure 4-1 shows a TTL nand gate. The multiple-emitter 

input transistor is typical of all the gates and circuits in the 

7400 series. Each emitter acts like a diode; therefore, Q, 

and the 4-kfl resistor act like a 2-input and gate. The rest 

of the circuit inverts the signal; therefore, the overall circuit 

acts like a 2-input nand gate. 

The output transistors (Q3 and Q4) form a totem-pole 

connection, typical of most TTL devices. Either one or the 

other is on. When Q3 is on, the output is high; when Q4 is 

on, the output is low. The advantage of a totem-pole 

connection is its low output impedance. 

Ideally, the input voltages A and B are either low 

(grounded) or high (5 V). If A or B is low, Q, saturates. 

This reduces the base voltage of Q2 to almost zero. 

Therefore, Q2 cuts off, forcing Q4 to cut off. Under these 

conditions, Q3 acts like an emitter follower and couples a 

high voltage to the output. 

On the other hand, when both A and B are high, the 

collector diode of Q: goes into forward conduction; this 

forces Q2 and Q4 into saturation, producing a low output. 

Table 4-1 summarizes all input and output conditions. 

Incidentally, without diode Dl in the circuit, Q3 would 

conduct slightly when the output is low. To prevent this, 

the diode is inserted; its voltage drop keeps the base-emitter 

TABLE 4-1. 
TWO- 
INPUT 
NAND GATE 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

diode of Q3 reverse-biased. In this way, only Q4 conducts 

when the output is low. 

Totem-Pole Output 

Why are totem-pole transistors used? Because they produce 

a low output impedance. Either Q3 acts like an emitter 

follower (high output) or Q4 is saturated (low output). 

Either way, the output impedance is very low. This is 

important because it reduces the switching time. In other 

words, when the output changes from low to high, or vice 

versa, the low output impedance implies a short RC time 

constant; this short time constant means that the output 

voltage can change quickly from one state to the other. 

Propagation Delay Time and Power Dissipation 

Two quantities needed for our later discussions are power 

dissipation and propagation delay time. A standard TTL 

gate has a power dissipation of about \0 mW. It may vary 

from this value because of signal levels, tolerances, etc., 

but on the average, it’s 10 mW per gate. 

The propagation delay time is the amount of time it takes 

for the output of a gate to change after the inputs have 

changed. The propagation delay time of a TTL gate is in 

the vicinity of 10 ns. 

Device Numbers 

By varying the design of Fig. 4-1 manufacturers can alter 

the number of inputs and the logic function. The multiple- 

emitter inputs and the totem-pole outputs are still used, no 

matter what the design. (The only exception is an open 

collector, discussed later.) 

Table 4-2 lists some of the 7400-series TTL gates. For 

instance, the 7400 is a chip with four 2-input nand gates 

in one package. Similarly, the 7402 has four 2-input nor 

gates, the 7404 has six inverters, and so on. 

TABLE 4-2. STANDARD TTL 

Device number Description 

7400 Quad 2-input nand gates 
7402 Quad 2-input nor gates 
7404 Hex inverter 
7408 Quad 2-input and gates 
7410 Triple 3-input nand gates 
7411 Triple 3-input and gates 
7420 Dual 4-input nand gates 
7421 Dual 4-input and gates 

7427 Triple 3-input nor gates 
7430 8-input nand gate 
7486 Quad 2-input xor gates 
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5400 Series 

Any device in the 7400 series works over a temperature 

range of 0° to 70°C and over a supply range of 4.75 to 

5.25 V. This is adequate for commercial applications. The 

5400 series, developed for the military applications, has 

the same logic functions as the 7400 series, except that it 

works over a temperature range of —55 to 125°C and over 

a supply range of 4.5 to 5.5 V. Although 5400-series 

devices can replace 7400-series devices, they are rarely 

used commercially because of their much higher cost. 

High-Speed TTL 

The circuit of Fig. 4-1 is called standard TTL. By decreasing 

the resistances a manufacturer can lower the internal time 

constants; this decreases the propagation delay time. The 

smaller resistances, however, increase the power dissipa¬ 

tion. This variation is known as high-speed TTL. Devices 

of this type are numbered 74H00, 74H01, 74H02, and so 

on. A high-speed TTL gate has a power dissipation around 

22 mW and a propagation delay time of approximately 6 

ns. 

Low-Power TTL 

By increasing the internal resistances a manufacturer can 

reduce the power dissipation of TTL gates. Devices of this 

type are called low-power TTL and are numbered 74L00, 

74L01, 74L02, etc. These devices are slower than standard 

TTL because of the larger internal time constants. A low- 

power TTL gate has a power dissipation of approximately 

1 mW and a propagation delay time around 35 ns. 

Schottky TTL 

With standard TTL, high-speed TTL, and low-power TTL, 

the transistors go into saturation causing extra carriers to 

flood the base. If you try to switch this transistor from 

saturation to cutoff, you have to wait for the extra carriers 

to flow out of the base; the delay is known as the saturation 
delay time. 

One way to reduce saturation delay time is with Schottky 

TTL. The idea is to fabricate a Schottky diode along with 

each bipolar transistor of a TTL circuit, as shown in Fig. 

4-2. Because the Schottky diode has a forward voltage of 

only 0.4 V, it prevents the transistor from saturating fully. 

This virtually eliminates saturation delay time, which means 

better switching speed. This variation is called Schottky 
TTL; the devices are numbered 74S00, 74S01, 74S02, and 

so forth. 

Schottky TTL devices are very fast, capable of operating 

reliably at 100 MHz. The 74S00 has a power dissipation 

around 20 mW per gate and a propagation delay time of 

approximately 3 ns. 

Low-Power Schottky TTL 

By increasing internal resistances as well as using Schottky 

diodes manufacturers have come up with the best compro¬ 

mise between low power and high speed: low-power Schottky 
TTL. Devices of this type are numbered 74LS00, 74LS01, 

74LS02, etc. A low-power Schottky gate has a power 

dissipation of around 2 mW and a propagation delay time 

of approximately 10 ns, as shown in Table 4-3. 

Standard TTL and low-power Schottky TTL are the 

mainstays of the digital designer. In other words, of the 

five TTL types listed in Table 4-3, standard TTL and low- 

power Schottky TTL have emerged as the favorites of the 

digital designers. You will see them used more than any 

other bipolar types. 

4-3 TTL CHARACTERISTICS 

7400-series devices are guaranteed to work reliably over a 

temperature range of 0 to 70°C and over a supply range of 

4.75 to 5.25 V. In the discussion that follows, worst case 
means that the parameters (characteristics like maximum 

input current, minimum output voltage, and so on) are 

measured under the worst conditions of temperature and 

voltage—maximum temperature and minimum voltage for 

some parameters, minimum temperature and maximum 

voltage for others, or whatever combination produces the 

worst values. 

Floating Inputs 

When a TTL input is low or grounded, a current lE 
(conventional direction) exists in the emitter, as shown in 

TABLE 4-3. TTL POWER-DELAY VALUES 

Type 
Power, 

mW 
Delay time, 

ns 

Low-power 1 35 

Low-power Schottky 2 10 

Standard 10 10 

High-speed 22 6 

Schottky 20 3 

o 

*sF—■■ 

Fig. 4-2 Schottky diode prevents transistor saturation. 
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Fig. 4-3 Open or floating input is the same as a high input. 

Fig. 4-3a. On the other hand, when a TTL input is high 

(Fig. 4-36), the emitter diode cuts off and the emitter 

current is approximately zero. 

When a TTL input is floating (unconnected), as shown 

in Fig. 4-3c, no emitter current is possible. Therefore, a 

floating TTL input is equivalent to a high input. In other 

words, Fig. 4-3c produces the same output as Fig. 4-36. 

This is important to remember. In building circuits any 
floating TTL input will act like a high input. 

Figure 4-3d emphasizes the point. The input is floating 

and is equivalent to a high input; therefore, the output of 

the inverter is low. 

Fig. 4-4 TTL inverter. 

Worst-Case Input Voltages 

Figure 4-4 shows a TTL inverter with an input voltage of 

Vj and an output voltage of VQ. When V, is 0 V (grounded), 

the output voltage is high. With TTL devices, we can raise 

V{ to 0.8 V and still have a high output. The maximum 

low-level input voltage is designated VIL. Data sheets list 

this worst-case low input as 

VIL = 0.8 V 

Take the other extreme. Suppose V, is 5 V in Fig. 4-4. 

This is a high input; therefore, the output of the inverter is 

low. Vj can decrease all the way down to 2 V, and the 

output will still be low. Data sheets list this worst-case 

high input as 

In other words, any input voltage from 2 to 5 V is a high 

input for TTL devices. 

Worst-Case Output Voltages 

Ideally, 0 V is the low output, and 5 V is the high output. 

We cannot attain these ideal values because of internal 

voltage drops. When the output is low in Fig. 4-4, Q4 is 

saturated and has a small voltage drop across it. With TTL 

devices, any voltage from 0 to 0.4 V is a low output. 

When the output is high. Q3 acts like an emitter follower. 

Because of the drop across Q3, Du and the 130-0 resistor, 

the output is less than 5 V. With TTL devices, a high 

output is between 2.4 and 3.9 V, depending on the supply 

voltage, temperature, and load. 

This means that the worst-case output values are 

VOL = 0.4 V - 2.4 V 

Table 4-4 summarizes the worst-case values. Remember 

that they are valid over the temperature range (0 to 70°C) 

and supply range (4.75 to 5.25 V). 

Compatibility 

The values shown in Table 4-4 indicate that TTL devices 

are compatible. This means that the output of a TTL device 

can drive the input of another TTL device, as shown in 

Fig. 4-5a. To be specific, Fig. 4-56 shows a low TTL 

output (0 to 0.4 V). This is low enough to drive the second 

TTL device because any input less than 0.8 V is a low 

input. 

TABLE 4-4. TTL STATES (WORST 
CASE) 

Output, V Input, V 

Low 0.4 0.8 
High 2.4 2 

Chapter 4 TTL Circuits 51 



TTL TTL 

device Vo V, device 

(a) 

Similarly, Fig. 4-5c shows a high TTL output (2.4 to 

3.9 V). This is more than enough to drive the second TTL 

because any input greater than 2 V is a high input. 

Noise Margin 

In the worst case, there is a margin of 0,4-Y between the 

driver and the load in Fig. 4-5b and c. This difference, 

called the noise margin, represents protection against noise. 

In other words, the connecting wire between a TTL driver 

and a TTL load may pick up stray noise voltages. As long 

as these induced voltages are less than 0.4 V, we get no 

false triggering of the TTL load. 

Sourcing and Sinking 

When a standard TTL output is low (Fig. 4-5b), an emitter 

current of approximately 1.6 mA (worst case) exists in the 

direction shown. The charges flow from the emitter of Qj 

to the collector of Q4. Because it is saturated, Q4 acts like 
a current sink; charges flow through it to ground like water 

flowing down a drain. 

On the other hand, when a standard TTL output is high 

(Fig. 4-5c), a reverse emitter current of 40 jjlA (worst case) 

exists in the direction shown. Charges flow from Q3 to the 

emitter of QL. In this case, Q3 is acting like a source. 
Data sheets lists the worst-case input currents as 

llL = —1.6 mA IiH = 40 jxA 

The minus sign indicates that the current is out of the 

device; plus means the current is into the device. All data 

sheets use this convention. 

Standard Loading 

A TTL device can source current (high output) or it can 

sink current (low output). Data sheets of standard TTL 

devices indicate that any 7400-series device can sink up to 

16 mA, designated as 

IOL = 16 mA 

and can source up to 400 |aA, designated 

I oh = -400 |jlA 

(Again, a minus sign means that the current is out of the 

device and a plus sign means that it’s into the device.) 

A single TTL load has a low-level input current of 1.6 

mA (Fig., 4-5b) and a high-level input current of 40 |aA 

(Fig. 4-5c). Since the maximum output currents are 10 

times as large, we can connect up to 10 TTL emitters to 

any TTL output. 

Figure 4-6a illustrates a low output. Here you see the 

TTL driver sinking 16 mA, the sum of 10 TTL load 

currents. In this state, the output voltage is guaranteed to 

be 0.4 V or less. If you try connecting more than 10 

emitters, the output voltage may rise above 0.4 V. 

Figure 4-6b shows a high output with the driver sourcing 

400 jxA for 10 TTL loads of 40 pA each. For this maximum 

loading, the output voltage is guaranteed to be 2.4 V or 

more under worst-case conditions. 

Loading Rules 

The maximum number of TTL emitters that can be reliably 

driven under worst-case conditions is called the fanout. 
With standard TTL, the fanout is 10, as shown in Fig. 

4-6. Sometimes, we may want to use a standard TTL device 

to drive low-power Schottky devices. In this case, the 

fanout increases because low-power Schottky devices have 

less input current. 
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(a) 

the right. Pick the driver, pick the load, and read the fanout 

at the intersection of the two. For instance, the fanout of a 

standard device (74) driving low-power Schottky devices 

(74LS) is 20. As another example, the fanout of a low- 

power device (74L) driving high-speed devices (74H) is 
only 1. 

4-4 TTL OVERVIEW 

Let’s take a look at the logic functions available in the 

7400 series. This overview will give you an idea of the 

variety of gates and circuits found in the TTL family. As 

guide, Appendix 3 lists some of the 7400-series devices. 

You will find it useful when looking for a device number 
or logic function. 

Fig. 4-6 Fanout of standard TTL devices: (a) low output; (b) 
high output. 

By examining data sheets for the different TTL types we 

can calculate the fanout for all possible combinations. Table 

4-5 summarizes these fanouts, which may be useful if you 

ever have to mix TTL types. 

Read Table 4-5 as follows. The series numbers have 

been abbreviated; 74 stands for 7400 series, 74H for 74H00 

series, and so forth. Drivers are on the left and loads on 

TABLE 4-5. FANOUTS 

TTL TTL load 

driver 74 74H 74L 74S 74LS 

74 10 8 40 8 20 
74H 12 10 50 10 25 
74L 2 1 20 1 10 
74S 12 10 100 10 50 
74LS 5 4 40 4 20 

Fig. 4-7 Three, four, and eight inputs. 

nand Gates 

To begin with, the nand gate is the backbone of the entire 

series. All devices in the 7400 series are derived from the 

2-input nand gate shown in Fig. 4-1. To produce 3-, 4-, 

and 8-input nand gates the manufacturer uses 3-, 4-, and 

8-emitter transistors, as shown in Fig. 4-7. Because they 

are so basic, nand gates are the least expensive devices in 
the 7400 series. 

nor Gates 

To get other logic functions the manufacturer modifies the 

basic NAND-gate design. For instance, Fig. 4-8 shows a 2- 

input nor gate. Qj, Q2, Q3, and Q4 are the same as in the 

basic design. Q5 and Q6 have been added to produce ORing. 

Notice that Q2 and Q6 are in parallel, the key to the ORing 

followed by inversion to get NORing. 
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The input currents are the same as those of a standard nand 

gate, but the output currents are 3 times as high, which 

means that the 7437 can drive heavier loads. 

Appendix 3 includes several other buffer-drivers. 

'U- u 
(a) 

Fig. 4-9 Seven-segment display. 

When A and B are both low, Q{ and Q5 are saturated; 

this cuts off Q2 and Q6. Then Q3 acts like an emitter 

follower and we get a high output. 

If A or B or both are high, Q! or Q5 or both are cut off, 

forcing Q2 or Q6 or both to turn on. When this happens, 

Q4 saturates and pulls the output down to a low voltage. 

With more transistors, manufacturers can produce 3- and 

4-input nor gates. (A TTL 8-input nor gate is not available.) 

and and OR Gates 

To produce the and function, another common-emitter 

stage is inserted before the totem-pole output of the basic 

nand gate design. The extra inversion converts the nand 

gate to an and gate. Similarly, another CE stage can be 

inserted before the totem-pole output of Fig. 4-8; this 

converts the nor gate to an or gate. 

Buffer-Drivers 

A buffer is a device that isolates two other devices. 

Typically, a buffer has a high input impedance and a low 

output impedance. In terms of digital ICs, this means a low 

input current and a high output current. 

Since the output current of a standard TTL gate can be 

10 times the input current, a basic gate does a certain 

amount of buffering (isolating). But it’s only when the 

manufacturer optimizes the design for high output currents 

that we call a device a buffer or driver. 

As an example, the 7437 is a quad 2-input nand buffer, 

meaning four 2-input nand gates optimized to get high 

output currents. Each gate has the following worst-case 

values of input and output currents: 

I1L = —1.6 mA IIH = 40 \xA 

/ ol — 48 mA I oh — 1.2 mA 

Encoders and Decoders 

A number of TTL chips are available for encoding and 

decoding data. For instance, the 74147 is a decimal-to- 

BCD encoder. It has 10 input lines (decimal) and 4 output 

lines (BCD). As another example, the 74154 is a l-of-16 

decoder. It has 4 input lines (binary) and 16 output lines 

(hexadecimal). 

Seven-segment decoders (7446, 7447, etc.) are useful for 

decimal displays. They convert a BCD nibble into an output 

that can drive a seven-segment display. Figure 4-9a illus¬ 

trates the idea behind a seven-segment LED display. It has 

seven separate LEDs that allow you to display any digit 

between 0 and 9. To display a 7, the decoder will turn on 

LEDs a, b, and c (Fig. 4-9b). 

Seven-segment displays are not limited to decimal num¬ 

bers. For instance, in some microprocessor trainers, seven- 

segment displays are used to indicate hexadecimal digits. 

Digits A, C, E, and F are displayed in uppercase form; 

digit B is shown as a lowercase b (LEDs c, d, e, f, g); and 

digit D as a lowercase d (LEDs b, c, e, g). 

Schmitt Triggers 

When a computer is running, the outputs of gates are 

rapidly switching from one state to another. If you look at 

these signals with an oscilloscope, you see signals that 

ideally resemble rectangular waves like Fig. 4-10a. 

When digital signals are transmitted and later received, 

they are often corrupted by noise, attenuation, or other 

factors and may wind up looking like the ragged waveform 

shown in Fig. 4-10b. If you try to use these nonrectangular 

signals to drive a gate or other digital device, you get 

unreliable operation. 

This is where the Schmitt trigger comes in. It designed 

to clean up ragged looking pulses, producing almost vertical 
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(c) 

Fig. 4-10 Schmitt trigger produces rectangular output. 

(b) (c) 

Fig. 4-11 (a) Hex Schmitt-trigger inverters; (b) 4-input nand 

Schmitt trigger; (c) 2-input nand Schmitt trigger. 

transitions between the low and high state, and vice versa 

(Fig. 4-10c). In other words, the Schmitt trigger produces 

a rectangular output, regardless of the input waveform. 

The 7414 is a hex Schmitt-trigger inverter, meaning six 

Schmitt-trigger inverters in one package like Fig. 4-11 a. 
Notice the hysteresis symbol inside each inverter; it des¬ 

ignates the Schmitt-trigger function. 

Two other TTL Schmitt triggers are available. The 7413 

is a dual 4-input nand Schmitt trigger, two Schmitt-trigger 

gates like Fig. 4-11 b. The 74132 is a quad 2-input nand 

Schmitt trigger, four Schmitt-trigger gates like Fig. 4-1 lc. 

Other Devices 

The 7400 series also includes a number of other devices 

that you will find useful, such as and-or-invert gates 

(discussed in the next section), latches and flip-flops (Chap. 

7), registers and counters (Chap. 8), and memories (Chap. 

9). 

4-5 AND-OR-INVERT GATES 

Figure 4-12a shows an and-or circuit. Figure 4-12b shows 

the De Morgan equivalent circuit, a nand-nand network. 

In either case, the boolean equation is 

Y = AB + CD (4-1) 

Since nand gates are the preferred TTL gates, we would 

build the circuit of Fig. 4-12b. nand-nand circuits like 

this are important because with them you can build any 

desired logic circuit (discussed in Chap. 5). 

TTL Devices 

Is there any TTL device with the output given by Eq. 4-1? 

Yes, there are some and-or gates but they are not easily 

derived from the basic NAND-gate design. The gate that is 

easy to derive and comes close to having an expression like 

Eq. 4-1 is the and-or-invert gate shown in Fig. 4-12c. 

In other words, a variety of circuits like this are available 

on chips. Because of the inversion, the output has an 

equation of 

Y = AB + CD (4-2) 

(c) 

Fig. 4-12 (a) and-or circuit; (b) nand-nand circuit; (c) and- 

or-invert circuit. 
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Fig. 4-13 and-or-invert schematic diagram. 

Figure 4-13 shows the schematic diagram of a TTL and- 

or-invert gate. Qi, Q2j Q3, and Q4 form the basic 2-input 

nand gate of the 7400 series. By adding Q5 and Q6 we 

convert the basic nand gate to an and-or-invert gate. 

Qj and Q5 act like 2-input and gates; Q2 and Q6 produce 

ORing and inversion. Because of this, the circuit is logically 

equivalent to Fig. 4-12c. 

In Table 4-6, listing the and-or-invert gates available 

in the 7400 series, 2-wide means two and gates across, 4- 

wide means four and gates across, and so on. For instance, 

the 7454 is a 2-input 4-wide and-or-invert gate like Fig. 

4-14a; each and gate has two inputs (2-input) and there 

are four and gates (4-wide). Figure 4-14b shows the 7464; 

it is a 2-2-3-4-input 4-wide and-or-invert gate. 

When we want the output given by Eq. 4-1, we can 

connect the output of a 2-input 2-wide and-or-invert gate 

to another inverter. This cancels out the internal inversion, 

giving us the equivalent of an and-or circuit (Fig. 4-12a) 

or a nand-nand network (Fig. 4-12b). 

Expandable and-or-invert Gates 

The widest and-or-invert gate available in the 7400 series 

is 4-wide. What do we do when we need a 6- or 8-wide 

circuit? One solution is to use an expandable and-or- 

invert gate. 

TABLE 4-6. and-or-invert GATES 

Device Description 

7451 Dual 2-input 2-wide 

7454 2-input 4-wide 

7459 Dual 2-3 input 2-wide 

7464 2-2-3-4 input 4-wide 
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(b) 
Fig. 4-14 Examples of and-or-invert circuits. 

Figure 4-15a shows the schematic diagram of an ex¬ 

pandable and-or-invert gate. The only difference between 

this and the preceding and-or-invert gate (Fig. 4-13) is 

collector and emitter tie points brought outside the package. 

Since Q2 and Q6 are the key to the ORing operation, we are 

being given access to the internal ORing function. By 

connecting other gates to these new inputs we can expand 

the width of the and-or-invert gate. 

Figure 4-15b shows the logic symbol for an expandable 

and-or-invert gate. The arrow input represents the emitter, 

and the bubble stands for the collector. Table 4-7 lists the 

expandable and-or-invert gates in the 7400 series. 

Expanders 

What do we connect to the collector and emitter inputs of 

an expandable gate? The output of an expander like Fig. 

4-16a. The input transistor acts like a 4-input and gate. 

The output transistor is a phase splitter; it produces two 

TABLE 4-7. EXPANDABLE and-or- 

invert GATES 

Device Description 

7450 Dual 2-input 2-wide 

7453 2-input 4-wide 

7455 4-input 2-wide 



Collector 

Fig. 4-15 (a) Expandable and-or-invert gate; (b) logic symbol. 
(b) 

O1 

(e) (c) {d) 

Fig. 4-16 (a) Expander; (b) symbol for expander; (c) expander 
driving expandable and-or-invert gate; (d) and-or-invert cir¬ 
cuit; (e) expandable and-or-invert with two expanders. 

output signals, one in phase (emitter) and the other inverted 

(collector). Figure 4-16b shows the symbol of a 4-input 
expander. 

Visualize the outputs of Fig. 4-16a connected to the 

collector and emitter inputs of Fig. 4-15a. Then Q8 is in 

parallel with Q2 and Q6. Figure 4-16c shows the logic 

circuit. This means that the expander outputs are being 

ORed with the signals of the and-or-invert gate. In other 

words, Fig. 4-16c is equivalent to the and-or-invert 

circuit of Fig. 4-16d. 

We can connect more expanders. Figure 4-16c shows 

two expanders driving the expandable gate. Now we have 

a 2-2-4-4-input 4-wide and-or-invert circuit. 

The 7460 is a dual 4-input expander. The 7450, a dual 

expandable and-or-invert gate, is designed for use with 

up to four 7460 expanders. This means that we can add 

two more expanders in Fig. 4-16c to get a 2-2-4-4-4-4- 

input 6-wide and-or-invert circuit. 
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4-6 OPEN-COLLECTOR GATES 

Instead of a totem-pole output, some TTL devices have an 

open-collector output. This means they use only the lower 

transistor of a totem-pole pair. Figure 4-lla shows a 2- 

input nand gate with an open-collector output. Because 

the collector of Q4 is open, a gate like this won’t work 

properly until you connect an external pull-up resistor, 

shown in Fig. 4-176. 

(a) 

+5 v 

Putl-up 
resistor 

f-0/ 

(b) 

Fig. 4-17 Open-collector TTL: (a) circuit; (b) with pull-up resistor. 

The outputs of open-collector gates can be wired together 

and connected to a common pull-up resistor. This is known 

as wire-or. The big disadvantage of open-collector gates 

is their slow switching speed. 

Open-collector gates are virtually obsolete because a new 

device called the three-state switch appeared in the early 

1970s. Section 8-8 discusses three-state switches in detail. 

4-7 MULTIPLEXERS 

Multiplex means “many into one.” A multiplexer is a 

circuit with many inputs but only one output. By applying 

control signals we can steer any input to the output. 

Data Selection 

Figure 4-18 shows a 16-to-l multiplexer, also called a data 

selector. The input data bits are D0 to Dl5. Only one of 

these is transmitted to the output. Control word ABCD 

determines which data bit is passed to the output. For 

instance, when 

ABCD = 0000 

the upper and gate is enabled but all other and gates are 

disabled. Therefore, data bit D0 is transmitted to the output, 

giving 

Y = D0 

If the control word is changed to 

ABCD =1111 

the bottom gate is enabled and all other gates are disabled. 

In this case, 

Y = Dl5 

Boolean Function Generator 

Digital design often starts with a truth table. The problem 

then is to come up with an equivalent logic circuit. 

Multiplexers give us a simple way to transform a truth table 

into an equivalent logic circuit. The idea is to use input 

data bits that are equal to the desired output bits of the 

truth table. 
For example, look at the truth table of Table 4-8. When 

the input word ABCD is 0000, the output is 0; when ABCD 

TABLE 4-8 

A B c D Y 

0 0 0 0 0 
0 0 0 1 1 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 
0 1 0 1 0 

0 1 1 0 1 

0 1 1 1 1 
1 0 0 0 0 

1 0 0 1 0 
1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 1 

1 1 1 1 0 
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ABCD 

Fig. 4-19 Generating a boolean function. 

= 0001, the output is 1; when ABCD = 0010, the output 

is 0; and so on. Figure 4-19 shows how to set up a 

multiplexer with the foregoing truth table. When ABCD 

= 0000, data bit 0 is steered to the output; when ABCD 

= 0001, data bit 1 is steered to the output; when ABCD 

= 0010, data bit 0 is steered to the output; and so forth. 

As a result, the truth table of this circuit is the same as 

Table 4-8. 

Universal Logic Circuit 

The 74150 is a 16-to-l multiplexer. This TTL device is a 

universal logic circuit because you can use it to get the 

hardware equivalent of any four-variable truth table. In 

other words, by changing the input data bits the same IC 

can be made to generate thousands of different truth tables. 

Multiplexing Words 

Figure 4-20 illustrates a word multiplexer that has two input 

words and one output word. The input word on the left is 

L3L2L1L0 and the one on the right is R3R2RiR0. The control 

signal labeled RIGHT selects the input word that will be 

transmitted to the output. When RIGHT is low, the four 

nand gates on the left are activated; therefore, 

OUT = L3L2L1L0 

When RIGHT is high, 

OUT — R^R2RiR0 

The 74157 is TTL multiplexer with an equivalent circuit 

like Fig. 4-20. Appendix 3 lists other multiplexers available 

in the 7400 series. 

_GLOSSARY_ 

bipolar Having two types of charge carriers: free electrons fanout The maximum number of TTL loads that a TTL 

and holes. device can drive reliably over the specified temperature 

chip A small piece of semiconductor material. Sometimes, range. 

chip refers an IC device including its pins. low-power Schottky TTL A modification of standard TTL 
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in which larger resistances and Schottky diodes are used. 

The increased resistances decrease the power dissipation, 

and the Schottky diodes increase the speed. 

multiplexer A circuit with many inputs but only one 

output. Control signals select which input reaches the output. 

noise margin The amount of noise voltage that causes 

unreliable operation. With TTL it is 0.4 V. As long as 

noise voltages induced on connecting lines are less than 

0.4 V, the TTL devices will work reliably. 

saturation delay time The time delay encountered when 

a transistor tries to come out of the saturation region. When 

the base drive switches from high to low, a transistor cannot 

instantaneously come out of saturation; extra carriers that 

flooded the base region must first flow out of the base. 

Schmitt trigger A digital circuit that produces a rectangular 

output from any input large enough to drive the Schmitt 

trigger. The input waveform may be sinusoidal, triangular, 

distorted, and so on. The output is always rectangular. 

sink A place where something is absorbed. When satu¬ 

rated, the lower transistor in a totem-pole output acts like 

a current sink because conventional charges flow through 
the transistor to ground. 

source A place where something originates. The upper 

transistor of a totem-pole output acts like a source because 

charges flow out of its emitter into the load. 

standard TTL The initial TTL design with resistance 

values that produce a power dissipation of 10 mW per gate 

and a propagation delay time of 10 ns. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Small-scale integration, abbreviated_, re¬ 

fers to fewer than 12 gates on the same chip. 

Medium-scale integration (MSI) means 12 to 100 

gates per chip. And large-scale integration (LSI) 

refers to more than_gates per chip. 

2. (SSI, 100) The two basic technologies for digital 

ICs are bipolar and MOS. Bipolar technology is 

preferred for_and_whereas 

MOS technology is better suited to LSI. The reason 

MOS dominates the LSI field is that more_ 

can be fabricated on the same chip area. 

3. (SSI, MSI, MOSFETs) Some of the bipolar families 

include DTL, TTL, and ECL_has be¬ 

come the most widely used bipolar family._ 

is the fastest logic family; it’s used in high-speed 

applications. 

4. (TTL, ECL) Some of the MOS families are PMOS, 

NMOS, and CMOS._dominates the LSI 

field, and-is used extensively where 

lowest power consumption is necessary. 

5. (NMOS, CMOS) The 7400 series, also called stan¬ 

dard TTL, contains a variety of SSI and_ 

chips that allow us to build all kinds of digital 

circuits and systems. Standard TTL has a multiple- 

emitter input transistor and a_output. 

The totem-pole output produces a low output 

impedance in either state. 

6. (MSI, totem-pole) Besides standard TTL, there is 

high-speed TTL, low-power TTL, Schottky TTL, 

and low-power-TTL. Standard TTL and 

low-power-TTL have become the favor¬ 

ites of digital designers, used more than any other 
bipolar families. 

7. (Schottky, Schottky) 7400-series devices are guaran¬ 

teed to work reliably over a_range of 0 

to 70°C and over a voltage range of 4.75 to 5.25 V. 

A floating TTL input has the same effect as a 

_input. 

8. (temperature, high) A_TTL device can 

sink up to 16 mA and can source up to 400 jiA. 

The maximum number of TTL loads a TTL device 

can drive is called the_With standard 

TTL, the fanout equals_ 

9. (standard, fanout, 10) A buffer is a device that 

isolates other devices. Typically, a buffer has a high 

input impedance and a_output imped¬ 

ance. In terms of digital ICs, this means a_ 

input current and a high output current capability. 

10. (low, low) A Schmitt trigger is a digital circuit that 

produces a-output regardless of the in¬ 

put waveform. It is used to clean up ragged looking 

pulses that have been distorted during transmission 

from one place to another. 

11. (rectangular) A multiplexer is a circuit with many 

inputs but only one output. It is also called a data 

selector because data can be steered from one of the 

inputs to the output. A 74150 is a 16-to-l multi¬ 

plexer. With this TTL device you can implement 

the logic circuit for any four-variable truth table. 
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PROBLEMS 

4-1. In Fig. 4-21 a grounded input means that almost 

the entire supply voltage appears across the 4-kfl 

resistor. Allowing 0.7 V for the emitter-base volt¬ 

age of Q1? how much input emitter current is there 

with a grounded input? The supply voltage can be 

as high as 5.25 V and the 4-kd resistance can be a 

low as 3.28 kfl. What is the input emitter current 

in this case? 

4-2. What is the fanout of a 74S00 device when it 

drives low-power TTL loads? 

4-3. What is the fanout of a low-power Schottky device 

driving standard TTL devices? 

4-4. Section 4-4 gave the input and output currents for a 

7437 buffer. What is the fanout of a 7437 when it 

drives standard TTL loads? 

•-Kh* 

U 
U 

d 

(a) 

Fig. 4-22 

4-5. A seven-segment decoder is driving a LED display 

like Fig. 4-22a. Which LEDs are on when digit 8 

appears? Which LEDs are on when digit 4 ap¬ 

pears? 

4-6. Section 4-7 described the 74150, a 16-to-l multi¬ 

plexer. Refer to Fig. 4-23 and indicate the values 

the D0 to D,5 inputs of a 74150 should have to 

reproduce the following truth table: The output is 

high when ABCD = 0000, 0100, 0111, 1100, 

and 1111; the output is low for all other inputs. 

4-7. What is propagation delay? 

4-8. Why are 5400 series devices not normally used in 

commercial applications? 

4-9. What do Schottky devices virtually eliminate 

which makes their high switching speeds possi¬ 

ble? 

4-10. What is the noise margin of TTL devices? 
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Boolean Algebra and 
Karnaugh Maps 

This chapter discusses boolean algebra and Karnaugh maps, 
topics needed by the digital designer. Digital design usually 
begins by specifying a desired output with a truth table. 
The question then is how to come up with a logic circuit 
that has the same truth table. Boolean algebra and Karnaugh 
maps are the tools used to transform a truth table into a 

practical logic circuit. 

5-1 BOOLEAN RELATIONS 

What follows is a discussion of basic relations in boolean 
algebra. Many of these relations are the same as in ordinary 
algebra, which makes remembering them easy. 

Commutative, Associative, and 
Distributive Laws 

Given a 2-input or gate, you can transpose the input signals 
without changing the output (see Fig. 5-1 a). In boolean 

terms 

A + B = B + A (5-1) 

Similarly, you can transpose the input signals to a 2-input 
and gate without affecting the output (Fig. 5-1 b). The 
boolean equivalent of this is 

AB = BA (5-2) 

The foregoing relations are called commutative laws. 
The next group of rules are called the associative laws. 

The associative law for ORing is 

A + (B + C) = (A + B) 4- C (5-3) 

(e) 

Fig. 5-1 Commutative, associative, and distributive laws. 

Figure 5-lc illustrates this rule. The idea is that how you 
group variables in an ORing operation has no effect on the 
output. For either gate in Fig. 5-lc the output is 

Y = A + B + C 
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Similarly, the associative law for ANDing is Another boolean relation is 

A(BC) = (AB)C (5-4) 

Figure 5-1 d illustrates this rule. How you group variables 
in ANDing operations has no effect on the output. For either 
gate of Fig. 5-1 d the output is 

Y = ABC 

The distributive law states that 

A(B + C) = AB + AC (5-5) 

This is easy to remember because it’s identical to ordinary 
algebra. Figure 5-\e shows the meaning in terms of gates. 

or Operations 

The next four boolean relations are about or operations. 
Here is the first: 

A + 0 = A (5-6) 

This says that a variable ORed with 0 equals the variable. 
For better grasp of this idea, look at Fig. 5-2a. (The solid 
arrow stands for “implies.”) The two cases on the left 
imply the case on the right. In other words, if the variable 
is 0, the output is 0 (left gate); if the variable is 1, the 
output is 1 (middle gate); therefore, a variable ORed with 
0 equals the variable (right gate). 

A + A = A (5-7) 

which is illustrated in Fig. 5-2b. You can see what happens. 
If A is 0, the output is 0; if A is 1, the output is 1; therefore, 
a variable ORed with itself equals the variable. 

Figure 5-2c shows the next boolean rule: 

A + 1 = 1 (5-8) 

In a nutshell, if one input to an or gate is 1, the output is 
1 regardless of the other input. 

Finally, we have 

^ + A = 1 (5-9) 

shown in Fig. 5-2d. In this case, a variable ORed with its 

complement equals 1. 

and Operations 

The first and relation to know about is 

A • 1 = A (5-10) 

illustrated in Fig. 5-3a. If A is 0, the output is 0; if A is 1, 
the output is 1; therefore, a variable ANDed with 1 equals 

the variable. 

Another relation is 

A • A = A (5-11) 

o 

o 
0 

0 

0 

0 

1 
1 

:=D~ 
Fig. 5-2 or relations. 

:=o* 

:=£>• 
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Fig. 5-3 and relations. 

shown in Fig. 5-3b. In this case, a variable ANDed with 

itself equals the variable. 

Figure 5-3c illustrates this relation 

A • 0=0 (5-12) 

The rule is clear. If one input to an and gate is 0, the 
output is 0 regardless of the other input. 

The last and rule is 

A •A = 0 (5-13) 

As shown in Fig. 5-3d, a variable ANDed with its comple¬ 

ment produces a 0 output. 

Double Inversion and De Morgan's Theorems 

The double-inversion rule is 

A = A (5-14) 

which says that the double complement of a variable equals 
the variable. Finally, there are the De Morgan theorems 
discussed in Chap. 3: 

A = AB _ (5-15) 
AB=A+B (5-16) 

You should memorize Eqs. 5-1 to 5-16 because they are 
used frequently in design work. 

Duality Theorem 

We state the duality theorem without proof. Starting with 
a boolean relation, you can derive another boolean relation 

by 

1. Changing each or sign to an and sign 
2. Changing each and sign to an or sign 
3. Complementing each 0 and 1 

For instance, Eq. 5-6 says that 

A + 0 = A 

The dual relation is 

A • 1 = A 

This is obtained by changing the OR sign to an and sign, 
and by complementing the 0 to get a 1. 

The duality theorem is useful because it sometimes 
produces a new boolean relation. For example, Eq. 5-5 

states that 

A{B + C) = AB + AC 

By changing each or and and operation we get the dual 

relation 

A + BC = (A + B)(A + C) 

This is a new boolean relation, not previously discussed. 
(If you want to prove it, construct the truth table for the 
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left and right members of the equation. The two truth tables 
will be identical.) 

Summary 

For future reference, here are 
their duals: 

some boolean relations and 

L (' : 
A + B = B + A AB = BA 

A + (B + C) = (A + B) + C A(BC) = (AB)C 
A(B + C) = A + BC = 

AB + AC (A + B)(A + C) 
A + 0 = A A • 1 = A 
A + 1 = 1 A • 0 = 0 
A + A = A AA = A 
A + A = 1 AA = 0 

A = A A = A 
A + B = AB AB = A + B 

A + AB = A A(A + B) = A 
A + AB = A + B A(A + B) = AB 

5-2 SUM-OF-PRODUCTS METHOD 

Digital design often starts by constructing a truth table with 
a desired output (0 or 1) for each input condition. Once 
you have this truth table, you transform it into an equivalent 
logic circuit. This section discusses the sum-of-products 
method, a way of deriving a logic circuit from a truth table. 

(a) (b) 

*=D— :n>- 
(c) (d) 

Fig. 5-4 Fundamental products. 

Fundamental Products 

Figure 5-4 shows the four possible ways to and two input 
signals_and their complements. In Fig. 5-4a the inputs are 
A and B. Therefore, the output is 

Y = AB 

The output is high only when A = 0 and B - 0. 
Figure 5-Ab shows another possibility. Here the inputs 

are A and B; so the output is 

Y = AB 

TABLE 5-1. TWO VARIABLES 

A B Fundamental product 

0 0 AB 
0 1 AB 
1 0 AB 
1 1 AB 

In this case, the output is 1 only when A = 0 and B = 1. 
In Fig. 5-4c the inputs are A and B. The output 

Y = AB 

is high only when A = 1 and £ = 0. Finally, in Fig. 
5-4d the inputs are A and B. The output 

Y = AB 

is 1 only when A = 1 and 5=1. 
Table 5-1 summarizes the four possible ways to and two 

signals in complemented or uncomplemented form. The 
logical products AB,AB, AB, and AB are called fundamental 
products because each produces a high output for its 
corresponding input. For instance, AB is a 1 when A is 0 
and B is 0, AB is a 1 when A is 0 and B is 1, and so forth. 

Three Variables 

A similar idea applies to three signals in complemented and 
uncomplemented form. Given A, 5, C, and their comple¬ 
ments, Jhere are eight_fundamental products: ABC, ABC, 
ABC, ABC, ABC, ABC, ABC, and ABC. Table 5-2 lists 
each input possibility and its fundamental product. Again 
notice this property: each fundamental product is high for 
the corresponding input. This_means that ABC is a 1 when 
A is 0, B is 0, and C is 0; ABC is a 1 when A is 0, B is 
0, and C is 1; and so on. 

TABLE 5-2. THREE VARIABLES 

A B c Fundamental product 

0 0 0 ABC 
0 0 1 ABC 
0 1 0 ABC 
0 1 1 ABC 
1 0 0 ABC 
1 0 1 ABC 
1 1 0 ABC 
1 1 1 ABC 
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Four Variables TABLE 5-4 

When there are 4 input variables, there are 16 possible 
input conditions, 0000 to 1111. The corresponding funda¬ 
mental products are from ABCD through ABCD. Here is 
a quick way to find the fundamental product for any input 
condition. Whenever the input variable is 0, the same 
variable is complemented in the fundamental product. For 
instance, if the input condition is 0110, the fundamental 
product is ABCD. Similarly, if the input is 0100, the 
fundamental product is ABCD. 

Deriving a Logic Circuit 

To get from a truth table to an equivalent logic circuit OR 
the fundamental products for each input condition that 
produces a high output. For example, suppose you have a 
truth table like Table 5-3. The fundamental products are 
listed for each high output. By ORing these products you 
get the boolean equation 

Y = ABC A ABC 4- ABC A ABC (5-17) 

This equation implies four and ga.tes driving an or gate. 
The first and gate has inputs of A , B, and C; the second 
and gate has inputs of A, B, and C; the third and gate has 
inputs of A, B, and C; the fourth and gate has inputs of 
A, B, and C. Figure 5-5 shows the corresponding logic 
circuit. This and-or circuit has the same truth table as 
Table 5-3. 

As another example of the sum-of-products method, look 
at Table 5-4. Find each output 1 and write its fundamental 
product. The resulting products are ABCD, ABCD, and 
ABCD. This means that the boolean equation is 

Y = ABCD A ABCD + ABCD (5-18) 

This ^equation implies that three and gates_ are driving an 
or gate. The first and gate has inputs of A, B, C, and D\ 
the second has inputs of A, B, C, and D\ the third has 

A a b b c c 

TABLE 5-3 

A B c Y A B c D Y 

0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 1 0 

0 1 0 1 ^ ABC 0 0 1 0 0 

0 1 1 0 0 0 1 1 1 

1 0 0 0 0 1 0 0 0 
1 0 1 1 ABC 0 1 0 1 0 

1 1 0 1 ABC 0 1 1 0 0 

1 1 1 1 —* ABC 0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 

A A B B C C D D 

inputs of A, B, C, and D. Figure 5-6 is the equivalent logic 

circuit. 
The sum-of-products method always works. You or the 

fundamental products of each high output in the truth table. 
This gives an equation which you can transform into an 
and-or network that is the circuit equivalent of the truth 

table. 

5-3 ALGEBRAIC SIMPLIFICATION 

After obtaining a sum-of-products equation as described in 
the preceding section, the thing to do is to simplify the 
circuit if possible. One way to do this is with boolean 
algebra. Here is the approach. Starting with the boolean 
equation for the sum-of-products circuit, you try to rearrange 
and simplify the equation as much as possible using the 
boolean rules of Sec. 5-1. The simplified boolean equation 
means a simpler logic circuit. This section will give you 
examples. 
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AABBCCDD 

(a) 

A A B B C C D D 

Gate Leads 

A preliminary guide for comparing the simplicity of one 
logic circuit with another is to count the number of input 
gate leads; the circuit with fewer input gate leads is usually 
easier to build. For instance, the and-or circuit of Fig. 
5-la has a total of 15 input gate leads (4 on each and gate 
and 3 on the or gate). The and-or circuit of Fig. 5-lb, 
on the other hand, has a total of 9 input gate leads. The 
and-or circuit of Fig. 5-lb is simpler than the and-or 

circuit of Fig. 5-la because it has fewer input gate leads. 
A bus is a group of wires carrying digital signals. The 

8-bit bus of Fig. 5-la transmits variables A, B, C, D and 
their complements A, B, C, and D. In the typical micro¬ 
computer, the microprocessor, memory, and I/O units 
exchange data by means of buses. 

Factoring to Simplify 

One way to reduce the number of input gate leads is to 
factor the boolean equation if possible. For instance, the 
boolean equation 

Y = AB + AB (5-19) 

has the equivalent logic circuit shown in Fig. 5-8a. This 
circuit has six input gate leads. By factoring Eq. 5-19 we 
get 

Y = A(B + B) 

A A B B 

(c) 

Fig. 5-8 

The equivalent logic circuit for this is shown in Fig. 5-8b; 
it has only four input gate leads. 

Recall that a variable ORed with its complement always 
equals 1; therefore, 

Y = A(B + B) = A • 1 = A 

To get this output, all we need is a connecting wire from 
the input to the output, as shown in Fig. 5-8c. In other 
words, we don’t need any gates at all. 

Another Example 

Here is another example of how factoring can simplify a 
boolean equation and its corresponding logic circuit. Sup¬ 
pose we are given 

Y = AB + AC 4- BD + CD (5-20) 

In this equation, two variables at a time are being ANDed. 

The logical products are then ORed to get the final output. 

Figure 5-9a shows the corresponding logic circuit. It has 

12 input gate leads. 

We can factor and rearrange Eq. 5-20 as 

Y = A(B + C) + D(B + C) 
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ABCD In general, one approach in digital design is to transform 

a truth table into a sum-of-products equation, which you 

then simplify as much as possible to get a practical logic 

circuit. 

5-4 KARNAUGH MAPS 

Many engineers and technicians don’t simplify equations 

with boolean algebra. Instead, they use a method based on 

Karnaugh maps. This section tells you how to construct a 

Karnaugh map. 

(a) (b) (c) 

B B B B 

(d) (e) 

Fig. 5-10 Two-variable Karnaugh map. 

Y = (A + D)(B + C) (5-21) 

In this case, the variables are first ORed, then the logical 

sums are ANDed. Figure 5-9b illustrates the logic circuit. 

Notice it has only six input gate leads and is simpler than 

the circuit of Fig. 5-9a. 

Pinal Example 

In Sec. 5-2 we derived this sum-of-products equation from 

a truth table: 

Y = ABCD + ABCD + A BCD (5-22) 

Figure 5-la shows the sum-of-products circuit. It has 15 

input gate leads. We can factor the equation as 

Y = ACD(B > 5) + ABCD 

or as 

Y = ACD + ABCD (5-23) 

Figure 5-lb shows the equivalent logic circuit; it has only 

nine input gate leads. 

Two-Variable Map 

Suppose you have a truth table like Table 5-5. Here’s how 

to construct the Karnaugh map. Begin by drawing Fig. 

5-10a. Note the order of the variables and their complements; 

the vertical column has A followed by A, and the horizontal 

row has B followed by B. 

Next, look for output Is in Table 5-5. The first 1 output 

to appear is for the input of A_= 1 and 5 = 0. The 

fundamental product for this is AB. Now, enter a 1 on the 

Karnaugh map as shown in Fig. 5-10b. This 1 represents 

the product AB because the 1 is in the A row and the B 

column. 

Similarly, Table 5-5 has an output 1 appearing for an 

input of A = 1 and 5 = 1. The fundamental product for 

this is AB. When you enter a 1 on the Karnaugh map to 

represent A5, you get the map of Fig. 5-10c. 

The final step in the construction of the Karnaugh map 

is to enter 0s in the remaining spaces. Figure 5-10d shows 

how the Karnaugh map looks in its final form. 

Here’s another example of a two-variable map. In the 

truth table of Table 5-6, the fundamental products are AB 

and AB. When Is are entered on the Karnaugh map for 

these products and 0s for the remaining spaces, the com¬ 

pleted map looks like Fig. 5-10c. 
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TABLE 5-5 TABLE 5-6 

c c C C C C 

AB AB AB 0 0 

AB j AB 1 AB 1 0 

AB S AB 1 1 AB 1 1 

AB AB AB 0 0 

(a) (b) (c) 

Fig. 5-11 Three-variable Karnaugh map. 

Three-Variable Map 

Suppose you have a truth table like Table 5-7. Begin by 

drawing Fig. 5-1 la. It is especially important to notice the 

order of the variable^and their complements. The vertical 

column is labeled AB,AB, AB, and AB. This order is not 

a binary progression; instead it follows the order of 00, 01, 

11, and 10. The reason for this is explained in the derivation 

of the Karnaugh method; briefly, it’s done so that only one 

variable changes from complemented to uncomplemented 

form (or vice versa). 

Next, look for output Is in Table 5-7. The fundamental 

products for these 1 outputs are ABC, ABC, and ABC. 
Enter these Is on the Karnaugh map (Fig. 5-1 lb). The final 

step is to enter Os in the remaining spaces (Fig. 5-1 lc). 

This Karnaugh map is useful because it shows the funda¬ 

mental products needed for the sum-of-products circuit. 

TABLE 5-7 

A B c Y 

0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

CD CD CD CD CD CD CD CD 

AB AB 1 

AB ! AB 1 1 

AB AB 1 

AB AB 

(a) (b) 

CD CD CD CD 

AB 0 1 0 0 

AB 0 0 1 1 

AB 0 0 0 1 

AB 0 0 0 0 

(c) 

Fig. 5-12 Four-variable Karnaugh map. 

Four-Variable Map 

Many MSI circuits process binary words of 4 bits each 

(nibbles). For this reason, logic circuits are often designed 

to handle four variables (or their complements). This is 

why the four-variable map is the most important. 

Here’s an example of constructing a four-variable map. 

Suppose you have the truth table of Table 5-8. The first 

step is to draw the blank map of Fig. 5-12a. Again, notice 

the progression. The vertical column is labeled AB, AB, 

TABLE 5-8 

A B c D Y 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 1 1 1 0 
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AB, and AB. The horizontal row is labeled CD, CD, CD, 

and CD. 

In Table 5-8 the output Is have these fundamental 

products: AB CD, ABCD, ABCD, andASCD. After entering 

Is on the Karnaugh map, you will have Fig. 5-12b. The 

final step of filling in Os results in the completed map of 

Fig. 5-12c. 

5-5 PAIRS, QUADS, AND OCTETS 

There is a way of using the Karnaugh map to get simplified 

logic circuits. But before you can understand how this is 

done, you will have to learn the meaning of pairs, quads, 

and octets. 

CD CD CD CD CD CD CD CD 

(e) (f) 

Fig. 5-13 Pairs on a Karnaugh map. 

Pairs 

The map of Fig. 5-13a contains a pair of Is that are 

horizontally adjacent. The first 1 represents the_ product 

ABCD; the second 1 stands for the product ABCD. As we 

move from the first 1 to the second 1, only one variable 

goes from uncomplemented to complemented form (D to 

D). The other variables don’t change form (A, S, and C 

remain uncomplemented). Whenever this happens, you can 

eliminate the variable that changes form. 

Algebraic Proof 

The sum-of-products equation corresponding to Fig. 5-13a 

is 

Y = ABCD + ABCD 

which factors into 

Y = ABC(D F D) 

Since D is ORed with D, the equation reduces to 

Y = ABC 

A pair of adjacent Is is like those of Fig 5-13a always 

means that the sum-of-products equation will have a variable 

and a complement that drop out. 

For easy identification, it is customary to encircle a pair 

of adjacent Is, as shown in Fig. 5-13/?. Then when you 

look at the map, you can tell at a glance that one variable 

and its complement will drop out of the boolean equation. 

In other words, an encircled pair of Is like those of Fig. 

5-13b no longer stands for the ORing of two separate 

products, ABCD and ABCD. The encircled pair should be 

visualized instead as representing a single reduced product 

ABC. 
Here’s another example. Figure 5-13c shows a pair of 

Is that are vertically adjacent. These Is correspond to the 

product ABCD and ABCD. Notice that only one variable 

changes from uncomplemented to complemented form (B 
to B)\ all other variables retain their original form. Therefore, 

B and B drop out. This means that the encircled pair of 

Fig. 5-13c represents ACD. 
From now on, whenever you see a pair of adjacent Is, 

eliminate the variable that goes from complemented to 

uncomplemented form. A glance at Fig. 5-13d indicates 

that B changes form; therefore, the pair of Is represents 

ACD. Likewise, D changes form in Fig. 5-13c; so the pair 

of Is stands for A SC. 

If more than one pair exists on a Karnaugh map, you 

can or the simplified products to get the boolean equation. 

For instance, the lower pair of Fig. 5-13/represents ACD. 
The upper pair stands for ABD. The corresponding boolean 

equation for this map is 

Y = ACD + ABD 

The Quad 

A quad is a group of four Is that are end tc end, as shown 

in Fig. 5-14a, or in the form of a square, as shown in Fig. 

72 Digital Computer Electronics 



5-14b. When you see a quad, always encircle it because it 

leads to a simpler product. In fact, a quad means that two 

variables and their complements drop out of the boolean 

equation. 

Here’s why a quad eliminates two variables. Visualize 

the four Is of Fig. 5-14a as two pairs (Fig. 5-14c). The 

first pair represents ABC; the second pair stands for ABC. 
The boolean equation for these two pairs is 

Y = ABC + ABC 

This factors into 

CD CD CD CD CD CD CD CD 

(a) (b) 

Fig. 5-15 Octets on a Karnaugh map. 

Y = AB(C + C) 

which reduces to 

Y = AB 

So the quad of Fig. 5-14a represents a product where two 

variables and their complements drop out. 

A similar proof applies to all quads. There’s no need to 

go through the algebra again. Merely determine which 

variables go from complemented to uncomplemented form; 

these are the variables that drop out. 

For instance, look at the quad of Fig. 5-14b. Pick any 1 

as a starting point. When you move horizontally, D is the 

variable that changes form. When you move vertically, B 
changes form. Therefore, the simplified equation is 

The Octet 

An octet is a group of eight adjacent Is like those of Fig. 

5-15a. An octet always eliminates three variables and their 

complements. Here’s why. Visualize the octet as two quads 

(Fig. 5-15b). The equation for these two quads is 

Y = AC + AC 

Factoring gives 

Y = A(C 4- C) 

But this reduces to 

Y = A 

Y = AC 

CD CD CD CD 

AB 0 0 0 0 

AB 0 0 0 0 

AB c 1 1 > 
AB 0 0 0 0 

(a) 

CD CD CD CD 

(b) 

CD CD CD CD 

(c) 

Fig. 5-14 Quads on a Karnaugh map. 

So the octet of Fig. 5-15a means that three variables and 

their complements drop out of the corresponding product. 

A similar proof applies to any octet. From now on, don’t 

bother with the algebra. Just step through the Is of the 

octet and determine which three variables change form. 

These are the variables that drop out. 

5-6 KARNAUGH SIMPLIFICATIONS 

You have seen how a pair eliminates one variable, a quad 

eliminates two variables, and an octet eliminates three 

variables. Because of this, you should encircle the octets 

first, the quads second, and the pairs last. In this way, the 

greatest simplification takes place. 

An Example 

Suppose you’ve translated a truth table into the Karnaugh 

map shown in Fig. 5-16a. Look for octets first. There are 

none. Next, look for quads. There are two. Finally, look 

for pairs. There is one. If you do it correctly, you arrive 

at Fig. 5-166. 

The pair represents the_simplified product ABD, the 

lower quad stands for AC, and the quad on the right 
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CD CD CD CD CD CD CD CD 

AB 0 111 

AB 0 0 0 1 

AB 1 10 1 

AB 1 10 1 

Fig. 5-16 

represents CD. By ORing these simplified products, you get 

the boolean equation for the map 

Y = ABD A AC A CD (5-24) 

Overlapping Groups 

When you encircle groups, you are allowed to use the same 

1 more than once. Figure 5-17a illustrates the idea. The 

simplified equation for the overlapping groups is 

Y = A A BCD (5-25) 

It is valid to encircle the Is as shown in Fig. 5-17b, but 

then the isolated 1 results in a more complicated equation: 

Y = A A ABCD 

This requires a more complicated logic circuit than Eq. 

5-25. So always overlap groups if possible; that is, use the 

Is more than once to get the largest groups you can. 

CD CD CD CD CD CD CD CD 

(c) (d) 

Fig. 5-17 Overlapping and rolling. 

Rolling the Map 

Another thing to know about is rolling. In Fig. 5-17c, the 

pairs result in the equation 

Y = BCD A BCD (5-26) 

Visualize picking up the Karnaugh map and rolling it so 

that the left side touches the right side. If you’re visualizing 

correctly, you will realize the two pairs actually form a 

quad. To indicate this, draw half circles around each pair, 

as shown in Fig. 5-11 d. From this viewpoint, the quad of 

Fig. 5-11 d has the equation 

Y = BD (5-27) 

Why is rolling valid? Because Eq. 5-26 can be simplified 

to Eq. 5-27. Here’s the proof. Start with Eq. 5-26: 

Y = BCD A BCD 

This factors into 

Y = BD(C A C) 

which reduces to 

Y = BD 

This final equation represents a rolled quad like Fig. 5-lld. 

Therefore, Is on the edges of a Karnaugh map can be 

grouped with Is on opposite edges. 

CD CD CD CD CD CD CD CD 

AB 0 0 0 0 AB 0 0 0 0 

AB 0 0 0 AB 0 A 0 0 

AB 0 4q£f 0 AB 0 u A 0 

AB 0 ° u 0 AB 0 0 u 0 

(a) (b) 

Fig. 5-18 Redundant group. 

Redundant Groups 

After you finish encircling groups, there is one more thing 

to do before writing the simplified boolean equation: 

eliminate any group whose Is are completely overlapped 

by other groups. (A group whose Is are all overlapped by 

other groups is called a redundant group.) 
Here is an example. Suppose you have encircled the 

three pairs shown in Fig. 5-18a. The boolean equation then 

is 

Y = BCD A ABD A ACD 
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At this point, you should check to see if there are any 

redundant groups. Notice that the Is in the inner pair are 

completely overlapped by the outside pairs. Because of 

this, the inner pair is a redundant pair and can be eliminated 

to get the simpler map of Fig. 5-18b. The equation for this 

map is 

Y = BCD + ACD 

Since this is a simpler equation, it means a simpler logic 

circuit. This is why you should eliminate redundant groups 

if they exist. 

Summary 

Here’s a summary of how to use the Karnaugh map to 

simplify logic circuits: 

1. Enter a 1 on the Karnaugh map for each fundamental 

product that corresponds to 1 output in the truth table. 

Enter Os elsewhere. 

2. Encircle the octets, quads, and pairs. Remember to roll 

and overlap to get the largest groups possible. 

3. If any isolated Is remain, encircle them. 

4. Eliminate redundant groups if they exist. 

5. Write the boolean equation by ORing the products 

corresponding to the encircled groups. 

6. Draw the equivalent logic circuit. 

EXAMPLE 5-1 

What is the simplified boolean equation for the Karnaugh 

map of Fig. 5-19a? 

CD CD CD CD CD CD CD CD 

AB 0 0 0 0 AB 0 0 0 0 

AB 0 0 1 0 AB 0 0 1 0 

AB 1 1 1 1 AB <C 1 1 

AB 0 1 1 1 AB 0 1 1 1 

(a) (b) 

CD CD CD CD CD CD CD CD 

(c) (d) 

Fig. 5-19 

SOLUTION 

There are no octets, but there is a quad, as shown in Fig. 

5-19b. By overlapping we can find two more quads (Fig. 

5-19c). Finally, overlapping gives us the pair of Fig. 

5-19 d. 
The horizontal quad of Fig. 5-19d corresponds to a 

simplified product of AB. The square quad on the right 

corresponds to AC, while the one on the left stands for AD. 
The pair represents BCD. By ORing these products we get 

the simplified equation 

Y = AB + AC + AD + BCD (5-28) 

Figure 5-20 shows the equivalent logic circuit. 

A B C D 

EXAMPLE 5-2 

As you know from Chap. 4, the nand gate is the least 

expensive gate in the 7400 series. Because of this, and- 

or circuits are usually built as equivalent nand-nand 

circuits. 

Convert the and-or circuit of Fig. 5-20 to a nand-nand 

circuit using 7400-series devices. 

SOLUTION 

Replace each and gate of Fig. 5-20 by a nand gate and 

replace the final or gate by a nand gate. Figure 5-21 is 

the De Morgan equivalent of Fig. 5-20. As shown, we can 

build the circuit with a 7400, a 7410, and a 7420. 

5-7 DON’T-CARE CONDITIONS 

Sometimes, it doesn’t matter what the output is for a given 

input word. To indicate this, we use an X in the truth table 

instead of a 0 or a 1. For instance, look at Table 5-9. The 
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CD CD CD CD CD CD CD CD 

AB 1 0 1 0 AB A 0 A 0 

AB 1 1 1 0 AB i ' r rv 0 

AB X X X X AB 
i x J 

xj X 

AB X X X X AB V X \xj X 

(a) (b) 

AABBCCDL 

I I I I 7410 

Fig. 5-21 nand-nand circuit using TTL gates. 

output is an X for any input word from 1000 through 1111. 

The X’s are called don't cares because they can be treated 

either as Os or Is, whichever leads to a simpler circuit. 

Figure 5-22a shows_the Karnaugh map for Table 5-9. 

X’s_are used_for ABCD, ABCDy ABCD, ABCD, ABCD, 

ABCD, ABCD, and ABCD because these are don’t cares 

in the truth table. Figure 5-22b shows the most efficient 

way to encircle the groups. Notice two crucial ideas. First, 

we visualize all X’s as Is and try to form the largest groups 

that include the real Is. This gives us three quads. Second, 

we visualize all remaining X’s as Os. In this way, the X’s 

are used to the best advantage. We are free to do this 

because the don’t cares can be either Os or Is, whichever 

we prefer. 

TABLE 5-9 

A B c D Y 

0 0 0 0 1 
0 0 0 1 1 0 
0 0 1 0 ! 0 
0 0 1 1 | 1 

0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 

1 0 0 0 X 

1 0 0 1 X 

1 0 1 0 X 

1 0 I 1 X 

1 1 0 0 ; X 

1 1 0 1 X 

1 1 1 0 X 

1 1 1 1 X 

(c) 

Fig. 5-22 Don’t cares. 

Figure 5-22b implies the simplified boolean equation 

Y = BD + CD + CD 

Figure 5-22c is the simplified logic circuit. This and-or 

network has nine input gate leads. 

EXAMPLE 5-3 

Recall that BCD numbers express each decimal digit as a 

nibble: 0 to 9 are encoded as 0000 to 1001. Especially 

important, nibbles 1010 to 1111 are never used in a BCD 

system. 

Table 5-10 shows a truth table for use in a BCD system. 

As you see, don’t cares appear for 1010 through 1111. 

Construct the Karnaugh map and show the simplified logic 
circuit. 

SOLUTION 

Figure 5-23a illustrates the Karnaugh map. The largest 

group we can form is the pair shown in Fig. 5-23b. The 

boolean equation is 

Y = BCD 

Figure 5-23c is the simplified logic circuit. 
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TABLE 5-10 

A B c D Y 

0 0 0 0 0 
0 0 0 1 0 
0 0 I 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 

-1 0 1 0 X 

1 0 l 1 X 

1 1 0 0 X 

1 1 0 r X 

1 1 1 0 X 

1 1 1 1 X 

v :> 

CD CD CD CD 

AB 0 0 0 0 

AB 0 0 10 

AB X X X X 

45 0 0 X X 

CD CD CD CD 

AABBCCDD 

Fig. 5-23 Don’t cares in a BCD system. 

GLOSSARY 

bus A group of wires carrying digital signals. 

don’t care An output that may be either low or high 

without affecting the operation of the system. 

fundamental product The logical product of variables and 

complements that produces a high output for a given input 

condition. 

Karnaugh map A graphical display of the fundamental 

products in a truth table. 

octet A group of eight adjacent Is on a Karnaugh map. 

pair A group of two adjacent Is on a Karnaugh map. 

These Is may be horizontally or vertically aligned. 

quad A group of four adjacent Is on a Karnaugh map. 

redundant group A group of Is on a Karnaugh map all 

of which are overlapped by other groups. 

sum-of-products circuit An and-or circuit obtained by 

ORing the fundamental products that produce output Is in 

a truth table. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Digital design often starts by constructing a_ 

table. By ORing the_products, you get a 

sum-of-products equation. 

2. (truth, fundamental) A preliminary guide for compar¬ 

ing the simplicity of logic circuits is to count the 

number of input_leads. 

3. (gate) A bus is a group of_carrying 

digital signals. In the typical microcomputer, the mi¬ 

croprocessor, memory, and I/O units communicate 

via buses. 

4. (wires) One way to simplify the sum-of-products 

equation is to use boolean algebra. Another way is 

the_map. 

5. (Karnaugh) A pair eliminates one variable, a 

_eliminates two variables, and an octet 

eliminates_variables. Because of this, 

you should encircle the_first, the quads 

next, and the pairs last. 

6. (quad, three, octets) nand-nand circuits are equiva¬ 

lent to and-or circuits. This is important because 

_gates are the least expensive gates in the 

7400 series. 

7. (nand) When a truth table has don’t cares, we enter 

X’s on the Karnaugh map. These can be treated as 0s 

or Is, whichever leads to a simpler logic circuit. 
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PROBLEMS 

5-1. What are the fundamental products for each of the 

inputs words ABCD = 0010, ABCD = 1101, 

ABCD = 1110? 

5-2. A truth table has output Is for each of these 

inputs: 

a. ABCD = 0011 

b. ABCD = 0101 

c. ABCD = 1000 

d. ABCD = 1101 

What are the fundamental products? 

5-3. Draw the logic circuit for this boolean equation: 

Y = ABCD + ABCD + ABCD + ABCD 

5-4. Output Is appear in the truth table for these input 

conditions: ABCD = 0001, ABCD = 0110, and 

ABCD = 1110. What is the sum-of-products 

equation? 

5-5. Draw the and-or circuit for 

Y = ABCD + ABCD + ABCD 

How many input gate leads does this circuit have? 

5-6. A truth table has output Is for these inputs: 

ABCD = 0011, ABCD = 0110, ABCD = 

1001, and ABCD = 1110. Draw the Karnaugh 

map showing the fundamental products. 

5-7. A truth table has four input variables. The first 

eight outputs are 0s, and the last eight outputs are 

Is. Draw the Karnaugh map. 

5-8. Draw the Karnaugh map for the Y3 output of 

Table 5-11. Simplify as much as possible; then 

draw the logic circuit. 

5-9. Use the Karnaugh map to work out the simplified 

logic circuit for the Y2 output of Table 5-11. 

5-10. Repeat Prob. 5-9 for the Y} output. 

5-11. Repeat Prob. 5-9 for the Y0 output. 

5-12. Use the Karnaugh map to work out the simplified 

logic circuit for the Y3 output of Table 5-12. 

5-13. Repeat Prob. 5-12 for the Y2 output. 

5-14. Repeat Prob. 5-12 for the Yx output. 

5-15. Repeat Prob. 5-12 for Y0 output. 

5-16. A + 0 = ? 
5_17. A • 1 = ? 

5-18. A + 1 = ? 

5-19. A • 0 = ? 

5-20. Use the duality theorem to derive another boolean 

relation from: 

A + AB = A + B 

5.21. Use the commutative law to complete the follow¬ 

ing equations. 

a. A + B = 

b. AB = 

5.22 Use the associative law to complete the following 

equations. 

a. A + (B + C) = 
b. A(BC) = 

5.23 Use the distributive law to complete the equation 

A(B + C) = 

TABLE 5-11 

A B c D y3 Y2 Yx n 

0 0 0 0 1 0 1 0 
0 0 0 1 0 1 0 1 
0 0 1 0 0 1 1 1 
0 0 1 1 1 0 0 1 
0 1 0 0 0 0 1 1 
0 1 0 1 1 0 0 0 
0 1 1 0 1 1 1 0 
0 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 1 
1 0 1 0 1 0 1 1 
1 0 1 1 0 1 0 0 
1 1 0 0 0 1 1 0 
1 1 0 1 1 0 1 0 
1 1 1 0 1 1 0 0 
1 1 1 1 1 1 0 1 

TABLE 5-12 

A B c D Y3 Y2 Yo 

0 0 0 0 1 0 1 0 
0 0 0 1 0 1 0 1 
0 0 1 0 0 1 1 1 
0 0 1 1 1 0 0 1 
0 1 0 0 0 0 1 1 
0 1 0 1 1 0 0 0 
u 1 1 0 1 1 1 0 
0 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 1 
1 0 1 0 X X X X 
1 0 1 1 X X X X 
1 1 0 0 X X X X 
1 1 0 1 X X X X 
1 1 1 0 X X X X 
1 1 1 1 X X X X 

78 Digital Computer Electronics 



Arithmetic-Logic Units 

The arithmetic-logic unit (ALU) is the number-crunching 

part of a computer. This means not only arithmetic opera¬ 

tions but logic as well (or, and, not, and so forth). In 

this chapter you will learn how the ALU adds and subtracts 

binary numbers. Later chapters will discuss the logic 

operations. 

6-1 BINARY ADDITION 

ALUs don’t process decimal numbers; they process binary 

numbers. Before you can understand the circuits inside an 

ALU, you must learn how to add binary numbers. There 

are five basic cases that must be understood before going 

on. 

Case 1 

When no pebbles are added to no pebbles, the total is no 

pebbles. As a word equation, 

None + none = none 

With binary numbers, this equation is written as 

0 + 0 = 0 

& 

Case 2 

If no pebbles are added to one pebble, the total is one 

pebble: 

None + • = 0 

In terms of binary numbers, 

0+1 = 1 

Case 3 

Addition is commutative. This means you can transpose 

the numbers of the preceding case to get 

9 + none = 9 

or 

1+0=1 

Case 4 

Next, one pebble added to one pebble gives two pebbles: 

9 + 9 = 99 

As a binary equation, 

1 + 1 = 10 

To avoid confusion with decimal numbers, read this as 

“one plus one equals one-zero.” An alternative way of 

reading the equation is “one plus one equals zero, carry 

one.” 

Case 5 

One pebble plus one pebble plus one pebble gives a total 

of three pebbles: 

9 + 9 + 9 = 999 

The binary equation is 

1 + 1 + 1 = 11 

Read this as “one plus one plus one equals one-one.” 

Alternatively, “one plus one plus one equals one, carry 

one.” 
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Rules to Remember 
EXAMPLE 6-1 

The foregoing cases are all you need for more complicated 
binary addition. Therefore, memorize these five rules: binary numbers 01010111 and 00110101. 

0 + 0 = 0 (6-1) 
0 + 1 = 1 (6-2) 

1 + 0 = 1 (6-3) 
1 + 1 = 10 (6-4) 

1 + 1 + 1 = 11 (6-5) 

Larger Binary Numbers 

Column-by-column addition applies to binary numbers as 

well as decimal. For example, suppose you have this 

problem in binary addition: 

11100 

+ 11010 
7 

Start with the least significant column to get 

11100 

+ 11010 

0 

Here, 0 + 0 gives 0. 

Next, add the bits of the second column as follows: 

11100 
+ 11010 

10 

This time, 0 + 1 results in 1. 

The third column gives 

11100 
+ 11010 

110 

In this case, 1 + 0 produces 1. 

The fourth column results in 

11100 
+ 11010 

0110 (carry 1) 

As you see, 1 + 1 equals 0 with a carry of 1. 

Finally, the last column gives 

11100 

+ 11010 

110110 

Here, 1 + 1 + 1 (carry) produces 11, recorded as 1 with 

a carry to the next higher column. 

SOLUTION 

This is the problem: 

01010111 
+ 00110101 

7 

If you add the bits column by column as previously 

demonstrated, you will get 

01010111 

+ 00110101 
10001100 

Expressed in hexadecimal numbers, the foregoing addi¬ 

tion is 

57 

+ 35 

8C 

For clarity, we can use subscripts: 

+ 35t6 

8C16 

In microprocessor work, it is more convenient to use the 

letter H to signify hexadecimal numbers. In other words, 

the usual way to express the foregoing addition is 

57H 

+ 35H 

8CH 

6-2 BINARY SUBTRACTION 

To subtract binary numbers, we need to discuss four cases. 

Case 1: 0-0 = 0 

Case 2: 1-0=1 

Case 3: 1-1=0 

Case 4: 10-1 = 1 

The last result represents 

••• = • 
which makes sense. 

80 Digital Computer Electronics 



To subtract larger binary numbers, subtract column by 

column, borrowing from the next higher column when 

necessary. For instance, in subtracting 101 from 111, 

proceed like this: 

7 111 

- 5 - 101 

2 010 

TABLE 6-1. HALF-ADDER 

A B CARRY SUM 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

Starting on the right, 1 - 1 gives 0; then, 1 - 0 is 1; 

finally, 1 — 1 is 0. 

Here is another example: subtract 1010 from 1101. 

13 1101 

- 10 - 1010 
3 0011 

In the least significant column, 1 — 0 is 1. In the second 

column, we have to borrow from the next higher column; 

then, 10 — 1 is 1. In the third column, 0 (after borrow) 

— 0 is 0. In the fourth column, 1 — 1=0. 

Direct subtraction like the foregoing has been used in 

computers; however, it is possible to subtract in a different 

way. Later sections of this chapter will show you how. 

6-3 HALF-ADDERS 

Figure 6-1 is a half-adder, a logic circuit that adds 2 bits. 

Notice the outputs: SUM and CARRY. The boolean equations 

for these outputs are 

SUM = A © B (6-6) 

CARRY = AB (6-7) 

The SUM output is A xor B\ the CARRY output is A and 

B. Therefore, SUM is a 1 when A and B are different; 

CARRY is a 1 when A and B are Is. 

Table 6-1 summarizes the operation. When A and B are 

0s, the SUM is 0 with a CARRY of 0. When A is 0 and B 
is 1, the SUM is 1 with a CARRY of 0. When A is 1 and 

B is 0, the SUM equals 1 with a CARRY of 0. Finally, 

when A is 1 and B is 1, the SUM is 0 with a CARRY of L 

The logic circuit of Fig. 6-1 does electronically what we 

do mentally when we add 2 bits. Applications for the half¬ 

adder are limited. What we need is a circuit that can add 

3 bits at a time. 

A B 

Fig. 6-1 Half-adder. 

6-4 FULL ADDERS 

Figure 6-2 shows di full adder, a logic circuit that can add 

3 bits. Again there are two outputs, SUM and CARRY. The 

boolean equations are 

SUM = A © B 0 C (6-8) 

CARRY = AB + AC 4- BC (6-9) 

ABC 

Fig. 6-2 Full adder. 

In this case, SUM equals A xor B xor C; CARRY equals 

AB or AC or BC. Therefore, SUM is 1 when the number 

of input Is is odd; CARRY is a 1 when two or more inputs 

are Is. 

Table 6-2 summarizes the circuit action. A, B, and C 

are the bits being added. If you check each entry, you will 

see that the circuit adds 3 bits at a time and comes up with 

the correct answer. 

TABLE 6-2. FULL ADDER 

A B c CARRY SUM 

0 0 0 0 0 
0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 
1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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Here’s the point. The circuit of Fig. 6-2 does electronically 

what we do mentally when we add 3 bits. The full adder 

can be cascaded to add large binary numbers. The next 

section tells you how. 

6-5 BINARY ADDERS 

Figure 6-3 shows a binary adder, a logic circuit that can 

add two binary numbers. The block on the right (labeled 

HA) represents a half-adder. The inputs are A0 and B0\ the 

outputs are S0 (SUM) and Cx (CARRY). All other blocks 

are full adders (abbreviated FA). Each of these full adders 

has three inputs (A„, Bn, and C„) and two outputs. 

The circuit adds two binary numbers. In other words, it 

carries out the following addition: 

A3A2A1A0 

T B3B2B1B0 

C4S3 S2S1 So 

Here’s an example. Suppose A = 1100 and B = 1001. 

Then the problem is 

1100 

+ 1001 
? 

Figure 6-4 shows the binary adder with the same inputs, 

1100 and 1001. The half-adder produces a sum of 1 and 

carry of 0, the first full adder produces a sum of 0 and a 

carry of 0, the second full adder produces a sum of 1 and 

a carry of 0, and the third full adder produces a sum of 0 

and a carry of 1. The overall output is 10101, the same 

answer we would get with pencil and paper. 

By using more full adders, we can build binary adders 

of any length. For example, to add 16-bit numbers, we 

need 1 half-adder and 15 full adders. From now on, we 

will use the abbreviated symbol of Fig. 6-5 to represent a 

binary adder of any length. Notice the solid arrows, the 

standard way to indicate words in motion. In Fig. 6-5, 

words A and B are added to get a sum of S plus a final 

CARRY. 

A B 

S 

Fig. 6-5 Symbol for binary adder. 

EXAMPLE 6-2 

Find the output in Fig. 6-5 if the two input words are 

A = 0000 0001 0000 1100 

B = 0000 0000 0100 1001 

Fig. 6-4 Adding 12 and 9 to get 21. 
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SOLUTION 

The binary adder adds the two inputs to get 

0000 0001 0000 1100 
+ 0000 0000 0100 1001 

0000 0001 0101 0101 

In hexadecimal form, the foregoing addition is 

010CH 

+ 0049H 

0155H 

6-6 SIGNED BINARY NUMBERS 

The negative decimal numbers are —1, — 2, —3, and so 

on. One way to code these as binary numbers is to convert 

the magnitude (1, 2, 3, . . .) to its binary equivalent and 

prefix the sign. With this approach, —1, —2, and —3 

becomes —001, —010, and —Oil. It’s customary to use 

0 for the + sign and 1 for the — sign. Therefore, —001, 

-010, and -Oil are coded as 1001, 1010, and 1011. 

The foregoing numbers have the sign bit followed by the 

magnitude bits. Numbers in this form are called signed 
binary numbers or sign-magnitude numbers. For larger 

decimal numbers you need more than 4 bits. But the idea 

is still the same: the leading bit represents the sign and the 

remaining bits stand for the magnitude. 

EXAMPLE 6-3 

Express each of the following as 16-bit signed binary 

numbers. 

a. + 7 

b. -7 

c. +25 

d. -25 

SOLUTION 

a. +7 = 0000 0000 0000 0111 

b. -7 = 1000 0000 0000 0111 

c. +25 = 0000 0000 0001 1001 

d. -25 = 1000 0000 0001 1001 

No subscripts are used in these equations because it’s clear 

from the context that decimal numbers are being expressed 

in binary form. Nevertheless, you can use subscripts if you 

prefer. The first equation can be written as 

+ 710 = 0000 0000 0000 01112 

the next equation as 

-710 = 1000 0000 0000 01112 

and so forth. 

EXAMPLE 6-4 

Convert the following signed binary numbers to decimal 

numbers: 

a. 0000 0000 0000 1001 

b. 1000 0000 0000 1111 

c. 1000 0000 0011 0000 

d. 0000 0000 1010 0101 

SOLUTION 

As usual, the leading bit gives the sign and the remaining 

bits give the magnitude. 

a. 0000 0000 0000 1001 = +9 

b. 1000 0000 0000 1111 = -15 

c. 1000 0000 0011 0000 = -48 

d. 0000 0000 1010 0101 = +165 

6-7 2’s COMPLEMENT 

Sign-magnitude numbers are easy to understand, but they 

require too much hardware for addition and subtraction. 

This has led to the widespread use of complements for 

binary arithmetic. 

Definition 

Recall that a high invert signal to a controlled inverter 

produces the l’s complement. For instance, if 

A = 0111 (6-10a) 

the l’s complement is 

A = 1000 (6-10/7) 

The 2’s complement is defined as the new word obtained 

by adding 1 to l’s complement. As an equation, 

A' = A + 1 (6-11) 

where A' = 2’s complement 

A = l’s complement 

Here are some examples. If 

A = 0111 
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the l’s complement is Back to the Odometer 

A = 1000 

and the 2’s complement is 

A' = 1001 

In terms of a binary odometer, the 2’s complement is the 

next reading after the l’s complement. 

Another example. If 

then 

A = 0000 1000 

and 

A = 1111 0111 

A' = mi iooo 

Double Complement 

If you take the 2’s complement twice, you get the original 

word back. For instance, if 

A = 0111 

the 2’s complement is 

A' = 1001 

If you take the 2’s complement of this, you get 

A" = 0111 

which is the original word. 

In general, this means that 

Chapter 1 used an odometer to introduce binary numbers. 

The discussion was about positive numbers only. But 

odometer readings can also indicate negative numbers. 

Here’s how. 

If a car has a binary odometer, all bits eventually reset 

to 0s. A few readings before and after a complete reset 

look like this: 

1101 
1110 
1111 
0000 (reset) 

0001 
0010 
0011 

1101 is the reading 3 miles before reset, 1110 occurs 2 

miles before reset, and 1111 indicates 1 mile before reset. 

Then, 0001 is the reading 1 mile after reset, 0010 occurs 

2 miles after reset, and 0011 indicates 3 miles after reset. 

“Before” and “after” are synonymous with “negative” 

and “positive.” Figure 6-6 illustrates this idea with the 

number line learned in basic algebra: 0 marks the origin, 

positive decimal numbers are on the right, and negative 

decimal numbers are on the left. The odometer readings 

are the binary equivalent of positive and negative decimal 

numbers: 1101 is the binary equivalent of - 3, 1110 stands 

for -2, 1111 for - 1; 0000 for 0; 0001 for + 1; 0010 for 

+ 2, and 0011 for +3. 

The odometer readings of Fig. 6-6 demonstrate how 

positive and negative numbers are stored in a typical 

microcomputer. Positive decimal numbers are expressed in 

sign-magnitude form, but negative decimal numbers are 

represented as 2’s complements. As before, positive num¬ 

bers have a leading sign bit of 0, and negative numbers 

have a leading sign bit of 1. 

A" = A (6-12) 

Read this as “the double complement of A equals A.” 

Because of this property, the 2’s complement of a binary 

number is equivalent to the negative of a decimal number. 

This idea is explained in the following discussion. 

2’s Complement Same as Decimal Sign Change 

Taking the 2’s complement of a binary number is the same 

as changing the sign of the equivalent decimal number. For 

example, if 

A = 0001 (-hi in Fig. 6-6) 

1101 mo 1111 0000 0001 0010 0011 
-•-• •-•--•-•-#- 

-3 -2 -1 0 +1 +2 +3 

Fig. 6-6 Decimal numbers and odometer readings. 
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taking the 2’s complement gives SOLUTION 

A' - 1111 (-1 in Fig. 6-6) Decimal + 5 is expressed in sign-magnitude form: 

Similarly, if + 5 = 0000 0101 

A - 0010 ( + 2 in Fig. 6-6) On the other hand, —5 appears as the 2’s complement: 

then the 2’s complement is 

A' = 1110 (-2 in Fig. 6-6) 

Again, if 

A = 0011 ( + 3 in Fig. 6-6) 

the 2’s complement is 

A' = 1101 (-3 in Fig. 6-6) 

The same principle applies to binary numbers of any 

length: taking the 2’s complement of any binary number is 

the same as changing the sign of the equivalent decimal 

number. As will be shown later, this property allows us to 

use a binary adder for both addition and subtraction. 

-5 = 1111 1011 

EXAMPLE 6-7 

What is the 2’s-complement representation of —24 in a 

16-bit microcomputer? 

SOLUTION 

Start with the positive form: 

+ 24 = 0000 0000 0001 1000 

Then take the 2’s complement to get the negative form: 

-24 = mi ini mo iooo 

Summary 

Here are the main things to remember about 2’s complement 

representation: 

1. The leading bit is the sign bit; 0 for plus, 1 for minus. 

2. Positive decimal numbers are in sign-magnitude form. 

3. Negative decimal numbers are in 2’s-complement form. 

EXAMPLE 6-5 

What is the 2’s complement of this word? 

A = 0011 0101 1001 1100 

SOLUTION 

The 2’s complement is 

A' = 1100 1010 0110 0100 

EXAMPLE 6-6 

What is the binary form of +5 and -5 in 2’s-complement 

representation? Express the answers as 8-bit numbers. 

EXAMPLE 6-8 

What decimal number does this represent in 2’s-complement 

representation? 

mi oooi 

SOLUTION 

Start by taking the 2’s complement to get 

0000 1111 

This represents +15. Therefore, the original number is 

1111 0001= -15 

6-8 2’s-COMPLEMENT ADDER- 
SUBTRACTER 

Early computers used signed binary for both positive and 

negative numbers. This led to complicated arithmetic cir¬ 

cuits. Then, engineers discovered that the 2’s-complement 

representation could greatly simplify arithmetic hardware. 
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This is why 2’s-complement adder-subtracters are now the 

most widely used arithmetic circuits. 

Addition 

Figure 6-7 shows a 2’s-complement adder-subtracter, a 

logic circuit that can add or subtract binary numbers. Here’s 

how it works. When SUB is low, the B bits pass through 

the controlled inverter without inversion. Therefore, the 

full adders produce the sum 

S = A + B (6-13) 

Incidentally, as indicated in Fig. 6-7, the final CARRY 
is not used. This is because S3 is the sign bit and S2 to 50 

are the numerical bits. The final CARRY therefore has no 

significance at this time. 

Subtraction 

When SUB is high, the controlled inverter produces the l’s 

complement. Furthermore, the high SUB adds a 1 to the 

first full adder. This addition of 1 to the l’s complement 

forms the 2’s complement_of B. In other words, the 

controlled inverter produces B, and adding 1 results in B\ 
The output of the full adders is 

S = A + B' (6-14) 

which is equivalent to 

S = A - B (6-15) 

because the 2’s complement is equivalent to a sign change. 

EXAMPLE 6-9 

A 7483 is a TTL circuit with four full adders. This means 

that it can add nibbles (4-bit numbers). 

Figure 6-8 shows a TTL adder-subtracter. The CARRY 
out (pin 14) of the least significant nibble is used as the 

CARRY in (pin 13) for the most significant nibble. This 

allows the two 7483s to add 8-bit numbers. Two 7486s 

form the controlled inverter needed for subtraction. 

Fig. 6-8 TTL adder-subtracter. 
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Suppose the circuit has these inputs: 

A = 0001 1000 

B = 0001 0000 

If SUB = 0, what is the output of the adder-subtracter? 

SOLUTION 

When SUB is 0, the adder-subtracter adds the two inputs 

as follows: 

0001 1000 

+ 0001 0000 

0010 1000 

Therefore, the output is 0010 1000. Notice that the decimal 

equivalent of the foregoing addition is 

24 

+ 16 

40 

EXAMPLE 6-10 

Repeat the preceding example for SUB = 1. 

SOLUTION 

When SUB is 1, the adder-subtracter subtracts the inputs 

by adding the 2’s complement as follows: 

The decimal equivalent is 

24 

+ -16 

8 

EXAMPLE 6-11 

In Fig. 6-8, what are the largest positive and negative sums 

we can get? 

SOLUTION 

The largest positive output is 

0111 1111 

which represents decimal +127. The largest negative output 

is 

1000 0000 

which represents — 128. With 8 bits, therefore, all answers 

must lie between —128 and +127. If you try to add 

numbers with a sum outside this range, you get an overflow 
into the sign-bit position, causing an error. 

Chapter 12 discusses the overflow problem in more detail. 

All you have to remember for now is that an overflow or 

error will occur if the true sum lies outside the range of 

-128 to +127. 

0001 1000 
+ 1111 0000 

0000 1000 

GLOSSARY 

ALU Arithmetic-logic unit. The ALU carries out arith¬ 

metic and logic operations. 

binary adder A logic circuit that can add two binary 

numbers. 

full adder A logic circiut that can add 3 bits. 

half-adder A logic circuit that adds 2 bits. 

overflow In 2’s-complement representation, a carry into 

the sign-bit position, which results in an error. For an 8- 

bit adder-substracter, the true sum must lie between —128 

and +127 to avoid overflow. 

signed binary A system in which the leading bit represents 

the sign and the remaining bits the magnitude of the number. 

Also called sign magnitude. 

2’s complement The new number you get when you take 

the Fs complement and then add 1. 
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SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. The ALU carries out arithmetic and_op¬ 

erations (or, and, not, etc.). It processes_ 

numbers rather than decimal numbers. 

2. {logic, binary) A half-adder adds-bits. A 

full adder adds_bits, producing a SUM 

and a_ 

3. (two, three, CARRY) A binary adder is a logic cicuit 

that can add_binary numbers at a time. 

The 7483 is a TTL binary adder. It can add two 4-bit 

binary numbers. 

4. (two) With signed binary numbers, also known as 

sign-magnitude numbers, the leading bit stands for 

the_and the remaining bits for the 

5. (sign, magnitude) Signed binary numbers require too 

much hardware. This has led to the use of_ 

complements to represent negative numbers. To get 

the 2’s complement of a binary number, you first 

take the complement, then add 

6. (2*sy Vs, 1) If you take the 2’s complement twice, 

you get the original binary number back. Because of 

this property, taking the-complement of 

a binary number is equivalent to changing the sign of 

a decimal number. 

7. (2’s) In a microcomputer positive numbers are repre¬ 

sented in_form and negative numbers in 

2’s-complement form. The leading bit still represents 

the_ 

8. (sign-magnitude, sign) A 2’s-complement adder-sub¬ 

tracter can add or subtract binary numbers. Sign- 

magnitude numbers represent-decimal 

numbers, and 2’s complements stand for- 

decimal numbers. You can tell one from the other by 

the leading bit, which represents the- 

9. (positive, negative, sign) With 2’s-complement repre¬ 

sentation and an 8-bit adder-subtracter no overflow is 

possible if the true sum is between — 128 and +127. 

PROBLEMS 

6-L Add these 8-bit numbers: 

a. 0001 0000 and 0000 1000 

b. 0001 1000 and 0000 1100 

c. 0001 1100 and 0000 1110 

d. 0010 1000 and 0011 1011 

After you have each binary sum, convert it to 

hexadecimal form. 

6-2. Add these 16-bit numbers: 

1000 0001 1100 1001 

+ 0011 0011 0001 0111 

Express the answer in hexadecimal form. 

6-3. In each of the following, convert to binary to do 

the addition, then convert the answer back to 

hexadecimal: 

a. 2CH + 4FH = ? 

b. 5EH + 1AH = ? 

c. 3BH + 6DH = ? 

d. A5H + 2CH = ? 

6-4. Convert each of the following decimal numbers to 

an 8-bit sign-magnitude number: 

a. +27 

b. -27 

c. + 80 

d. -80 

After you have the sign-magnitude numbers, convert 

them to hexadecimal form. 
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6-5. Convert each of these sign-magnitude numbers to 

its decimal equivalent: 

a. 0001 1110 

b. 1000 0111 

c. 1001 1100 

d. 0011 0001 

6-6. The following hexadecimal numbers represent 

sign-magnitude numbers. Convert each to its deci 

mal equivalent. 

a. 8FH 

b. 3AH 

c. 7FH 

d. FFH 

6-7. Find the 2’s complements: 

a. 0000 0111 

b. mi mi 

c. nn noi 
d. 1110 0001 

Express your answers in hexadecimal form. 

6-8. Convert each of the following to binary. Then 

take the 2’s complement: 

a. 4CH 

b. 8DH 

c. CBH 

d. FFH 



Fig. 6-9 

After you have the 2’s complements, convert them 

to hexadecimal form. 

6-9. An 8-bit microprocessor uses 2’s-complement rep¬ 

resentation. How do the following decimal num¬ 

bers appear: 

a. -19 

b. -48 

c. +37 

d. -33 

Express your answers in binary and hexadecimal 

form. 
6-10. The output of an ALU is EEH. What decimal 

number does this represent in 2’s-complement 

representation? 

6-11. Suppose the inputs to Fig. 6-9 are A = 3CH and 

B = 5FH. What is the output for a low SUB? A 

high SUB? Express your final answers in hexa¬ 

decimal form. 

6-12. In Fig. 6-9 which of the following inputs cause an 

overflow when SUB is low? 

a. 2DH and 4BH 

b. 8FH and C3H 

c. 5EH and B8H 

d. 23H and 14H 
6-13. Why are applications for the half-adder limited, 

what does the full adder do which makes it more 

useful than the half-adder, and what can be done 

with a full adder as a result of this feature? 

6-14. Since sign-magnitude numbers are fairly easy to 

understand, why has the 2’s-complement system 

become so widespread? 
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Flip-Flops 
Gates are decision-making elements. As shown in the 

preceding chapter, they can perform binary addition and 

subtraction. But decision-making elements are not enough. 

A computer also needs memory elements, devices that can 

store a binary digit. This chapter is about memory elements 

called flip-flops. 

7-1 RS LATCHES 

A flip-flop is a device with two stable states; it remains in 

one of these states until triggered into the other. The RS 
latch, discussed in this section, is one of the simplest flip- 

flops. 

Transistor Latch 

In Fig. 7-la each collector drives the opposite base through 

a 100-kH resisitor. In a circuit like this, one of the transistors 

is saturated and the other is cut off. 

For instance, if the right transistor is saturated, its collector 

voltage is approximately 0 V. This means that there is no 

base drive for the left transistor, so it cuts off and its 

collector voltage approaches +5 V. This high voltage 

produces enough base current in the right transistor to 

sustain its saturation. The overall circuit is latched with the 

left transistor cut off (dark shading) and the right transistor 

saturated. Q is approximately 0 V. 

By a similar argument, if the left transistor is saturated, 

the right transistor is cut off. Figure l-\b illustrates this 

other state. Q is approximately 5 V for this condition. 

Output Q can be low or high, binary 0 or 1. If latched 

as shown in Fig. 7-la, the circuit is storing a binary 0 

because 

Q = 0 

On the other hand, when latched as shown in Fig. 1-lb, 

the circuit stores a binary 1 because 

0 - 1 

Control Inputs 

To control the bit stored in the latch, we can add the inputs 

shown in Fig. 7-lc. These control inputs will be either low 

(0 V) or high ( + 5 V). A high set input S forces the left 

transistor to saturate. As soon as the left transistor saturates, 

the overall circuit latches and 

Q = 1 

Once set, the output will remain a 1 even though the S 
input goes back to 0 V. 

A high reset input R drives the right transistor into 

saturation. Once this happens, the circuit latches and 

0 = 0 

The output stays latched in the 0 state, even though the R 
input returns to a low. 

In Fig. 7-lc, Q represents the stored bit. A complementary 

output Q is available from the collector of the left transistor. 

This may or may not be used, depending on the application. 

Truth Table 

Table 7-1 summarizes the operation of the transistor latch. 

With both control inputs low, no change can occur in the 

output and the circuit remains latched in its last state. This 

condition is called the inactive state because nothing 

changes. 

TABLE 7-1. TRANSISTOR 
LATCH 

R s Q Comments 

0 0 NC No change 

0 1 1 Set 

1 0 0 Reset 

1 1 * Race 
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+5 V +5 V 

+5 V 

(c) 
Fig. 7-1 (a) Latched state; (b) alternative state; (c) trigger inputs. 

When R is low and S is high, the circuit sets the Q output 

to a high. On the other hand, if R is high and S is low, the 

Q output resets to a low. 

Race Condition 

Look at the last entry in Table 7-1. R and S are high 

simultaneously. This is called a race condition; it is never 

used because it leads to unpredictable operation. 

Here’s why. If both control inputs are high, both tran¬ 

sistors saturate. When the R and S inputs return to low, 

both transistors try to come out of saturation. It is a race 

between the transistors to see which one desaturates first. 

The faster transistor (the one with the shorter saturation 

delay time) will win the race and latch the circuit. If the 

faster transistor is on the left side of Fig. 7-lc, the Q output 

will be low. If the faster transistor is on the right side, the 

Q output will go high. In mass production, either transistor 

can be faster; therefore, the Q output is unpredictable. This 

is why the race condition must be avoided. 

Here’s how to recognize a race condition. If simultane¬ 

ously changing both inputs to a memory element leads to 

an unpredictable output, you’ve got a race condition. With 

the transistor latch, R = 1 and S = 1 is a race condition 

because simultaneously returning R and S to 0 forces Q 
into a random state. 

From now on, an asterisk in a truth table (see Table 

7-1) indicates a race condition, sometimes called a forbidden 

or invalid state. 

nor Latches 

A discrete circuit like Fig. 7-lc is rarely used because we 

are in the age of integrated circuits. Nowadays, you build 

RS latches with nor gates or nand gates. 

Figure l-2a shows how it’s done with nor gates. Figure 

l-2b is the De Morgan equivalent. As shown in Table 

7-2, a low R and a low S give us the inactive state; the 

circuit stores or remembers. A low R and a high S represent 

the set state, while a high R and a low S give the reset 

state. Finally, a high R and a high S produce a race 

condition; therefore, we must avoid R = 1 and S = 1 

when using a NOR latch. 

Figure 7-2c is a timing diagram; it shows how the input 

signals interact to produce the output signal. As you see, 

the Q output goes high when S goes high. Q remains high 

after S goes low. Q returns to low when R goes high, and 

stays low after R returns to low. 
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TABLE 7-2. nor LATCH TABLE 7-3. nand LATCH 

R 5 Q Comment 

0 NC No change 

0 1 1 Set 

1 0 Reset 

1 1 * Race 

R s Q Comment 

0 0 * Race 

0 1 1 Set 

1 0 0 Reset 

1 1 NC No change 

(a) 

(b) 

R 

s_I 
I 

Q 

(c) 

Fig. 7-2 (a) nor latch; (b) De Morgan equivalent; (c) timing 

diagram. 

nand Latches 

If you prefer using nand gates, you can build an RS latch 

as shown in Fig. 7-3a. Sometimes it is convenient to draw 

the De Morgan equivalent shown in Fig. 7-3/?. In either 

case, a low R and a high 5 set Q to high; a high R and a 

low 5 reset Q to low. 

Because of the NAND-gate inversion, the inactive and 

race conditions are reversed. In other words, R = 1 and 5 

= 1 becomes the inactive state; R = 0 and 5 = 0 becomes 

the race condition (see Table 7-3). Therefore, whenever 

you use a nand latch, you must avoid having both inputs 

low at the same time. (To remember the race condition for 

a nand latch, glance at Fig. 7-3/?. If R = 0 and 5 = 0, 

then Q — 1 and 0=1; both outputs are the same, 

indicating an invalid condition.) 

R 
1_1 1_1 

1 
1 
1 

(c) 

Fig. 7-3 (a) nand latch; (/?) De Morgan equivalent; (c) timing 

diagram. 

Figure'7-3c shows the timing diagram for a nand latch. 

R and 5 are normally high to avoid the race condition. Only 

one of them goes low at any time. As you see, the Q output 

goes high whenever R goes low; the Q output goes low 

whenever 5 goes low. 

Switch Debouncers 

RS latches are often used as switch debouncers. Whenever 

you throw a switch from the open to the closed position, 

the contacts bounce and the switch alternately makes and 

breaks for a few milliseconds before finally settling in the 

closed position. One way to eliminate the effects of contact 

bounce is to use an RS latch in conjunction with the switch. 

The following example explains the idea. 
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Fig. 7-4 Switch debouncer. 

EXAMPLE 7-1 

Figure 1-Aa shows a switch debouncer. What does it do? 

SOLUTION 

As discussed in Chap. 4, floating TTL inputs are equivalent 

to high inputs. With the switch in the START position, pin 

1 is low and pin 5 is high; therefore, CLR is high and CLR 
is low. When the switch is thrown to the clear position, 

pin 1 goes high, as shown in Fig. 1-Ab. Because of contact 

bounce, pin 5 goes alternately low and high for a few 

milliseconds before settling in the low state, symbolized 

by the ideal pulses of Fig. 7-4b.The first time pin 5 goes 

low, the latch sets, CLR going high and CLR going low. 

Subsequent bounces have no effect on CLR and CLR because 

the latch stays set. 

Similarly, when the switch is thrown back to start, pin 

1 bounces low and high for a while. The first time pin 1 

goes low, CLR goes back to low and CLR to high. Later 

bounces have no effect on CLR and CLR. 
Registers need clean signals like CLR and CLR of Fig. 

1-Ab to operate properly. If the bouncing signals on pins 1 

and 5 drove the registers, the operation would be erratic. 

This is why you often see RS latches used as switch 

debouncers. 

7-2 LEVEL CLOCKING 

Computers use thousands of flip-flops. To coordinate the 

overall action, a square-wave signal called the clock is sent 

to each flip-flop. This signal prevents the flip-flops from 

changing states until the right time. 

Clocked Latch 

In Fig. l-5a a pair of nand gates drive a nand latch. S 
and R signals drive the input gates. To avoid confusion, 

the inner control signals are labeled R' and S'. The nand 

latch works as previously described; a low R' and a high 

S' set Q to 1, whereas a high R' and a low S' reset Q to 

0. Furthermore, a low R' and S' represent the race condition; 

therefore, R' and S' are normally high when the latch is 

inactive. Because of the inversion through the input nand 

gates, the S input has to drive the upper nand input and 

the R input must drive the lower nand input. 

Double Inversions Cancel 

When analyzing the operation of this and similar circuits, 

remember that a double inversion (two bubbles in a series 

path) cancels out; this makes it appear as though two and 

gates drove or gates, as shown in Fig. 7-5b. In this way, 

you can see at a glance that a high S and high CLK force 
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(c) 

Fig. 7-5 (a) Clocked latch; (b) equivalent circuit; (c) timing 

diagram. 

Q to go high. In other words, even though you are looking 

at Fig. 7-5a, in your mind you should see Fig. l-5b. 

Positive Clocking 

In Fig. l-5a the clock is a square-wave signal. Because the 

clock (abbreviated CLK) drives both nand gates, a low 

CLK prevents S and R from controlling the latch. If a high 

S and a low R drive the gate inputs, the latch must wait 

until the clock goes high before Q can be set to 1. Similarly, 

given a low S and a high R7 the latch must wait for a high 

CLK before Q can reset to 0. This is an example of positive 
clocking, making a latch wait until the clock signal is high 

before the output can change. 

Negative clocking is similar. Visualize an inverter be¬ 

tween CLK and the input gates of Fig. 7-5a. In this case, 

the latch must wait until CLK is low before the output can 

change. 

Positive and negative clocking are often called level 
clocking because the flip-flop responds to the level (high 

or low) of the clock signal. Level clocking is the simplest 

way to control flip-flops with a clock. Later, we will discuss 

more advanced methods called edge triggering and master- 

slave clocking. 

Race Condition 

What about the race condition? When the clock is low in 

Fig. 7-5n, Rf and S' are high, which is a stable condition. 

The only way to get a race condition is to have a high 

CLK, high R, and high S. Therefore, normal operation of 

this circuit requires that R and S never both be high when 

the clock goes high. 

Timing Diagram and Truth Table 

Figure 7-5c shows the timing diagram. Q goes high when 

S is high and CLK goes high. Q returns to the low state 

when R is high and CLK goes high. Using a common CLK 
signal to drive many flip-flops allows us to synchronize the 

operation of the different sections of a computer. 

Table 7-4 summarizes the operation of the clocked nand 

latch. When the clock is low, the output is latched in its 

last state. When the clock goes high, the circuit will set if 

S is high or reset if R is high. CLK, R, and S all high is a 

race condition, which is never used deliberately. 

TABLE 7-4. CLOCKED 
nand LATCH 

CLK R s Q 

0 0 0 NC 

0 0 1 NC 

0 1 0 NC 

0 1 1 NC 

1 0 0 NC 

1 0 1 1 

1 1 0 0 

1 1 1 * 

94 Digital Computer Electronics 



7-3 D LATCHES 

Since the RS flip-flop is susceptible to a race condition, we 

will modify the design to eliminate the possibility of a race 

condition. The result is a new kind of flip-flop known as a 

D latch. 

Unclocked 

Figure 7-6 shows one way to build a D latch. Because of 

the inverter, data bit D_drives the S input of a nand latch 

and the complement D drives the R input. Therefore, a 

high D sets the latch, and a low D resets it. Table 7-5 

summarizes the operation of the D latch. Especially im¬ 

portant, there is no race condition in this truth table. The 

inverter guarantees that S and R will always be in opposite 

states; therefore, it’s impossible to set up a race condition 

in the D latch. 

The D latch of Fig. 7-6 is unclocked; it will set or reset 

as soon as D goes high or low. An unclocked flip-flop like 

this is almost never used. 

TABLE 7-5. 

UNCLOCKED 

DLATCH 

~j> Q 

0 0 
1 1 

Clocked 

Figure 1-1 a is level-clocked. A low CLK disables the input 

gates and prevents the latch from changing states. In other 

words, while CLK is low, the latch is in the inactive state 

and the circuit stores or remembers. When CLK is high, D 

controls the output. A high D sets the latch, while a low 

D resets it. 

Table 7-6 summarizes the operation. X represents a don’t- 

care condition; it stands for either 0 or 1. While CLK is 

low, the output cannot change, no matter what D is. When 

CLK is high, however, the output equals the input 

Q = D 

Figure 1-lb shows a timing diagram. If the clock is low, 

the circuit is latched and the Q output cannot be changed. 

While the clock is high, however, Q equals D; when D 

goes high, Q goes high; when D goes low, Q goes low. 

The latch is transparent, meaning that the output follows 

the value of D while the clock is high. 

TABLE 7-6. 

CLOCKED 

DLATCH 

CLK D Q 

0 X NC 

1 0 0 

1 1 1 
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Disadvantage 

Because the D latch is level-clocked, it has a serious 

disadvantage. While the clock is high, the output follows 

the value of D. Transparent latches may be all right in 

some applications but not in the computer circuits we will 

be discussing. To be truly useful, the circuit of Fig. 1-1 a 
needs a slight modification. 

7-4 EDGE-TRIGGERED 
D FLIP-FLOPS 

Now we’re ready to talk about the most common type of 

D flip-flop. What a practical computer needs is a D flip- 

flop that samples the data bit at a unique instant. 

Edge Triggering 

Figure 1-Sa shows an RC circuit at the input of a D flip- 

flop. By deliberate design, the RC time constant is much 

smaller than the clock’s pulse width. Because of this, the 

capacitor can charge fully when CLK goes high; this 

exponential charging produces a narrow positive voltage 

spike across the resistor. Later, the trailing edge of the 

clock pulse results in a narrow negative spike. 

The narrow positive spike enables the input gates for an 

instant; the narrow negative spike does nothing. The effect 

is to activate the input gates during the positive spike, 

equivalent to sampling the value of D for an instant. At 

this unique time, D and its complement hit the flip-flop 

inputs, forcing Q to set or reset. 

TABLE 7-7. 

EDGE- 

TRIGGERED 

D FLIP-FLOP 

CLK D Q 

0 X NC 

1 X NC 

i X NC 

t 0 0 

t 1 1 

This kind of operation is called edge triggering because 

the flip-flop responds only when the clock is changing 

states. The triggering in Fig. 7-8a occurs on the positive¬ 

going edge of the clock; this is why it’s referred to as 

positive-edge triggering. 
Figure 7-8b illustrates the action. The crucial idea is that 

the output changes only on the rising edge of the clock. In 

other words, data is stored only on the positive-going edge. 

Table 7-7 summarizes the operation of the positive-edge- 

triggered D flip-flop. The up and down arrows represent 

the rising and falling edges of the clock. The first three 

entries indicate that there’s no output change when the 

clock is low, high, or on its negative edge. The last two 

entries indicate an output change on the positive edge of 

the clock. In other words, input data D is stored only on 

the positive-going edge of the clock. 

(b) 

Fig. 7-8 Edge-triggered D flip-flop. 
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Edge Triggering versus Level Clocking 

When a circuit is edge-triggered, the output can change 

only on the rising (or falling) edge of the clock. But when 

the circuit is level-clocked, the output can change while 

the clock is high (or low). With edge triggering, the output 

can change only at one instant during the clock cycle; with 

level clocking, the output can change during an entire half 

cycle of the clock. 

Preset and Clear 

When power is first applied, flip-flops come up in random 

states. To get some computers started, an operator has to 

push a master reset button. This sends a clear (reset) signal 

to all flip-flops. Also, it is necessary in some computers to 

preset (synonymous with “set”) certain flip-flops before a 

computer run. 

Figure 7-9 shows how to include both functions in a D 
flip-flop. The edge triggering is the same as previously 

described. In addition, the and gates allow us to slip in a 

low PRESET or low CLEAR when desired. A low PRESET 
forces Q to equal 1; a low CLEAR resets Q to 0. 

Table 7-8 summarizes the circuit action. When PRESET 
and CLEAR are both low, we get a race condition; therefore, 

PRESET and CLEAR should be kept high when inactive. 

Take PRESET low by itself and you set the flip-flop; take 

CLEAR low by itself and you reset the flip-flop. As shown 

in the remaining entries, the output changes only on the 

positive-going edge of the clock. 

Preset is sometimes called direct set, and clear is some¬ 

times called direct reset. The word “direct” means un¬ 

clocked. For instance, the clear signal may come from a 

push button; regardless of what the clock is doing, the 

output will reset when the operator pushes the clear button. 

The preset and clear inputs override the other inputs; 

they have first priority. For example, when PRESET goes 

low, the Q output goes high and stays there no matter what 

the D and CLK inputs are doing. The output will remain 

high as long as PRESET is low. Therefore, the normal 

procedure in presetting is to take the PRESET low tempo- 

Fig. 7-9 Edge-triggered D flip-flop with preset and clear. 

TABLE 7-8. D FLIP-FLOP WITH 

PRESET AND CLEAR 

PRESET CLEAR CLK D Q 

0 0 X X * 

0 1 X X 1 

1 0 X X 0 

1 1 0 X NC 

1 1 1 X NC 

1 1 1 X NC 

1 1 t 0 0 

1 1 t 1 1 

rarily, then return it to high. Similarly, for the clear function: 

take CLEAR low briefly to reset the flip-flop, then take 

it back to high to allow the circuit to operate. 

Direct-Coupled Edge-Triggered D Flip-Flop 

Integrated D flip-flops do not use RC circuits to get narrow 

spikes because capacitors are difficult to fabricate on a 

chip. Instead, a variety of direct-coupled designs is used. 

As an example, Fig. 7-10 shows a positive-edge-triggered 

D flip-flop. This direct-coupled circuit has no capacitors, 

only nand gates. The analysis is too long and complicated 

to go into here, but the idea is the same as previously 

discussed. The circuit responds only during the brief instant 

the clock switches from low to high. That is, data bit D is 

stored only on the positive-going edge of the clock. 

Logic Symbol 

Figure 7-11 is the symbol of a positive-edge-triggered D 
flip-flop. The CLK input has a small triangle, a reminder 

of the edge triggering. When you see this schematic symbol, 

remember what it means: the D input is stored on the rising 

edge of the clock. 

PRESET 
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Fig. 7-10 Direct-coupled edge-triggered D flip-flop. 

Fig. 7-11 Logic symbol for edge-triggered D flip-flop. 

Figure 7-11 also includes preset (PR) and clear (CLR) 

inputs. The bubbles indicate an active low state. In other 

words, the preset and clear inputs are high when inactive. 

To preset the flip-flop, the preset input must go low 

temporarily and then be returned to high. Similarly, to reset 

the flip-flop, the clear input must go low, then back to 

high. 

The same idea applies to circuits discussed later. A 

bubble at an input means an active low state: the input has 

to go low to produce an effect. When no bubble is present, 

the input has to go high to have an effect. 

Propagation Delay Time 

Diodes and transistors cannot switch states instantaneously. 

It always takes a small amount of time to turn a diode on 

or off. Likewise, it takes a time for a transistor to switch 

from saturation to cutoff or vice versa. For bipolar diodes 

and transistors, switching time is in the nanosecond region. 

Switching time is the main cause of propagation delay 
time tp. This represents the amount of time it takes for the 

output of a gate or flip-flop to change states. For instance, 

if the data sheet of a D flip-flop indicates a tp of 10 ns, it 

takes approximately 10 ns for Q to change states after D 
has been sampled by the clock edge. 

Propagation delay time is so small that it’s negligible in 

many applications, but in high-speed circuits you have to 

take it into account. If a flip-flop has a tp of 10 ns, this 

means that you have to wait 10 ns before the output can 

trigger another circuit. 

Setup Time 

Stray capacitance at the D input (plus other factors) makes 

it necessary for data bit D to be at the input before the CLK 
edge arrives. The setup time fsetup is the minimum length 

of time the data bit must be present before the CLK edge 

hits. 

For instance, if the data sheet of a D flip-flop indicates 

a tsetup of 15 ns, the data bit to be stored must be at the D 
input at least 15 ns before the CLK edge arrives; otherwise, 

the IC manufacturer does not guarantee correct sampling 

and storing. 

Hold Time 

Furthermore, data bit D has to be held long enough for the 

internal transistors to switch states. Only after the transition 

is assured can we allow data bit D to change. Hold time 
thold is the minimum length of time the data bit must be 

present after the CLK edge has struck. 

For example, if rsetup is 15 ns and rhold is 5 ns, the data 

bit has to be at the D input at least 15 ns before the CLK 
edge arrives and held at least 5 ns after the CLK edge hits. 
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7-5 EDGE-TRIGGERED 
JK FLIP-FLOPS 

The next chapter shows you how to build a counter, the 

electronic equivalent of a binary odometer. When it comes 

to circuits that count, the JK flip-flop is the ideal memory 

element to use. 

Circuit 

Figure l-\2a shows one way to build a JK flip-flop. As 

before, an RC circuit with a short time constant converts 

the rectangular CLK pulse to narrow spikes. Because of the 

double inversion through the nand gates, the circuit is 

positive-edge-triggered. In other words, the input gates are 

enabled only on the rising edge of the clock. 

Inactive 

The J and K inputs are control inputs; they determine what 

the circuit will do on the positive clock edge. When J and 

K are low, both input gates are disabled and the circuit is 

inactive at all times including the rising edge of the clock. 

Reset 

When J is low and K is high, the upper gate is disabled; 

so there’s no way to set the flip-flop. The only possibility 

is reset. When Q is high, the lower gate passes a reset 

trigger as soon as the positive clock edge arrives. This 

forces Q to become low. Therefore, 7 = 0 and K = 1 

means that a rising clock edge resets the flip-flop. 

Set 

When 7 is high and K is low, the lower gate is disabled; 

so it’s impossible to reset the flip-flop_But you can set the 

flip-flop as follows. When Q is low, Q is high; therefore, 

the upper gate passes a set trigger on the positive clock 

edge. This drives Q into the high state. That is, 7 = 1 and 

K = 0 means that the next positive clock edge sets the 

flip-flop. 

Toggle 

When 7 and K are both high, it is possible to set or reset 

the flip-flop, depending on the current state of the output. 

If Q is high, the lower gate passes a reset trigger on the 

(b) 

Fig. 7-12 (a) Edge-triggered JK flip-flop; (b) timing diagram. 
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TABLE 7-9. POSITIVE- 

EDGE-TRIGGERED 

JK FLIP-FLOP 

CLK J K Q 

0 X X NC 

1 X X NC 

1 X X NC 

X 0 0 NC 

t 0 1 0 

t 1 0 1 

t 1 1 Toggle 

next positive clock edge. On the other hand, when Q is 

low, the upper gate passes a set trigger on the next positive 

clock edge. Either way, Q changes to the complement of 

the last state. Therefore, J = 1 and K = 1 means that the 

flip-flop will toggle on the next positive clock edge. 

(“Toggle” means switch to opposite state.) 

Timing Diagram 

The timing diagram of Fig. l-\2b is a visual summary of 

the action. When J is high and K is low, the rising clock 

edge sets Q to high. On the other hand, when J is low and 

K is high, the rising clock edge resets Q to low. When J 
and K are high simultaneously, the output toggles on each 

rising clock edge. 

Truth Table 

Table 7-9 summarizes the operation. The circuit is inactive 

when the clock is low, high, or on its negative edge. 

Likewise, the circuit is inactive when J and K are both 

low. Output changes occur only on the rising edge of the 

clock, as indicated by the last three entries of the table. 

The output either resets, sets, or toggles. 

Racing 

The JK flip-flop shown in Fig. 7-12a has to be edge- 

triggered to avoid oscillations. Why? Assume that the circuit 

is level-clocked. In other words, assume that we remove 

the RC circuit and run the clock straight into the gates. 

With a high /, high K, and high CLK, the output will 

toggle. New outputs are then fed back to the input gates. 

After two propagation times (input and output gates), the 

output toggles again. And once more, new outputs return 

to the input gates. In this way, the output can toggle 

repeatedly as long as the clock is high. That is, we get 

oscillations during the positive half cycle of the clock. 

Toggling more than once during a clock cycle is called 
racing. 

Now assume that we put the RC circuit back in and 

return to edge triggering. Propagation delay time prevents 

the JK flip-flop from racing. Here’s why. In Fig. 7-12cz the 

outputs change after the positive clock edge has struck. By 

the time the new Q and Q signals return to the input gates, 

the positive spikes have decayed to zero. This is why we 

get only one toggle during each clock cycle. 

For instance, if the total propagation delay time from 

input to output is 20 ns, the outputs change approximately 

20 ns after the rising edge of the clock. If the spikes are 

narrower than 20 ns, the returning Q and Q arrive too late 

to cause false triggering. 

Symbols 

As previously mentioned, capacitors are too difficult to 

fabricate on a chip. This is why manufacturers prefer direct- 

coupled designs for edge-triggered JK flip-flops. Such 

designs are too complicated to reproduce here, but you can 

find them in manufacturers’ IC data books. 

Figure 7-13a is the standard symbol for a positive-edge- 

triggered JK flip-flop of any design. 

Figure 7-13/? is the symbol for a JK flip-flop with the 

preset and clear functions. As usual, PR and CLR have 

active low states. This means that they are normally high 

and taken low temporarily to preset or clear the circuit. 

Figure 7-13c is another commercially available JK flip- 

flop. The bubble on the clock input is the standard way to 

indicate negative-edge triggering. As shown in Table 7-10, 

the output can change only on tht falling edge of the clock. 

The timing diagram of Fig. 7-13d emphasizes this negative- 

edge triggering. 

7-6 JK MASTER-SLAVE FLIP-FLOP 

Figure 7-14 shows a JK master-slave flip-flop, another way 

to avoid racing. A master-slave flip-flop is a combination 

of two clocked latches; the first is called the master, and 

the second is the slave. Notice that the master is positively 

TABLE 7-10. NEGATIVE- 

EDGE-TRIGGERED 

JK FLIP-FLOP 

CLK J K Q 

0 X X NC 

1 X X NC 

t X X NC 

X 0 0 NC 

1 0 1 0 

1 1 0 1 

1 1 1 Toggle 
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(a) (b) (c) 

J 

K 

Q 

(d) 

Fig. 7-13 (a) Positive-edge triggering; (b) active low preset and 
clear; (c) negative-edge triggering; (d) timing diagram. 

Fig. 7-14 Master-slave JK flip-flop. 

clocked but the slave is negatively clocked. This implies 

the following: 

1. While the clock is high, the master is active and the 

slave is inactive. 

2. While the clock is low, the master is inactive and the 

slave is active. 

Set 

To start the analysis, let’s assume low Q and high Q. For 

an input condition of high J, low K, and high CLK, the 

master goes into the set state, producing high S and low R. 

Nothing happens to the Q and Q outputs because the slave 

is inactive while the clock is high. When the clock goes 

low, however, the high S and low R force the slave into 

the set state, producing a high Q and a low Q. 
There are two distinct steps in setting the final Q output. 

First, the master is set while the clock is high. Second, the 

slave is set while the clock is low. This action is sometimes 

called cocking and triggering. You cock the master during 

the positive half cycle of the clock, and you trigger the 

slave during the negative half cycle of the clock. 
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Reset 

When the slave is set, Q is high and Q is low. For the 

input condition of low 7, high K, and high CLK, the master 

will reset, forcing S to go low and R to go high. Again, 

no changes can occur in Q and Q because the slave is 

inactive while the clock is high. When the clock returns to 

the low state, the low S and high R force the slave to reset; 

this forces Q to go low and Q to go high. 

Again, notice the cocking and triggering. This is the key 

idea behind the master-slave flip-flop. Every action of the 

master with a high CLK is copied by the slave when the 

clock goes low. 

Toggle 

If the 7 and K inputs are both high, the master toggles once 

while the clock is high; the slave then toggles once when 

the clock goes low. No matter what the master does, the 

slave copies it. If the master toggles into the set state, the 

slave toggles into the set state. If the master toggles into 

the reset state, the slave toggles into the reset state. 

Level Clocking 

The master-slave flip-flop is level-clocked in Fig. 7-14. 

While the clock is high, therefore, any changes in 7 and K 
can affect the S and R outputs. For this reason, you normally 

keep J and K constant during the positive half cycle of the 

clock. After the clock goes low, the master becomes inactive 

and you can allow 7 and K to change. 

Fig. 7-15 Symbol for master-slave JK flip-flop. 

Symbol 

Figure 7-15 shows the symbol for a JK master-slave flip- 

flop with preset and clear functions. The bubble on the 

CLK input reminds us that the output changes when the 

clock goes low. 

Truth Table 

Table 7-11 summarizes the operation of a JK master-slave 

flip-flop. A low PR and low CLR produces a race condition; 

therefore, PR and CLR are normally kept at a high voltage 
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TABLE 7-11. MASTER-SLAVE FLIP-FLOP 

PR CLR CLK j K Q 

0 0 X X X * 

0 1 X X X 1 

1 0 X X X 0 

1 1 X 0 0 NC 

1 1 __n_ 0 1 0 

1 1 1 0 1 

1 1 1 1 Toggle 

when inactive. To clear, you take CLR low; to preset, you 

take PR low. In either case, you return them to high when 

ready to run. 

As before, low J and low K produce an inactive state, 

regardless of the what the clock is doing. If K goes high 

by itself, the next clock pulse resets the flip-flop. If J goes 

high by itself, the next clock pulse sets the flip-flop. When 

J and K are both high, each clock pulse produces one 

toggle. 

EXAMPLE 7-2 

Figure 7-16a shows a clock generator. What does it do 

when HLT is high? 

SOLUTION 

To begin with, the 555 is an IC that can generate a 

rectangular output when connected as shown in Fig. 7-16a. 

The frequency of the output is 

1.44 

; (Ra + 2 Rb)C 

The duty cycle (ratio of high state to period) is 

Q - + RB 
Ra + 2 Rb 

With the values shown in Fig. 7-16a the frequency of 

the output is 

/ = 
_L44_ 

(36 kfl + 36 kfl)(0.01 fxF) 
= 2 kHz 

and the duty cycle is 

36 kfl + 18 kfl 

36 kfl + 36 kfl 
0.75 

which is equivalent to 75 percent. 
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Fig. 7-16 Clock generator: (a) circuit; (b) 555 output; (c) JK flip- 
flop output. 

_n j “1 | | 
-J — 1 ms 

— 0.5 ms 

(c) 

Figure 7-166 illustrates how the output (pin 3) of the 555 

looks. Note how the signal is high for 75 percent of the 

cycle. This unsymmetrical output drives the clock input of 

a JK master-slave flip-flop. 

The JK master-slave flip-flop toggles once per input 

cycle; therefore, its output has a frequency of 1 kHz and a 

duty cycle of 50 percent. One of the reasons for using the 

flip-flop is to get the symmetrical output shown in Fig. 

7-16c. 

Another reason for using the flip-flop is to control the 

starting phase of the clock. A computer run starts with 

CLR going momentarily low, then back to high. This resets 

the flip-flop, forcing CLK to go low. Therefore, the starting 

phase of the CLK signal is always low. You will see the 

clock generator of Fig. 7-16a again in Chap. 10; remember 

that the CLK signal has a frequency of 1 kHz, a duty cycle 

of 50 percent, and starting phase of low. 

GLOSSARY 

contact bounce The making and breaking of contacts for 

a few milliseconds after a switch closes. 

edge triggering Changing the output state of a flip-flop 

on the rising or falling edge of a clock pulse. 

flip-flop A two-state circuit that can remain in either state 

indefinitely. Also called a bistable multivibrator. An external 

trigger can change the output state. 

hold time The minimum amount of time the input signals 

must be held constant after the clock edge has struck. After 

a clock edge strikes a flip-flop, the internal transistors need 

time to change from one state to another. The input control 

signals (D, or J and K) must be held constant while these 

internal transistors are switching over. 

latch The simplest type of flip-flop, consisting of two 

cross-coupled nand or nor latches. 

level clocking A type of triggering in which the output 

of a flip-flop responds to the level (high or low) of the 

clock signal. With positive level clocking, for example, the 

output can change at any time during the positive half cycle. 

master-slave triggering A type of triggering using two 

cascaded latches called the master and the slave. The master 

is cocked during the positive half cycle of the clock, and 

the slave is triggered during the negative half cycle. 

propagation delay time The time it takes for the output 

of a gate or flip-flop to change after the inputs have changed. 

race condition An undesirable condition which may exist 

in a system when two or more inputs change simultaneously. 

If the final output depends on which input changes first, a 

race condition exists. 

setup time The minimum amount of time the inputs to a 

flip-flop must be present before the clock edge arrives. 

toggle Change of the output to the opposite state in a JK 

flip-flop. 
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SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. A flip-flop is a_element that stores a 

binary digit as a low or high voltage. With an RS 
latch a high S and a low R sets the output to 

_; a low S and a high R_the 

output to low. 

2. (memory, high, reset) With a nand latch a low R 
and a low S produce a___condition. This is 

why R and S are kept high when inactive. One use 

for latches is switch debouncers; they eliminate the 

effects of_bounce. 

3. (race, contact) Computers use thousands of flip- 

flops. To coordinate the overall action, a common 

signal called the_is sent to each flip-flop. 

With positive clocking the clock signal must be 

-for the flip-flop to respond. Positive and 

negative clocking are also called level clocking be¬ 

cause the flip-flop responds to the_of the 

clock, either high or low. 

4. (clock, high, level) In a D latch, data bit D drives the 

S input of a latch, and the complement D drives the 

R input; therefore, a high D_the latch 

and a low D resets it. Since R and S are always in 

opposite states in a D latch, the_condi¬ 

tion is impossible. 

5. (sets, race) With a positive-edge-triggered D flip- 

flop, the data bit is sampled and stored on the 

_edge of the clock pulse. Preset and clear 

inputs are often called_set and_ 

reset. These inputs override the other inputs; they 

have first priority. When preset goes low, the Q 
output goes_and stays there no matter 

what the D and CLK inputs are doing. 

6. (rising, direct, direct, high) In a flip-flop, propaga¬ 

tion delay time is the amount of time it takes for the 

_to change after the clock edge has 

struck. Setup time is the amount of time an input 

signal must be present_the clock edge 

strikes. Hold time is the amount of time an input 

signal must be present_the clock edge 

strikes. 

7. (output, before, after) In a positive-edge-triggered JK 
flip-flop, a low J and a low K produce the 

_state. A high J and a high K mean that 

the output will_on the rising edge of the 

clock. 

8. (inactive, toggle) With a JK master-slave flip-flop the 

master is cocked when the clock is_, and 

the slave is triggered when the clock is_ 

This type of flip-flop is usually level-clocked instead 

of edge-triggered. For this reason, J and K are nor¬ 

mally kept_while the clock is high. 

9. (high, low, constant) Since capacitors are too diffi¬ 

cult to fabricate on an IC chip, manufacturers rely on 

various direct-coupled designs for D flip-flops and JK 
flip-flops. 

PROBLEMS 

7-1. The waveforms of Fig. 7-17 drive a clocked RS 
latch (Fig. 7-5a). If Q is low before time A, 
a. At what point does Q become a 1? 

b. When does Q reset to 0? 

CLK 

s 

R — 

Fig. 7-17 

7-2. A D flip-flop has these specifications: 

^setup i 0 US 

Wd = 3 ns 

tp = 30 ns 

a. How far ahead of the rising clock edge must the 

data bit be applied to the D input to ensure 

correct storage? 

b. After the rising clock edge, how long must you 

wait before letting the data bit change? 

c. How long after the rising clock edge will Q 
change? 
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7-3. In Fig. 7-18, the data word to be stored is 

S = 1001 

a. If LOAD is low, what does Q equal after the 

positive clock edge? 

b. If LOAD is high, what does Q equal after the 

positive clock edge. 

7-4. The clock of Fig. 7-19 has a frequency of 1 MHz, 

and the flip-flop has a propagation delay time of 25 

ns. 

a. What is the period of the clock? 

b. The frequency of the Q output? Its period? 

c. How long after the negative clock edge does the 

Q output change? 

7-5. The clock has a frequency of 6 MHz in Fig. 7-19. 

What is the frequency of the Q output ? This circuit 

is sometimes called a divide-by-2 circuit. Explain 

why. 

7-6. In Fig. 7-20, CLR is taken low temporarily, then 

high. Draw the timing diagram. If the clock has a 

frequency of 1 MHz, what is the frequency of the 

Q output? Is this a divide-by-2 circuit? 

7-7. Figure 7-21 shows a nand latch used as a switch 

debouncer. With the switch in the stop position, 

what do Q and Y equal? If the switch is thrown to 

the start position, what do Q and Y equal? 

7-8. The clock has a frequency of 1 MHz in Fig. 7-22. 

With the switch in the off position, what is the 

frequency of the Q output? If the switch is thrown 

to the on position, what is the frequency of the Q 
output? 
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8 

Registers and Counters 
A register is a group of memory elements that work together 

as a unit. The simplest registers do nothing more than store 

a binary word; others modify the stored word by shifting 

its bits left or right or by performing other operations to be 

discussed in this chapter. A counter is a special kind of 

register, designed to count the number of clock pulses 

arriving at its input. This chapter discusses some basic 

registers and counters used in microcomputers. 

8-1 BUFFER REGISTERS 

A buffer register is the simplest kind of register; all it does 

is store a digital word. 

Basic Idea 

Figure 8-1 shows a buffer register built with positive-edge- 

triggered D flip-flops. The X bits set up the flip-flops for 

loading. Therefore, when the first positive clock edge 

arrives, the stored word becomes Q3Q2Q1Q0 = X^XjXq. 
In chunked notation, 

Q = X 

The circuit is too primitive to be of any use. What it 

needs is some control over the X bits, some way of holding 

them off until we’re ready to store them. 

Controlled 

Figure 8-2 is more like it. This is a controlled buffer register 

with an active-high CLR. Therefore, when CLR goes high, 

all flip-flops reset and the stored word becomes 

Q = 0000 

When CLR returns low, the register is ready for action. 

LOAD is a control input; it determines what the circuit 

does. When LOAD is low, the X bits cannot reach the flip- 

flops. At the same time, the inverted signal LOAD is high; 

this forces each flip-flop output to feed back to its data 

input. When each rising clock edge arrives, data is circulated 

or retained. In other words, the register contents are 

unchanged when LOAD is low. 

When LOAD goes high, the X bits are transmitted to the 

data inputs. After a short setup time, the flip-flops are ready 

for loading. With the arrival of the positive clock edge, the 

X bits are loaded and the stored word becomes 

Q3Q2Q1Q0 = X3X2X j X0 

If LOAD returns to low, the foregoing word is stored 

indefinitely; this means that the X bits can change without 

affecting the stored word. 

EXAMPLE 8 1 

Chapter 10 discusses the SAP (simple-as-possible) com¬ 

puter. This educational computer has three generations, 

SAP-1, SAP-2, and SAP-3. Figure 8-3 shows the output 

register of the SAP-1 computer. The 74LS173 chips are 

controlled buffer registers, similar to Fig. 8-2. What does 

the circuit do? 

SOLUTION 

To begin with, it is an 8-bit buffer register built with TTL 

chips. Each chip handles 4 bits of input word X. The upper 

nibble X7X6X5X4 goes to pins 14, 13, 12, and 11 of C22; 

the lower nibble X3X2X1X0 goes to pins 14, 13, 12, and 

11 of the C23. 

Output word Q drives an 8-bit LED display. The upper 

nibble Q7Q6Q5Q4 comes out of pins 3, 4, 5, and 6 of C22; 

the lower nibble Q3Q2QiQo comes out of pins 3, 4, 5, and 

6 of C23. The typical high-state output of a 74LS173 is 

3.5 V, and the typical LED drop is 1.5 V. Since each 

current-limiting resistance is 1 kfl, the high-state current 

is approximately 2 mA for each output pin. 
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Fig. 8-1 Buffer register. 

X-f x6 x5 x4 x3 X2 X, x0 

Note: All resistors are 1 kf2. 

Fig. 8-3 SAP-1 output register. 

The 74LS173 requires a 5-V supply for pin 16 and a 

ground return on pin 8. The SAP-1 output register never 

needs clearing; this is why the CLR input (pin 15) is made 

inactive by tying it to ground. In a 74LS173, pins 9 and 

10 are separate LOAD controls. Because SAP-1 needs only 

a single LOAD control, pins 9 and 10 are tied together. 

The bubbles on pins 9 and 10 indicate an active low state; 

this means that LOAD must be low for the positive clock 

edge to store the input word. See Appendix 4 for a more 

detailed description of the 74LS173. 

The action of the circuit is straightforward. While LOAD 
is high, the register contents are unchanged even though 

the clock is running. To change the stored word, LOAD 
must go low. Then the next rising clock edge loads the X 
bits into the register. As soon as this happens, the LED 

display shows the new contents. 
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8-2 SHIFT REGISTERS 

A shift register moves the stored bits left or right. This bit 

shifting is essential for certain arithmetic and logic opera¬ 

tions used in microcomputers. 

Shift Left 

Figure 8-4 is a shift-left register. As shown, Dm sets up the 

right flip-flop, Q0 sets up the second flip-flop, Qx the third, 

and so on. When the next positive clock edge strikes, 

therefore, the stored bits move one position to the left. 

As an example, here’s what happens with Din = 1 and 

Q - 0000 

All data inputs except the one on the right are Os. The 

arrival of the first rising clock edge sets the right flip-flop, 

and the stored word becomes 

Q = 0001 

This new word means Dx now equals 1, as well as D0. 

When the next positive clock edge hits, the Qx flip-flop sets 

and the register contents become 

Q = 0011 

The third positive clock edge results in 

Q - 0111 

and the fourth rising clock edge gives 

q = mi 

Hereafter, the stored word is unchanged as long as 

An = 1. 

Suppose Dm is now changed to 0. Then, successive clock 

pulses produce these register contents: 

Q = 1110 

Q = 1100 

Q = 1000 

Q = 0000 

As long as Dm = 0, subsequent clock pulses have no 
further effect. 

The timing diagram of Fig. 8-5 summarizes the foregoing 

discussion. 

Shift Right 

Figure 8-6 is a shift-right register. As shown, each Q output 

sets up the D input of the preceding flip-flop. When the 
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rising clock edge arrives, the stored bits move one position 

to the right. 

Here’s an example with Din = 1 and 

Q = 0000 

All data inputs except the one on the left are 0s. The first 

positive clock edge sets the left flip-flop and the stored 

word becomes 

Q = 1000 

With the appearance of this word, D3 and D2 are Is. The 

second rising clock edge gives 

Q = 1100 

The third clock pulse gives 

Q = 1110 

and the fourth clock pulse gives 

q = mi 

8-3 CONTROLLED SHIFT 
REGISTERS 

A controlled shift register has control inputs that determine 

what it does on the next clock pulse. 

SHL Control 

Figure 8-7 shows how the shift-left operation can be 

controlled. SHL is the control signal. When SHL is low, 

the inverted signal SHL is high. This forces each flip-flop 

output to feed back to its data input. Therefore, the data is 

retained in each flip-flop as the clock pulses arrive. In this 

way, a digital word can be stored indefinitely. 

When SHL goes high, Dm sets up the right flip-flop, Q0 
sets up the second flip-flop, Qx the third flip-flop, and so 

on. In this mode, the circuit acts like a shift-left register. 

Each positive clock edge shifts the stored bits one position 
to the left. 

Serial Loading 

Serial loading means storing a word in the shift register by 

entering 1 bit per clock pulse. To store a 4-bit word, we 

need four clock pulses. For instance, here’s how to serially 

store the word 

X = 1010 

With SHL high in Fig. 8-7, make Din = 1 for the first 

clock pulse, Din = 0 for the second clock pulse, Din = 1 





for the third clock pulse, and Din = 0 for the fourth clock 

pulse. If the register is clear before the first clock pulse, 

the successive register contents look like this: 

operation can be included. As an example, the 74198 is a 

TTL 8-bit bidirectional shift register. It can broadside load, 

shift left, or shift right. 

Q = 0001 

Q = 0010 

Q = 0101 

Q = 1010 

(.Din = 1: first clock pulse) 

(Din = 0: second clock pulse) 

(Din = 1: third clock pulse) 

(Dm = 0: fourth clock pulse) 

In this way, data is entered serially into the right end of 

the register and shifted left until all 4 bits have been stored. 

After the last bit is entered, SHL is taken low to freeze the 

register contents. 

Parallel Loading 

Figure 8-8 is another step in the evolution of shift registers. 

The circuit can load X bits directly into the flip-flops, the 

same as a buffer register. This kind of entry is called 

parallel or broadside loading; it takes only one clock pulse 

to store a digital word. 

If LOAD and SHL are low, the output of the nor gate 

is high and flip-flop outputs return to their data inputs. This 

forces the data to be retained in each flip-flop as the positive 

clock edges arrive. In other words, the register is inactive 

when LOAD and SHL are low, and the contents are stored 

indefinitely. 

When LOAD is low and SHL is high, the circuit acts like 

a shift-left register, as previously described. On the other 

hand, when LOAD is high and SHL is low, the circuit acts 

like a buffer register because the X bits set up the flip-flops 

for broadside loading. (Having LOAD and SHL simulta¬ 

neously high is forbidden because it’s impossible to do 

both operations on a single clock edge.) 

By adding more flip-flops we can build a controlled shift 

register of any length. And with more gates, the shift-right 

8-4 RIPPLE COUNTERS 

A counter is a register capable of counting the number of 

clock pulses that have arrived at its clock input. In its 

simplest form it is the electronic equivalent of a binary 

odometer. 

The Circuit 

Figure 8-9a shows a counter built with JK flip-flops. Since 

the J and K inputs are returned to a high voltage, each flip- 

flop will toggle when its clock input receives a negative 

edge. 

Here’s how the counter works. Visualize the Q outputs 

as a binary word 

Q = Q3Q2Q1Q0 

03 is the most significant bit (MSB), and 0O is the least 

significant bit (LSB). When CLR goes low; all flip-flops 

reset. This results in a digital word of 

Q = 0000 

When CLR returns to high, the counter is ready to go. 

Since the LSB flip-flop receives each clock pulse, Q0 toggles 

once per negative clock edge, as shown in the timing 

diagram of Fig. 8-9fr. The remaining flip-flops toggle less 

often because they receive their negative edges from the 

preceding flip-flops. 

For instance, when Q0 goes from 1 back to 0, the Qx 
flip-flop receives a negative edge and toggles. Likewise, 

x3 x2 x, x0 

Fig. 8-8 Shift register with broadside load. 
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High 

Fig. 8-9 (a) Ripple counter; (b) timing diagram. 

(b) 

when Qx changes from 1 back to 0, the Q2 flip-flop gets a 

negative edge and toggles. And when Q2 goes from 1 to 

0, the Q3 flip-flop toggles. In other words, whenever a flip- 

flop resets to 0, the next higher flip-flop toggles (see Fig. 

8-%). 
What does this remind you of? Reset and carry! Each 

flip-flop acts like a wheel in a binary odometer; whenever 

it resets to 0, it sends a carry to the next higher flip-flop. 

Therefore, the counter of Fig. 8-9a is the electronic 

equivalent of a binary odometer. 

Counting 

If CLR goes low then high, the register contents of Fig. 

8-9a become 

Q = 0000 

When the first clock pulse hits the LSB flip-flop, Q0 becomes 

a 1. So the first output word is 

Q = 0001 

When the second clock pulse arrives, Q0 resets and carries; 

therefore, the next output word is 

Q - 0010 

The third clock pulse advances Q0 to 1; this gives 

Q = 0011 

The fourth clock pulse forces the Q0 flip-flop to reset and 

carry. In turn, the Qx flip-flop resets and carries. The 

resulting output word is 

Q = 0100 

The fifth clock pulse gives 

Q = 0101 

The sixth gives 

Q = 0110 

and the seventh gives 

Q = 0111 

On the eighth clock pulse, Q0 resets and carries, Qx 
resets and carries, Q2 resets and carries, and Q3 advances 

to 1. So the output word becomes 

Q = 1000 

The ninth clock pulse gives 

Q = 1001 

The tenth gives 

O = 1010 

and so on. 

Chapter 8 Registers and Counters 111 



TABLE 8-1. RIPPLE 

COUNTER 

Count Q3Q2Q1Q0 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

11 1 0 1 1 

12 1 1 0 0 

13 1 1 0 1 

14 1 1 1 0 

15 1 1 1 1 

The last word is 

Q = Till 

corresponding to the fifteenth clock pulse. The next clock 

pulse resets all flip-flops. Therefore, the counter resets to 

Q = 0000 

and the cycle repeats. 

Table 8-1 summarizes the operation of the counter. Count 
represents the number of clock pulses that have arrived. As 

you see, the counter output is the binary equivalent of the 

decimal count. 

Frequency Division 

Each flip-flop in Fig. 8-9a divides the clock frequency by 

a factor of 2. This is why a flip-flop is sometimes called a 

divide-by-2 circuit. Since each flip-flop divides the clock 

frequency by 2, n flip-flops divide the clock frequency by 

2\ 

The timing diagram of Fig. 8-9b illustrates the divide- 

by-2 action. Q0 is one-half the clock frequency, {9, is one- 

fourth the clock frequency, Q2 is one-eighth the clock 

frequency, and Q3 is one-sixteenth of the clock frequency. 

In other words, 

1 flip-flop divides by 2 

2 flip-flops divide by 4 

3 flip-flops divide by 8 

4 flip-flops divide by 16 

and 

n flip-flops divide by 2" 

Ripple Counter 

The counter of Fig. 8-9a is known as a ripple counter 
because the carry moves through the flip-flops like a ripple 

on water. In other words, the Q0 flip-flop must toggle before 

the Qx flip-flop, which in turn must toggle before the Q2 
flip-flop, which in turn must toggle before the Q3 flip-flop. 

The worst case occurs when the stored word changes from 

0111 to 1000, or from 1111 to 0000. In either case, the 

carry has to move all the way to the MSB flip-flop. Given 

a tp of 10 ns per flip-flop, it takes 40 ns for the MSB to 

change. 

By adding more flip-flops to the left end of Fig. 8-9a we 

can build a ripple counter of any length. Eight flip-flops 

give an 8-bit ripple counter, twelve flip-flops result in a 

12-bit ripple counter, and so on. 

Controlled Counter 

A controlled counter counts clock pulses only when com¬ 

manded to do so. Figure 8-10 shows how it’s done. The 

COUNT signal can be low or high. Since it conditions the 

J and K inputs, COUNT controls the action of the counter, 

forcing it to either do nothing or to count clock pulses. 

When COUNT is low, the J and K inputs are low; 

therefore, all flip-flops remain latched in spite of the clock 

pulses driving the counter. 

On the other hand, when COUNT is high, the J and K 
inputs are high. In this case, the counter works as previously 

described; each negative clock edge increments the stored 

count by 1. 

EXAMPLE 8-2 

As mentioned earlier, the program and data are stored in 

the memory before a computer run. The program is a list 

of instructions telling the computer how to process the data. 

COUNT 

Fig. 8-10 Controlled ripple counter. 
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Fig. 8-11 SAP-1 program counter. 

Every microcomputer has a program counter to keep track 

of the instruction being executed. 

Figure 8-11 shows part of the program counter used in 

SAP-1. What does it do? 

SOLUTION 

To begin with, let’s find out why the CLR and CLK signals 

are shown as complements. Signals are often available in 

complemented and uncomplemented form. The switch 

debouncer of Fig. l-4a has two outputs, CLR and CLR. In 

SAP-1 the CLR signal goes to any circuit that uses an active 

high clear and the CLR signal to any circuit with an active 

low clear. This is why CLR goes to the counter of Fig. 

8-11; it has an active low clear. A similar idea applies to 

the clock signal. 

The 74107 is a dual JK master-slave flip-flop. The SAP- 

1 program counter uses two 74107s. Although not shown, 

pin 14 ties to the 5-V supply, and pin 7 is the chip ground. 

Because master-slave flip-flops are used, a high CLK cocks 

the master and a low CLK triggers the slave. 

Before a computer run, the operator pushes a clear button 

that sends a low CLR to the program counter. This resets 

its count to 

Q = 0000 

When the operator releases the button, CLR goes high and 

the computer run begins. 

After the first instruction has been fetched from the 

memory, COUNT goes high for one clock pulse and the 

count becomes 

Q = 0001 

This count indicates that the first instruction has been 

fetched from the memory. (Later you will see how the 

computer executes the first instruction.) 

After the first instruction has been executed, the computer 

fetches the second instruction in the memory. Once again, 

COUNT goes high for one clock pulse, producing a new 

count of 

Q = 0010 

The program counter now indicates that the second instruc¬ 

tion has been fetched from the memory. 

Each time a new instruction is fetched from the memory, 

the program counter is incremented to produce the next 

higher count. In this way, the computer can keep track of 

which instruction it’s working on. 

8-5 SYNCHRONOUS COUNTERS 

When the carry has to propagate through a chain of n flip- 

flops, the overall propagation delay time is ntp. For this 

reason ripple counters are too slow for some applications. 

To get around the ripple-delay problem, we can use a 

synchronous counter. 

The Circuit 

Figure 8-12 shows one way to build a synchronous counter 

with positive-edge-triggered flip-flops. This time, clock 

pulses drive all flip-flops in parallel. Because of the 

simultaneous clocking, the correct binary word appears 

after one propagation delay time rather than four. 

The least significant flip-flop has its J and K inputs tied 

to a high voltage; therefore, it responds to each positive 

clock edge. But the remaining flip-flops can respond to the 

positive clock edge only under certain conditions. As shown 

in Fig. 8-12, the g, flip-flop toggles on the positive clock 

edge only when g0 is a 1. The g2 flip-flop toggles only 

when Qx and g0 are Is. And the Q3 flip-flop toggles only 

when Q2, Qu and g0 are Is. In other words, a flip-flop 

toggles on the next positive clock edge if all lower bits are 

Is. 
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Fig. 8-12 Synchronous counter. 

Here’s the counting action. A low CLR resets the counter 

to 

Q = 0000 

When the CLR line goes high, the counter is ready to go. 

The first positive clock edge sets Q0 to get 

Q = 0001 

Since Q0 is now 1, the Qx flip-flop is conditioned to toggle 

on the next positive clock edge. 

When the second positive clock edge arrives, Qx and (2o 

simultaneously toggle and the output word becomes 

Q = 0010 

The third positive clock edge advances the count by 1: 

Q = 0011 

Because Qx and Q0 are now Is, the Q2, Qu and Q0 flip- 

flops are conditioned to toggle on the next positive clock 

edge. When the fourth positive clock edge arrives, Q2, Qi, 

and Qg toggle simultaneously, and after one propagation 

delay time the output word becomes 

Q = 0100 

The successive Q words are 0101, 0110, 0111, and so 

on up to 1111 (equivalent to decimal 15). The next positive 

clock edge resets the counter, and the cycle repeats. 

By adding more flip-flops and gates we can build 

synchronous counters of any length. The advantage of a 

synchronous counter is its speed; it takes only one propa¬ 

gation delay time for the correct binary count to appear 

after the clock edge hits. 

Controlled Counter 

Figure 8-13 shows how to build a controlled synchronous 
counter. A low COUNT disables all flip-flops. When 

COUNT is high, the circuit becomes a synchronous counter; 

each positive clock edge advances the count by 1. 

8-6 RING COUNTERS 

Instead of counting with binary numbers, a ring counter 
uses words that have only a single high bit. 

Circuit 

Figure 8-14 is a ring counter built with D flip-flops. The 

Q0 output sets up the Dx input, the Qx output sets up the 

D2 input, and so on. Therefore, a ring counter resembles a 

COUNT 

-TLTLTL 
CLR 

Fig. 8-13 Controlled synchronous counter. 
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Fig. 8-14 Ring counter. 
CLR 

shift-left register because the bits are shifted left one position 

per positive clock edge. But the circuit differs because the 

final output is fed back to the D0 input. This kind of action 

is called rotate left; bits are shifted left and fed back to the 

input. 

When CLR goes low then back to high, the initial output 

word is 

Q = 0001 

The first positive clock edge shifts the MSB into the LSB 

position; the other bits shift left one position. Therefore, 

the output word becomes 

Q = 0010 

The second positive clock edge causes another rotate left 

and the output word changes to 

Q = 0100 

After the third positive clock edge, the output word is 

Q = 1000 

The fourth positive clock edge starts the cycle over because 

the rotate left produces 

Q = 0001 

The stored 1 bit follows a circular path, moving left 

through the flip-flops until the final flip-flop sends it back 

to the first flip-flop. This is why the circuit is called a ring 

counter. 

More Bits 

Add more flip-flops and you can build a ring counter of 

any length. With six flip-flops we get a 6-bit ring counter. 

Again, the CLR signal resets all flip-flops except the LSB 

flip-flop. Therefore, the successive ring words are 

Q = 000001 (0) 

Q = 000010 (1) 

Q = 000100 (2) 

Q = 001000 (3) 

Q = 010000 (4) 

Q = 100000 (5) 

Each of the foregoing words has only 1 high bit. The 

initial word stands for decimal 0 and the final word for 

decimal 5. If a ring counter has n flip-flops, therefore, the 

final ring word represents decimal n — 1. 

Applications 

Ring counters cannot compete with ripple and synchronous 

counters when it comes to ordinary counting, but they are 

invaluable when it’s necessary to control a sequence of 

operations. Because each ring word has only 1 high bit, 

you can activate one of several devices. 

For instance, suppose the six small boxes (A to F) of 

Fig. 8-15 are digital circuits that can be turned on by a 

high Q bit. When CLR goes low, Q0 goes high and activates 

device A. After CLR returns to high, successive clock 

pulses turn on each device for a short time. In other words, 

as the stored 1 bit shifts left, it turns on B to F in sequence, 

and then the cycle starts over. 

Many digital circuits participate during a computer run. 

To fetch and execute instructions, a computer has to activate 

Fig. 8-15 Controlling a sequence of operations 
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C38 
74107 

CLK 

CLR 

h T4 

Note: Pin 14 is connected to +5 V, and pin 7 is grounded. 

Fig. 8-16 SAP-1 ring counter. 

these circuits at precisely the right time and in the right 

sequence. This is where ring counters shine; they produce 

the ring words for timing different operations during a 

computer run. 

EXAMPLE 8-3 

Figure 8-16 shows the ring counter used in the SAP-1 

computer. T6 to T{ are called timing signals because they 

control a sequence of digital operations. What does this 

ring counter do? 

SOLUTION 

The 74107 is a dual JK master-slave flip-flop, previously 

used in the SAP-1 program counter (Example 8-2). The 

flip-flops are connected in a rotate-left mode. Since the 

74107 does not have a preset input, the Q0 flip-flop is 

inverted so that its Q output drives the J input of the Q{ 
flip-flop. In this way, a low CLR produces the initial timing 

word 

T6T5T4T3T2Tt = 000001 

In chunked form 

T = 000001 

Because of the master-slave action, a complete clock 

pulse is needed to produce the next ring word. After CLR 
returns high, the successive clock pulses produce the timing 

words 

T = 000010 

T = 000100 

T = 001000 

T = 010000 

T = 100000 

Then the cycle repeats. 

EXAMPLE 8-4 

The clock frequency in Fig. 8-16 is 1 kHz. CLR goes low 

then high. Show the timing diagram. 

SOLUTION 

Figure 8-17 is the timing diagram. Since the clock has a 

frequency of 1 kHz, it has a period of 1 ms. This is the 

amount of time between successive negative clock edges. 

Each negative clock edge produces the next ring word. 

When its turn comes, each timing signal goes high for 1 

ms. 

Notice that the CLK signal of Fig. 8-17 is the input to 

the ring counter of Fig. 8-16, whereas the complement 

CLK is the input to the program counter of Fig. 8-11. This 

half-cycle difference is deliberate. The reason is given in 

Chap. 10, which explains how the timing signals of Fig. 

8-17 control circuits that fetch and execute each program 

instruction. 

8-7 OTHER COUNTERS 

The modulus of a counter is the number of output states it 

has. A 4-bit ripple counter has a modulus of 16 because it 

has 16 distinct states numbered from 0000 to 1111. By 

changing the design we can produce a counter with any 

desired modulus. 

Mod-10 Counter 

Figure 8-18a shows a way to build a modulus-10 (or mod- 

10) counter. The circuit counts from 0000 to 1001, as 

before. However, on the tenth clock pulse, the counter 
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Fig. 8-17 SAP-1 clock and timing pulses. 

generates its own clear signal and the count jumps back to 

0000. In other words, the count sequence is 

Q = 0000 (0) 

Q - 0001 (1) 
Q = 0010 (2) 

Q = 0011 (3) 

Q = 0100 (4) 

Q = 0101 (5) 

Q = 0110 (6) 

Q = 0111 (7) 

Q = 1000 (8) 

Q = 1001 (9) 

Q = 0000 (0) 

As you see, the circuit skips states 10 to 15 (1010 through 

1111). The counting sequence is summarized by the state 
diagram of Fig. 8-18fr. 

Why does the counter skip the states from 10 to 15? 

Because of the and gate, the counter can be reset by a low 

CLR or a low Y. Initially, CLR goes low to produce 

Q - 0000 

When CLR returns to high, the counter is ready for action. 

The output of the nand gate is 

y = oiOi 

This output is high for the first nine states (0000 to 1001). 

Nothing unusual happens when the circuit is counting from 

0 to 9. On the tenth clock pulse, however, the Q word 

becomes 

Q = 1010 
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which means that Q3 and Qx are high. Almost immediately, 

Y goes low, forcing the counter to reset to 

Q = 0000 

Y then goes high, and the counter is ready to start over. 

Since it takes 10 clock pulses to reset the counter, the 

output frequency of the Q3 flip-flop is one-tenth of the clock 

frequency. This is why a mod-10 counter is also known as 

a divide-by-10 circuit. 
A mod-10 counter like Fig. 8-18a is often called a decade 

counter. Because it counts from 0 to 9, it is a natural choice 

in BCD applications like frequency counters, digital volt¬ 

meters, and electronic wristwatches. 

To get any other modulus, we can use the same basic 

idea. For instance, to get a mod-12 counter, we can drive 

the nand gate of Fig. 8-18a with Q3 and Q2. Then the 

circuit counts from 0 to 11 (0000 to 1011). On the next 

clock pulse, Q3 and Q2 are high, which clears the counter. 

(What is the modulus if Q3 and go drive the nand gate?) 

Down Counter 

All the counters discussed so far have counted upward, 

toward higher numbers. Figure 8-19 shows a down counter; 
it counts from 1111 to 0000. Each flip-flop toggles when 

its clock input goes from 1 to 0. This is equivalent to an 

uncomplemented output going from 0 to 1. For instance, 

the Q\ flip-flop toggles when <2o goes from 1 to 0; this is 

equivalent to Q0 going from 0 to 1. 

A preset signal generated elsewhere is available in either 

uncomplemented or complemented form; PRE goes to all 

circuits with an active-high preset; PRE goes to all circuits 

with an active-low preset. Initially, the preset signal PRE 
goes low in Fig. 8-19, producing an output word of 

Q = 1111 (15) 

When PRE goes high, the action starts. Notice that Q0 
toggles once per clock pulse. In the following discussion, 

a positive toggle means a change from 0 to 1, a negative 
toggle means a change from 1 to 0. 

The first clock pulse produces a negative toggle in Q0; 

nothing else happens: 

Q = 1110 (14) 

The second clock pulse produces a positive toggle in Q0, 

which produces a negative toggle in Qx: 

Q = 1101 (13) 

On the third clock pulse, Q0 toggles negatively, and 

Q = 1100 (12) 

On the fourth clock pulse, Q0 toggles positively, Q} toggles 

positively, and Q2 toggles negatively: 

Q - 1011 (11) 

You should have the idea by now. The circuit is counting 

down, from 15 to 0. When it reaches 0, 

Q = 0000 

On the next clock pulse, all flip-flops toggle positively to 

and the cycle repeats. 

Up-Down Counter 

Figure 8-20 shows how to build an up-down counter. The 

flip-flop outputs are connected to steering networks. An 

UP control signal produces either down counting or up 

counting. If the UP signal is low, Q2, Qu and Q0 are 

transmitted to the clock inputs; this results in a down 

counter. On the other hand, when UP is high, Q2, Qu and 

Q0 drive the clock inputs and the circuit becomes an up 

counter. 

Presettable Counter 

In a presettable counter, the count starts at a number greater 

than zero. Figure 8-2la shows a presettable counter; the 

count begins with P3P2P]Po, a number between 0000 and 

1111. 
To start the analysis, look at the LOAD control line. 

When it is low, all nand gates have high outputs; therefore, 
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Fig. 8-20 Up-down counter. 

Fig. 8-21 Presettable counter. 

the preset and clear inputs of all flip-flops are inactive. In counter to P3P2P,P0. As an example, suppose the preset 

this case, the circuit counts upward, as previously described. input is 

The data inputs P3 to P0 have no effect because the nand P3P2P,P0 = 0110 

gates are disabled. 

When the LOAD line is high, the data inputs and their Because of the two left nand gates, the low P3 produces 

complements pass through the nand gates and preset the a high preset and a low clear for the Q3 flip-flop; this clears 
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Q3 to a 0. By a similar argument, the high P2 sets Q2, the 

high Px sets Qu and the low P0 clears Q0. Therefore, the 

counter is preset to 

Q = 0110 

When LOAD returns to low, the circuit reverts to a 

counter. Successive clock pulses produce 

Q = 0111 

Q = 1000 

Q = 1001 

up to a maximum count of 

Q = 1111 

The next clock pulse resets the counter to 

Q = 0000 

In summary, 

1. When LOAD is low, the circuit counts. 

2. When LOAD is high, the counter presets to P3P2PiP0. 

Programmable Modulus 

The most important use of a presettable counter is pro¬ 

gramming a modulus. Here’s the idea. Let’s add the nor 

gate of Fig. 8-216 to the presettable counter of Fig. 8-21 a. 

Then the Q outputs drive the nor gate, and the nor gate 

controls the LOAD line of the presettable counter. Because 

a nor gate recognizes a word with all 0s and disregards all 

others, LOAD is high for Q = 0000 and low for all other 

words. This means that the circuit presets when Q = 0000 

and counts when Q is 0001 to 1111. 

If the preset input is 0110, successive clock pulses 

produce 0111, 1000, 1001, . . . , reaching a maximum 

value of 

Q = 1111 

The next clock pulse resets the count to 

Q = 0000 

Almost immediately, however, the NOR-gate outputs goes 

high, and the data inputs preset the counter to 

Q = 0110 

In other words, the counter effectively skips states 0 to 5, 

illustrated by the state diagram of Fig. 8-2 lc. 

Figure 8-21c shows 10 distinct states; by presetting 0110, 

we have programmed the counter to become a mod-10 

counter. If we change the preset input, we get a different 

modulus. In general, 

M = N - P (8-1) 

where M = modulus of preset counter 

N — natural modulus 

P = preset count 

The natural modulus equals 2" where n is the number of 

flip-flops in the counter. So four flip-flops give a natural 

modulus of 16, eight give a natural modulus of 256, and 

so on. 

As an example, if you preset 82 into a preset counter 

with eight flip-flops, the modulus is 

M = 256 - 82 = 174 

In other words, this preset counter is equivalent to a divide- 

by-174 circuit. 

TTL Counters 

Table 8-2 lists some TTL counters. The 7490 is an industry 

standard, a widely used decade counter. This ripple counter 

has two sections, a divide-by-2 and a divide-by-5. This 

allows you to divide by 2, to divide by 5, or to cascade 

both sections to divide by 10. 

The 7492 is a mod-12 ripple counter, organized in two 

sections by divide-by-2 and divide-by-6. This allows you 

to divide by 2, divide by 6, or cascade to divide by 12. 

The 7493 is a mod-16 ripple counter, with two sections of 

divide-by-2 and divide-by-8. 

The 74160 and 74161 are presettable synchronous counters, 

the first being a decade counter and the second a divide- 

by-16 counter. Finally, the 74190 and 74191 are up-down 

presettable counters. 

This is a sample of basic TTL counters; others are listed 

in Appendix 3. 

TABLE 8-2. TTL COUNTERS 

Number Type 

7490 Decade 

7492 Divide-by-12 

7493 Divide-by-16 

74160 Presettable decade 

74161 Presettable divide-by-16 

74190 Up-down presettable decade 
74191 Up-down presettable divide-by-16 
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8-8 THREE-STATE REGISTERS TABLE 8-3. NORMALLY 
OPEN 

The three-state switch, a development of the early 1970s, 

has greatly simplified computer wiring and design because 

it’s ideal for bus-organized computers (the common type 

nowadays). 

+ 5 v 

ENABLE 

(a) 

D 
in 

D 
out 

(bj 

D 
in 

D 
out 

fc) 

Fig. 8-22 (a) Three-state switch; (b) floating or high-impedance 
state; (c) output equals input. 

Three-State Switch 

Figure 8-22a is an example of a three-state switch. The 

ENABLE input can be low or high. When it’s low, transistor 

A cuts off and transistor B saturates. This pulls the base of 

transistor C down to ground, opening its base-emitter diode. 

As a result, Dout floats. This floating state is equivalent to 

an open switch (Fig. 8-22b). 

On the other hand, when ENABLE is high, transistor A 

saturates and transistor B cuts off. Now, the transistor C 

acts like an emitter follower, and the overall circuit is 

equivalent to a closed switch (Fig. 8-22c). In this case, 

flout = Din 

This means that Dout is low or high, the same as Dm. 
Table 8-3 summarizes the action. When ENABLE is low, 

Dm is a don’t care and Doul is open or floating. When 

ENABLE is high, the circuit acts like a noninverting buffer 
because Dout equals Dm. 

ENABLE Dm flout 

0 X Open 
1 0 0 
1 1 1 

Commercial three-state switches are much more compli¬ 

cated than Fig. 8-22a (a totem-pole output and other 

enhancements are added). But simple as it is, Fig. 8-22a 
captures the key idea of a three-state switch; the output can 

be in any of three states: low, high, or floating (sometimes 

called the high-impedance state because the Thevenin 

impedance is high). 

Three-state switches are also known as Tri-state switches. 
(Tri-state is a trademark name used by National Semicon¬ 

ductor, the originator of three-state TTL logic.) 

(b) 

Fig. 8-23 (a) Normally open switch; (b) normally closed switch. 

Normally Open Switch 

Figure 8-23a is the symbol for a three-state noninverting 

buffer. When you see this symbol, remember the action: a 

low ENABLE means that the output is floating; a high 

ENABLE means that the output is 0 or 1, the same as the 

input. Think of this switch as normally open; to close it, 

you have to apply a high ENABLE. 
In the 7400 series, the 74126 is a quad three-state 

normally open switch. This means four switches like Fig. 

8-23a in one package. The SAP-1 computer uses five 
74126s. 

Normally Closed Switch 

Figure 8-23b is different. This is the symbol for a normally 
closed switch because the control input DISABLE is active 

low. In other words, the switch is closed when DISABLE 
is low, and open when DISABLE is high. Table 8-4 

summarizes the operation. 

The 74125 is a quad three-state normally closed switch 

(four switches like Fig. 8-23b in one package). 
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TABLE 8-4. NORMALLY 

CLOSED 

DISABLE Dm Dout 

0 0 0 

0 1 1 

1 X Open 

Three-State Buffer Register 

The main application of three-state switches is to convert 

the two-state output of a register to a three-state output. 

For instance, Fig. 8-24 shows a three-state buffer register, 

so called because of the three-state switches on the output 

lines. When ENABLE is low, the Y outputs float. But when 

ENABLE is high, the Y outputs equal the Q outputs; 

therefore, 

Y = Q 

You already know how the rest of the circuit works; it’s 

the controlled buffer register discussed earlier. When LOAD 
is low, the contents of the register are unchanged. When 

LOAD is high, the next positive clock edge loads X3X2X1X0 

into the register. 

8-9 BUS-ORGANIZED COMPUTERS 

A bus is a group of wires that transmit a binary word. In 

Fig. 8-25, vertical wires W3, W2, Wl9 and W0 are a bus; 

these wires are a common transmission path between the 

three-state registers. The input data bits for register A come 

from the W bus; at the same time, the three-state output of 

register A connects back to the W bus. Similarly, the other 

registers have their inputs and outputs connected to the W 

bus. 

In Fig. 8-25 all control signals are in uncomplemented 

form; this means that the registers have active high inputs. 

In other words, a load input (LA to LD) must be high to set 

up for loading, and an enable signal (EA to ED) must be 

high to connect an output to the bus. 

Register Transfers 

The beauty of bus organization is the ease of transferring 

a word from one register to another. To begin with, the 

same clock signal drives all registers, but nothing happens 

until you apply high control inputs. In other words, as long 

as all LOAD and ENABLE inputs are low, the registers are 

isolated from the bus. 

To transfer a word from one register to another, make 

the appropriate control inputs high. For instance, here’s 

how to transfer the contents of register A to the register D. 

Make EA and LD high; then the contents of register A appear 

on the bus and register D is set up for loading. When the 

next positive clock edge arrives, word A is stored in register 

D. 
Here is another example. Suppose the following words 

are stored in the registers: 

A = 0011 

B = 0110 

C - 1001 

D = 1100 

Fig. 8-24 Three-state buffer register. 
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W bus 

Fig. 8-25 Registers connected to bus. 

To transfer word C into register B, make Ec and LB high. 

The high Ec closes the three-state switches of register C, 

placing word C on the bus. The high LB sets up register B 

for loading. When the next positive clock edge arrives, 

word C is stored in register B, and the new words are 

A = 0011 

B = 1001 

C = 1001 

D = 1100 

The whole point of bus organization (connecting the 

registers to a common word path) is to simplify the wiring 

and operation of computers. As you will see in Chap. 10, 

SAP-1 is a bus-organized computer of incredible simplicity 

made possible by the three-state switch. 

Simplified Drawings 

Figure 8-25 shows a 4-bit bus. The same idea applies to 

any number of bits. For example, a 16-bit bus has 16 wires, 

each carrying 1 bit of a word. By connecting the inputs 

and outputs of 16-bit registers to this bus, we can transfer 

16-bit words from one register to another. 

Drawings get very messy unless we simplify the appear¬ 

ance of the bus. Figure 8-26 shows an abbreviated form of 

Fig. 8-25. The solid arrows represents words going into 

and out of registers. The solid bar represents the W bus. 

EXAMPLE 8-5 

Figure 8-27 shows part of the SAP-1 computer. Describe 

the circuitry. 
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SOLUTION SOLUTION 

As discussed in Sec. 6-8, the 7483 is a 4-bit adder. The 

two 7483s of Fig. 8-27 are the ALU of the SAP-1 computer. 

The inputs to this ALU are the words 

A = A7A5A5 A4A3A2A ] Aq 

B = ByBgBjB^jB.BiBo 

A pair of 7486s allow us to complement the B input for 

subtraction. 

The sum (Su low) or difference (Sy high) appears at the 

output (pins 15, 2, 6, 9 of C16 and pins 15, 2, 6, 9 of 

Cl7). Three-state switches (Cl8 and Cl9) connect the ALU 

output to the W bus when Ev is high. If Ev is low, the 

74126s are open and the ALU output is isolated from the 
bus. 

EXAMPLE 8-6 

Figure 8-28 shows the instruction register (C8 and C9) of 

the SAP-1 computer. What does this 8-bit register do? 

Example 8-1 introduced the 74LS173. As you may recall, 

pins 9 and 10 are tied together and control the LOAD 
function. Because of the bubble, a low L, is needed to set 

up the registers for loading. When L, is low, the next 

positive clock edge loads the data on the bus into the 

instruction register. 

The output of the instruction register is split; the upper 

nibble I7I6I5I4 goes to the instruction decoder, a circuit that 

will be discussed in Chap. 10. The lower nibble out of the 

instruction register goes back to the W bus. 

The 74LS173 is a 4-bit three-state buffer register; it has 

internal three-state switches controlled by pins 1 and 2. 

The bubbles on pins 1 and 2 indicate active-low inputs; 

therefore, the output of C9 is connected to the bus when 

E, is low and disconnected when E, is high. 

Notice that pins 1 and 2 of C8 are grounded; this means 

that the upper nibble is always a two-state output. In other 

words, the 74LS173 can be used as an ordinary two-state 

register by grounding pins 1 and 2. (This was done in 

Example 8-1, where we used two 74LS173s for the output 

register to drive an 8-bit LED display.) 

W bus 

Fig. 8-28 SAP-1 instruction register. 

_GLOSSARY__ 

buffer register A register that temporarily stores a word modulus The number of stable states a counter has. 

during data processing. parallel entry Loading all bits of a word in parallel during 

bus A group of wires used as a common word path by one clock pulse. Also called broadside loading, 

several registers. presettable counter A counter that allows you to preset a 
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number from which the count begins. Sometimes called a 

programmable counter. 
register A group of memory elements that store a word. 

ring counter A counter producing words with 1 high bit, 

which shifts one position per clock pulse. 

ripple counter A counter with cascaded flip-flops. This 

means that the carry has to propagate in series through the 

flip-flops. 

serial entry Loading a word into a shift register 1 bit per 

clock pulse 
shift register A register that can shift the stored bits one 

position to the left or right. 

synchronous counter A counter in which the clock drives 

each flip-flop to eliminate the ripple delay. 

three-state switch A noninverting buffer that can be closed 

or opened by a control signal. Also called a Tri-state switch. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. When the LOAD input of a buffer register is active, 

the input word is stored on the next positive- 

edge. If LOAD then becomes inactive, the input 

word can change without effecting the- 

word. 

2. (clock, stored) A shift register moves the- 

left or right. Serial loading means storing a word in a 

shift register by entering-bit per clock 

pulse. With parallel or broadside loading, it takes 

only one_pulse to load the input word. 

3. (bits, 1, clock) One flip-flop divides the clock fre¬ 

quency by a factor of-Two flip-flops 

divide by 4, three flip-flops by 8, and four flip-flops 

by_In general, n flip-flops divide by 2n. 

4. (2, 16) In a ripple counter, the carry has to propagate 

through all the flip-flops to reach the MSB flip-flop. 

The overall propagation delay time is-A 

controlled counter counts-pulses only 

when the COUNT signal is active. The clock signal 

drives each flip-flop of a-counter. 

5. (ntp, clock, synchronous) Instead of counting with 

binary numbers, a ring counter uses words that have 

a single high_A ring counter is ideal for 

timing a sequence of digital operations. 

6. (bit) The modulus of a counter is the number of 

stable output_it has. A mod-10 counter 

can divide the clock frequency by a factor of- 

7. (states, 10) An up-down counter can count up or 

down. A presettable counter starts the count from a 

_number. This allows us to program the 

_If the modulus is M, a presettable 

counter is equivalent to a divide-by-M circuit. 

8. (preset, modulus) A three-state switch has an output 

that is either low, high, or-Two types 

are available; normally open and normally closed. 

The main use of three-state switches is to convert the 

_output of a register to a three-state out¬ 

put. 

9. (floating, two-state) A bus is a group of wires used 

by three-state registers as a common word path. Bus- 

organized computers, the common type nowadays, 

have several registers connected to one or more 

buses. Instructions and data travel along these buses 

as they move from one register to another. 

PROBLEMS 

8-1. Figure 8-29 shows an output register. Before time 

A the data word to be loaded is 

X = 1000 1101 

and the LED display is 

Q = 0001 0111 

a. What is the LED display at time D? 

b. What is the LED display at time F? 

8-2. The data sheet of a 74173 gives these values: 

^setup = 17 ns (L0 input) 

tsetup = 10 ns (Data) 

rhold = 2 ns (L0 input) 

4oid = 10 ns (Data) 

a. In Fig. 8-29, how far ahead of point E must 

the X bits be applied to ensure accurate loading? 

b. Suppose the clock has a frequency of 1 MHz 
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Fig. 8-29 

Note: All resistors are 1 kH. 

and the X bits are applied at the point D. Is the 

setup time sufficient for the data inputs? 

c. How long must you wait after point E before 

removing the X bits or letting them change? 

8-3. Each output pin of a 74173 can source up to 5.2 

mA. In Fig. 8-29 suppose the high output voltage 

is 3.5 V and the LED drop is 1.5 V. To get more 

light out of the LEDs, we want to reduce the 

current-limiting resistors. What is the minimum 

allowable resistance? 

Fig. 8-30 

8-4. A 74199 is an 8-bit shift-left register with a single 

control signal, as shown in Fig. 8-30. When 

SHIFT I LOAD is low, the circuit loads the X word 

on the next positive clock edge. When SHIFTI 
LOAD is high, the register shifts the bits to the 

left. 

a. To clear the register, should CLR be low or 

high? When you are ready to run, what should 

CLR be? 

b. Is the X word loaded on the positive or negative 

edge of the clock? 

c. IfX = 0100 1011, Din = 0, and SHIFT/LOAD 
= 0, what does the Q output word equal after 

two positive clock edges? 

d. If X = 0100 1011, Din = 0, and SHIFTi 
LOAD = 1, what does the Q output word 

equal after two positive clock edges? 

8-5. The clock frequency is 2 MHz. How long will it 

take to serially load the shift register of Fig. 

8-30? 

8-6. In Fig. 8-30, Q = 0001 0110. If SHIFTlLOAD is 

high and Dm is high, what does Q equal after 

three clock pulses? 

8-7. Data from a satellite is received in serial form (1 

bit after another). If this data is coming at a 

5-MHz rate and if the clock frequency is 5 MHz, 

how long will it take to serially load a word in a 

32-bit shift register? 

8-8. A ripple counter has 16 flip-flops, each with a 

propagation delay time of 25 ns. If the count is 

q = oin mi mi mi 

how long after the next active clock edge before 

Q = 1000 0000 0000 0000 

8-9. What is the maximum decimal count for the 

counter of the preceding problem? 

8-10. When pins 1 and 12 of a 7490 are tied together as 

shown in Fig. 8-31, the divide-by-2 and divide- 

by-5 sections are cascaded to get a mod-10 

counter. Pin 14 is the input and pin 11 is the 

output of each 7490. As a result, each 7490 acts 

like a divide-by-10 circuit and the overall circuit 

divides by 1,000. 
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+5 V +5 V +5 V 

Fig. 8-31 

A B C 

If the clock has a frequency of 5 MHz, what is 

the frequency of A? Of 5? Of Cl 
8-11. The clock signal driving a 6-bit ring counter has a 

frequency of 1 MHz. How long is each timing bit 

high? How long does it take to cycle through all 

the ring words? 
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Fig. 8-32 

8-12. Figure 8-32 shows another way to produce ring 

words. After the circuit is cleared, 

Q = Q2Q1Q0 = 000 

Since the and gates are a l-of-8 decoder, 

the first timing word is 

T = 0000 0001 

What does T equal for each of the follow¬ 

ing: 

a. Q = 001 

b. Q = 010 

c. Q = 101 

d. Q = 111 
8-13. If the clock frequency is 5 MHz in Fig. 8-32, 

how long does it take to produce all the ring 

words? How long is each timing bit high? 

60 Hz 

S M H 

Fig. 8-33 

8-14. In a digital clock, the 60-Hz line frequency is 

divided down to lower frequencies, as shown in 

Fig. 8-33. What are the frequency and period of 

the S output? Of the M output? Of the H output? 

8-15. You have an unlimited number of the following 

ICs to work with: 7490, 7492, and 7493. Which 

of these would you use to build the divide-by-60 

circuits of Fig. 8-33? 

8-16. A presettable counter has eight flip-flops. If the 

preset number is 125, what is the modulus? 

8-17. Given a presettable 8-bit counter, what number 

would you preset to get a divide-by-120 circuit? 

8-18. In Fig. 8-34, we want to transfer the contents of 

register D to register C. Which are the ENABLE 
and LOAD inputs you should make high? 

8-19. Look at Fig. 8-35 and answer each of these ques¬ 

tions. 

a. To add the inputs and put the answer on the 

bus, what should Sv and Ev be? 

b. To subtract the inputs and put the answer on 

the bus, what should Sv and Ev be? 

c. To isolate the ALU from the bus, what should 

Ev be? 
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Memories 
The memory of a computer is where the program and data 

are stored before the calculations begin. During a computer 

run, the control section may store partial answers in the 

memory, similar to the way we use paper to record our 

work. The memory is therefore one of the most active parts 

of a computer, storing not only the program and data but 

processed data as well. 
The memory is equivalent to thousands of registers, each 

storing a binary word. The latest generation of computers 

relies on semiconductor memories because they are less 

expensive and easier to work with than core memories. A 

typical microcomputer has a semiconductor memory with 

up to 655,360 memory locations, each capable of storing 

l byte of information. 

9-1 ROMS 

A read-only memory (ROM) is the simplest kind of memory. 

It is equivalent to a group of registers, each permanently 

storing a word. By applying control signals, we can read 
the word in any memory location. (“Read” means to make 

the contents of the memory location appear at the output 

terminals of the ROM.) 

Diode ROM 

Figure 9-1 shows one way to build a ROM. Each horizontal 

row is a register or memory location. The R0 register 

Fig. 9-1 Simple diode ROM. 
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TABLE 9-1. DIODE ROM 

Register Address Word 

Ro 0 0111 

R. 1 1000 

r2 2 1011 

r3 3 1100 

r4 4 0110 

r5 5 1001 

r6 6 0011 

r7 7 1110 

contains three diodes, the R, register has one diode, and 

so on. The output of the ROM is the word 

D= D3D2D,D0 

In switch position 0, a high voltage turns on the diodes 

in the R0 register; all other diodes are off. This means that 

a high output appears at D2, D,, and D0. Therefore, the 

word stored at memory location 0 is 

D = 0111 

What happens if the switch is moved to position 1 ? The 

diode in the R, register conducts, forcing D, to go high. 

Because all other diodes are off, the output from the ROM 

becomes 

D = 1000 

So the contents of memory location 1 are 1000. 

As you move the switch to other positions, you will read 

the contents of the other memory locations. Table 9-1 

shows these contents, which you can check by analyzing 
Fig. 9-1. 

With discrete circuits we can change the contents of a 

memory location by adding or removing diodes. With 

integrated circuits, the manufacturer stores the words at the 

time of fabrication. In either case, the words are permanently 

stored once the diodes are wired in place. 

Addresses 

The address and contents of a memory location are two 

different things. As shown in Table 9-1, the address of a 

memory location is the same as the subscript of the register 

storing the word. This is why register 0 has an address of 

0 and contents of 0111; register 1 has an address of 1 and 

contents of 1000; register 2 has an address of 2 and contents 

of 1011; and so on. 

The idea of addresses applies to ROMs of any size. For 

example, a ROM with 256 memory locations has decimal 

addresses running from 0 to 255. A ROM with 1,024 

memory locations has decimal addresses from 0 to 1,023. 

On-Chip Decoding 

Rather than switch-select the memory location, as shown 

in Fig. 9-1, IC manufacturers use on-chip decoding. Figure 

9-2 gives you the idea. The three input pins (A2, Als and 

A0) supply the binary address of the stored word. Then a 

1 -of-8 decoder produces a high output to one of the registers. 

For instance, if 

ADDRESS = A2A,A0 = 100 

the l-of-8 decoder applies a high voltage to the R4 register, 

and the ROM output is 

D = 0110 

If you change the address word to 

ADDRESS =110 

you will read the contents of memory location 6, which is 

D = 0011 

The circuit of Fig. 9-2 is a 32-bit ROM organized as 8 

words of 4 bits each. It has three address (input) lines and 

four data (output) lines. This is a very small ROM compared 

with commercially available ROMs. 

Number of Address Lines 

With on-chip decoding, n address lines can select 2" memory 

locations. For instance, we need 3 address lines in Fig.9-2 

to access 8 memory locations. Similarly, 4 address lines 

can access 16 memory locations, 8 address lines can access 

256 memory locations, and so on. 

9-2 PROMS AND EPROMS 

With a ROM, you have to send a list of data to be stored 

in the different memory locations to the manufacturer, who 

then produces a mask (a photographic template of the 

circuit) used in mass production of your ROMs. In fabri¬ 

cating ROMs the manufacturer may use bipolar transistors 

or MOSFETs. But the idea is still basically the same; the 

transistors or MOSFETs act like the diodes of Fig. 9-2. 

Programmable 

A programmable ROM (PROM) is different. It allows the 

user to store the data. An instrument called a PROM 
programmer does the storing by “burning in.” (Fusible 

links at the bit locations can be burned open by high 

currents.) With a PROM programmer, the user can burn in 

the program and data. Once this has been done, the 

programming is permanent. In other words, the stored 

contents cannot be erased. 
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Fig. 9-2 ROM with on-chip decoding. 

Erasable other words, the EPROM is ultraviolet-light-erasable and 

The erasable PROM (EPROM) uses MOSFETs. Data is electrically reprogrammable. 

stored with a PROM programmer. Later, data can be erased The EPROM is helpful in design and development. The 

with ultraviolet light. The light passes through a window user can erase and store until the program and data are 

in the IC package to the chip, where it releases stored perfected. Then the program and data can be sent to an IC 

charges. The effect is to wipe out the stored contents. In manufacturer who makes a ROM mask for mass production. 
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EEPROM 

Another type of reprogrammable ROM device is the 

EEPROM (Electrically Erasable Programmable Read Only 

Memory), which is nonvolatile like EPROM but does not 

require ultraviolet light to be erased. It can be completely 

erased or have certain bytes changed, using electrical pulses. 

Individual bytes (or any number of bytes) can be changed 

using a programmer designed for use with EEPROMs. 

Individual bytes can also be changed by the host circuit 

after the EEPROM has been installed. 

EEPROM is useful when data being gathered by the 

circuit must be stored by the system. Writing to EEPROM 

is slower than writing to RAM, so it cannot be used in 

high-speed circuits. 

Unlimited READ cycles are possible; however, EEPROM 

will eventually wear out from repeated ERASE cycles. 

Since the life of typical EEPROMS allows thousands of 

erase cycles, this is usually not a problem. 

There are matching EEPROM replacements for most 

EPROMs. The EEPROM uses an 8 digit in the part number 

whereas EPROM uses a 7 digit. For example, the 2816 

EEPROM can replace the 2716 EPROM. 

Manufactured Devices 

With large-scale integration, manufacturers can fabricate 

ROMs, PROMs, and EPROMs that store thousands of 

words. For instance, the 8355 is a 16,384-bit ROM orga¬ 

nized as 2,048 words of 8 bits each. It has 11 address lines 

and 8 data lines. 

As another example, the 2764 is 65,536-bit EPROM 

organized as 8,192 words of 8 bits each. It has 13 address 
lines and 8 data lines. 

Access Time 

The access time of a memory is the time it takes to read a 

stored word after applying address bits. Since bipolar 

transistors are faster than MOSFETs, bipolar memories 

have faster access times than MOS memories. For instance, 

the 3636 is a bipolar PROM with an access time of 80 ns; 

the 2716 is a MOS EPROM with an access time of 450 ns. 

You have to pay for the speed; a bipolar memory is more 

expensive than a MOS memory, so it’s up to the designer 

to decide which type to use in a specific application. 

Three-State Memories 

By adding three-state switches to the data lines of a memory 

we can get a three-state output. As an example, Fig. 9-3 

shows a 16,384-bit ROM organized as 2,048 words of 8 

bits each. It has 11 address lines and 8 data lines. A low 

ENABLE opens all switches and floats the output lines. On 

the other hand, a high ENABLE allows the addressed word 
to reach the final output. 

Most of the commercially available ROMs, PROMs, and 

EPROMs have three-state outputs. In other words, they 

have built-in three-state switches that allow you to connect 

or disconnect the output lines from a data bus. More will 
be said about this later. 

Nonvolatile Memory 

ROMs, PROMs, and EPROMs are nonvolatile memories. 

This means that they retain the stored data even when the 

power to the device is shut off. Not all memories are like 

this, as will be explained in Sec. 9-3. 

EXAMPLE 9-1 

A 16 X 8 ROM stores these words in its first four locations: 

R0 = 1110 0010 R: = 0011 1100 
R, = 0101 0111 R, = ion mi 

Express the stored contents in hexadecimal notation. 

SOLUTION 

In hexadecimal shorthand, the stored contents are 

R0 = E2H R: = 3CH 

R, = 57H R, = BFH 

9-3 RAMS 

A random-access memory (RAM), or a read-write memory, 

is equal to a group of addressable registers. After supplying 

an address, you can read the stored contents of the memory 

location or write new contents into the memory location. 

Core RAMs 

The core RAM was the workhorse of earlier computers. It 

has the advantage of being nonvolatile; even though you 

shut off the power, a core RAM continues to store data. 

The disadvantage of core RAMs is that they are expensive 

and harder to work with than semiconductor memories. 

Semiconductor RAMs 

Semiconductor RAMs may be static or dynamic. The static 

RAM uses bipolar or MOS flip-flops; data is retained 

indefinitely as long as power is applied to the flip-flops. 

On the other hand, a dynamic RAM uses MOSFETs and 

capacitors that store data. Because the capacitor charge 

leaks off, the stored data must be refreshed (recharged) 

every few milliseconds. In either case, the RAMs are 

volatile; turn off the power and you lose the stored data. 
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Fig. 9-4 (a) Static cell; (b) dynamic cell. 

RAMs than dynamic RAMs. The remainder of this book 

emphasizes static RAMs. 

Three-State RAMs 

Many of the commercially available RAMs, either static or 

dynamic, have three-state outputs. In other words, the 

manufacturer includes three-state switches on the chip so 

that you can connect or disconnect the output lines of the 

RAM from a data bus. 

Fig. 9-5 Static RAM with inverted control inputs. 

Static RAM 

Figure 9-4a shows one of the flip-flops used in a static 

MOS RAM. Qx and Q2 act like switches. Q3 and Q4 are 

active loads, meaning that they behave like resistors. The 

circuit action is similar to the transistor latch discussed in 

Sec. 7-1. Either gi conducts and Q2 is cut off or vice versa. 

A static RAM will contain thousands of flip-flops like this, 

one for each stored bit. As long as power is applied, the 

flip-flop remains latched and can store the bit indefinitely. 

Dynamic RAM 

Figure 9-4b shows one of the memory elements (called 

cells) in a dynamic RAM. When the sense and control lines 

go high, the MOSFET conducts and charges the capacitor. 

When the sense and control lines go low, the MOSFET 

opens and the capacitor retains its charge. In this way, it 

can store 1 bit. A dynamic RAM may contain thousands 

of memory cells like Fig. 9-46. Since only a single MOSFET 

and capacitor are needed, the dynamic RAM contains more 

memory cells than a comparable static RAM, In other 

words, a dynamic RAM has more memory locations than 

a static RAM of the same physical size. 

The disadvantage of the dynamic RAM is the need to 

refresh the capacitor charge every few milliseconds. This 

complicates the design problem because more circuitry is 

needed. In short, it’s much simpler to work with static 

Figure 9-5 shows a static RAM and typical input signals. 

The ADDRESS bits select the memory location; control 

signals WE and CE select a write, read, or do nothing 

operation. WE is known as the write-enable signal, and CE 

is called the chip-enable signal. Notice that the control 

inputs are active low. 

Table 9-2 summarizes the operation of the static RAM. 

Here’s what happens. A low CE and low WE produce a 

write operation. This means that the input data Dinis stored 

in the addressed memory location. The three-state output 

data lines are floating during this write operation. 

When CE is low and WE is high, we get a read operation. 

The contents of the addressed memory location appear on 

the data output lines because the internal three-state switches 

are closed at this time. _ 

The final possibility is CE high. This is a holding pattern 

where nothing happens. Internal data at all memory locations 

is frozen or unchanged. Notice that the output data lines 

are floating. 

TABLE 9-2. STATIC RAM 

CE WE Operation Output 

0 0 Write Floating 

0 1 Read Connected 

1 X Hold Floating 
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Bubble Memories 

A bubble memoiy sandwiches a thin film of magnetic 

material between two permanent bias magnets. Logical Is 

and Os are represented by magnetic bubbles in this thin 

film. The details of how a bubble memory works are too 

complicated to go into here. What is worth knowing is that 

bubble memories are nonvolatile and capable of storing 

huge amounts of data. For instance, the INTEL 7110 is a 

bubble memory that can store approximately 1 million bits. 

One disadvantage is they have slow access times. 

EXAMPLE 9-2 

Figure 9-6 shows the pin configuration of a 74189, a 

Schottky TTL static RAM with three-state outputs. This 

64-bit RAM is organized as 16 words of 4 bits each. It has 

an access time of 35 ns. What are the different pin functions? 

3 Ycc 
□ a2 

□ >4, 
□ 40 

□ D0 

□ Dq 

3 D} 

3 D, 

Fig. 9-6 Pinout for 74189. 

GND □ 

SOLUTION 

To begin with, 4 address bits can access 24 = 16 words. 

This is why the 74189 needs 4 address bits to select the 

desired memory location. 

The ADDRESS bits go to pin 1 (A3), pin 15 (A2), pin 

14 (Aj), and pin 13 (A0). The data inputs are pin 4 (Z)3), 

pin 6 (D2), pin 10 (D{), and pin 12 (D0). Because of the 

TTL design, the data is stored as the complement of the 

input bits. Thisjs why the data outputs are pin 5 (Z)3), pin 

7 (D2), pin 9 (D)), and pin 11 (D0). 

The chip enable is pin 2, and the write enable is pin 3. 

These control signals work as previously described. CZf and 

WE must be low for a write operation; C£ must be low 

and WE high for a read, and CE must be high to do nothing. 

Pin 16 gets the supply voltage, which is +5 V, and pin 

8 is grounded. 

memory. This means that we can store 16 words of 8 bits 

each. The bubbles on the output data pins (pins 5, 7, 9, 

11) remind us that the stored data bits are the complements 

of the input data bits. 

Addressing the Memoiy 

The address bits come from an address-switch register (A3, 

A2, Au A0). By setting the switches we can input any 

address from 0000 to 1111. As noted at the bottom of Fig. 

9-7, an up address switch is equal to a 1. Therefore, the 

address with all switches up is 1111. 

Setting Up Data 

The data inputs come from the two other switch registers. 

The upper input nibble is Z)7, D6, D5, and D4. The lower 

input nibble is D3, Z)2, Du and D0. By setting the data 

switches we can input any data word from 0000 0000 to 

1111 1111, equivalent to 00H to FFH. The note at the 

bottom of Fig. 9-7 indicates that an up data switch produces 

an input 0 or an output 1. In other words, a data switch 

must be up to store a 1. 

Programming the Memory 

To program the memory (this means to store instruction 

and data words), the run-prog switch must be in the prog 

position. This grounds pin 2 (CE) of each 74189. When 

the read-write switch is thrown to write, pin 3 (WE) is 

grounded and the complement of the input data word is 

written into the addressed memory location. 

For instance, suppose we want to store the following 

words: 

Address Data 

0000 0000 1111 

0001 0010 1110 

0010 0001 1101 
0011 1110 1000 

Begin by placing the run-prog switch in the prog position. 

To store the first data word at address 0000, set the switches 
as follows: 

Address Data 

DDDD DDDD UUUU 

9-4 A SMALL TTL MEMORY 

Figure 9-7 shows a modified version of the SAP-1 memory. 

Two 74189s (see Appendix 4) are used to get a 16 X 8 

where D stands for down and U for up. When the read- 

write switch is thrown to write, 0000 1111 is written into 

memory location 0000. The read-write switch is then 

returned to read in preparation for the next write operation. 
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W bus 

Fig. 9-7 Modified SAP-1 read-write memory. 

To load the second word at address 0001, set the address 

and data switches as follows: 

Address Data 

DDDU DDUD UUUD 

When the read-write switch is thrown to write, the data 

word 0010 1110 is stored at memory location 0001. 

Continuing like this, we can program the memory with 

the remaining words. 

The SAP-1 memory is slightly different from Fig. 9-7 

and will be discussed in Chap. 10. What we have discussed 

here, however, gives you an example of how a program 

and data can be entered into a memory before a computer 

run. 

9-5 HEXADECIMAL ADDRESSES 

During a computer run, the CPU sends binary addresses to 

the memory, where read or write operations occur. These 

address words may contain 16 or more bits. There’s no 

need for us to get bogged down with long strings of binary 

numbers. We can chunk those 0s and Is into neat strings 

of hexadecimal numbers. Using hexadecimal shorthand is 

standard in microprocessor work. 

Typical microcomputers have an address bus with 16 

address lines. The words on this bus have the binary format 

of 

ADDRESS = XXXX XXXX XXXX XXXX 

For convenience, we can chunk this into its equivalent 

hexadecimal form. For instance, instead of writing 

ADDRESS = 0101 1110 0111 1100 

we can write 

ADDRESS = 5E7CH 

The 16 address lines can access 216 memory locations, 

equivalent to 65,536 words. The hexadecimal addresses are 

from 0000H to FFFFH. In microcomputers using 8-bit 

microprocessors, 1 byte is stored in each memory location. 

Figure 9-8 illustrates how to visualize such a memory. The 

first memory location has an address of 0000H, the second 

memory location an address of 0001H, the third an address 
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of 0002H, and so on. Moving toward higher memory, we 

eventually reach FFFDH, FFFEH, and FFFFH. 

Notice that 1 byte is stored in each memory location. 

This is common in products using an 8-bit microprocessor 

like the Z80 and 6808. In other words, it is common for 

8-bit microprocessor—based products to have a maximum 

memory of 64K (IK = 1,024 bytes). 

0000H 

0001H 

0002H 

FFFDH 

FFFEH 

FFFFH 

Fig. 9-8 Memory layout. 

byte 

byte 

byte 

byte 

byte 

byte 

GLOSSARY 

access time The time it takes to read the contents of a 

memory location after it has been addressed. 

address A way of specifying the location of data in 

memory, similar to a house address. 

dynamic memory A memory that relies on a MOSFET 

switch to charge a capacitor. This memory is highly volatile 

because not only must the power be kept on, but the 

capacitor charge must also be refreshed every few milli¬ 

seconds. 

EPROM Erasable programmable read-only memory, a 

device that is ultraviolet-erasable and electrically repro¬ 

grammable. 

nonvolatile A type of memory in which the stored data 

is not lost when the power is turned off. 

PROM Programmable read-only memory. With a PROM 

programmer, you can burn in your own programs and data. 

RAM Random-access memory. It is also called a read- 

write memory because you can read the contents of a 

memory location or write new contents into it. 

ROM Read-only memory. (ROM rhymes with Mom.) 

This device provides nonvolatile storage of programs and 

data. You can access any memory location by supplying 
its address. 

static RAM A volatile memory using bipolar or MOSFET 

flip-flops. It is easy to work with. Refreshing data is 

unnecessary. You simply supply address and control bits 

for a read or write operation. 

volatile A type of memory in which data stored in the 

memory is lost when the power is turned off. 

SELF TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. The memory of a computer is where the_ 

and-are stored before the calculations 

begin. During a computer run, partial answers may 

also be stored in the_ 

2. {program. data, memory) A read-only memory or 

-is equivalent to a group of memory 

locations, each permanently storing a word. The 

-is the only one who can store programs 
and data in a ROM. 

3. (ROM, manufacturer) The_and contents 

of a memory location are two different things. Be¬ 

cause the address is in binary form, the manufac¬ 

turer uses on-chip decoding to access the memory 

location. With on-chip decoding, n address lines 

can access_memory locations. 

4. (address, 2n) The PROM allows users to store their 

own programs and data. An instrument called a 

PROM-does the storing or burning in. 

Once this is done, the programming is permanent. 

5. (programmer) The_is ultraviolet-light- 

erasable and electrically programmable. This allows 

the user to erase and store until programs and data 

are perfected. 

6. (EPROM) The-time of a memory is the 
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time it takes to read the contents of a memory 

location. Bipolar memories are faster than- 

memories but more expensive. 

7. (access, MOS) ROMs, PROMs, and EPROMs are 

_memories. This means that they retain 

stored data even though the power is turned off. 

Core RAMs are also_, but they are be¬ 

coming obsolete. 

8. (nonvolatile, nonvolatile) Semiconductor RAM 

memories may be static or-Both are 

volatile. The first type uses bipolar or MOS flip- 

flops, which means that data is stored as long as 

power is applied. The second type uses MOSFETs 

and capacitors to store data, which must be 

_every few milliseconds. 

9. (dynamic, refreshed) The memory cell of a dynamic 

RAM is simpler and smaller than the memory cell 

of a_RAM. Because of this, the dy¬ 

namic RAM can contains more memory cells than a 

_RAM of the same chip size. 

10. (static, static) The_bits of a static RAM 

select the memory location. The write enable (WE) 

and chip enable (CE) select a write, read, or do- 

nothing. When WE and CE are both low, you_get a 

_operation. When WE is high and CE is 

low, you get a_operation. CE high is 

the inactive state. 

11. (address, write, read) During a computer run, the 

CPU sends binary addresses to the-, 

where read or write operations occur. Typical mi¬ 

crocomputers have an address bus with- 

bits. 

12. (memory, 16) An address bus with 16 bits can 

access a maximum of 65,536 memory locations. 

The hexadecimal addresses of these memory loca¬ 

tions are from 0000H to FFFFH. First-generation 

microcomputers store 1 byte in each memory loca¬ 

tion, which implies a maximum memory of 64K. 

PROBLEMS 

9-1. How many memory locations can 14 address bits 

access? 

9-2. The 2708 is an 8,192-bit EPROM organized as a 

1,024 x 8 memory. How many address pins does 

it have? 

9-3. The 2732 is a 4,096 X 8 EPROM. How many 

address lines does it have? 

9-4. An 8156 is a 2,048-bit static RAM with 256 

words of 8 bits each. How many address lines 

does this RAM have? 

9-5. Use U (up) and D (down) to program the TTL 

memory of Fig. 9-9 with the following data: 

Address Data 

0000 1000 1001 

0001 0111 1100 

0010 0011 0110 

0011 0010 0011 

0100 0001 0111 

0101 oioi mi 
0110 1110 1101 

0111 mi iooo 

Show your answer by converting each 0 to a D 

and each 1 to a U. 

9-6. The following data is to be programmed into the 

TTL memory of Fig. 9-9: 

Address Data 

OH EEH 

1H 5CH 

2H 26H 

3H 6AH 

4H FDH 

5H 15H 

6H 94H 

7H C3H 

Convert these hexadecimal addresses and contents 

to ups (U) and downs (D) as described in Sec. 

9-4. 

9-7. Address 2000H contains the byte 3FH. What is 

the decimal equivalent of 3FH? 

9-8. In a 32K memory, the hexadecimal addresses are 

from 0000H to 7FFFH. What is the decimal 

equivalent of the highest address? 

9-9. What is the highest address in a 48K memory? 

Express the answer in hexadecimal and decimal 

form. 

9-10. A byte is stored at hexadecimal location 6F9EH. 

What is the decimal address? (Use Appendix 2.) 
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Fig. 9-9 

9-11. Here is some data stored in a memory: 

Address Data 

8E00H 2FH 

8E01H D4H 

8E02H CFH 

8E03H 6EH 

8E04H 53H 

8E05H 7AH 

a. What is the decimal equivalent of each stored 

byte? (Use Appendix 2.) 

b. What is the decimal equivalent of the highest 

address? 

9-12. Suppose there are four different memories with 

the following capacities: 

Memory A = 16K 

Memory B = 32K 

Memory C = 48K 

Memory D = 64K 

a. How many bytes can memory C store? Express 

the answer in decimal. 

b. What is the highest decimal address in memory 

A? 

c. We want to store a byte at address C300H. 

Which memory must we use? 

d. What is the highest hexadecimal address for 

each memory? 

9-13. What kind of memory can be programmed and 

then erased with ultraviolet light, so that it can be 

reprogrammed? 

9-14. What kind of memory can be programmed and 

then erased with electrical pulses, so that it can be 

reprogrammed? 

9-15. What kind of nonvolatile memory can have indi¬ 

vidual bytes reprogrammed without erasing the 

entire chip? 

All memories start with hexadecimal address 

0000H. 
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_PART 2_ 
_SAP_ 

(SIMPLE-AS-POSSIBLE) COMPUTERS 

SAP-1 
The SAP (Simple-As-Possible) computer has been designed 

for you, the beginner. The main purpose of SAP is to 

introduce all the crucial ideas behind computer operation 

without burying you in unnecessary detail. But even a 

simple computer like SAP covers many advanced concepts. 

To avoid bombarding you with too much all at once, we 

will examine three different generations of the SAP com¬ 

puter. 

SAP-1 is the first stage in the evolution toward modem 

computers. Although primitive, SAP-1 is a big step for a 

beginner. So, dig into this chapter; master SAP-1, its 

architecture, its programming, and its circuits. Then you 

will be ready for SAP-2. 

10-1 ARCHITECTURE 

Figure 10-1 shows the architecture (structure) of SAP-1, a 

bus-organized computer. All register outputs to the W bus 

are three-state; this allows orderly transfer of data. All other 

register outputs are two-state; these outputs continuously 

drive the boxes they are connected to. 

The layout of Fig. 10-1 emphasizes the registers used in 

SAP-1. For this reason, no attempt has been made to keep 

all control circuits in one block called the control unit, all 

input-output circuits in another block called the I/O unit, 

etc. 

Many of the registers of Fig. 10-1 are already familiar 

from earlier examples and discussions. What follows is a 

brief description of each box; detailed explanations come 

later. 

Program Counter 

The program is stored at the beginning of the memory with 

the first instruction at binary address 0000, the second 

instruction at address 0001, the third at address 0010, and 

so on. The program counter, which is part of the control 

unit, counts from 0000 to 1111. Its job is to send to the 

memory the address of the next instruction to be fetched 

and executed. It does this as follows. 

The program counter is reset to 0000 before each computer 

run. When the computer run begins, the program counter 

sends address 0000 to the memory. The program counter 

is then incremented to get 0001. After the first instruction 

is fetched and executed, the program counter sends address 

0001 to the memory. Again the program counter is incre¬ 

mented. After the second instruction is fetched and executed, 

the program counter sends address 0010 to the memory. In 

this way, the program counter is keeping track of the next 

instruction to be fetched and executed. 

The program counter is like someone pointing a finger 

at a list of instructions, saying do this first, do this second, 

do this third, etc. This is why the program counter is 

sometimes called a pointer; it points to an address in 

memory where something important is being stored. 

Input and MAR 

Below the program counter is the input and MAR block. It 

includes the address and data switch registers discussed in 

Sec. 9-4. These switch registers, which are part of the input 

unit, allow you to send 4 address bits and 8 data bits to 

the RAM. As you recall, instruction and data words are 

written into the RAM before a computer run. 

The memory address register (MAR) is part of the SAP- 

1 memory. During a computer run, the address in the 

program counter is latched into the MAR. A bit later, the 

MAR applies this 4-bit address to the RAM, where a read 

operation is performed. 

The RAM 

The RAM is a 16 x 8 static TTL RAM. As discussed 

in Sec. 9-4, you can program the RAM by means of the 

address and data switch registers. This allows you to store 

a program and data in the memory before a computer run. 

During a computer run, the RAM receives 4-bit addresses 

from the MAR and a read operation is performed. In this way, 

the instruction or data word stored in the RAM is placed 

on the W bus for use in some other part of the computer. 
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W bus 

CpEpLM CE L,E,LaEa SyEyLgL^ 

Fig. 10-1 SAP -1 architecture. 

Instruction Register 

The instruction register is part of the control unit. To fetch 

an instruction from the memory the computer does a memory 

read operation. This places the contents of the addressed 

memory location on the W bus. At the same time, the 

instruction register is set up for loading on the next positive 

clock edge. 

The contents of the instruction register are split into two 

nibbles. The upper nibble is a two-state output that goes 

directly to the block labeled "‘Controller-sequencer.” The 

lower nibble is a three-state output that is read onto the W 

bus when needed. 

Controller-Sequencer 

The lower left block contains the controller-sequencer. 

Before each computer run, a CLR signal is sent to the 

program counter and a CLR signal to the instruction register. 

This resets the program counter to 0000 and wipes out the 

last instruction in the instruction register. 

A clock signal CLK is sent to all buffer registers; this 

synchronizes the operation of the computer, ensuring that 

things happen when they are supposed to happen. In other 

words, all register transfers occur on the positive edge of 

a common CLK signal. Notice that a CLK signal also goes 
to the program counter. 

The 12 bits that come out of the controller-sequencer 

form a word controlling the rest of the computer (like a 

supervisor telling others what to do.) The 12 wires carrying 

the control word are called the control bus. 

The control word has the format of 

CON = CpEpLmCE LjE^Ea S^Lo 

This word determines how the registers will react to the 

next positive CLK edge. For instance, a high EP and a low 
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Lm mean that the contents of the program counter are latched 

into the MAR on the next positive clock edge. As another 
example, a low CE and a low LA mean that the addressed 

RAM word will be transferred to the accumulator on the 

next positive clock edge. Later, we will examine the timing 

diagrams to see exactly when and how these data transfers 

take place. 

Accumulator 

The accumulator (A) is a buffer register that stores inter¬ 

mediate answers during a computer run. In Fig. 10-1 the 

accumulator has two outputs. The two-state output goes 

directly to the adder-subtracter. The three-state output goes 

to the W bus. Therefore, the 8-bit accumulator word 

continuously drives the adder-subtracter; the same word 

appears on the W bus when EA is high. 

The Adder-Subtracter 

SAP-1 uses a 2’s-complement adder-subtracter. When Sv 

is low in Fig. 10-1, the sum out of the adder-subtracter is 

S = A + B 

When Sv is high, the difference appears: 

A = A + B 

(Recall that the 2’s complement is equivalent to a decimal 

sign change.) 

The adder-subtracter is asynchronous (unclocked); this 

means that its contents can change as soon as the input 

words change. When Ev is high, these contents appear on 

the W bus. 

B Register 

The B register is another buffer register. It is used in 

arithmetic operations. A low LB and positive clock edge 

load the word on the W bus into the B register. The two- 

state output of the B register drives the adder-subtracter, 

supplying the number to be added or subtracted from the 

contents of the accumulator. 

Output Register 

Example 8-1 discussed the output register. At the end of a 

computer run, the accumulator contains the answer to the 

problem being solved. At this point, we need to transfer 

the answer to the outside world. This is where the output 

register is used. When EA is high and L0 is low, the next 

positive clock edge loads the accumulator word into the 

output register. 

The output register is often called an output port because 
processed data can leave the computer through this register. 

In microcomputers the output ports are connected to inter¬ 

face circuits that drive peripheral devices like printers, 
cathode-ray tubes, teletypewriters, and so forth. (An inter¬ 

face circuit prepares the data to drive each device.) 

Binary Display 

The binary display is a row of eight light-emitting diodes 

(LEDs). Because each LED connects to one flip-flop of the 

output port, the binary display shows us the contents of the 

output port. Therefore, after we’ve transferred an answer 

from the accumulator to the output port, we can see the 

answer in binary form. 

Summary 

The SAP-1 control unit consists of the program counter, 

the instruction register, and the controller-sequencer that 

produces the control word, the clear signals, and the clock 

signals. The SAP-1 ALU consists of an accumulator, an 

adder-subtracter, and a B register. The SAP-1 memory has 

the MAR and a 16 x 8 RAM. The I/O unit includes the 

input programming switches, the output port, and the binary 

display. 

10-2 INSTRUCTION SET 

A computer is a useless pile of hardware until someone 

programs it. This means loading step-by-step instructions 

into the memory before the start of a computer run. Before 

you can program a computer, however, you must learn its 

instruction set, the basic operations it can perform. The 

SAP-1 instruction set follows. 

LDA 

As described in Chap. 9, the words in the memory can be 

symbolized by R0, R}, R2, etc. This means that R0 is stored 

at address OH, R, at address 1H, R2 at address 2H, and so 

on. 

LDA stands for “load the accumulator.” A complete 

LDA instruction includes the hexadecimal address of the 

data to be loaded. LDA 8H, for example, means “load the 

accumulator with the contents of memory location 8H.” 

Therefore, given 

r8 = mi oooo 

the execution of LDA 8H results in 

a= mi oooo 

Similarly, LDA AH means “load the accumulator with 

the contents of memory location AH,” LDA FH means 

“load the accumulator with the contents of memory location 

FH,” and so on. 
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ADD 

ADD is another SAP-1 instruction, A complete ADD 

instruction includes the address of the word to be added. 

For instance, ADD 9H means “add the contents of memory 

location 9H to the accumulator contents”; the sum replaces 

the original contents of the accumulator. 

Here’s an example. Suppose decimal 2 is in the accu¬ 

mulator and decimal 3 is in memory location 9H. Then 

A = 0000 0010 

R9 = 0000 0011 

During the execution of ADD 9H, the following things 

happen. First, R9 is loaded into the B register to get 

B = 0000 0011 

and almost instantly the adder-subtracter forms the sum of 

A and B 

SUM = 0000 0101 

Second, this sum is loaded into the accumulator to get 

A = 0000 0101 

The foregoing routine is used for all ADD instructions; 

the addressed RAM word goes to the B register and the 

adder-subtracter output to the accumulator. This is why the 

execution of ADD 9H adds R9 to the accumulator contents, 

the execution of ADD FH adds RF to the accumulator 

contents, and so on. 

SUB 

SUB is another SAP-1 instruction. A complete SUB in¬ 

struction includes the address of the word to be subtracted. 

For example, SUB CH means “subtract the contents of 

memory location CH from the contents of the accumulator”; 

the difference out of the adder-subtracter then replaces the 

original contents of the accumulator. 

For a concrete example, assume that decimal 7 is in the 

accumulator and decimal 3 is in memory location CH. Then 

A = 0000 0111 

Rc = 0000 0011 

The execution of SUB CH takes place as follows. First, 

Rc is loaded into the B register to get 

B = 0000 0011 

and almost instantly the adder-subtracter forms the differ¬ 

ence of A and B: 

DIFF = 0000 0100 

Second, this difference is loaded into the accumulator and 

A = 0000 0100 

The foregoing routine applies to all SUB instructions; 

the addressed RAM word goes to the B register and the 

adder-subtracter output to the accumulator. This is why the 

execution of SUB CH subtracts Rc from the contents of 

the accumulator, the execution of SUB EH subtracts RE 
from the accumulator, and so on. 

OUT 

The instruction OUT tells the SAP-1 computer to transfer 

the accumulator contents to the output port. After OUT has 

been executed, you can see the answer to the problem being 

solved. 

OUT is complete by itself; that is, you do not have to 

include an address when using OUT because the instruction 

does not involve data in the memory. 

HLT 

HLT stands for halt. This instruction tells the computer to 

stop processing data. HLT marks the end of a program, 

similar to the way a period marks the end of a sentence. 

You must use a HLT instruction at the end of every SAP- 

1 program; otherwise, you get computer trash (meaningless 

answers caused by runaway processing). 

HLT is complete by itself; you do not have to include a 

RAM word when using HLT because this instruction does 

not involve the memory. 

Memory-Reference Instructions 

LDA, ADD, and SUB are called memory-reference instruc¬ 

tions because they use data stored in the memory. OUT 

and HLT, on the other hand, are not memory-reference 

instructions because they do not involve data stored in the 
memory. 

Mnemonics 

LDA, ADD, SUB, OUT, and HLT are the instruction set 

for SAP-1. Abbreviated instructions like these are called 

mnemonics (memory aids). Mnemonics are popular in 

computer work because they remind you of the operation 

that will take place when the instruction is executed. Table 

10-1 summarizes the SAP-1 instruction set. 

The 8080 and 8085 

The 8080 was the first widely used microprocessor. It has 

72 instructions. The 8085 is an enhanced version of the 

8080 with essentially the same instruction set. To make 

SAP practical, the SAP instructions will be upward com- 
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TABLE 10-1. SAP-1 INSTRUCTION SET the contents of memory location 9H, and so the accumulator 

contents become 

Mnemonic Operation 

LDA Load RAM data into accumulator 

ADD Add RAM data to accumulator 

SUB Subtract RAM data from accumulator 

OUT Load accumulator data into output 

register 

HLT Stop processing 

patible with the 8080/8085 instruction set. In other words, 

the SAP-1 instructions LDA, ADD, SUB, OUT, and HLT 

are 8080/8085 instructions. Likewise, the SAP-2 and SAP- 

3 instructions will be part of the 8080/8085 instruction set. 

Learning SAP instructions is getting you ready for the 8080 

and 8085, two widely used microprocessors. 

EXAMPLE 10-1 

Here’s a SAP-1 program in mnemonic form: 

Address Mnemonics 

OH LDA 9H 

1H ADD AH 

2H ADD BH 

3H SUB CH 

4H OUT 

5H HLT 

The data in higher memory is 

Address Data 

6H FFH 

7H FFH 

8H FFH 

9H 01H 

AH 02H 

BH 03H 

CH 04H 

DH FFH 

EH FFH 

FH FFH 

What does each instruction do? 

SOLUTION 

The program is in the low memory, located at addresses 

OH to 5H. The first instruction loads the accumulator with 

A = 01H 

The second instruction adds the contents of memory location 

AH to the accumulator contents to get a new accumulator 

total of 

A = 01H + 02H = 03H 

Similarly, the third instruction add the contents of memory 

location BH 

A = 03H + 03H = 06H 

The SUB instruction subtracts the contents of memory 

location CH to get 

A = 06H — 04H = 02H 

The OUT instruction loads the accumulator contents into 

the output port: therefore, the binary display shows 

0000 0010 

The HLT instruction stops the data processing. 

10-3 PROGRAMMING SAP-1 

To load instruction and data words into the SAP-1 memory 

we have to use some kind of code that the computer can 

interpret. Table 10-2 shows the code used in SAP-1. The 

number 0000 stands for LDA, 0001 for ADD, 0010 for 

SUB, 1110 for OUT, and 1111 for HLT. Because this code 

tells the computer which operation to perform, it is called 

an operation code (op code). 

As discussed earlier, the address and data switches of 

Fig. 9-7 allow you to program the SAP-1 memory. By 

design, these switches produce a 1 in the up position (U) 

TABLE 10-2. SAP-1 
OP CODE 

Mnemonic Op code 

LDA 0000 

ADD 0001 

SUB 0010 

OUT 1110 

HLT mi 
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SOLUTION and a 0 in the down position (D). When programming the 

data switches with an instruction, the op code goes into the 

upper nibble, and the operand (the rest of the instruction) 

into the lower nibble. 

For instance, suppose we want to store the following 

instructions: 

Address Instruction 

OH LDA FH 

1H ADD EH 

2H HLT 

First, convert each instruction to binary as follows: 

LDA FH = 0000 1111 

ADD EH = 0001 1110 

HLT = 1111 XXXX 

In the first instruction, 0000 is the op code for LDA, and 

1111 is the binary equivalent of FH. In the second instruc¬ 

tion, 0001 is the op code for ADD, and 1110 is the binary 

equivalent of EH. In the third instruction, 1111 is the op 

code for HLT, and XXXX are don't cares because the HLT 

is not a memory-reference instruction. 

Next, set up the address and data switches as follows: 

Address Data 

DDDD DDDD UUUU 

DDDU DDDU UUUD 

DDUD UUUU XXXX 

After each address and data word is set, you press the write 

button. Since D stores a binary 0 and U stores a binary 1, 

the first three memory locations now have these contents: 

Here is the program of Example 10-1: 

Address Instruction 

OH LDA 9H 

1H ADD AH 

2H ADD BH 

3H SUB CH 

4H OUT 

5H HLT 

This program is in assembly language as it now stands. To 

get it into machine language, we translate it to 0s and Is 

as follows: 

Address Instruction 

0000 0000 1001 

0001 0001 1010 

0010 0001 1011 

0011 00101100 

0100 1110 XXXX 

oioi mi xxxx 

Now the program is in machine language. 

Any program like the foregoing that’s written in machine 

language is called an object program. The original program 

with mnemonics is called a source program. In SAP-1 the 

operator translates the source program into an object program 

when programming the address and data switches. 

A final point. The four MSBs of a SAP-1 machine- 

language instruction specify the operation, and the four 

LSBs give the address. Sometimes we refer to the MSBs 

as the instruction field and to the LSBs as the address field. 

Symbolically, 

Instruction = XXXX XXXX 

Address Contents 

0000 0000 1111 

0001 0001 1110 

ooio mi xxxx 

A final point. Assembly language involves working with 

mnemonics when writing a program. Machine language 

involves working with strings of 0s and Is. The following 

examples bring out the distinction between the two lan¬ 

guages. 

Instruction field 

Address field — 

EXAMPLE 10-3 

How would you program SAP-1 to solve this arithmetic 

problem? 

16 + 20 4- 24 - 32 

The numbers are in decimal form. 

EXAMPLE 10-2 

Translate the program of Example 10-1 into SAP-1 machine 

language. 

SOLUTION 

One way is to use the program of the preceding example, 

storing the data (16, 20, 24, 32) in memory locations 9H 
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to CH. With Appendix 2, you can convert the decimal data 

into hexadecimal data to get this assembly-language version: 

Address Contents 

OH LDA 9H 

1H ADD AH 

2H ADD BH 

3H SUB CH 

4H OUT 

5H HLT 

6H XX 

7H XX 

8H XX 

9H 10H 

AH 14H 

BH 18H 

CH 20H 

The machine-language version is 

Address Contents 

0000 0000 1001 

0001 0001 1010 

0010 0001 1011 

0011 0010 1100 

0100 1110XXXX 

0101 1111 XXXX 

0110 XXXX XXXX 

0111 XXXX XXXX 

1000 XXXX XXXX 

1001 0001 0000 

1010 0001 0100 

1011 0001 1000 

1100 0010 0000 

Notice that the program is stored ahead of the data. In 

other words, the program is in low memory and the data 

in high memory. This is essential in SAP-1 because the 

program counter points to address 0000 for the first instruc¬ 

tion, 0001 for the second instruction, and so forth. 

EXAMPLE 10-4 

Chunk the program and data of the preceding example by 

converting to hexadecimal shorthand. 

SOLUTION 

Address Contents 

OH 09H 

1H 1AH 

2H 1BH 

3H 2CH 

4H EXH 

5H FXH 

6H XXH 

7H XXH 

8H XXH 

9H 10H 

AH 14H 

BH 18H 

CH 20H 

This version of the program and data is still considered 

machine language. 

Incidentally, negative data is loaded in 2’s-complement 

form. For example, — 03H is entered as FDH. 

10-4 FETCH CYCLE 

The control unit is the key to a computer’s automatic 

operation. The control unit generates the control words that 

fetch and execute each instruction. While each instruction 

is fetched and executed, the computer passes through 

different timing states (T states), periods during which 

register contents change. Let’s find out more about these T 

states. 

Ring Counter 

Earlier, we discussed the SAP-1 ring counter (see Fig. 

8-16 for the schematic diagram). Figure 10-2a symbolizes 

the ring counter, which has an output of 

T = T6T5T4T3T2T{ 

At the beginning of a computer run, the ring word is 

T = 000001 

Successive clock pulses produce ring words of 

T = 000010 

T = 000100 

T = 001000 

T = 010000 

T = 100000 

Then, the ring counter resets to 000001, and the cycle 

repeats. Each ring word represents one T state. 

Figure 10-27? shows the timing pulses out of the ring 

counter. The initial state Tx starts with a negative clock 

edge and ends with the next negative clock edge. During 

this T state, the 7\ bit out of the ring counter is high. 

During the next state, T2 is high; the following state has 

a high T3; then a high 74; and so on. As you can see, the 
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Fig. 10-2 Ring counter: (a) symbol; (b) clock and timing signals. 

ring counter produces six T states. Each instruction is 

fetched and executed during these six T states. 

Notice that a positive CLK edge occurs midway through 

each T state. The importance of this will be brought out 

later. 

Address State 

The Tj state is called the address state because the address 

in the program counter (PC) is transferred to the memory 

address register (MAR) during this state. Figure 10-3a 

shows the computer sections that are active during this state 

(active parts are light; inactive parts are dark). 

During the address state, EP and LM are active; all other 

control bits are inactive. This means that the controller- 

sequencer is sending out a control word of 

CON = CpEpLmCE LjEjLaEa S^LJlo 

= 0 1 0 1 1110 0011 

during this state. 

Increment State 

Figure 10-3b shows the active parts of SAP-1 during the 

T2 state. This state is called the increment state because the 

program counter is incremented. During the increment state, 

the controller-sequencer is producing a control word of 

CON = CpEpLmCE LjEjLaEa SuEuLbLq 

= 101 1 1110 0011 

As you see, the CP bit is active. 

Memory State 

The r3 state is called the memory state because the addressed 

RAM instruction is transferred from the memory to the 

instruction register. Figure 10-3c shows the active parts of 

SAP-1 during the memory state. The only active control 

bits during this state are CE and Lh and the word out of 

the controller-sequencer is 

CON = CPEPLMCE LtEtLaEa SuEuLbLo 

= 0010 0110 0011 
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Fetch Cycle 

The address, increment, and memory states are called the 

fetch cycle of SAP-1. During the address state, EP and LM 

are active; this means that the program counter sets up the 

MAR via the W bus. As shown earlier in Fig. 10-2b, a 

positive clock edge occurs midway through the address 

state; this loads the MAR with the contents of the PC. 

CP is the only active control bit during the increment 

state. This sets up the program counter to count positive 

clock edges. Halfway through the increment state, a positive 

clock edge hits the program counter and advances the count 

by 1. _ _ 
During the memory state, CE and L, are active. Therefore, 

the addressed RAM word sets up the instruction register 

via the W bus. Midway through the memory state, a positive 

clock edge loads the instruction register with the addressed 

RAM word. 

10-5 EXECUTION CYCLE 

The next three states (T4, T5, and T6) are the execution 

cycle of SAP-1. The register transfers during the execution 

cycle depend on the particular instruction being executed. 

For instance, LDA 9H requires different register transfers 

than ADD BH. What follows are the control routines for 

different SAP-1 instructions. 

LDA Routine 

For a concrete discussion, let’s assume that the instruction 

register has been loaded with LDA 9H: 

IR = 0000 1001 

During the T4 state, the instruction field 0000 goes to the 

controller-sequencer, where it is decoded; the address field 

1001 is loaded into the MAR. Figure 10-4a shows the 

active parts of SAP-1 during the T4 state. Note that E, and 

Lm are active; all other control bits are inactive. 

During the Ts state, CE and LA go low. This means that 

the addressed data word in the RAM will be loaded into 

the accumulator on the next positive clock edge (see Fig. 

10-46). 
T6 is a no-operation state. During this third execution 

state, all registers are inactive (Fig. 10-4c). This means 

that the controller-sequencer is sending out a word whose 

bits are all inactive. Nop (pronounced no op) stands for 

“no operation." The T6 state of the LDA routine is a nop. 

Figure 10-5 shows the timing diagram for_the fetch and 

LDA routines. During the T] state, EP and LM are active; 

the positive clock edge midway through this state will 

transfer the address in the program counter to the MAR. 

During the T2 state, CP is active and the program counter 

is incremented on the positive clock edge. During the T3 

state, CE and L, are active; when the positive clock edge 

occurs, the addressed RAM word is transferred to the 

instruction register. The LDA execution starts with the T4 

state, where LM and E, are active; on the positive clock 

edge the address field in the instruction register is transferred 

to the MAR. During the T5 state, CE and LA are active; 

this meahs that the addressed RAM data word is transferred 

to the accumulator on the positive clock edge. As you 

know, the Tb state of the LDA routine is a nop. 

ADD Routine 

Suppose at the end of the fetch cycle the instruction register 

contains ADD BH: 

IR = 0001 1011 

During the T4 state the instruction field goes to the controller- 

sequencer and the address field to the MAR (see Fig. 

10-6a). During this state d and LM are active. 

Control bits CE and LB are active during the T5 state. 

This allows the addressed RAM word to set up the B 
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Fig. 10-4 LDA routine: (a) T4 state; (b) T5 state; (c) T6 state. 
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Fig. 10-5 Fetch and LDA timing diagram. 

CON CON 

<a> (b) (C) 
Fig. 10-6 ADD and SUB routines: (a) TA state; (b) Ts state; (c) 
T6 state. 
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register (Fig. 10-66). As usual, loading takes place midway 

through the state when the positive clock edge hits the CLK 

input of the B register. 

During the T6 state, Ev and LA are active; therefore, the 

adder-subtracter sets up the accumulator (Fig. 10-6c). 

Halfway through this state, the positive clock edge loads 

the sum into the accumulator. 

Incidentally, setup time and propagation delay time 

prevent racing of the accumulator during this final execution 

state. When the positive clock edge hits in Fig. 10-6c, the 

accumulator contents change, forcing the adder-subtracter 

contents to change. The new contents return to the accu¬ 

mulator input, but the new contents don’t get there until 

two propagation delays after the positive clock edge (one 

for the accumulator and one for the adder-subtracter). By 

then it’s too late to set up the accumulator. This prevents 

accumulator racing (loading more than once on the same 

clock edge). 

Figure 10-7 shows the timing diagram for the fetch and 

ADD routines. The fetch routine is the same as before: the 

Tx state loads the PC address into the MAR; the T2 state 

increments the program counter; the T3 state sends the 

addressed instruction to the instruction register. 

During the T4 state, Ej and LM are active; on the next 

positive clock edge, the address field in the instruction 

register goes to the MAR. During the T5 state, CE and LB 

are active; therefore, the addressed RAM word is loaded 

into the B register midway through the state. During the T6 

state, Ejj and LA are active; when the positive clock edge 

hits, the sum out of the adder-subtracter is stored in the 

accumulator. 

SUB Routine 

The SUB routine is similar to the ADD routine. Figure 

10-6a and b show the active parts of SAP-1 during the T4 

and T5 states. During the T6 state, a high Su is sent to the 

adder-subtracter of Fig. 10-6c. The timing diagram is almost 

identical to Fig. 10-7. Visualize Sv low during the Tx to T5 

states and S^high during the T6 state. 

OUT Routine 

Suppose the instruction register contains the OUT instruction 

at the end of a fetch cycle. Then 

IR = 1110 XXXX 

Fig. 10-7 Fetch and ADD timing diagram. 

The instruction field goes to the controller-sequencer for 

decoding. Then the controller-sequencer sends out the 

control word needed to load the accumulator contents into 

the output register. 

Figure 10-8 shows the active sections of SAP-1 during 

the execution of an OUT instruction. Since EA and L0 are 

active, the next positive clock edge loads the accumulator 

contents into the output register during the T4 state. The T5 

and r6 states are nops. 

Figure 10-9 is the timing diagram for the fetch and OUT 

routines. Again, the fetch cycle is same: address state, 

increment state, and memory state. During the T4 state, EA 

and L0 are active; this transfers the accumulator word to 

the output register when the positive clock edge occurs. 
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L, 

Fig. 10-9 Fetch and OUT timing diagram. 

HLT 

HLT does not require a control routine because no registers 

are involved in the execution of an HLT instruction. When 

the IR contains 

IR = 1111 XXXX 

the instruction field 1111 signals the controller-sequencer 

to stop processing data. The controller-sequencer stops the 

computer by turning off the clock (circuitry discussed later). 

Machine Cycle and Instruction Cycle 

SAP-1 has six T states (three fetch and three execute). 

These six states are called a machine cycle (see Fig. 

10-10a). It takes one machine cycle to fetch and execute 

each instruction. The SAP-1 clock has a frequency of 1 

kHz, equivalent to a period of 1 ms. Therefore, it takes 6 

ms for a SAP-1 machine cycle. 

SAP-2 is slightly different because some of its instructions 

take more than one machine cycle to fetch and execute. 

Figure 10-10/? shows the timing for an instruction that 

requires two machine cycles. The first three T states are 

the fetch cycle; however, the execution cycle requires the 

next nine T states. This is because a two-machine-cycle 

instruction is more complicated and needs those extra T 

states to complete the execution. 

The number of T states needed to fetch and execute an 

instruction is called the instruction cycle. In SAP-1 the 

instruction cycle equals the machine cycle. In SAP-2 and 

other microcomputers the instruction cycle may equal two 

or more machine cycles, as shown in Fig. 10-10/?. 

The instruction cycles for the 8080 and 8085 take from 

one to five machine cycles (more on this later). 

EXAMPLE 10-5 

The 8080/8085 programming manual says that it takes 

thirteen T states to fetch and execute the LDA instruction. 

(a) 

(b) 

Fig. 10-10 (a) SAP-1 instruction cycle; (Z?) instruction cycle with 
two machine cycles. 
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If the system clock has a frequency of 2.5 MHz, how long 

is an instruction cycle? 

SOLUTION 

The period of the clock is 

T = - =---= 400 ns 
/ 2.5 MHz 

Therefore, each T state lasts 400 ns. Since it takes thirteen 

T states to fetch and execute the LDA instruction, the 

instruction cycle lasts for 

13 X 400 ns = 5,200 ns = 5.2 p,s 

EXAMPLE 10-6 

Figure 10-11 shows the six T states of SAP-1. The positive 

clock edge occurs halfway through each state. Why is this 

important? 

SOLUTION 

SAP-1 is a bus-organized computer (the common type 

nowadays). This allows its registers to communicate via 

the W bus. But reliable loading of a register takes place 

only when the setup and hold times are satisfied. Waiting 

half a cycle before loading the register satisfies the setup 

time; waiting half a cycle after loading satisfies the hold 

time. This is why the positive clock edge is designed to 

strike the registers halfway through each T state (Fig. 

10-11). 

There’s another reason for waiting half a cycle before 

loading a register. When the ENABLE input of the sending 

register goes active, the contents of this register are suddenly 

dumped on the W bus. Stray capacitance and lead inductance 

prevent the bus lines from reaching their correct voltage 

levels immediately. In other words, we get transients on 

the W bus and have to wait for them to die out to ensure 

valid data at the time of loading. The half-cycle delay 

before clocking allows the data to settle before loading. 

10-6 THE SAP-1 MICROPROGRAM 

We will soon be analyzing the schematic diagram of the 

SAP-1 computer, but first we need to summarize the 

execution of SAP-1 instructions in a neat table called a 

microprogram. 

Microinstructions 

The controller-sequencer sends out control words, one 

during each T state or clock cycle. These words are like 

directions telling the rest of the computer what to do. 

Because it produces a small step in the data processing, 

each control word is called a microinstruction. When looking 

at the SAP-1 block diagram (Fig. 10-1), we can visualize 

a steady stream of microinstructions flowing out of the 

controller-sequencer to the other SAP-1 circuits. 

Macroinstructions 

The instructions we have been programming with (LDA, 

ADD, SUB, . . .) are sometimes called macroinstructions 

to distinguish them from microinstructions. Each SAP-1 

macroinstruction is made up of three microinstructions. For 

example, the LDA macroinstruction consists of the mi¬ 

croinstructions in Table 10-3. To simplify the appearance 

of these microinstructions, we can use hexadecimal chunk¬ 

ing as shown in Table 10-4. 

Table 10-5 shows the SAP-1 microprogram, a listing of 

each macroinstruction and the microinstructions needed to 

carry it out. This table summarizes the execute routines for 

the SAP-1 instructions. A similar table can be used with 

more advanced instruction sets. 

10-7 THE SAP-1 SCHEMATIC 
DIAGRAM 

In this section we examine the complete schematic diagram 

for SAP-1. Figures 10-12 to 10-15 show all the chips, 

wires, and signals. You should refer to these figures 

throughout the following discussion. Appendix 4 gives 

additional details for some of the more complicated chips. 

edge + edge + edge 

i 1 l 
+ edge + edge + edge 

1 i i 

Fig. 10-11 Positive clock edges occur midway through T states. 
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TABLE 10-3 

Macro State Cp Ep Lm CE Li Ej LaEa SuEuLbLq Active 

LDA t4 0 0 0 1 10 10 0 0 11 Lm, Ej 

t5 0 0 1 0 110 0 0 0 11 CE, La 
t6 0 0 1 1 1110 0 0 11 None 

TABLE 10-4 

Macro State CON Active 

LDA T4 1A3H La/5 Ej 

t5 2C3H CE, La 

t6 3E3H None 

TABLE 10-5. SAP-1 MICROPROGRAMf 

Macro State CON Active 

LDA ta 1A3H Lm, Ei 

t5 2C3H CE, La 

t6 3E3H None 
ADD t4 1A3H Lm, Ej 

t5 2E1H CE, Lb 

t6 3C7H Ea9 E(J 

SUB t4 1A3H LM, Ej 

Ts 2E1H CE, Lb 

t6 3CFH LA9 Sv, Ejj 
OUT t4 3F2H Ea* Eq 

Ts 3E3H None 

T6 3E3H None 

+ CON = CpEpLmCE l,e,laea SuEuLbLo. 

Program Counter 

Chips Cl, C2, and C3 of Fig. 10-12 are the program 

counter. Chip Cl, a 74LS107, is a dual JK master-slave 

flip-flop, that produces the upper 2 address bits. Chip C2, 

another 74LS107, produces the lower 2 address bits. Chip 

C3 is a 74LS126, a quad three-state normally open switch; 

it gives the program counter a three-state output. 

At the start of a computer run, a low CLR resets the 

program counter to 0000. During the T} state, a high EP 

places the address on the W bus. During the T2 state, a 

high CP is applied to the program counter; midway through 

this state, the negative CLK edge (equivalent to positive 

CLK edge) increments the program counter. 

The program counter is inactive during the T3 to T6 states. 

MAR 

Chip C4, a 74LS173, is a 4-bit buffer register; it serves as 

the MAR. Notice that pins 1 and 2 are grounded; this 

converts the three-state output to a two-state output. In 

other words, the output of the MAR is not connected to 

the W bus, and so there’s no need to use the three-state 
output. 

2-to-l Multiplexer 

Chip C5 is a 74LS157, a 2-to-l nibble multiplexer. The 

left nibble (pins 14, 11, 5, 2) comes from the address 

switch register (SO- The right nibble (pins 13, 10, 6, 3) 

comes from the MAR. The run-prog switch (S2) selects 

the nibble to reach to the output of C5. When S2 is in the 

prog position, the nibble out of the address switch register 

is selected. On the other hand, when S2 is the run position, 

the output of the MAR is selected. 

16 x 8 RAM 

Chips C6 and C7 are 74189s. Each chip is a 16 x 4 static 

RAM. Together, they give us a 16 X 8 read-write memory;. 

S3 is the data switch register (8 bits), and S4 is the read- 

write switch (a push-button switch). To program the mem¬ 

ory, S2 is put in the prog position; this takes the CE input 

low (pin 2). The address and data switches are then set to 

the correct address and data words. A momentary push of 

the read-write switch takes WE low (pin 3) and loads the 
memory. 

After the program and data are in memory, the run- 

prog switch (S2) is put in the run position in preparation 
for the computer run. 

Instruction Register 

Chips C8 and C9 are 74LS173s. Each chip is a 4-bit three- 

state buffer register. The two chips are the instruction 

register. Grounding pins 1 and 2 of C8 converts the three- 

state output to a two-state output, I7I6I5I4. This nibble goes 

to the instruction decoder in the controller-sequencer. Signal 

Ej controls the output of C9, the lower nibble in the 

instruction register. When Ej is low, this nibble is placed 

on the W bus. 
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Accumulator 

Chips CIO and Cll, 74LS173s, are the accumulator (see 

Fig. 10-13). Pins 1 and 2 are grounded on both chips to 

produce a two-state output for the adder-subtracter. Chips 

C12 and Cl3 are 74LS126s; these three-state switches place 

the accumulator contents on the W bus when EA is high. 

Adder-subtracter 

Chips C14 and C15 are 74LS86s. These exclusive-or 
gates are a controlled inverter. When Sy is low, the contents 

of the B register are transmitted. When Sv is high, the l’s 

complement is transmitted and a 1 is added to the LSB to 

form the 2’s complement. 

Chips C16 and C17 are 74LS83s. These 4-bit full adders 

combine to produce an 8-bit sum or difference. Chips C18 

and C19, which are 74LS126s, convert this 8-bit answer 

into a three-state output for driving the W bus. 

B Register and Output Register 

Chips C20 and C21, which are 74LS173s, form the B 

register. It contains the data to be added or subtracted from 

the accumulator. Grounding pins 1 and 2 of both chips 

produces a two-state output for the adder-subtracter. 

Chips C22 and C23 are 74LS173s and form the output 

register. It drives the binary display and lets us see the 

processed data. 

Clear-Start Debouncer 

In Fig. 10-14, the clear-start debouncer produces two 

outputs: CLR for the instruction register and CLR for the 

program counter and ring counter. CLR also goes to C29, 

the clock-start flip-flop. S5 is a push-button switch. When 

depressed, it goes to the clear position, generating a high 

CLR and a low CLR. When S5 is released, it returns to the 

start position, producing a low CLR and a high CLR. 

Notice that half of C24 is used for the dear-start debouncer 

and the other half for the single-step debouncer. Chip C24 

is a 7400, a quad 2-input nand gate. 

Single-Step Debouncer 

SAP-1 can run in either of two modes, manual or automatic. 

In the manual mode, you press and release S6 to generate 

one clock pulse. When S6 is depressed, CLK is high; when 

released, CLK is low. In other words, the single-step 

debouncer of Fig. 10-14 generates the T states one at a 

time as you press and release the button. This allows you 

to step through the different T states while troubleshooting 

or debugging. (Debugging means looking for errors in your 

program. You troubleshoot hardware and debug software.) 

Manual-Auto Debouncer 

Switch S7 is a single-pole double-throw (SPDT) switch that 

can remain in either the manual position or the auto 

position. When in manual, the single-step button is active. 

When in auto, the computer runs automatically. Two of 

the nand gates in C26 are used to debounce the manual- 

auto switch. The other two nand C26 gates are part of a 

nand-nand network that steers the single-step clock or the 

automatic clock to the final CLK and CLK outputs. 

Clock Buffers 

The output of pin 11, C26, drives the clock buffers. As 

you see in Fig. 10-14, two inverters are used to produce 

the final CLK output and one inverter to produce the CLK 

output. Unlike most of the other chips, C27 is standard 

TTL rather than a low-power Schottky (see SAP-1 Parts 

List, Appendix 5). Standard TTL is used because it can 

drive 20 low-power Schottky TTL loads, as indicated in 

Table 4-5. 
If you check the data sheets of the 74LS107 and 74LS173 

for input currents, you will be able to count the following 

low-power Schottky (LS) TTL loads on the clock and clear 

signals: 

CLK = 19 LS loads 

CLK = 2 LS loads 

CLR = 1 LS load 

CLR = 20 LS loads 

This means that the CLK and CLK signals out of C27 

(standard TTL) are adequate to drive the low-power Schottky 

TTL loads. Also, the CLR and CLR signals out of C24 

(standard TTL) can drive their loads. 

Clock Circuits and Power Supply 

Chip C28 is a 555 timer. This IC produces a rectangular 

2-kHz output with a 75 percent duty cycle. As previously 

discussed, a start-the-clockflip-flop (C29) divides the signal 

down to 1 kHz and at the same time produces a 50 percent 

duty cycle. 

The power supply consists of a full-wave bridge rectifier 

working into a capacitor-input filter. The dc voltage across 

the 1,000-jJiF capacitor is approximately 20 V. Chip C30, 

an LM340T-5, is a voltage regulator that produces a stable 

output of +5 V. 

Instruction Decoder 

Chip C31, a hex inverter, produces complements of the 

op-code bits, I7I6I5l4 (see Fig. 10-15). Then chips C32, 

C33, and C34 decode the op code to produce five output 

signals: LDA, ADD, SUB, OUT, and HLT. Remember: 
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only one of these is active at a time. (HLT is active low; 

all the others are active high.) 

When the HLT instruction is in the instruction register, 

bits I7I6I5I4 are 1111 and HLT is low. This signal returns 

to C25 (single-step clock) and C29 (automatic clock). In 

either manual or AUTO mode, the clock stops and the 
computer run ends. 

Ring Counter 

The ring counter, sometimes called a state counter, consists 

of three chips, C36, C37, and C38. Each of these chips is 

a 74LS107, a dual JK master-slave flip-flop. This counter 

is reset when the clear-start button (S5) is pressed. The Q0 

flip-flop is inverted so that its Q output (pin 6, C38) drives 
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the J input of the Qx flip-flop (pin 1, C38). Because of this, 

the Tx output is initially high. 

The CLK signal drives an active low input. This means 

that the negative edge of the CLK signal initiates each T 

state. Half a cycle later, the positive edge of the CLK signal 

produces register loading, as previously described. 

Control Matrix 

The LDA, ADD, SUB, and OUT signals from the instruction 

decoder drive the control matrix, C39 to C48. At the same 

time, the ring-counter signals, T, to T6, are driving the 

matrix (a circuit receiving two groups of bits from different 

sources). The matrix produces CON, a 12-bit microinstruc¬ 

tion that tells the rest of the computer what to do. 

In Fig. 10-15, T, goes high, then T2, then T3, and so on. 

Analyze the control matrix and here is what you will find. 

A high T} produces a high EP and a low LM (address state); 

a high T2 results in ahigh CP (increment state); and a high 

T3 produces a low CE and a low Lj (memory state). The 

first three T states, therefore, are always the fetch cycle in 

SAP-1. In chunked notation, the CON words for the fetch 

cycle are 

State CON Active Bits 

r, 5E3H Epi Lm 

t2 BE3H CP 

t3 263H CE, Lj 

During the execution states, TA through Te go high in 

succession. At the same time, only one of the decoded 

signals (LDA through OUT) is high. Because of this, the 

matrix automatically steers active bits to the correct output 
control lines. 

For instance, when LDA is high, the only enabled 2- 

input nand gates are the first, fourth, seventh, and tenth. 

When J4 is high, it activates the first and seventh nand 

gates, resulting in low LM and low % (load MAR with 

address field). When T5 is high, it activates the fourth and 

tenth nand gates, producing a low CE and a low LA (load 

RAM data into accumulator). When T6 goes high, none of 

the control bits are active (nop). 

You should analyze the action of the control matrix 

during the execution states of the remaining possibilities: 

high ADD, high SUB, and high OUT. Then you will agree 

the control matrix can generate the ADD, SUB, and OUT 

microinstructions shown in Table 10-5 (SAP-1 micropro¬ 
gram). 

Operation 

Before each computer run, the operator enters the program 

and data into the SAP-1 memory. With the program in low 

memory and the data in high memory, the operator presses 

and releases the clear button. The CLK and CLK signals 

drive the registers and counters. The microinstruction out 

of the controller-sequencer determines what happens on 
each positive CLK edge. 

Each SAP-1 machine cycle begins with a fetch cycle. T, 

is the address state, T2 is the increment state, and T3 is the 

memory state. At the end of the fetch cycle, the instruction 

is stored in the instruction register. After the instruction 

field has been decoded, the control matrix automatically 

generates the correct execution routine. Upon completion 

of the execution cycle, the ring counter resets and the next 
machine cycle begins. 

The data processing ends when a HLT instruction is 

loaded into the instruction register. 

10-8 MICROPROGRAMMING 

The control matrix of Fig. 10-15 is one way to generate 

the microinstructions needed for each execution cycle. With 

larger instruction sets, the control matrix becomes very 

complicated and requires hundreds or even thousands of 

gates. This is why hardwired control (matrix gates soldered 

together) forced designers to look for an alternative way to 

produce the control words that run a computer. 

Microprogramming is the alternative. The basic idea is 

to store microinstructions in a ROM rather than produce 

them with a control matrix. This approach simplifies the 

problem of building a controller-sequencer. 

Storing the Microprogram 

By assigning addresses and including the fetch routine, we 

can come up with the SAP-1 microinstructions shown in 

Table 10-6. These microinstructions can be stored in a 

control ROM with the fetch routine at addresses OH to 2H, 

the LDA routine at addresses 3H to 5H, the ADD routine 

at 6H to 8H, the SUB routine at 9H to BH, and the OUT 
routine at CH to EH. 

To access any routine, we need to supply the correct 

addresses. For instance, to get the ADD routine, we need 

to supply addresses 6H, 7H, and 8H. To get the OUT 

routine, we supply addresses CH, DH, and EH. Therefore, 

accessing any routine requires three steps: 

1. Knowing the starting address of the routine 

2. Stepping through the routine addresses 

3. Applying the addresses to the control ROM. 

Address ROM 

Figure 10-16 shows how to microprogram the SAP-1 

computer. It has an address ROM, a presettable counter, 

and a control ROM. The address ROM contains the starting 

addresses of each routine in Table 10-6. In other words, 
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TABLE 10-6. SAP-1 CONTROL ROM 

Address Contents! Routine Active 

OH 5E3H Fetch EP, Lm 

1H BE3H CP 
2H 263H CE, L, 

3H 1A3H LDA Lm 9 Ei 
4H 2C3H CE, La 

5H 3E3H None 

6H 1A3H ADD Lm , Ei 
7H 2E1H ce,lb 

8H 3C7H La, Ejj 

9H 1A3H SUB Lm> Ej 
AH 2E1H CE, Lq 

BH 3CFH La, $u, Eu 

CH 3F2H OUT ea, l0 
DH 3E3H None 

EH 3E3H None 

FH X X Not used 

f CON = CpEPLMCE LjELaEa „ SuEuLbLq. 

t~j ^6 ^5 ^4 

Microinstruction 

Fig. 10-16 Microprogrammed control of SAP-1. 

the address ROM contains the data listed in Table 10-7. 

As shown, the starting address of the LDA routine is 0011, 

the starting address of the ADD routine is 0110, and so on. 

When the op-code bits I7I6I5I4 drive the address ROM, 

the starting address is generated. For instance, if the ADD 

TABLE 10-7. ADDRESS ROM 

Address Contents Routine 

0000 oou LDA 

0001 0110 ADD 

0010 1001 SUB 
0011 xxxx None 

0100 xxxx None 

0101 xxxx None 

0110 xxxx None 

0111 xxxx None 

1000 xxxx None 

1001 xxxx None 

1010 xxxx None 

1011 xxxx None 

1100 xxxx None 

1101 xxxx None 

1110 1100 OUT 
1111 xxxx None 

instruction is being executed, I7I6I5l4 is 0001. This is the 

input to the address ROM; the output of this ROM is 0110. 

Presettable Counter 

When T3 is high, the load input of the presettable counter 

is high and the counter loads the starting address from the 

address ROM. During the other T states, the counter counts. 

Initially, a high CLR signal from the dear-start debouncer 

is differentiated to get a narrow positive spike. This resets 

the counter. When the computer run begins, the counter 

output is 0000 during the Tx state, 0001 during the T2 state, 

and 0010 during the T3 state. Every fetch cycle is the same 

because 0000, 0001, and 0010 come out of the counter 

during states TX9 T2, and T3. 

The op code in the instruction register controls the 

execution cycle. If an ADD instruction has been fetched, 

the I7I6I5I4 bits are 0001. These op-code bits drive the 

address ROM, producing an output of 0110 (Table 10-7). 

This starting address is the input to the presettable counter. 

When T3 is high, the next negative clock edge loads 0110 

into the presettable counter. The counter is now preset, and 

counting can resume at the starting address of the ADD 

routine. The counter output is 0110 during the TA state, 

0111 during the Ts state, and 1000 during the T6 state. 

When the Tx state begins, the leading edge of the Tx 

signal is differentiated to produce a narrow positive spike 

which resets the counter to 0000, the starting address of 

the fetch routine. A new machine cycle then begins. 
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Control ROM 

The control ROM stores the SAP-1 microinstructions. 

During the fetch cycle, it receives addresses 0000, 0001, 

and 0010. Therefore, its outputs are 

5E3H 

BE3H 

263H 

These microinstructions, listed in Table 10-6, produce the 

address state, increment state, and memory state. 

If an ADD instruction is being executed, the control 

ROM receives addresses 0110, 0111, and 1000 during the 

execution cycle. Its outputs are 

1A3H 

2E1H 

3C7H 

These microinstructions carry out the addition as previously 

discussed. 

For another example, suppose the OUT instruction is 

being executed. Then the op code is 1110 and the starting 

address is 1100 (Table 10-7). During the execution cycle, 

the counter output is 1100, 1101, and 1110. The output of 

the control ROM is 3F2H, 3E3H, and 3E3H (Table 10-6). 

This routine transfers the accumulator contents to the output 

port. 

Variable Machine Cycle 

The microinstruction 3E3H in Table 10-6 is a nop. It occurs 

once in the LDA routine and twice in the OUT routine. 

These nops are used in SAP-1 to get a fixed machine cycle 

for all instructions. In other words, each machine cycle 

takes exactly six T states, no matter what the instruction. 

In some computers a fixed machine cycle is an advantage. 

But when speed is important, the nops are a waste of time 

and can be eliminated. 

One way to speed up the operation of SAP-1 is to skip 

any T state with a nop. By redesigning the circuit of Fig. 

10-16 we can eliminate the nop states. This will shorten 

the machine cycle of the LDA instruction to five states (Tx, 

T2, T3, r4, and F5). It also shortens the machine cycle of 

the OUT instruction to four T states (Tu T2, T3, and T4). 

Figure 10-17 shows one way to get a variable machine 

cycle. With an LDA instruction, the action is the same as 

before during the Tx to T5 states. When the T6 state begins, 

the control ROM produces an output of 3E3H (the nop 

microinstruction). The nand gate detects this nop instantly 

and produces a low output signal NOP. NOP is fed back 

to the ring counter through an and gate, as shown in Fig. 

10-18. This resets the ring counter to the T} state, and a 

new machine cycle begins. This reduces the machine cycle 

of the LDA instruction from six states to five. 

Microinstruction 

Fig. 10-17 Variable machine cycle. 

Fig. 10-18 

With the OUT instruction, the first nop occurs in the T5 

state. In this case, just after the T5 state begins, the control 

ROM produces an output of 3E3H, which is detected by 

the nand gate. The low NOP signal then resets the ring 

counter to the Tx state. In this way, we have reduced the 

machine cycle of the OUT instruction from six states to 
four. 
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Variable machine cycles are commonly used with micro¬ 

processors. In the 8085, for example, the machine cycles 

take from two to six T states because all unwanted nop 

states are ignored. 

Advantages 

One advantage of microprogramming is the elimination of 

the instruction decoder and control matrix; both of these 

become very complicated for larger instruction sets. In 

other words, it’s a lot easier to store microinstructions in a 

ROM than it is to wire an instruction decoder and control 

matrix. 
Furthermore, once you wire an instruction decoder and 

control matrix, the only way you can change the instruction 

set is by disconnecting and rewiring. This is not necessary 

with microprogrammed control; all you have to do is change 

the control ROM and the starting-address ROM. This is a 

big advantage if you are trying to upgrade equipment sold 

earlier. 

Summary 

In conclusion, most modem microprocessors use micropro¬ 

grammed control instead of hardwired control. The micro¬ 

programming tables and circuits are more complicated than 

those for SAP-1, but the idea is the same. Microinstructions 

are stored in a control ROM and accessed by applying the 

address of the desired microinstruction. 

GLOSSARY 

address state The Tx state. During this state, the address 

in the program counter is transferred to the MAR. 

accumulator The place where answers to arithmetic and 

logic operations are accumulated. Sometimes called the A 

register. 

assembly language The mnemonics used in writing a 

program. 

B register An auxiliary register that stores the data to be 

added or subtracted from the accumulator. 

fetch cycle The first part of the instruction cycle. During 

the fetch cycle, the address is sent to the memory, the 

program counter is incremented, and the instruction is 

transferred from the memory to the instruction register. 

increment state The T2 state. During this state, the pro¬ 

gram counter is incremented. 

instruction cycle All the states needed to fetch and execute 

an instruction. 

instruction register The register that receives the instruc¬ 

tion from the memory. 

instruction set The instructions a computer responds to. 

LDA Mnemonic for load the accumulator. 

machine cycle All the states generated by the ring counter. 

machine language The strings of Os and Is used in a 

program. 

macroinstruction One of the instructions in the instruction 

set. 

MAR Memory address register. This register receives the 

address of the data to be accessed in memory. The MAR 

supplies this address to the memory. 

memory-reference instruction An instruction that calls 

for a second memory operation to access data. 

memory state The T3 state. During this state, the instruc¬ 

tion in the memory is transferred to the instruction register. 

microinstruction . A control word out of the controller- 

sequencer. The smallest step in the data processing. 

nop No operation. A state during which nothing happens. 

output register The register that receives processed data 

from the accumulator and drives the output display of SAP- 

1. Also called an output port. 

object program A program written in machine language. 

op code Operation code. That part of the instruction which 

tells the computer what operation to perform. 

program counter A register that counts in binary. Its 

contents are the address of the next instruction to be fetched 

from the memory. 

RAM Random-access memory. A better name is read- 

write memory. The RAM stores the program and data 

needed for a computer run. 

source program A program written in mnemonics. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words 

Answers appear at the beginning of the next question. 

1. The_counter, which is part of the con¬ 

trol unit, counts from 0000 to 1111. It sends to the 

memory the_of the next instruction. 

2. (program, address) The MAR, or_reg¬ 

ister, latches the address from the program counter. 

A bit later, the MAR applies this address to the 

_, where a read operation is performed. 

3. (memory-address, RAM) The instruction register is 
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part of the control unit. The contents of the 

-register are split into two nibbles. The 

upper nibble goes to the_ 

4. (instruction, controller-sequencer) The controller- 

sequencer produces a 12-bit word that controls the 

rest of the computer. The 12 wires carrying this 

_word are called the control 

5. (control, bus) The_is a buffer register 

that stores sums or differences. Its two-state output 

goes to the adder-subtracter. The_pro¬ 

duces the sum when Sv is low and the difference 

when Sv is high. The output register is sometimes 

called an output_ 

6. (-accumulator, adder-subtracter, port) The SAP-1 

_set is LDA, ADD, SUB, OUT, and 

HLT. LDA, ADD, and SUB are called_ 

instructions because they use data stored in the 

memory. 

7. (instruction, memory-reference) The 8080 was the 

first widely used microprocessor. The_is 

an enhanced version of the 8080 with essentially the 

same instruction set. 

8. (8085) LDA, ADD, SUB, OUT, and HLT are 

coded as 4-bit strings of Os and Is. This code is 

called the_code. _language 

uses mnemonics when writing a program._ 

language uses strings of Os and Is. 

9. (op, Assembly, Machine) SAP-1 has_T 

states, periods during which register contents 

change. The ring counter, or_counter, 

produces these T states. These six T states represent 

one machine cycle. In SAP-1 the instruction cycle 

has only one machine cycle. In microprocessors like 

the 8080 and the 8085, the_cycle may 

have from one to five machine cycles. 

10. (six, state, instruction) The controller-sequencer 

sends out control words, one during each T state 

or clock cycle. Each control word is called a 

_Instructions like LDA, ADD, SUB, 

etc. are called_Each SAP-1 macroin¬ 

struction is made up of three_ 

11. (microinstruction, macroinstructions, microinstruc¬ 

tions) With larger instruction sets, the control ma¬ 

trix becomes very complicated. This is why hard¬ 

wired control is being replaced by_The 

basic idea is to store the_in a control 

ROM. 

12. (microprogramming, microinstructions) SAP-1 uses 

a fixed machine cycle for all instructions. In other 

words, each machine cycle takes exactly six T 

states. Microprocessors like the 8085 have variable 

machine cycles because all unwanted nop states are 

eliminated. 

PROBLEMS 

10-1. Write a SAP-1 program using mnemonics (simi¬ 

lar to Example 10-1) that will display the result 

of 

5 + 4-6 

Use addresses DH, EH, and FH for the data. 

10-2. Convert the assembly language of Prob. 10-1 

into SAP-1 machine language. Show the answer 

in binary form and in hexadecimal form. 

10-3. Write an assembly-language program that per¬ 

forms this operation: 

8 + 4 — 3 + 5- 2 

Use addresses BH to FH for the data. 

10-4. Convert the program and data of Prob. 10-3 into 

machine language. Express the result in both 

binary and hexadecimal form. 

10-5. Figure 10-19 shows the timing diagram for the 

ADD instruction. Draw the timing diagram for 

the SUB instruction. 

b+-■r>+• r=+- +r* +-H 

“LT1 
i l 

_m i 
i 

LTU 
1 
i 

ru ru n 
i 

i 

u 
i 
i 

ru 

i 
1 

~L2J 
i 

1 L 
-1" 

L ""L- j r 

L i 
i 
i i 
i i 

Li 

Li j 

j r “L 

n L _r 
Fig. 10-19 

Chapter 10 SAP-1 165 



C
5 

2 
T

O
 1

 
7

4
L

S
1

5
7
 

M
U

L
T

IP
L

E
X

E
R

 



A
 S

+
 

F
ig

. 
10

-2
0 



W
 b

u
s 



Fi
g.
 1

0-
21

 



CLEAR/ 
START 

r 

SINGLE 
STEP 

MANUAL/ 
AUTO 

5 

9 

> LOW l_10 

> HIGH 
f V2 

13 

1 

> MANUAL 

> AUTO r^T 

+5 V O- 

36 kil ’ 

L?——Tc25\>—■ 
CLOCK 

BUFFERS 

11 I 5|V^ 6 

CLOCK 
CIRCUIT 

C28 
6 NE555 5 

vlH_ 
/ w 

_Li—N 
C26 1 

- > 
HLT 10 ^ 

1 3 
O- j Q- 

12_<] C29 

4 
- K Q 

2 1 
0.01 F ] 0.01 juP 

POWER 
SUPPLY 

C30 
1000/iF LM 340-5 

Fig. 10-22 

170 Digital Computer Electronics 



R
IN

G
 C

O
U

N
T

E
R

 

F
ig

. 
10

-2
3 



10-6. Suppose an 8085 uses a clock frequency of 3 

MHz. The ADD instruction of an 8085 takes 

four T states to fetch and execute. How long is 

this? 

10-7. What are the SAP-1 microinstructions for the 

LDA routine? For the SUB routine? Express the 

answers in binary and hexadecimal form. 

10-8. Suppose we want to transfer the contents of the 

accumulator to the B register. This requires a 

new microinstruction. What is this microinstruc¬ 

tion? Express your answer in hexadecimal and 

binary form. 

10-9. Look at Fig. 10-20 and answer the following 

questions: 

a. Are the contents of the program counter 

changed on the positive or negative edge of 

the CLK signal? At this instant, is the CLK 
signal on its rising or falling edge? 

b. To increment the program counter, does CP 
have to be low or high? 

c. To clear the program counter, does CLR have 

to be low or high? 

d. To place the contents of the program counter 

on the W bus, should EP be low or high? 

10-10. Refer to Fig. 10-21: 

a. If La is high, what happens to the accumulator 

contents on the next positive clock edge? 

b. If A = 0010 1100 and B = 1100 1110, what 

is on the W bus if EA is high? 

c. If A = 0000 1111, B = 0000 0001, and 

Su — 1, what is on the W bus when Ev is 

high? 

10-11. Answer the following questions for Fig. 10-22: 

a. With S5 in the clear position, is the CLR 
output low or high? 

b. With S6 in the low position, is the output low 

or high for pin 11, C24? 

c. To have a clock signal at pin 3 of C29, should 

HLT be low or high? 

10-12. Refer to Fig. 10-23 to answer the following: 

a. If I7I6I5I4 = 1110, only one of the output pins 

in C35 is high. Which pin is this? (Disregard 

pins 10 and 12.) 

b. CLR goes low. Which is the timing signal {Tx 
to T6) that goes high? 

c. LDA and T5 are high. Is the voltage low or 

high at pin 6, C45? 

d. ADD and TA are high. Is the signal low or 

high at pin 12, C45? 
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SAP-2 

SAP-1 is a computer because it stores a program and data 

before calculations begin; then it automatically carries out 

the program instructions without human intervention. And 

yet, SAP-1 is a primitive computing machine. It compares 

to a modem computer the way a Neanderthal human would 

compare to a modem person. Something is missing, some¬ 

thing found in every modem computer. 

SAP-2 is the next step in the evolution toward modem 

computers because it includes jump instructions. These new 

instructions force the computer to repeat or skip part of a 

program. As you will discover, jump instructions open up 

a whole new world of computing power. 

11-1 BIDIRECTIONAL REGISTERS 

To reduce the wiring capacitance of SAP-2, we will run 

only one set of wires between each register and the bus. 

Figure 11-1 a shows the idea. The input and output pins are 

shorted; only one group of wires is connected to the bus. 

Does this shorting the input and output pins ever cause 

trouble? No. During a computer run, either LOAD or 

ENABLE may be active, but not both at the same time. An 

active LOAD means that a binary word flows from the bus 

to the register input; during a load operation, the output 

lines are floating. On the other hand, an active ENABLE 
means that a binary word flows from the register to the 

bus; in this case, the input lines float. 

The IC manufacturer can internally connect the input and 

output pins of a three-state register. This not only reduces 

the wiring capacitance; it also reduces the number of I/O 

pins. For instance, Fig. 11-1 b has four I/O pins instead of 

eight. 

Figure 11-lc is the symbol for a three-state register with 

internally connected input and output pins. The double¬ 

headed arrow reminds us that the path is bidirectional; data 

can move either way. 

11-2 ARCHITECTURE 

Figure 11-2 shows the architecture of SAP-2. All register 

outputs to the W bus are three-state; those not connected 

to the bus are two-state. As before, the controller-sequencer 

sends control signals (not shown) to each register. These 

control signals load, enable, or otherwise prepare the register 

for the next positive clock edge. A brief description of each 

box is given now. 

Input Ports 

SAP-2 has two input ports, numbered 1 and 2. A hexade¬ 

cimal keyboard encoder is connected to port 1. It allows 

us to enter hexadecimal instructions and data through port 

1. Notice that the hexadecimal keyboard encoder sends a 

READY signal to bit 0 of port 2. This signal indicates when 

the data in port 1 is valid. 

Also notice the SERIAL IN signal going to pin 7 of port 

2. A later example will show you how to convert serial 

input data to parallel data. 

Program Counter 

This time, the program counter has 16 bits; therefore, it 
can count from 

PC = 0000 0000 0000 0000 

to 

pc = mi mi nil nil 

This is equivalent to 0000H to FFFFH, or decimal 0 to 

65,535. _ 

A low CLR signal resets the PC before each computer 

run; so the data processing starts with the instruction stored 
in memory location 0000H. 
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Bus 

MAR and Memory 

During the fetch cycle, the MAR receives 16-bit addresses 

from the program counter. The two-state MAR output then 

addresses the desired memory location. The memory has a 

2K ROM with addresses of 0000H to 07FFH. This ROM 

contains a program called a monitor that initializes the 

computer on power-up, interprets the keyboard inputs, and 

so forth. The rest of the memory is a 62K RAM with 

addresses from 0800H to FFFFH. 

Memory Data Register 

The memory data register (MDR) is an 8-bit buffer register. 

Its output sets up the RAM. The memory data register 

receives data from the bus before a write operation, and it 

sends data to the bus after a read operation. 

Instruction Register 

Because SAP-2 has more instructions than SAP-1, we will 

use 8 bits for the op code rather than 4. An 8-bit op code 

can accommodate 256 instructions. SAP-2 has only 42 
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instructions, so there will be no problem coding them with 

8 bits. Using an 8-bit op code also allows upward compat¬ 

ibility with the 8080/8085 instruction set because it is based 

on an 8-bit op code. As mentioned earlier, all SAP 

instructions are identical with 8080/8085 instructions. 

Controller-Sequencer 

The controller-sequencer produces the control words or 

microinstructions that coordinate and direct the rest of the 

computer. Because SAP-2 has a bigger instruction set, the 

controller-sequencer has more hardware. Although the CON 
word is bigger, the idea is the same: the control word or 

microinstruction determines how the registers react to the 

next positive clock edge. 

Accumulator 

The two-state output of the accumulator goes to the ALU; 

the three-state output to the W bus. Therefore, the 8-bit 

word in the accumulator continuously drives the ALU, but 

this same word appears on the bus only when EA is active. 
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ALU and Flags 

Standard ALUs are commercially available as integrated 

circuits. These ALUs have 4 or more control bits that 

determine the arithmetic or logic operation performed on 

words A and B. The ALU used in SAP-2 includes arithmetic 

and logic operations. 

In this book a flag is a flip-flop that keeps track of a 

changing condition during a computer run. The SAP-2 

computer has two flags. The sign flag is set when the 

accumulator contents become negative during the execution 

of some instructions. The zero flag is set when the accu¬ 

mulator contents become zero. 

TMP, B, and C Registers 

Instead of using the B register to hold the data being added 

or subtracted from the accumulator, a temporary (TMP) 

register is used. This allows us more freedom in using the 

B register. Besides the TMP and B registers, SAP-2 includes 

a C register. This gives us more flexibility in moving data 

during a computer run. 
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Output Ports 

SAP-2 has two output ports, numbered 3 and 4. The 

contents of the accumulator can be loaded into port 3, 

which drives a hexadecimal display. This allows us to see 

the processed data. 
The contents of the accumulator can also be sent to port 

4. Notice that pin 7 of port 4 sends an ACKNOWLEDGE 
signal to the hexadecimal encoder. This ACKNOWLEDGE 
signal and the READY signal are part of a concept called 

handshaking, to be discussed later. 

Also notice the SERIAL OUT signal from pin 0 of port 

4; one of the examples will show you how to convert 

parallel data in the accumulator into serial output data. 

11-3 MEMORY-REFERENCE 
INSTRUCTIONS 

The SAP-2 fetch cycle is the same as before. T, is the 

address state, T2 is the increment state, and T3 is the memory 

state. All SAP-2 instructions therefore use the memory 

during the fetch cycle because a program instruction is 

transferred from the memory to the instruction register. 

During the execution cycle, however, the memory may 

or may not be used; it depends on the type of instruction 

that has been fetched. A memory-reference instruction 

(MRI) is one that uses the memory during the execution 

cycle. 

The SAP-2 computer has an instruction set with 42 

instructions. What follows is a description of the memory- 

reference instructions. 

LDA and STA 

LDA has the same meaning as before: load the accumulator 
with the addressed memory data. The only difference is 

that more memory locations can be accessed in SAP-2 

because the addresses are from 0000H to FFFFH. For 

example, LDA 2000H means to load the accumulator with 

the contents of memory location 2000H. 

To distinguish the different parts of an instruction, the 

mnemonic is sometimes called the op code and the rest of 

the instruction is known as the operand. With LDA 2000H, 

LDA is the op code and 2000H is the operand. Therefore, 

“op code” has a double meaning in microprocessor work; 

it may stand for the mnemonic or for the binary code used 

to represent the mnemonic. The intended meaning is clear 

from the context. 

STA is a mnemonic for store the accumulator. Every 

STA instruction needs an address. STA 7FFFH means to 

store the accumulator contents at memory location 7FFFH. 

the execution of STA 7FFFH stores BAH at address 7FFFH. 

MVI 

MVI is the mnemonic for move immediate. It tells the 

computer to load a designated register with the byte that 

immediately follows the op code. For instance, 

MVI A,37H 

tells the computer to load the accumulator with 37H. After 

this instruction has been executed, the binary contents of 

the accumulator are 

A = 0011 0111 

You can use MVI with the A, B, and C registers. The 

formats for these instructions are 

MVI A,byte 

MVI B,byte 

MVI C,byte 

Op Codes 

Table 11-1 shows the op codes for the SAP-2 instruction 

set. These are the 8080/8085 op codes. As you can see, 

3A is the op code for LDA, 32 is the op code for STA, 

etc. Refer to this table in the remainder of this chapter. 

EXAMPLE 11-1 

Show the mnemonics for a program that loads the accu¬ 

mulator with 49H, the B register with 4AH, and the C 

register with 4BH; then have the program store the accu¬ 

mulator data at memory location 6285H. 

SOLUTION 

Here’s one program that will work: 

Mnemonics 

MVI A,49H 

MVI B,4AH 

MVI C,4BH 

STA 6285H 

HLT 

The first three instructions load 49H, 4AH, and 4BH into 

the A, B, and C registers. STA 6285H stores the accumulator 

contents at 6285H. 

Note the use of HLT in this program. It has the same 

meaning as before: halt the data processing. 
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TABLE 11-1. SAP-2 OP CODES 

Instruction Op Code Instruction Op Code 

ADD B 80 MOV B,A 47 
ADD C 81 MOV B,C 41 
ANA B A0 MOV C,A 4F 
ANA C A1 MOV C,B 48 
ANI byte E6 MVI A,byte 3E 
CALL address CD MVI B,byte 06 
CMA 2F MVI C,byte 0E 
DCR A 3D NOP 00 
DCR B 05 ORA B B0 
DCR C 0D ORA C B1 
HLT 76 ORI byte F6 
IN byte DB OUT byte D3 
INR A 3C RAL 17 
INR B 04 RAR IF 
INR C OC RET C9 
JM address FA STA address 32 
JMP address C3 SUB B 90 
JNZ address C2 SUB C 91 
JZ address CA XRA B A8 
LDA address 3A XRA C A9 
MOV A,B 78 XRI byte EE 
MOV A,C 79 

instruction, notice that the op code goes into the first address 

and the byte into the second address. This is true of all 2- 

byte instructions: op code into the first available memory 

location and byte into the next. 

The instruction 

STA 6285H 

is a 3-byte instruction (1 byte for the op code and 2 for the 

address). The op code for STA is 32H. This byte goes into 

the first available memory location, which is 2006H. The 

address 6285H has 2 bytes. The lower byte 85H goes into 

the next memory location, and the upper byte 62H into the 
next location. 

Why does the address get programmed with the lower 

byte first and the upper byte second? This is a peculiarity 

of the original 8080 design. To keep upward compatibility, 

the 8085 and some other microprocessors use the same 

scheme: lower byte into lower memory, upper byte into 

upper memory. 

The last instruction HLT has an op code of 76H, stored 

in memory location 2009H. 

In summary, the MVI instructions are 2-byte instructions, 

the STA is a 3-byte instruction, and the HLT is a 1-byte 

instruction. 

11-4 REGISTER INSTRUCTIONS 

EXAMPLE 11-2 

Translate the foregoing program into 8080/8085 machine 

language using the op codes of Table 11-1. Start with 

address 2000H. 

SOLUTION 

Memory-reference instructions are relatively slow because 

they require more than one memory access during the 

instruction cycle. Furthermore, we often want to move data 

directly from one register to another without having to go 

through the memory. What follows are some of the SAP- 

2 register instructions, designed to move data from one 

register to another in the shortest possible time. 

Address Contents Symbolic MOV 

2000H 3EH MVI A,49H MOV is the mnemonic for move. It tells the computer to 
2001H 49H move data from one register to another. For instance, 
2002H 06H MVI B,4AH 
2003H 4AH MOV A,B 

2004H 0EH MVI C,4BH 
2005H 4BH tells the computer to move the data in the B register to the 

2006H 32H STA 6285H accumulator. The operation is nondestructive, meaning that 
2007H 85H the data in B is copied but not erased. For example, if 

2008H 62H 

2009H 76H HLT A = 34H and B= 9DH 

There are a couple of new ideas in this machine-language 
program. With the 

MVI A,49H 

then the execution of MOV A,B results in 

A = 9DH 

B = 9DH 
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You can move data between the A, B, and C registers. 

The formats for all MOV instructions are 

MOV A,B 

MOV A,C 

MOV B,A 

MOV B,C 

MOVC,A 

MOV C,B 

These instructions are the fastest in the SAP-2 instruction 

set, requiring only one machine cycle. 

ADD and SUB 

ADD stands for add the data in the designated register to 

the accumulator. For instance, 

ADD B 

means to add the contents of the B register to the accu¬ 

mulator. If 

A = 04H and B= 02H 

then the execution of ADD B results in 

A = 06H 

Similarly, SUB means subtract the data in the designated 

register from the accumulator. SUB C will subtract the 

contents of the C register from the accumulator. 

The formats for the ADD and SUB instructions are 

ADD B 

ADD C 

SUBB 

SUB C 

INR and DCR 

Many times we want to increment or decrement the contents 

of one of the registers. INR is the mnemonic for increment; 
it tells the computer to increment the designated register. 

DCR is the mnemonic for decrement, and it instructs the 

computer to decrement the designated register. The formats 

for these instructions are 

INR A 

INR B 

INR C 

DCR A 

DCR B 

DCR C 

As an example, if 

B = 56H and C = 8AH 

then the execution of INR B results in 

B= 57H 

and the execution of a DCR C produces 

C = 89H 

EXAMPLE 11-3 

Show the mnemonics for adding decimal 23 and 45. The 

answer is to be stored at memory location 5600H. Also, 

the answer incremented by 1 is to be stored in the C register. 

SOLUTION 

As shown in Appendix 2, decimal 23 and 45 are equivalent 

to 17H and 2DH. Here is a program that will do the job: 

Mnemonics 

MVI A,17H 

MVI B,2DH 

ADD B 

STA 5600H 

INR A 

MOVC, A 

HLT 

EXAMPLE 11-4 

To hand-assemble a program means to translate a source 

program into a machine-language program by hand rather 

than machine. Hand-assemble the program of the preceding 

example starting at address 2000H. 

SOLUTION 

Address Contents Symbolic 

2000H 3EH MVI A,17H 

2001H 17H 

2002H 06H MVI B,2DH 

2003H 2DH 

2004H 80H ADD B 

2005 H 32H STA 5600H 

2006H 00H 

2007H 56H 

2008H 3CH INR A 

2009H 4FH MOV C,A 

200AH 76H HLT 

Notice that the ADD, INR, MOV, and HLT instructions 

are 1-byte instructions; the MVI instructions are 2-byte 

instructions, and the STA is a 3-byte instruction. 
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11-5 JUMP AND CALL 
INSTRUCTIONS 

SAP-2 has four jump instructions; these can change the 

program sequence. In other words, instead of fetching the 

next instruction in the usual way, the computer may jump 

or branch to another part of the program. 

JMP 

To begin with, JMP is the mnemonic for jump; it tells the 

computer to get the next instruction from the designated 

memory location. Every JMP instruction includes an address 

that is loaded into the program counter. For instance, 

JMP 3000H 

tells the computer to get the next instruction from memory 

location 3000H. 

2000H - 2000H 

negative, the sign flag will be set; otherwise, the sign flag 

is cleared. Symbolically, 

0 if A ^ 0 

1 if A < 0 

where 5 stands for sign flag. The sign flag will remain set 

or clear until another operation that affects the flag. 

JM is a mnemonic for jump if minus; the computer will 

jump to a designated address if and only if the sign flag is 

set. As an example, suppose a JM 3000H is stored at 

2005H. After this instruction has been fetched, 

PC = 2006H 

If S = 1, the execution of JM 3000H loads the program 

counter with 

PC = 3000H 

Since the program counter now points to 3000H, the next 

instruction will come from 3000H. 

If the jump condition is not met (5 = 0), the program 

counter is unchanged during the execution cycle. Therefore, 

when the next fetch cycle begins, the instruction is fetched 

from 2006H. 

Figure 11-3b symbolizes the two possibilities for a JM 

instruction. If the minus condition is satisfied, the computer 

jumps to 3000H for the next instruction. If the minus 

condition is not satisfied, the program falls through to the 

next instruction. 

(a) (b) 

Fig. 11-3 {a) Unconditional jump; (b) conditional jump. 

Here is what happens. Suppose JMP 3000H is stored at 

2005H, as shown in Fig. 11-3a. At the end of the fetch 

cycle, the program counter contains 

PC = 2006H 

During the execution cycle, the JMP 3000H loads the 

program counter with the designated address: 

PC = 3000H 

When the next fetch cycle begins, the next instruction 

comes from 3000H rather than 2006H (see Fig. 11-3a). 

JM 

SAP-2 has two flags called the sign flag and the zero flag. 

During the execution of some instructions, these flags will 

be set or reset, depending on what happens to the accu¬ 

mulator contents. If the accumulator contents become 

JZ 

The other flag affected by accumulator operations is the 

zero flag. During the execution of some instructions, the 

accumulator will become zero. To record this event, the 

zero flag is set; if the accumulator contents do not go to 

zero, the zero flag is reset. Symbolically, 

^ _ f 0 when A ^ 0 

| 1 when A = 0 

JZ is the mnemonic for jump if zero; it tells the computer 

to jump to the designated address only if the zero flag is 

set. Suppose a JZ 3000H is stored at 2005H. If Z = 1 

during the exection of JZ 3000H, the next instruction is 

fetched from 3000H. On the other hand, if Z = 0, the next 

instruction will come from 2006H. 

JNZ 

JNZ stands for jump if not zero. In this case, we get a jump 

when the zero flag is clear and no jump when it is set. 

Suppose a JNZ 7800H is stored at 2100H. If Z = 0, the 

next instruction will come from 7800H; however, if Z = 

1, the program falls through to the instruction at 2101H. 
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JM, JZ, and JNZ are called conditional jumps because 

the program jump occurs only if certain conditions are 
satisfied. On the other hand, JMP is unconditional; once 

this instruction is fetched, the execution cycle always jumps 

the program to the specified address. 

CALL and RET 

A subroutine is a program stored in the memory for possible 

use in another program. Many microcomputers have sub¬ 

routines for finding sines, cosines, tangents, logarithms, 

square roots, etc. These subroutines are part of the software 

supplied with the computer. 

CALL is the mnemonic for call the subroutine. Every 

CALL instruction must include the starting address of the 

desired subroutine. For instance, if a square-root subroutine 

starts at address 5000H and a logarithm subroutine at 

6000H, the execution of 

CALL 5000H 

will jump to the square-root subroutine. On the other hand, 

a 

CALL 6000H 

produces a jump to the logarithm subroutine. 

RET stands for return. It is used at the end of every 

subroutine to tell the computer to go back to the original 

program. A RET instruction is to a subroutine as a HLT is 

to a program. Both tell the computer that something is 

finished. If you forget to use a RET at the end of a 

subroutine, the computer cannot get back to the original 

program and you will get computer trash. 

When a CALL is executed in the SAP-2 computer, the 

contents of the program counter are automatically saved in 

memory locations FFFEH and FFFFH (the last two memory 

locations). The CALL address is then loaded into the 

program counter, so that execution begins with the first 

instruction in the subroutine. After the subroutine is finished, 

the RET instruction causes the address in memory locations 

FFFEH and FFFFH to be loaded back into the program 

counter. This returns control to the original program. 

Figure 11-4 shows the program flow during a subroutine. 

The CALL 5000H sends the computer to the subroutine 

located at 5000H. After this subroutine has been completed, 

the RET sends the computer back to the instruction following 

the CALL. 

CALL is unconditional, like JMP. Once a CALL has 

been fetched into the instruction register, the computer will 

jump to the starting address of the subroutine. 

More on Flags 

The sign or zero flag may be set or reset during certain 

instructions. Table 11-2 lists the SAP-2 instructions that 

can affect the flags. All these instructions use the accu¬ 

mulator during the execution cycle. If the accumulator goes 

negative or zero while one of these instructions is being 

executed, the sign or zero flag will be set. 

For instance, suppose the instruction is ADD C. The 

contents of the C register are added to the accumulator 

contents. If the accumulator contents become negative or 

zero in the process, the sign or zero flag will be set. 

A word about the INR and DCR instructions. Since these 

instructions use the accumulator to add or subtract 1 from 

the designated register, they also affect the flags. For 

instance, to execute a DCR C, the contents of the C register 

are decremented by sending these contents to the accumu¬ 

lator, subtracting 1, and sending the result back to the C 

register. If the accumulator goes negative while the DCR 

C is executed, the sign flag is set; if the accumulator goes 

to zero, the zero flag is set. 

TABLE 11-2. INSTRUCTIONS 
AFFECTING FLAGS 

CALL 5000H -1 

5000H 

RET -1 

Fig. 11-4 CALL instruction. 

Instruction Flags Affected 

ADD S, Z 

SUB S, Z 

INR s, z 
DCR s, z 
ANA s, z 
ORA s, z 
XRA s, z 
ANI s, z 
ORI s, z 
XRI s, z 
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EXAMPLE 11-5 

Hand-assemble the following program starting at address 
2000H: 

MVI C,03H 

DCRC 

JZ 0009H 

JMP 0002H 

HLT 

SOLUTION 

Address Contents Symbolic 

2000H OEH MVI C,03H 
2001H 03 H 

2002H 0DH DCR C 
2003H CAH JZ 2009H 
2004H 09H 

2005H 20H 

2006H C3H JMP 2002H 
2007H 02H 

2008H 20H 

2009H 76H HLT 

EXAMPLE 11-6 

In the foregoing program, how many times is the DCR 

instruction executed? 

2000H: MVI C, 03H 

2002H: DCR C - 

Three 

passes 

through 

loop v 

2003H: JZ 2009H - 

2006H: JMP 2002H - 

2009H: HLT - 

Fig. 11-5 Looping. 

the computer will loop 7 times. Similarly, if we wanted to 

pass through the loop 200 times (equivalent to C8H), the 

first instruction would be 

MVI C,C8H 

The C register acts like a presettable down counter. This 

is why it is sometimes referred to as a counter. 

The point to remember is this. We can set up a loop by 

using an MVI, DCR, JZ, and JMP in a program. The 

number loaded into the designated register (the counter) 

determines the number of passes through the loop. If we 

put new instructions inside the loop, these added instructions 

will be executedX times, the number preset into the counter. 

SOLUTION 
EXAMPLE 11-7 

Figure 11-5 illustrates the program flow. Here is what 

happens. The MVI C,03H instruction loads the C register 

with 03H. DCR C reduces the contents to 02H. The contents 

are greater than zero; therefore, the zero flag is reset, and 

the JZ 2009H is ignored. The JMP 2002H returns the 
computer to the DCR C instruction. 

The second time the DCR C is executed, the contents 

drop to 01H; the zero flag is still reset. JZ 2009H is again 

ignored, and the JMP 2002H returns the computer to DCR 
C. 

The third DCR C reduces the contents to zero. This time 

the zero flag is set, and the JZ 2009H jumps the program 
to HLT instruction. 

A loop is part of a program that is repeated. In this 

example, we have passed through the loop (DCR C and JZ 

2009H) 3 times, as shown in Fig. 11-5. Note that the 

number of passes through the loop equals the number 

initially loaded into the C register. If we change the first 

instruction to 

MVI C,07H 

When you buy a microcomputer, you often purchase 

software to do different jobs. One of the programs you can 

buy is an assembler. The assembler allows you to write 

programs in mnemonic form. Then the assembler converts 

these mnemonics into machine language. In other words, 

if you have an assembler, you no longer have to hand- 

assemble your programs; the computer does the work for 
you. 

Show the assembly-language version of the program in 

Example 11-5. Include labels and comments. 

SOLUTION 

Label Instruction 

MVI C,03H 

REPEAT: DCRC 

JZ END 

JMP REPEAT 

END: HLT 

Comment 

;Load counter with decimal.3 

;Decrement counter 

;Test for zero 

;Do it again 
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When you write a program, it helps to include your own 

comments about what the instruction is supposed to do. 

These comments jog your memory if you have to read the 

program months later. The first comment reminds us that 

we are presetting the down counter with decimal 3, the 

second comment reminds us that we are decrementing the 

counter, the third comment tells us that we are testing for 

zero before jumping, and the fourth comment tells us that 

the program will loop back. 

When the assembler converts your source program into 

an object program, it ignores everything after the semicolon. 

Why? Because that’s the way the assembler program is 

written. The semicolon is a coded way to tell the computer 

that your personal comments follow. (Remember the ASCII 

code. 3BH is the ASCII for a semicolon. When the assembler 

encounters 3BH in your source programs, it knows com¬ 

ments follow.) 

Labels are another programming aid used with jumps 

and calls. When we write an assembly-language program, 

we often have no idea what address to use in a jump or 

call instruction. By using a label instead of a numerical 

address we can write programs that make sense to us. The 

assembler will keep track of our labels and automatically 

assign the correct addresses to them. This is a great 

laborsaving feature of an assembler. 

For instance, when the assembler converts the foregoing 

program to machine language, it will replace JZ by CA (op 

code of Table 11-1) and END by the address of the HLT 

instruction. Likewise, it will replace JMP by C3 (op code) 

and REPEAT by the address of the DCR C instruction. 

The assembler determines the addresses of the HLT and 

JMP by counting the number of bytes needed by all 

instructions and figuring out where the HLT and DCR C 

instructions will be in the final assembled program. 

All you have to remember is that you can make up any 

label you want for jump and call instructions. The same 

label followed by a colon is placed in front of the instruction 

you are trying to jump to. When the assembler converts 

your program into machine language, the colon tells it a 

label is involved. 

One more point about labels. With SAP-2, the labels can 

be from one to six characters, the first of which must be a 

letter. Labels are usually words or abbreviations, but 

numbers can be included. The following are examples of 

acceptable labels: 

REPEAT 

DELAY 

RDKBD 

A34 

B12C3 

The first two are words; the third is an abbreviation for 

read the keyboard. The last two are labels that include 

numbers. The restrictions on length (no more than six 

characters) and starting character (must be letter) are typical 

of commercially available assemblers. 

EXAMPLE 11-8 

Show a program that multiplies decimal 12 and 8. 

SOLUTION 

The hexadecimal equivalents of 12 and 8 are OCH and 

08H. Let us set up a loop that adds 12 to the accumulator 

during each pass. If the computer loops 8 times, the 

accumulator contents will equal 96 (decimal) at the end of 

the looping. 

Here’s one assembly-language program that will do the 

job: 

Label Mnemonic Comment 

MVI A,00H ; Cl ear accumulator 

MVI B,0CH ;Load decimal 12 into I 

MVI C,08H ;Preset counter with 8 

REPEAT: ADD B ;Add decimal 12 

DCR C ;Decrement the counter 

JZ DONE ;Test for zero 

JMP REPEAT ;Do it again 

DONE: HLT ;Stop it 

The comments tell most of the story. First, we clear the 

accumulator. Next, we load decimal 12 into the B register. 

Then the counter is preset to decimal 8. These first three 

instructions are part of the initialization before entering a 

loop. 

The ADD B begins the loop by adding decimal 12 to 

accumulator. The DCR C reduces the count to 7. Since the 

zero flag is clear, JZ DONE is ignored the first time through 

and the program flow returns to the ADD B instruction. 

You should be able to see what will happen. ADD B is 

inside the loop and will be executed 8 times. After eight 

passes through the loop, the zero flag is set; then the JZ 

DONE Will take the program out of the loop to the HLT 

instruction. 

Since 12 is added 8 times, 

12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 = 96 

(Because decimal 96 is equivalent to hexadecimal 60, the 

accumulator contains 0110 0000.) Repeated addition like 

this is equivalent to multiplication. In other words, adding 

12 eight times is identical to 12 x 8. Most microprocessors 

do not have multiplication hardware; they only have an 

adder-subtracter like the SAP computer. Therefore, with 

the typical microprocessor, you have to use some form of 

programmed multiplication such as repeated addition. 
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EXAMPLE 11-9 

Modify the foregoing multiply program by using a JNZ 

instead of a JZ. 

SOLUTION 

Look at this: 

Label Mnemonic 

MVI A,00H 

MVI B,0CH 

MVI C,08H 

REPEAT: ADD B 

DCR C 

JNZ REPEAT 

HLT 

Comment 

;Clear accumulator 

;Load decimal 12 into B 

;Preset counter with 8 

;Add decimal 12 

;Decrement the counter 

;Test for zero 

;Stop it 

This is simpler. It eliminates one JMP instruction and one 

label. As long as the counter is greater than zero, the JNZ 

will force the computer to loop back to REPEAT. When 

the counter drops to zero, the program will fall through the 

JNZ to the HLT. 

EXAMPLE 11-10 

Hand-assemble the foregoing program starting at address 

2000H. 

SOLUTION 

Address Contents Symbolic 

2000H 3EH MVI A,00H 
2001H 00H 

2002H 06H MVI B,0CH 
2003H 0CH 

2004H OEH MVI, C,08H 
2005H 08H 

2006H 80H ADD B 
2007H 0DH DCR C 
2008H C2H JNZ 2006H 
2009H 06H 

200AH 20H 

200BH 76H HLT 

The first three instructions initialize the registers before the 

multiplication begins. If we change the initial values, we 
can multiply other numbers. 

EXAMPLE 11-11 

Change the multiplication part of the foregoing program 

into a subroutine located at starting address F006H. 

SOLUTION 

Address Contents Symbolic 

F006H 80H ADD B 
F007H 0DH DCR C 
F008H C2H JNZ F006H 
F009H 06H 

F00AH F0H 

F00BH C9H RET 

Here’s what happened. The initializing instructions depend 

on the numbers we are multiplying, so they don’t belong 

in the subroutine. The subroutine should contain only the 

multiplication part of the program. 

In relocating the program we mapped (converted) ad¬ 

dresses 2006H-200BH to F006H-F00BH. Also, the HLT 

was changed to a RET to get us back to the original 
program. 

EXAMPLE 11-12 

The multiply subroutine of the preceding example is used 

in the following program. What does the program do? 

MVI A,00H 

MVI B,10H 

MVI C,0EH 

CALL F006H 

HLT 

SOLUTION 

Hexadecimal 10H is equivalent to decimal 16, and hexa¬ 

decimal OEH is equivalent to decimal 14. The first three 

instructions clear the accumulator, load the B register with 

decimal 16, and preset the counter to decimal 14. The 

CALL sends the computer to the multiply subroutine of the 

preceding example. When the RET is executed, the accu¬ 

mulator contents are EOH, which is equivalent to 224. 

Incidentally, a parameter is a piece of data that the 

subroutine needs to work properly. The multiply subroutine 

located at F006H needs three parameters to work properly 

{A, By and C). We pass these parameters to the multiply 

subroutine by clearing the accumulator, loading the B 

register with the multiplicand, and presetting the C register 

with the multiplier. In other words, we set A = 00H, 

B = 10H, and C = OEH. Passing data to a subroutine in 

this way is called register parameter passing. 
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11-6 LOGIC INSTRUCTIONS 

A microprocessor can do logic as well as arithmetic. What 

follows are the SAP-2 logic instructions. Again, they are a 

subset of the 8080/8085 instructions. 

|xxxx] xxxx I 
1111 
lilt 
MM 

1II1 
MM 
1 II 1 

1 XXXX XXXX I 

Fig. 11-6 Logic instructions are bitwise. 

CMA 

CMA stands for “complement the accumulator.” The 

execution of a CMA inverts each bit in the accumulator, 

producing the l’s complement. 

ANA 

ANA means to and the accumulator contents with the 

designated register. The result is stored in the accumulator. 

For instance, 

ANA B 

means to and the contents of the accumulator with the 

contents of the B register. The ANDing is done on a bit-by- 

bit basis. For example, suppose the two registers contain 

A = 1100 1100 (11-1) 

and 

XRA C. If the accumulator and B contents are given by 

Eqs. 11-1 and 11-2, the execution of XRA B produces 

SAP-2 also has immediate logic instructions. ANI means 

and immediate. It tells the computer to and the accumulator 

contents with the byte that immediately follows the op code. 

For instance, if 

A = 0101 1110 

the execution of ANI C7H will and 

01011110 with 1100 0111 

to produce new accumulator contents of 

A = 0100 0110 

B = 1111 0001 (11-2) ORI 

The execution of an ANA B results in 

A = 1100 0000 

Notice that the ANDing is bitwise, as illustrated in Fig. 
11-6. The ANDing is done on pairs of bits; A7 is ANDed 
with B7, A6 with B6, A5 with B5, and so on, with the result 
stored in the accumulator. 

Two ANA instructions are available in SAP-2: ANA B 

and ANA C. Table 11-1 shows the op codes. 

ORI is the mnemonic for or immediate. The accumulator 

contents are ORed with the byte that follows the op code. 

If 

A = 0011 1000 

the execution of ORI 5AH will or 

0011 1000 with 0101 1010 

to produce new accumulator contents of 

ORA 
0111 1010 

ORA is the mnemonic for or the accumulator with the 

designated register. The two ORA instructions in SAP-2 

are ORA B and ORA C. As an example, if the accumulator 

and B register contents are given by Eqs. 11-1 and 11-2, 

then executing ORA B gives 

XRI 

XRI means XOR immediate. If 

A = 0001 1100 

A = 1111 1101 
the execution of XRI D4H will xor 

0001 1100 with 11010100 

XRA 
to produce 

XRA means xor the accumulator with the designated 

register. The SAP-2 instruction set contains XRA B and A= 1100 1000 

184 Digital Computer Electronics 



11-7 OTHER INSTRUCTIONS 

This section looks at the last of the SAP-2 instructions. 

Since these instructions don’t fit any particular category, 

they are being collected here in a miscellaneous group. 

NOP 

NOP stands for no operation. During the execution of a 

NOP, all T states are do nothings. Therefore, no register 

changes occur during a NOP. 

The NOP instruction is used to waste time. It takes four 

T states to fetch and execute the NOP instruction. By 

repeating a NOP a number of times, we can delay the data 

processing, which is useful in timing operations. For 

instance, if we put a NOP inside a loop and execute it 100 

times, we create a time delay of 400 T states. 

HLT 

We have already used this. HLT stands for halt. It ends 
the data processing. 

IN 

IN is the mnemonic for input. It tells the computer to 

transfer data from the designated port to the accumulator. 

Since there are two input ports, you have to designate which 

one is being used. The format for an input operation is 

IN byte 

For instance, 

IN 02H 

means to transfer the data in port 2 to the accumulator. 

OUT 

OUT stands for output. When this instruction is executed, 

the accumulator word is loaded into the designated output 

port. The format for this instruction is 

OUT byte 

Since the output ports are numbered 3 and 4 (Fig. 11-2), 

you have to specify which port is to be used. For instance, 

OUT 03H 

will transfer the contents of the accumulator to port 3. 

RAL 

RAL is the mnemonic for rotate the accumulator left. This 

instruction will shift all bits to the left and move the MSB 

<a> tbt 

Fig. 11-7 Rotate instructions: (a) RAL; (b) RAR. 

into the LSB position, as illustrated in Fig. ll-7a. As an 

example, suppose the contents of the accumulator are 

A = 1011 0100 

Executing the RAL will produce 

A = 0110 1001 

As you see, all bits moved left, and the MSB went to the 
LSB position. 

RAR 

RAR stands for rotate the accumulator right. This time, 

the bits shift to the right, the LSB going to the MSB 

position, as shown in Fig. 11-76. If 

A = 1011 0100 

the execution of a RAR will result in 

A = 0101 1010 

EXAMPLE 11-13 

The bits in a byte are numbered 7 to 0 (MSB to LSB). 

Show a program that can input a byte from port 2 and 

determine if bit 0 is a 1 or a 0. If the bit is a 1, the program 

is to load the accumulator with an ASCII Y (yes). If the 

bit is a 0, the program should load the accumulator with 

an ASCII N (no). The yes or no answer is to be sent to 
output port 3. 

SOLUTION 

Label Mnemonic Comment 

IN 02H ;Get byte from port 2 
ANI 01H ;Isolate bit 0 
JNZ YES ;Jump if bit 0 is a 1 
MVI A,4EH ;Load N into accumulator 
JMP DONE ;Skip next instruction 

YES: MVI A,59H ;Load Y into accumulator 
DONE: OUT 03H 

HLT 
;Send answer to port 3 
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The IN 02H transfers the contents of input port 2 to the 

accumulator to get 

A = A7A6A5A4A3A2A] Aq 

The immediate byte in ANI 01H is 

0000 0001 

This byte is called a mask because its 0s will mask or blank 

out the corresponding high bits in the accumulator. In other 

words, after the execution of ANI 01H the accumulator 

contents are 

A = 0000 000A0 

If A0 is 1, the JNZ YES will produce a jump to the MVI 

A,59H; this loads a 59H (the ASCII for Y) into the 

accumulator. If A0 is 0, the program falls through to the 

MVI A,4EH. This loads the accumulator with the ASCII 

for N. 
The OUT 03H loads the answer, either ASCII Y or N, 

into port 3. The hexadecimal display therefore shows either 

59H or 4EH. 

EXAMPLE 11-14 

Instead of a parallel output at port 3, we want a serial 

output at port 4. Modify the foregoing program so that it 

converts the answer (59H or 4EH) into a serial output at 

bit 0, port 4. 

SOLUTION 

Label Mnemonic 

IN 02H 

ANI 01H 

JNZ YES 

MVI A,4EH 

JMP DONE 

Comment 

YES: MVI A,59H 

DONE: MVI C,08H ;Load counter with 8 

AGAIN: OUT 04H ;Send LSB to port 4 

RAR ;Position next bit 

DCR C ; Decrement count 

JNZ AGAIN 

HLT 

;Test count 

In converting from parallel to serial data, the A0 bit is sent 

first, then the bit, then the A2 bit, and so on. 

EXAMPLE 11-15 

Handshaking is an interaction between a CPU and a 

peripheral device that takes place during an I/O data transfer. 

In SAP-2 the handshaking takes place as follows. After 

you enter two digits (1 byte) into the hexadecimal encoder 

of Fig. 11-2, the data is loaded into port 1; at the same 

time, a high READY bit is sent to port 2. 

Before accepting input data, the CPU checks the READY 
bit in port 2. If the READY bit is low, the CPU waits. If 

the READY bit is high, the CPU loads the data in port 1. 

After the data transfer is finished, the CPU sends a high 

ACKNOWLEDGE signal to the hexadecimal keyboard en¬ 

coder; this resets the READY bit to 0. The ACKNOWLEDGE 

bit then is reset to low. 

After you key in a new byte, the cycle starts over with 

new data going to the port 1 and a high READY bit to port 

2. 
The sequence of SAP-2 handshaking is 

1. READY bit (bit 0, port 2) goes high. 

2. Input the data in port 1 to the CPU. 

3. ACKNOWLEDGE bit (bit 7, port 4) goes high to reset 

READY bit. 

4. Reset the ACKNOWLEDGE bit. 

Write a program that inputs a byte of data from port 1 

using handshaking. Store the byte in the B register. 

SOLUTION 

Label Mnemonic Comment 

STATUS: IN 02H ;Input byte from port 2 

ANI 01H ;Isolate READY bit 

JZ STATUS ;Jump back if not ready 

IN 01H ;Transfer data in port 1 

MOV B,A ;Transfer from A to B 

MVI A,80H ;Set ACKNOWLEDGE bit 

OUT 04H ;Output high ACKNOWLEDGE 
MVI A,00H ;Reset ACKNOWLEDGE bit 

OUT 04H ;Output low ACKNOWLEDGE 
HLT 

If the READY bit is low, the ANI 01H will force the 

accumulator contents to go to zero. The JZ STATUS 

therefore will loop back to IN 02H. This looping will 

continue until the READY bit is high, indicating valid data 

in port 1. 

When the READY bit is high, the program falls through 

the JZ STATUS to the IN 01H. This transfers a byte from 

port 1 to the accumulator. The MOV sends the byte to the 

B register.The MVI A,80H sets the ACKNOWLEDGE bit 
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(bit 7). The OUT 04H sends this high ACKNOWLEDGE 

to the hexadecimal encoder where the internal hardware 

resets the READY bit. Then the ACKNOWLEDGE bit is 

reset in preparation for the next input cycle. 

11-8 SAP-2 SUMMARY 

This section summarizes the SAP-2 T states, flags, and 
addressing modes. 

T States 

The SAP-2 controller-sequencer is microprogrammed with 

a variable machine cycle. This means that some instructions 

take longer than others to execute. As you recall, the idea 

behind microprogramming is to store the control routines 
in a ROM and access them as needed. 

Table 11-3 shows each instruction and the number of T 

states needed to execute it. For instance, it takes four T 

states to execute the ADD B instruction, seven to execute 

the ANI byte, eighteen to execute the CALL, and so on. 

Knowing the number of T states is important in timing 
applications. 

Notice that the JM instruction has T states of 10/7. This 

means it takes 10 T states when a jump occurs but only 7 

without the jump. The same idea applies to the other 

conditional jumps; 10 T states for a jump, 7 with no jump. 

Flags 

As you know, the accumulator goes negative or zero during 

the execution of some instructions. This affects the sign 

and zero flags. Figure 11-8 shows the circuits used in 
SAP-2 to set the flags. 

When the accumulator contents are negative, the leading 

bit A7 is a 1. This sign bit drives the lower and gate. When 

the accumulator contents are zero, all bits are zero and the 

output of the nor gate is a 1. This nor output drives the 

upper and gate. If gating signal LF is high, the flags will 

be updated to reflect the sign and zero condition of the 

accumulator. This means the ZFlAC will be high when the 

accumulator contents are zero; the SFLAG will be high when 

the accumulator contents are negative. 

Not all instructions affect the flags. As shown in Table 

11-3, the instructions that update the flags are ADD, ANA, 

ANI, DCR, INR, ORA, ORI, SUB, XRA, and XRI. Why 

only these instructions? Because the LF signal of Fig. 11-8 

is high only when these instructions are executed. This is 

accomplished by microprogramming an LF bit for each 

instruction. In other words, in the control ROM we store a 

high Lf bit for the foregoing instructions, and a low L, bit 
for all others. 

Fig. 11-8 Setting the flags. 

Conditional Jumps 

As mentioned earlier, the conditional jumps take ten T 

states when the jump occurs but only seven T states when 

no jump take place. Briefly, this is accomplished as follows. 

During the execution cycle the address ROM sends the 

computer to the starting address of a conditional-jump 

microroutine. The initial microinstruction looks at the flags 

and judges whether or not to jump. If a jump is indicated, 

the microroutine continues; otherwise, it is aborted and the 
computer begins a new fetch cycle. 

Addressing Modes 

The SAP-2 instructions access data in different ways. It is 

the operand that tells us how the data is to be accessed. 

For instance, the first instructions discussed were 

LDA address 

STA address 

These are examples of direct addressing because we specify 

the address where the data is to be found. 

Immediate addressing is different. Instead of giving an 

address for the data, we give the data itself. For instance, 

MVI A,byte 

accesses the data to be loaded into the accumulator by using 

the byte in memory that immediately follows the op code. 

Table 11-3 shows the other immediate instructions. 

An instruction like 

MOV A,B 

Chapter 11 SAP-2 187 



TABLE 11-3. SAP-2 INSTRUCTION SET 

Instruction OpCode T States Flags Addressing Bytes 

ADD B 

ADD C 

ANA B 

ANA C 

ANI byte 

CALL address 

CMA 

DCR A 

DCR B 

DCR C 

HLT 

IN byte 

INR A 

INR B 

INR C 

80 

81 

AO 

A1 

E6 

CD 

2F 

3D 

05 

0D 

76 

DB 

3C 

04 

0C 

4 

4 

4 

4 

7 

18 

4 

4 

4 

4 

5 

10 
4 

4 

4 

S, Z 

s, z 
s, z 
s, z 
s, z 
None 

None 

s, z 
s, z 
s, z 
None 

None 

S, Z 

s, z 
s, z 

Register 

Register 

Register 

Register 

Immediate 

Immediate 

Implied 

Register 

Register 

Register 

Direct 

Register 

Register 

Register 

1 

1 

1 
1 
2 
3 

1 
1 
1 
1 
1 
2 
1 
1 
1 

JM address FA 10/7 None Immediate 3 

JMP address C3 10 None Immediate 3 

JNZ address C2 10/7 None Immediate 3 

JZ address CA 10/7 None Immediate 3 

LDA address 3A 13 None Direct 3 

MOV A,B 78 4 None Register 1 
MOV A,C 79 4 None Register 1 
MOV B,A 47 4 None Register 1 
MOV B,C 41 4 None Register 1 
MOV C,A 4F 4 None Register 1 
MOV C,B 48 4 None Register i 
MVI A,byte 3E 7 None Immediate 2 
MVI B,byte 06 7 None Immediate 2 

MVI C.byte 0E 7 None Immediate 2 

NOP 00 4 None — 1 

ORA B B0 4 S, Z Register 1 

ORA C B1 4 s, z Register 1 

ORI byte F6 7 s, z Immediate 2 

OUT byte D3 10 None Direct 2 

RAL 17 4 None Implied 1 

RAR IF 4 None Implied 1 

RET C9 10 None Implied 1 
ST A address 32 13 None Direct 3 

SUB B 90 4 S, Z Register 1 
SUB C 91 4 s, z Register 1 
XRA B A8 4 s, z Register 1 

XRA C A9 4 s, z Register 1 
XRI byte EE 7 s, z Immediate 2 

is an example of register addressing. The data to be loaded 

is stored in a CPU register rather than in the memory. 

Register addressing has the advantage of speed because 

fewer T states are needed for this type of instruction. 

Implied addressing means that the location of the data 

contained within the op code itself. For instance, 

RAL 
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tells us to rotate the accumulator bits left. The data is in 

the accumulator; this is why no operand is needed with 
implied addressing. 

Bytes 

Each instruction occupies a number of bytes in the memory. 

SAP-2 instructions are either 1, 2, or 3 bytes long. Table 

11-3 shows the length of each instruction. As you see, 

ADD instructions are 1-byte instructions, ANI instructions 

are 2-byte instructions, CALLs are 3-byte instructions, and 
so forth. 

EXAMPLE 11-16 

SAP-2 has a clock frequency of 1 MHz. This means that 

each T state has a duration of 1 jjls. How long does it take 

to execute the following SAP-2 subroutine? 

Label Mnemonic Comment 

MVI C,46H ;Preset count to decimal 70 
AGAIN: DCR C ;Count down 

JNZ AGAIN ;Test count 
NOP 

RET 
;Delay 

SOLUTION 

The total byte length of the subroutine is 8. As part of the 

SAP-2 software, the foregoing subroutine can be assembled 

and relocated at addresses F010H to F017H. Hereafter, the 

execution of a CALL F010H will produce a time delay of 
1 ms. 

EXAMPLE 11-17 

How much time delay does this SAP-2 subroutine produce? 

Label Mnemonic Comment 

MVI B,0AH ;Preset B counter with 

decimal 10 
LOOP1: MVI C,47H ;Preset C counter with 

decimal 71 
LOOP2: DCR C ;Count down on C 

JNZ LOOP2 ;Test for C count of zero 
DCR B ;Count down on B 
JNZ LOOP1 

RET 
;Test for B count of zero 

SOLUTION 

This subroutine has two loops, one inside the other. The 

inner loop consists of DCR C and JNZ LOOP2. This inner 

loop produces a time delay of 

The MVI is executed once to initialize the count. The DCR 

is executed 70 times. The JNZ jumps back 69 times and 

falls through once. With the number of 7 states given in 

Table 11-3, we can calculate the total execution time of 
the subroutine as follows: 

MVI: 1 x 7 X 1 (JLS = 7 |JLS 

DCR: 70 x 4 X 1 (JLS = 280 
JNZ: 69 x 10 X 1 JJLS = 690 
JNZ: 1 x 7 X I (JLS = 7 
NOP: 1 x 4 X 1 fJLS = 4 
RET: 1 x 10 X 1 (JLS = 10 

(jump) 

(no jump) 

998 ns « 1 ms 

As you see, the total time needed to execute the subroutine 
is approximately 1 ms. 

A subroutine like this can produce a time delay of 1 ms 

whenever it is called. There are many applications where 
you need a delay. 

According to Table 11-3, the instructions in the foregoing 

subroutine have the following byte lengths: 

Instruction MVI DCR JNZ NOP RET 

Bytes 2 1 3 1 1 

DCR C: 71 X 4 X 1 p.s = 284 pis 

JNZ LOOP2: 70 X 10 X 1 p,s = 700 (jump) 

JNZ LOOP2: 1 x 7 x 1 pis =_1_ (no jump) 

991 pis 

When the C count drops to zero, the program falls through 

the JNZ LOOP2. The B counter is decremented, and the 

JNZ LOOP1 sends the program back to the MVI C,47H. 

Then we enter LOOP2 for a second time. Because LOOP2 

is inside LOOP1, LOOP2 will be executed 10 times and 
the overall time delay will be approximately 10 ms. 

Here are the calculations for the overall subroutine: 

MVI B,0AH: 

MVI C,47H: 

LOOP2: 

DCR B: 

JNZ LOOP1: 

JNZ LOOP1: 

RET: 

1 X 7 X 1 jjls = 7 JJLS 

10 X 7 X 1 (jls = 70 
10 X 991 |uls = 9,910 

10 x 4 X 1 (is = 40 

9 X 10 X 1 |uls = 90 (jump) 
1 x 7 x 1 (jls = 7 (no jump) 

1 x 10 X 1 JJLS = 10 

10,134 p,s ~ 10 ms 

This SAP-2 subroutine has a byte length of 

2 + 2+1+3+1+3+1 = 13 
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It can be assembled and located at addresses F020H to 

F02CH. From now on, a CALL F020H will produce a time 

delay of approximately 10 ms. 

By changing the first instruction to 

MVI B,64H 

the B counter is preset with decimal 100. In this case, the 

inner loop is executed 100 times and the overall time delay 

is approximately 100 ms. This 100-ms subroutine can be 

located at addresses F030H to F03CH. 

EXAMPLE 11-18 

Here is a subroutine with three loops nested one inside the 

other. How much time delay does it produce? 

Label Mnemonic Comment 

MVI A,0AH ;Preset A counter with 

decimal 10 

LOOP 1: MVI B,64H ;Preset B counter with 

decimal 100 

LOOP2: MVI C,47H ;Preset C counter with 

decimal 71 

LOOP3: DCR C ;Count down C 

JNZ LOOP3 ;Test C for zero 

DCR B ;Count down B 

JNZ LOOP2 ;Test B for zero 

DCR A ;Count down A 

JNZ LOOP1 

RET 

;Test A for zero 

SOLUTION 

LOOP3 still takes approximately 1 ms to get through. 

LOOP2 makes 100 passes through LOOP3, so it takes about 

100 ms to complete LOOP2. LOOP1 makes 10 passes 

through LOOP2; therefore, it takes around 1 s to complete 

the overall subroutine. 

What do we have? A 1-s subroutine. It will be located 

in F040H to F052H. To produce a 1-s time delay, we 

would use a CALL F040H. 

By changing the initial instruction to 

MVI A,64H 

LOOP1 will make 100 passes through LOOP2, which 

makes 100 passes through LOOP3. The resulting subroutine 

can be located at F060H to F072H and will produce a time 

delay of 10 s. 
Table 11-4 summarizes the SAP-2 time delays. With 

these subroutines, we can produce delays from 1 ms to 

10 s. 

TABLE 11-4. SAP-2 SUBROUTINES 

Label Starting Address Delay Registers Used 

DIMS F010H 

D10MS F020H 

D100MS F030H 

DISEC F040H 

D10SEC F060H 

EXAMPLE 11-19 

The traffic lights on a main road show green for 50 s, 

yellow for 6 s, and red for 30 s. Bits 1, 2, and 3 of 

port 4 are the control inputs to peripheral equipment that 

runs these traffic lights. Write a program that produces time 

delays of 50, 6, and 30 s for the traffic lights. 

SOLUTION 

Label Mnemonic Comment 

AGAIN: MVI A,32H ;Preset counter with 

decimal 50 

STA SAVE ;Save accumulator 

contents 

MVI A,02H ;Set bit 1 

OUT 04H ;Tum on green light 

LOOPGR: CALL DISEC ;Call 1-s subroutine 

LDA SAVE ;Load current A count 

DCR A ;Decrement A count 

STA SAVE ;Save reduced A count 

JNZ LOOPGR ;Test for zero 

MVI A,06H 

STA SAVE 

;Preset counter with 

decimal 6 

MVI A,04H ;Set bit 2 

OUT 04H ;Tum on yellow light 

LOOPYE: CALL DISEC 

LDA SAVE 

DCR A 

STA SAVE 

JNZ LOOPYE 

MVI A,1EH 

STA SAVE 

;Preset counter with 

decimal 30 

MVI A,08H ;Set bit 3 

OUT 04H ;Tum on red light 

LOOPRE: CALL DISEC 

LDA SAVE 

DCR A 

STA SAVE 

JNZ LOOPRE 

JMP AGAIN 

SAVE: Data 

1 ms C 

10 ms B, C 

100 ms B, C 

Is A, B, C 

10 s A, B, C 
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Let’s go through the green part of the program; the yellow 

and red are similar. The green starts with MVI A,32H, 

which loads decimal 50 into the accumulator. The STA 

SAVE will store this initial value in a memory location 

called SAVE. The MVI A,02H sets bit 1 in the accumulator; 

then the OUT 04H transfers this high bit to port 4. Since 

this port controls the traffic lights, the green light comes 
on. 

The CALL DISEC produces a time delay of 1 s. The 

LDA SAVE loads the accumulator with decimal 50. The 

DCR A decrements the count to decimal 49. The STA 

SAVE stores this decimal 49. Then the JNZ LOOPGR 

takes the program back to the CALL DISEC for another 
1-s delay. 

The CALL DISEC is executed 50 times; therefore, the 

green light is on for 50 s. Then the program falls through 

the JNZ LOOPGR to the MVI A,06H. The yellow part of 

the program then begins and results in the yellow light 

being on for 6 s. Finally, the red part of the program is 

executed and the red light is on for 30 s. The JMP AGAIN 

repeats the whole process. In this way, the program is 

controlling the timing of the green, yellow, and red lights. 

EXAMPLE 11-20 

Middle C on a piano has a frequency of 261.63 Hz. Bit 5 

of port 4 is connected to an amplifier which drives a 

loudspeaker. Write a program that sends middle C to the 
loudspeaker. 

SOLUTION 

n ~L IT
 

— 3822 jus 

1911 ns 

Fig. 11-9 Generating middle C note. 

The OUT 04H sends a bit (either low or high) to the 

loudspeaker. The MVI presets the counter to decimal 134. 

Then comes LOOP2, the DCR and JNZ, which produces 

a time delay of 1,866 |xs. The program then falls through 

to the CM A, which complements all bits in the accumulator. 

The two NOPs add a time delay of 8 p.s. The JMP LOOP1 

then takes the program back. When the OUT 04H is 

executed, bit 5 (complemented) goes to the loudspeaker. 

In this way the loudspeaker is driven into the opposite state. 

The execution time for both half cycles is 3,824 p,s, close 
enough to middle C. 

Here are the calculations for the time delay: 

OUT 04H: 

MVI C,86H: 

DCR C: 

JNZ LOOP2: 

JNZ LOOP2: 

CMA: 

2 NOPs: 

JMP LOOP1: 

1 x 10 X 1 |xs = 10 p,s 
lx7xl(j,s= 7 

134 x 4 X 1 (xs = 536 
133 x 10 x 1 |xs = 1,330 

1 x 7 x 1 |xs = 7 
1 X 4 X 1 (is = 4 

2 x 4 x 1 |xs = 8 
1 X 10 X 1 (ULS = _10 

1,912 |xs 

To begin with, the period of middle C is This is the half-cycle time. The period is 3,824 |xs. 

T 
1 

/ 
1 

261.63 Hz 
3,822 p,s 

What we are going to do is send to port 4 a signal like Fig. 

11-9. This square wave is high for 1,911 |xs and low for 

1,911 (xs. The overall period is 3,822 |xs, and the frequency 

is 261.63 Hz. Because the signal is square rather than 

sinusoidal, it will sound distorted but it will be recognizable 
as middle C. 

Here is a program that sends middle C to the loudspeaker. 

Label Mnemonic Comment 

LOOP1: OUT 04H ;Send bit to speaker 
MVI C,86H ;Preset counter with decimal 

134 
LOOP2: DCR C ;Count down 

JNZ LOOP2 ;Test count 
CMA ;Reset bit 5 
NOP ;Fine tuning 
NOP ;Fine tuning 
JMP LOOP1 ;Go back for next half cycle 

EXAMPLE 11-21 

Serial data is sometimes called a serial data stream because 

bits flow one after another. In Fig. 11-10 a serial data 

stream drives bit 7 of port 2 at a rate of approximately 600 

bits per second. Write a program that inputs an 8-bit 

character in a serial data stream and stores it in memory 
location 2100H. 

SOLUTION 

Since approximately 600 bits are received each second, the 
period of each bit is 

1 

600 Hz 
1,667 |xs 

The idea will be to input a bit from port 2, rotate the 

accumulator right, wait approximately 1,600 |xs, then input 

another bit, rotate the accumulator right, and so on, until 
all bits have been received. 
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W bus 

Fig. 11-10 

Here is 

Label 

BIT: 

DELAY: 

ACKNOWLEDGE 

READY 

SERIAL IN 

CON 

a program that will work: 

Mnemonic Comment 

MVI B,00H ;Load zero into B register 

MVI C,07H ;Preset counter with decimal 7 

IN 02H ;Input data 

ANI 80H ;Isolate bit 7 

ORA B ;Update character 

RAR ;Move bits right 

MOV B,A ;Save bits in B 

MVI A,73H ;Begin a delay of 1,600 |jls 

DCR A ;Count down A 

JNZ DELAY ;Test A count for zero 

DCR C ;Count down C 

JNZ BIT ;Test C count for zero 

IN 02H ;Input last bit 

ANI 80H ;Isolate bit 7 

ORA B 

STA 2100H ;Save character 

The first instruction clears the B register. The second 

instruction loads decimal 7 into the C counter. The IN 02H 

brings in the data from port 2. The ANI mask isolates bit 

7 because this is the SERIAL IN bit from port 2. The ORA 

B does nothing the first time through because B is full of 

Os. The RAR moves the accumulator bits to the right. The 

MOV B,A stores the accumulator contents in the B register. 

MVI A,73H presets the accumulator with decimal 115. 

Then comes a delay loop, DCR A and JNZ DELAY, that 

takes approximately 1,600 jxs to complete. 

The DCR C reduces the C count by 1, and the JNZ BIT 

tests the C count for zero. The program jumps back to the 

IN 02H to get the next bit from the serial data stream. The 

ANI mask isolates bit 7, which is then ORed with the 

contents of the B register; this combines the previous bit 

with the newly received bit. After another RAR, the two 

received bits are stored in the B register. Then comes 

another delay of approximately 1,600 jjls. 

The program continues to loop and each time a new bit 

is input from the serial data stream. After 7 bits have been 
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received, the program will fall through the JNZ BIT 

instruction. 

The last four instructions do the following. The IN 02H 

brings in the eighth bit. The ANI isolates bit 7. The ORA 

B combines this new bit with the other seven bits in the B 

register. At this point, all received bits are in the accu¬ 

mulator. The STA 2100H then stores the byte in the 

accumulator at 2100H. 

A concrete example will help. Suppose the 8 bits being 

received are 57H, the ASCII code for W. The LSB is 

received first, the MSB last. Here is how the contents of 

the B register appear after the execution of the ORA B: 

A = 1000 0000 

A = 1100 0000 

A = 1110 0000 

A = 01110000 

A = 1011 1000 

A = 0101 1100 

A = 1010 1110 

A = 01010111 

(First pass through loop) 

(Second pass) 

(Third pass) 

(Fourth pass) 

(Fifth pass) 

(Sixth pass) 

(Seventh pass) 

(Final contents) 

Incidentally, the ASCII code only requires 7 bits; for this 

reason, the eighth bit (A-j) may be set to zero or used as a 
parity bit. 

GLOSSARY 

assembler A program that converts a source program into 
a machine-language program. 

comment Personal notes in an assembly-language program 

that are not assembled. They refresh the programmer’s 
memory at a later date. 

conditional jump A jump that occurs only if certain 
conditions are satisfied. 

direct addressing Addressing in which the instruction 

contains the address of the data to be operated on. 

flag A flip-flop that keeps track of a changing condition 
during a computer run. 

hand assembling Translating a source program into a 

machine-language program by hand rather than computer. 

handshaking Interaction between a CPU and a peripheral 

device that takes place during an I/O operation. In SAP-2 

it involves READY and ACKNOWLEDGE signals. 

immediate addressing Addressing in which the data to be 

operated on is the byte immediately following the op code 
of the instruction. 

implied addressing Addressing in which the location of 

the data is contained within the mnemonic. 

label A name given to an instruction in an assembly- 

language program. To jump to this instruction, you can use 

the label rather than the address. The assembler will work 

out the correct address of the label and will use this address 

in the machine-language program. 

mask A byte used with an ANI instruction to blank out 
certain bits. 

register addressing Addressing in which the data is stored 
in a CPU register. 

relocate To move a program or subroutine to another part 

of the memory. In doing this, the addresses of jump 

instructions must be converted to new addresses. 

subroutine A program stored in higher memory that can 

be used repeatedly as part of a main program. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. The controller-sequencer produces_ 

words or microinstructions. 

2. {control) A flag is a_that keeps track of 

a changing condition during a computer run. The 

sign flag is set when the accumulator contents go 

negative. The-flag is set when the accu¬ 

mulator contents go to zero. 

3. (flip-flop, zero) In coding the LDA address and 

STA address instructions, the_byte of 

the address is stored in lower memory, the_ 
byte in upper memory. 

4. {lower, upper) The JMP instruction changes the 

program sequence by jumping to another part of the 

program. With the JM instruction, the jump is exe¬ 

cuted only if the sign flag is_With the 

JNZ instruction, the jump is executed only if the 
zero flag is_ 

5. {set, clear) Every subroutine must terminate with a 

-instruction. This returns the program to 

the instruction following the CALL. The CALL 

instruction is unconditional; it sends the computer to 
the starting address of a_ 

6. {RET, subroutine) An assembler allows you to write 

programs in mnemonic form. Then the assembler 

Chapter 11 SAP-2 193 



7. 

8. 

9. 

converts these mnemonics into-lan¬ 

guage. The assembler ignores the-fol¬ 

lowing a semicolon and assigns addresses to the 

labels. Labels can be up to six characters, the first 

of which must be a- 
(machine, comments, letter) Repeated addition is 

one way to do_Programmed multiplica¬ 

tion is used in most microprocessors because their 

ALUs can only add and subtract. 

(multiplication) A parameter is a piece of data 

passed to a_* WTien you call a subrou¬ 

tine, you often need to pass-for the 

subroutine to work properly. 

(subroutine, parameters) A- . is used to 

isolate a bit; it does this because the ANI sets all 

other bits to zero. 
10. (mask) Handshaking is an interaction between a 

__ and a peripheral device. In SAP-2 the 

_bit tells the CPU whether the input data 

is valid or not. After the data has been transferred 

into the computer, the CPU sends an- 

bit to the peripheral device. 

11. (CPU, READY, ACKNOWLEDGE) The SAP-2 

computer is microprogrammed with a- 

machine cycle. This means that some instructions 

take longer than others to execute. 

12. (variable) The types of addressing covered up to 

now are direct, immediate, register, and implied. 

PROBLEMS 

11-1. Write a source program that loads the accumula¬ 

tor with decimal 100, the B register with deci¬ 

mal 150, and the C register with decimal 200. 

11-2. Hand-assemble the source program of the pre¬ 

ceding problem starting at address 2000H. 

11-3. Write a source program that stores decimal 50 at 

memory location 4000H, decimal 51 at 4001H, 

and decimal 52 at 4002H. 

11-4. Hand-assemble the source program in the pre¬ 

ceding problem starting at address 2000H. 

11-5. Write a source program that adds decimal 68 and 

34, with the answer stored at memory location 

5000H. 
11-6. Hand-assemble the preceding program starting at 

address 2000H. 

11-7. Here is a program: 

Label Mnemonic 

LOOP: MVI C,78H 

DCR C 

JNZ LOOP 

HLT 

a. How many times (decimal) is the DCR C 

executed? 

b. How many times does the program jump to 

LOOP? 

c. How can you change the program to loop 210 

times? 

11-8. Which of the following are valid labels? 

a. G100 

b. UPDATE 

c. 5TIMES 

d. 678RED 

e. T 

f. REPEAT 

11-9. Write a program that multiplies decimal 25 and 

7 and stores the answer at 2000H. (Use the 

multiply subroutine located at F006H.) 

11-10. Write a program that inputs a byte from port 1 

and determines if the decimal equivalent is even 

or odd. If the byte is even, the program is to 

send an ASCII E to port 3; if odd, an ASCII O. 

11-11. Modify the foregoing program so that it sends 

the answer in serial form to bit 0 of port 4. 

11-12. Write a program that inputs a byte from port 1 

using handshaking. Store the byte at address 

4000H. 
11-13. Hand assemble the foregoing program starting at 

address 2000H. 

11-14. Write a subroutine that produces a time delay of 

approximately 500 |xs. 

11-15. Hand-assemble the preceding program starting at 

address 2000H. 

11-16. Write a subroutine that produces a time delay of 

approximately 35 ms using a SAP-2 subroutine. 

Hand-assemble this subroutine and locate it at 

starting address E000H. 

11-17. Write a subroutine that produces a time delay of 

50 ms. (Use a SAP-2 subroutine.) Hand-assem¬ 

ble the program at starting address E100H. 

11-18. Write a subroutine that produces a delay of 1 

min. (Use CALL F060H.) 

11-19. Hand-assemble the preceding subroutine at start¬ 

ing addresses F080H. 

11-20. The C note one octave above middle C has a 

frequency of 523.25 Hz. Write a program that 

sends this note to bit 4 of port 4. 

11-21. Hand-assemble the foregoing program starting at 

address 2000H. 
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SAP-3 
The SAP-3 computer is an 8-bit microcomputer that is 

upward-compatible with the 8085 microprocessor. In this 

chapter, the emphasis is on the SAP-3 instruction set. This 

instruction set includes all the SAP-2 instructions of the 

preceding chapter plus new instructions to be discussed. 

Appendix 6 shows the op codes, T states, flags, and so 

forth, for the SAP-3 instructions. In the remainder of this 

chapter, refer to Appendix 6 as needed. 

12-1 PROGRAMMING MODEL 

All you need to know about SAP-3 hardware is the 

programming model of Fig. 12-1. This is a diagram showing 

the CPU registers needed by a programmer. 

Some of the CPU registers are familiar from SAP-2. For 

instance, the program counter (PC) is a 16-bit register that 

can count from 0000H to FFFFH or decimal 0 to 65,535. 

As you know, the program counter sends out the address 

of the next instruction to be fetched. This address is latched 
into the MAR. 

CPU registers A, B, and C are the same as in SAP-2. 

These 8-bit registers are used in arithmetic and logic 

operations. Since the accumulator is only 8 bits wide, the 

range of unsigned numbers is 0 to 255; the range of signed 

2’s-complement numbers is - 128 to +127. 

SAP-3 has additional CPU registers (D, E, H, and L) 

for more efficient data processing. These 8-bit registers can 

be loaded with MOV and MVI instructions, the same as 

the A, B, and C registers. Also notice the F register, which 

stores flag bits S, Z, and others. 

Finally, there is the stack pointer (SP), a 16-bit register. 

This new register controls a portion of memory known as 

the stack. The stack and the stack pointer are discussed 
later in this chapter. 

Figure 12-1 shows all the CPU registers needed to 

understand the SAP-3 instruction set. With this program¬ 

ming model we can discuss the SAP-3 instruction set, 

which is upward-compatible with the 8080 and 8085. At 

the end of this chapter, you will know almost all of the 

8080/8085 instruction set. 

12-2 MOV AND MVI 

The MOV and MVI instructions work the same as in SAP- 

2. The only difference is more registers to choose from. 

The format of any move instruction is 

MOV regl, reg2 

where regl = A, B, C, D, E, H, orL 

reg2 = A, B, C, D, E, H, or L 

PC 

SP 

Fig. 12-1 SAP-3 programming model. 



The MOV instructions send the data in reg2 to regl. 

Symbolically, 

regl ^reg2 

where the arrow indicates that the data in register 2 is 

copied nondestructive^ into register 1. At the end of the 

execution 

regl = reg2 

For instance, 

MOV L,A 

copies A into L, so that 

L = A 

Similarly, 

MOV E,H 

gives 

E = H 

The immediate moves have the format of 

MVI reg,byte 

12-3 ARITHMETIC INSTRUCTIONS 

Since the accumulator is only 8 bits wide, its contents can 

represent unsigned numbers from 0 to 255 or signed 2’s 

complement numbers from — 128 to +127. Whether signed 

or unsigned binary numbers are used, the programmer needs 

to detect overflows, sums or differences that lie outside the 

normal range of the accumulator. This is where the carry 

flag comes in. 

Carry Flag 

As shown in Fig. 6-7, a 4-bit adder-subtracter produces a 

sum S3S2S1S0 and a carry. In SAP-1, two 74LS83s (equiv¬ 

alent to eight full adders) produce an 8-bit sum and a carry. 

In this simple computer, the carry is disregarded. SAP-3, 

however, takes the carry into account. 

Figure 12-2a shows the logic circuit used for the SAP-3 

adder-subtracter. When SUB is low, the circuit adds the A 

and B inputs. If a final carry is generated, CARRY will be 

high and CY will be high. If there is no final carry, CY is 

low. 
On the other hand, when SUB is high, the circuit forms 

the 2’s complement of B, which is then added to A, Because 

of the final xor gate, a high CARRY out of the last full- 

adder produces a low CY. If no carry occurs, CY is high. 

In summary, 

CY 
CARRY 

CARRY 

for ADD instructions 

for SUB instructions 

where reg = A, B, C, D, E, H, or L. Therefore, the 

execution of 

MVI D,0EH 

will result in 

D = OEH 

During an add operation, CY is called a carry. During a 

subtract operation, CY is referred to as a borrow. 

The 8-bit sum S7S6S5S4S3S2SlSo is stored in the accu¬ 

mulator of Fig. 12-2b. The carry (or borrow) is stored in a 

special flip-flop called the carry flag, designated CY in Fig. 

12-2b. This flag acts like the next higher bit of the 

accumulator. That is, 

Likewise, 
CY =A8 

MVI L,FFH 

produces 

L = FFH 

Carry-Flag Instructions 

There are two instructions we can use to control the carry 

flag. The STC instruction will set the CY flag if it is not 

already set. (STC stands for set carry.) So, if 

What is the advantage of more CPU registers? As you 

may recall, MOV and MVI instructions use fewer T states 

than memory-reference instructions (MRIs). The extra CPU 

registers mean that we can use more MOV and MVI 

instructions and fewer MRIs. Because of this, SAP-3 

programs can run faster than SAP-2 programs; furthermore, 

having more CPU registers for temporary storage simplifies 

program writing. 

CY = 0 

the execution of a STC instruction produces 

CY = 1 

The other carry-flag instruction is the CMC, which stands 

for complement the carry. When executed, a CMC corn- 
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SUB 

CARRY 

CY 

(a) 

(b) 

Fig. 12-2 (a) SAP-3 adder-subtractor (b) carry flag and accumu¬ 
lator. 

plements the value of CY. If CY = I, CMC produces a CY 
of 0. On the other hand, if CY = 0, CMC results in a CY 
of 1. 

If you want to reset the carry flag and its current status 

is unknown, you have to set it, then complement it. That 

is, execution of 

STC 

CMC 

guarantees that the final value of CY will be 0 if the initial 

value of CY is unknown. 

ADD Instructions 

The format of the ADD instruction is 

ADD reg 

where reg = A, B, C, D, E, H, or L. This instruction 

adds the contents of the specified register to the accumulator 

contents. The sum is stored in the accumulator and the 

carry flag is set or reset, depending on whether there is a 
final carry or not. 

For instance, suppose 

A = 1111 0001 and E = 0000 1000 

The instruction 

ADD E 

produces the binary addition 

1111 0001 
± 0000 1000 

ini iooi 

There is no final carry; therefore, at the end of the instruction 
cycle, 

CY = 0 and A = 1111 1001 

As another example, suppose 

A = 1111 1111 and L = 0000 0001 

Then executing an ADD L produces 

1111 1111 
+ 0000 0001 

1 0000 0000 

At the end of the instruction cycle 

CY - 1 and A = 0000 0000 

ADC Instructions 

The ADC instruction (add with carry) is formatted like this: 

ADC reg 

Chapter 12 SAP-3 1 97 



where reg = A, B, C, D, E, H, or L. This instruction 

adds the contents of the specified register plus the carry 

flag to the contents of the accumulator. Because it includes 

the CY flag, the ADC instruction allows us to add numbers 

outside the unsigned 0 to 255 range or the signed - 128 to 

4-127 range. 

As an example, suppose 

A = 1000 0011 

E = 0001 0010 

and CY = 1 

The execution of 

ADC E 

produces the following addition: 

1000 0011 

00010010 

+_1 

10010110 

Therefore, the new accumulator and carry flag contents are 

CY = 0 A = 1001 0110 

SUB Instructions 

The SUB instruction is formatted as 

SUB reg 

where reg = A, B, C, D, E, H, or L. This instruction will 

subtract the contents of the specified register from the 

accumulator contents; the result is stored in the accumulator. 

If a final borrow occurs, the CY flag is set. If there is no 

borrow, the CY flag is reset. In other words, during 

subtraction the CY flag functions as a borrow flag. 

For example, if 

A = 0000 1111 and C = 0000 0001 

then 

SUB C 

results in 

Notice that there is no final borrow. In terms of 2’s- 

complement addition, the foregoing subtraction appears like 

this: 

0000 1111 

+ ini mi 
10000 1110 

The final CARRY is 1, but this is complemented during 

subtraction to get a CY of 0 (Fig. 12-2a). This is why the 

execution of SUB C produces 

CY = 0 A = 0000 1110 

Here is another example. If 

A = 0000 1100 and C = 0001 0010 

then a SUB C produces 

0000 1100 

- 0001 0010 

i mi ioio 

Notice the final borrow. This borrow occurs because the 

contents of the C register (decimal 18) are greater than the 

contents of the accumulator (decimal 12). In terms of 2’s- 

complement arithmetic, the foregoing looks like 

0000 1100 

+ 11101110 

01111 1010 

In this case, CARRY is 0 and CY is 1. The final register 

and flag contents are 

CY = 1 and A = 1111 1010 

SBB Instructions 

SBB stands for subtract with borrow. This instruction goes 

one step further than the SUB. It subtracts the contents of 

a specified register and the CY flag from the accumulator 

contents. If 

A = 1111 1111 

E = 0000 0010 

and CY = 1 

the instruction SBB E starts by combining E and CY to get 

0000 0011 and then subtracts this from the accumulator as 

follows: 

0000 1111 

- 0000 0001 
nil nil 

- oooooon 

0000 1110 mi noo 
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The final contents are 

CY = 0 and A = 1111 1100 

EXAMPLE 12-1 

In unsigned binary, 8 bits can represent 0 to 255, whereas 

16 bits can represent 0 to 65,535. Show a SAP-3 program 

that adds 700 and 900, with the final answer stored in the 

H and L registers. 

SOLUTION 

Double bytes can represent decimal 700 and 900 as follows: 

70010 = 02BCH = 0000 0010 1011 11002 

900,o = 0384H = 0000 0011 1000 0100, 

Here is how to add 700 and 900: 

Label Instruction Comment 

MVI A,00H ;Clear the accumulator 

MVI B,02H ;Store upper byte (UB) of 

700 

MVI C,BCH ;Store lower byte (LB) of 

700 

MVI D,03H ;Store UB of 900 

MVI E,84H ;Store LB of 900 

ADD C ;Add LB of 700 

ADD E ;Add LB of 900 

MOV L,A ;Store partial sum 

MVI A,00H ;Clear the accumulator 

ADC B ;Add UB of 700 with carry 

ADD D ;Add UB of 900 

MOV H,A ;Store partial sum 

HLT ;Stop 

The first five instructions initialize registers A through E. 

The ADD C and ADD E add the lower bytes BCH and 

84H; this addition sets the carry flag because 

BCH = 10111100, 

+ 84H = 1000 0100, 

1 40H = 1 0100 0000, 

The sum is stored in the L register and the final carry in 
the CY flag. 

Next, the accumulator is cleared. The ADC B adds the 

upper byte plus the carry flag to get 

OOH = 0000 00002 

+ 02H = 0000 00102 

+ 1H =_U 

03 H = 0000 00112 

Then the ADD D produces 

03H = 0000 00112 

+ 03H = 0000 00112 

06H = 0000 0110, 

The MOV H,A stores this upper sum in the H register. 

So the program ends with the answer stored in the H and 

L registers as follows: 

H = 06H = 0000 0110, 

and L = 40H = 0100 00002 

The complete answer is 0640H, which is equivalent to 
decimal 1,600. 

12-4 INCREMENTS, DECREMENTS, 
AND ROTATES 

This section is about increment, decrement, and rotate 

instructions. The increment and decrement are similar to 

those of SAP-2, but the rotates are different because of the 
carry flag. 

Increment 

The increment instruction appears as 

INR reg 

where reg = A, B, C, D, E, H, or L. It works as previously 

described. Therefore, given 

L = 0000 1111 

the execution of INR L produces 

L = 0001 0000 

The INR instruction has no effect on the carry flag, but, 

as before, it does affect the sign and zero flags. For instance, 
if 

B = 1111 1111 

and the initial flags are 

5=1 Z = 0 CY = 0 

then INR B produces 

B = 0000 0000 

5 = 0 Z = 1 CY = 0 
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As you see, the carry flag is unaffected even though the B 

register overflowed. At the same time, the zero flag has 

been set and the sign flag reset. 

Decrement 

The decrement is similar. It looks like 

DCR reg 

where reg = A, B, C, D, E, H, or L. If 

E = 01110110 

then a DCR E produces 

E = 01110101 

The DCR affects the sign and zero flags but not the carry 

flag. This is why the initial values may be 

E = 0000 0000 

S = 0 Z = 1 CY = 0 

Executing a DCR E results in 

E = 11111111 

S = 1 Z - 0 CY = 0 

(b) 

Fig. 12-3 (a) RAL; (b) RAR. 

Rotate All Left 

Figure 12-3a illustrates the RAL instruction used in 

SAP-3. The CY flag is included in the rotation of bits. 

RAL stands for rotate all left, which is a reminder that all 

bits including the CY flag are rotated to the left. 

If the initial values are 

CY = 1 A = 0111 0100 

As you see, the original CY goes to the LSB position, and 

the original MSB goes to the CY flag. 

Rotate All Right 

The rotate-all-right instruction (RAR) rotates all bits in¬ 

cluding the CY flag to the right, as shown in Fig. 12-3b. 

If 

CY = 1 A = 01110100 

an RAR will result in 

CY — 0 A = 1011 1010 

This time, the original CY goes to the MSB position, and 

the original LSB goes into the CY flag. 

(b) 

Fig. 12-4 (a) RLC; (b) RRC. 

Rotate Left with Carry 

Sometimes you don’t want to treat the CY flag as an 

extension of the accumulator. In other words, you may not 

want to rotate all bits. Figure 12-4a illustrates the RLC 

instruction. The accumulator bits are rotated left, and the 

MSB is saved in the CY flag. For instance, given 

CY = 1 A = 0111 0100 

executing an RLC produces 

CF = 0 A =1110 1000 

Rotate Right with Carry 

Figure 12-4b shows how the RRC instruction rotates the 

bits. In this case, the accumulator bits are rotated right and 

the LSB is saved in the CY flag. So, given 

CY = 1 A = 0111 0100 

then executing a RAL instruction produces an RRC will result in 

cy = o a =11101001 cy = o a = 00111010 

200 Digital Computer Electronics 



Multiply and Divide by 2 

Example 11-14 showed a program where the RAR instruc¬ 

tion was used in converting from parallel to serial data. 

Parallel-to-serial conversion, and vice versa, is one of the 

main uses of rotate instructions. 

There is another use for rotate instructions. Rotating has 

the effect of multiplying or dividing the accumulator contents 

by a factor of 2. Specifically, with the carry flag reset, an 

RAL has the effect of multiplying by 2, while the RAR 

divides by 2. This can be proved algebraically, but it’s 

much easier to examine a few specific examples to see how 

it works. 

Suppose 

CY = 0 A = 0000 0111 

Then an RAL produces 

CY = 0 A = 0000 1110 

The accumulator contents have changed from decimal 7 to 

decimal 14. The RAL has multiplied by 2. 

Likewise, if 

cy = o A = 0010 0001 

then an RAL results in 

cy = o A = 0100 0010 

In this case, A has changed from decimal 33 to 66. 

RAR instructions have the opposite effect; they divide 

by 2. If 

CV = 0 A = 0001 1000 

an RAR gives 

cy = 0 A = 0000 1100 

The decimal contents of the accumulator have changed from 

decimal 24 to 12. 

Remember the basic idea. RAL instructions have the 

effect of multiplying by 2; RAR instructions divide by 2. 

12-5 LOGIC INSTRUCTIONS 

The SAP-3 logic instructions are almost the same as in 

SAP-2. For instance, three of the logic instructions are 

ANA reg 

ORA reg 

XRA reg 

where reg = A, B, C, D, E, H, or L. These instructions 

will and, or, or xor the contents of the specified register 

with the contents of the accumulator on a bit-by-bit basis. 

The only new logic instruction is the CMP, formatted as 

CMP reg 

where reg = A, B, C, D, E, H, or L. CMP compares the 

contents of the specified register with the contents of the 

accumulator. The zero flag indicates the outcome of this 

comparison as follows: 

7 = [1 if A = reg 
[0 if A ^ reg 

SAP-3 carries out a CMP as follows. The contents of 

the accumulator are copied in a temporary register. Then 

the contents of the specified register are subtracted from 

the contents of the temporary register. Since the ALU does 

the subtraction, the zero flag is affected. If the 2 bytes 

being compared are equal, the zero flag is set. If the bytes 

are unequal, the zero flag is reset. Because the temporary 

register is used, the accumulator contents are not changed 

by a CMP instruction. 

For example, if 

A = F8H 

D = F8H 

and Z = 0 

executing a CMP D results in 

A = F8H 

D = F8H 

and Z = 1 

CMP has no effect on A and D; only the flag changes to 

indicate that A and D are equal. (If they were not equal, Z 

would be 0.) 

CMP is a powerful instruction because it allows us to 

compare the accumulator contents with the data in a specified 

register. By following a CMP with a conditional zero jump, 

we can control loops in a new way. Later programs will 

show how this is done. 

12*6 ARITHMETIC AND LOGIC 
IMMEDIATES 

So far, we have introduced these arithmetic and logic 

instructions: ADD, ADC, SUB, SBB, ANA, ORA, XRA, 

and CMP. Each of these has the accumulator as an implied 

register; the data comes from a specified register (A, B, C, 

D, E, H, or L). 

Chapter 12 SAP-3 201 



The immediate instructions from SAP-2 that carry over 

to SAP-3 are ANI, ORI, and XRI. As you know, each of 

these has the format of 

ANI byte 

ORI byte 

XRI byte 

where the immediate byte is ANDed, ORed, or xoRed with 

the accumulator byte. 

Besides the foregoing, SAP-3 has these immediate in¬ 

structions: 

ADI byte 

ACI byte 

SUI byte 

SBI byte 

CPI byte 

The ADI adds the immediate byte to the accumulator byte. 

The ACI adds the immediate byte plus the CY flag to the 

accumulator byte. The SUI subtracts the immediate byte 

from the accumulator byte. The SBI subtracts immediate 

byte and the CY flag from the accumulator byte. The CPI 

compares the immediate byte with the accumulator byte; if 

the bytes are equal, the zero flag is set; if not, it is reset. 

At this point, 

CY — 1 A = C8H 

The high CY flag indicates a borrow. 

After saving C8H in the L register, the program loads 

the upper byte of 900 into the accumulator. The SBI is 

used instead of a SUI because of the borrow that occurred 

when subtracting the bytes. The execution of the SBI gives 

0000 0011 

- 0000 0010 

-_1 

0000 0000 

This part of the answer is stored in the H register, so that 

the final contents are 

H = 00H = 0000 00002 

L = C8H = 1100 10002 

12-7 JUMP INSTRUCTIONS 

EXAMPLE 12-2 

Show a program that subtracts 700 from 900 and stores the 

answer in the H and L registers. 

SOLUTION 

Here are the SAP-2 jump instructions that become part of 

the SAP-3 instruction set: 

JMP address 

JM address 

JZ address 

JNZ address 

(Unconditional jump) 

(Jump if minus) 

(Jump if zero) 

(Jump if not zero) 

We need double bytes to represent 900 and 700 as follows: TT „ . ^ „ . 
Here are some more SAP-3 jump instructions. 

90010 = 0384H = 0000 0011 1000 01002 

70010 = 02BCH = 0000 0010 1011 11002 JP 

Here’s the program for subtracting 700 from 900: 

Label Instruction Comment 

MVI A, 84H 

SUI BCH 

MOV L,A 

MVI A, 03H 

SBI 02H 

MOV H,A 

;Load LB of 900 

;Subtract LB of 700 

;Save lower half answer 

;Load UB of 900 

;Subtract UB of 700 with borrow 

;Save upper half answer 

JM stands for jump if minus. When the program encounters 

a JM address, it will jump to the specified address if the 

sign flag is set. 

The JP instruction has the opposite effect. JP stands for 

jump if positive (including zero). This means that 

JP address 

produces a jump to the specified address if the sign flag is 

reset. 

The first two instructions subtract the lower bytes as follows: 
JC and JNC 

1000 0100 

- 1011 1100 

1 1100 1000 

The instruction 

JC address 
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means to jump to the specified address if the carry flag is 

set. In short, JC stands for jump if carry. Similarly, 

JNC address 

means to jump to the specified address if the carry flag is 

not set. That is, jump if no carry. 

Here is a program segment to illustrate JC and JNC: 

Label Instruction Comment 

MVI A,FEH 

REPEAT: ADI 01H 

JNC REPEAT 

MVI A,C4H 

JC ESCAPE 

ESCAPE: MOV L,A 

The MVI loads the accumulator with FEH. The ADI adds 

1 to get FFH. Since no carry takes place, the JNC takes 

the program back to the REPEAT point, where a second 

ADI is executed. This time the accumulator overflows to 

get contents of 00H with a carry. Since the CY flag is set, 

the program falls through the JNC. The accumulator is 

loaded with C4H. Then the JC produces a jump to the 

ESCAPE point, where the C4H is loaded into the L register. 

JPE and JPO 

Besides the sign, zero, and carry flag, SAP-3 has a parity 
flag designated P. During the execution of certain instruc¬ 

tions (like ADD, INR, etc.), the ALU result is checked for 

parity. If the result has an even number of Is, the parity 

flag is set; if an odd number of Is, the flag is reset. 

The instruction 

JPE address 

produces a jump to the specified address when the parity 

flag is set (even parity). On the other hand, 

JPO address 

results in a jump when the parity flag is reset (odd parity). 

For instance, given these flags, 

S = 1 Z = 0 CY = 0 P = 1 

the program would jump if it encountered a JPE instruction; 

but it would fall through a JPO instruction. 

Incidentally, we now have discussed all the flags in the 

SAP-3 computer. For upward compatibility with the 8085 

Fig. 12-5 F register stores flags. 

microprocessor, these flags are stored in the F register, as 

shown in Fig. 12-5. For instance, if the contents of the F 

register are 

F = 0100 0101 

then we know that the flags are 

S = 0 Z = 1 P = 1 CY = 1 

EXAMPLE 12-3 

What does the following program segment do? 

SOLUTION 

Label Instruction Comment 

MVI E,00H ;Initialize counter 

LOOP: INR E increment counter 

MOV A,E ;Load A with E 

CPI FFH ;Compare to 255 

JNZ LOOP ;Go back if not 255 

The E register is being used as a counter. It starts at 0. The 

first time the INR and MOV are executed 

A = 01H 

After executing the CPI, the zero flag is 0 because 01H 

and FFH are unequal. The JNZ then forces the program to 

return to the LOOP point. 

The looping will continue until the INR and MOV have 

been executed 255 times to get 

A = FFH 

On this pass through the loop, the CPI sets the zero flag 

because the accumulator byte and the immediate byte are 

equal. With the zero flag set for the first time, the program 

falls through the JNZ instruction. 

Do you see the point? The computer will loop 255 times 

before it falls through the JNZ. One use of this program 

segment is to set up a time delay. Another use is to insert 

additional instructions inside the loop as follows: 
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Label Instruction Comment 

MVI E,00H 

LOOP: 

INR E 

MOV A,E 

CPI FFH 

JNZ LOOP 

The instructions at the beginning of the loop (symbolized 

by dots) will be executed 255 times. If you want to change 

the number of passes through the loop, modify the CPI 

instruction as required. 

12-8 EXTENDED-REGISTER 
INSTRUCTIONS 

Some SAP-3 instructions use pairs of CPU registers to 

process 16-bit data. In other words, during the execution 

of certain instructions, the CPU registers are cascaded, as 

shown in Fig. 12-6. The pairing is always as shown: B 

with C, D with E, and H with L. What follows are the 

SAP-3 instructions that use register pairs. Throughout these 

instructions, you will notice the letter X, which stands for 

extended register, a reminder that register pairs are involved. 

B C 

D E 

H L 

Fig. 12-6 Register pairs. 

Load Extended Immediate 

Since there are three register pairs (BC, DE, and HL), the 

LXI instruction can appear in any of these forms: 

LXI B,dble 

LXI D,dble 

LXI H,dble 

where B stands for BC 

D stands for DE 

H stands for HL 

dble stands for double byte 

The LXI instruction says to load the specified register pair 

with the double byte. For instance, if we execute 

LXI B,90FFH 

the B and C registers are loaded with the upper and lower 

bytes to get 

B - 90H 

C - FFH 

Visualizing B and C paired off as shown in Fig. 12-6, we 

can write 

BC = 90FFH 

DAD Instructions 

DAD stands for double-add. This instruction has three 

forms: 

DAD B 

DADD 

DADH 

where B stands for BC 

D stands for DE 

H stands for HL 

The DAD instruction adds the contents of the specified 

register pair to the contents of the HL register pair; the 

result is then stored in the HL register pair. For instance, 

given 

BC = F521H 

HL - 0003H 

the execution of a DAD B produces 

HL = F524H 

As you see, F521H and 0003H are added to get F524H. 

The result is stored in the HL register pair. 

The DAD instruction affects the CY flag. If there is a 

carry out of the HL register pair, the CY flag is set; 

otherwise it is reset. As an example, if 

DE = 0001H 

HL = FFFFH 

a DAD D will result in 

HL = 0000H 

CY = 1 

Incidentally, a DAD H has the effect of adding the data 

in the HL register pair to itself. In other words, a DAD H 

doubles the value of HL. If 

HL = 1234H 
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a DAD H results in 

HL = 2468H 

INX and DCX 

INX stands for increment the extended register, and DCX 

means decrement the extended register. The extended 

increment instructions are 

INX B 

INX D 

INX H 

where B stands for BC 

D stands for DE 

H stands for HL 

The DCX instructions have a similar format: DCX B, DCX 

D, and DCX H. 

The INX and DCX instructions have no effect on the 

flags. For instance, if 

BC = FFFFH 

5 = 1 
Z = 0 

P = 1 

CY = 0 

executing an INX B results in 

BC = 0000H 

S = 1 

Z = 0 

P = 1 

CY = 0 

Notice that all flags are unaffected. 

In summary, the extended register instructions are LXI, 

DAD, INX, and DCX. Of the three register pairs, the HL 

combination is special. The next section tells you why. 

2050H 

(a) (b) 

Fig. 12-7 (a) HL pointer; (b) pointing to 2050H. 

first memory location is Mqoooh, the next is Mqooih* and so 

on. The memory location with address HL is MHL. 

With some SAP-3 instructions, the contents of the HL 

register pair are used as the address for data in memory. 

That is, the contents of the HL register pair are sent to the 

MAR, and then a memory read or write is performed. It’s 

as though the HL register pair were pointing to the desired 

memory location, as shown in Fig. 12-7*2. 

For instance, suppose 

HL = 2050H 

If HL is acting as a pointer, its contents (2050H) are sent 

to the MAR during one T state. During the next T state, 

the memory location whose address is 2050H undergoes a 

read or write operation. As shown in Fig. 12-76 the HL 

register pair points to the desired memory location. 

12-9 INDIRECT INSTRUCTIONS 

As discussed in Chap. 10, the program counter is an 

instruction pointer; it points to the memory location where 

the next instruction is stored. 

The HL register pair is different; it points to memory 

locations where data is stored. In other words, SAP-3 has 

several instructions where the HL register pair acts like a 

data pointer. The following discussion clarifies the idea. 

Indirect Addressing 

With direct addressing like LDA 5000H and STA 6000H, 

the programmer knows the address of the memory location 

because the instruction itself directly gives the address. 

With instructions that use the HL pointer, however, pro¬ 

grammers do not know the address; all they know is that 

the address is stored in the HL register pair. Whenever an 

instruction uses the HL pointer, the addressing is called 

indirect addressing. 

Visualizing the HL Pointer 

Figure 12-7a shows a 64K memory; it has 65,636 memory 

registers or memory locations where data is stored. The 

Indirect Read 

One of the indirect instructions is 

MOV reg,M 
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As another example, if where reg = A, B, C, D, E, H, or L 

M = Mhl 

This instruction says to load the specified register with the 

data addressed by HL. After execution of this instruction, 

the designated register contains MHL. 

For instance, if 

HL = 3000H and M300oh = 87H 

executing a 

MOV C,M 

produces 

C - 87H 

HL = 9850H and M9850H = CEH 

a MOV A,M results in 

A = CEH 

Figure 12-8b illustrates the MOV A,M. The HL pointer 

points to CEH, which is the data to be loaded into the A 

register. 

Indirect Write 

Here is another indirect MOV instruction: 

MOV M,reg 

HL HL 

3000H 87H 9850H CEH 

(a) (b) 

HL 

E300H F2H 

(c) 

Fig. 12-8 Examples of indirect addressing. 

where M = Mhl 

reg = A, B, C, D, E, H, orL 

This says to load the memory location addressed by HL 

with the contents of the specified register. After execution 

of this instruction, 

Mhl = reg 

As an example, if 

HL = E300H 

B = F2H 

the execution of a MOV M,B produces 

ME3ooh = F2H 

Figure 12-8c illustrates the idea. 

Indirect-Immediate Instructions 

Sometimes we want to write immediate data into the memory 

location addressed by the HL pointer. The instruction to 

use in this case is 

MVI M,byte 

Here is an example. If HL = 3000H, executing a 

MVI M,87H 

Figure 12-8a shows how to visualize the MOV C,M. The produces 

HL pointer points to 87H, which is the data to be read into 

register C. M3000H = 87H 
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Other Pointer Instructions 

Here are more instructions using the HL pointer: 

ADD M 

ADC M 

SUB M 

SBBM 

INRM 

DCRM 

ANAM 

ORAM 

XRAM 

CMPM 

In each of these, M is the memory location addressed by 

HL. Think of M as another register where data is stored. 

Each of the foregoing instructions operates on this data as 

previously described. 

EXAMPLE 12-4 

Suppose 256 bytes of data are stored in memory between 

addresses 2000H and 20FFH. Show a program that will 

copy these 256 bytes at addresses 3000H to 30FFH. 

SOLUTION 

Label Instruction Comment 

LXI H,1FFFH initialize pointer 

LOOP: INX H ;Advance pointer 

MOV B,M ;Read byte 

MOV A,H ;Load 20H into accumulator 

ADI 10H ;Add offset to get 30H 

MOV H,A ;Offset pointer 

MOV M,B ; Write byte in new location 

SUI 10H ; Subtract offset 

MOV H,A ; Restore H for next read 
MOV A,L ;Prepare for compare 

CPI FFH ;Check for 255 

JNZ LOOP ;If not done, get next byte 

HLT ;Stop 

This looping program transfers each successive byte in the 

2000H-20FFH area of memory into the 3000H-30FFH area 

of memory. Here are the details. 

The LXI initializes the pointer with address 1FFFH. The 

first time into the loop, the INX will advance the HL pointer 

to 2000H. The MOV B,M then reads the first byte into the 

B register. The next three instructions 

MOV A,H 

ADI 10H 

MOV H,A 

offset the HL pointer to 3000H. Then the MOV M,B writes 

the first byte into location 3000H. The next two instructions, 

SUI and MOV, restore the HL pointer to 2000H. The MOV 

A,L puts 00H into the accumulator. Because the CPI FFH 

resets the zero flag, the JNZ forces the program to return 

to the LOOP entry point. 

On the second pass through the loop, the computer will 

read the byte at 2001H and it will store this byte at 3001H. 

The looping will continue with successive bytes being 

moved from the 2000H-20FFH section of memory to the 

3000H-30FFH area. Since the first byte is read from 2000H, 

the 256th byte is read from 20FFH. After this byte is stored 

at 30FFH, the pointer is restored to 20FFH. The MOV A,L 

then loads the accumulator to get 

A = FFH 

This time, the CPI FFH will set the zero flag. Therefore, 

the program will fall through the JNZ to the HLT. 

12-10 STACK INSTRUCTIONS 

SAP-2 has a CALL instruction that sends the program to a 

subroutine. As you recall, before the jump takes place, the 

program counter is incremented and the address is saved at 

addresses FFFEH and FFFFH. The addresses FFFEH and 

FFFFH are set aside for the purpose of saving the return 

address. At the completion of a subroutine, the RET 

instruction loads the program counter with the return 

address, which allows the computer to get back to the main 

program. 

The Stack 

A stack is a portion of memory set aside primarily for 

saving return addresses. SAP-2 has a stack because addresses 

FFFEH and FFFFH are used exclusively for saving the 

return address of a subroutine call. Figure 12-9a shows 

how to visualize the SAP-2 stack. 

SAP-3 is different. To begin with, the programmer 

decides where to locate the stack and how large to make 

it. As an example, Fig. 12-9b shows a stack between 

addresses 20E0H and 20FFH. This stack contains 32 

memory locations for saving return addresses. Programmers 

can locate the stack anywhere they want in memory, but 

once they have set up the stack, they no longer use that 

portion of memory for program and data. Instead, the stack 

becomes a special space in memory, used for storing the 

return addresses of subroutine calls. 

Stack Pointer 

The instructions that read and write into the stack are called 

stack instructions; these include PUSH, POP, CALL, and 
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(a) (b) 

Fig. 12-9 (a) SAP-2 stack; (b) example of a stack; (c) stack 
pointer addresses the stack; (d) SP points to 20FFH. 

others to be discussed. Stack instructions use indirect 

addressing because a 16-bit register called the stack pointer 

(SP) holds the address of the desired memory location. As 

shown in Fig. 12-9c, the stack pointer is similar to the HL 

pointer because the contents of the stack pointer indicate 

which memory location is to be accessed. For instance, if 

SP = 20FFH 

the stack pointer points to memory location M20ffh (see 

Fig. 12-9d). Depending on the stack instruction, a byte is 

then read from, or written into, this memory location. 

To initialize the stack pointer, we can use the immediate 

load instruction 

LXI SP,dble 

For instance, if we execute 

LXI SP,20FFH 

the stack pointer is loaded with 20FFH. 

PUSH Instructions 

The contents of the accumulator and the flag register are 

known as the program status word (PSW). The format for 

this word is 

PSW = AF 

where A = contents of accumulator 

F = contents of flag register 

The accumulator contents are the high byte, and the flag 

contents the low byte. When calling subroutines, we usually 

have to save the program status word, so that the main 
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program can resume after the subroutine is executed. We 

may also have to save the contents of the other registers. 

PUSH instructions allow us to save data in a stack. Here 

are the four PUSH instructions: 

PUSH B 

PUSH D 

PUSH H 

PUSH PSW 

where B stands for BC 

D stands for DE 

H stands for HL 

PSW stands for program status word 

When a PUSH instruction is executed, the following things 

happen: 

1. The stack pointer is decremented to get a new value 

of SP - 1. 

2. The high byte in the specified register pair is stored in 

Msp- l* 
3. The stack pointer is decremented again to get SP — 

2. 
4. The low byte in the specified register pair is stored in 

Msp - 2* 

Here is an example. Suppose 

BC = 5612H 

SP = 2100H 

When a PUSH B is executed, 

1. The stack pointer is decremented to get 20FFH. 

2. The high byte 56H is stored at 20FFH (Fig. 12-10g). 

3. The stack pointer is again decremented to get 20FEH. 

4. The low byte 12H is stored at 20FEH (Fig. 12-10b). 



20FAH 

20FBH 

20FCH 

20FDH 

20FEH 

20FFH 

20FAH 

20FBH 

20FCH 

20FDH 

20FEH 

20FFH 

(c) (d) 

Fig. 12-10 Push operations: (a) high byte first; (b) low byte 
second; (c) 6 bytes pushed on stack; (d) popping a byte off the 
stack; (e) incrementing stack pointer. 

20FAH 

20FBH 

20FCH 

20FDH 

20FEH 

20FFH 

(e.I 

Here’s another example. Suppose 

SP = 2100H 

AF = 1234H 

DE = 5678H 

HL = 9A25H 

then executing 

PUSH PSW 

PUSH D 

PUSH H 

loads the stack as shown in Fig. 12-10c. The first PUSH 

stores 12H at 20FFH and 34H at 20FEH. The next PUSH 

stores 56H at 20FDH and 78H at 20FCH. The last PUSH 

stores 9AH at 20FBH and 25H at 20FAH. Notice how the 

stack builds. Each new PUSH shoves data onto the stack. 

POP Instructions 

Here are four POP instructions: 

POP B 

POP D 

POPH 

POP PSW 

where B stands for BC 

D stands for DE 

H stands for HL 

PSW stands for program status word 
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When a POP is executed, the following happens: 

1. The low byte is read from the memory location 

addressed by the stack pointer. This byte is stored in 

the lower half of the specified register pair. 

2. The stack pointer is incremented. 

3. The high byte is read and stored in the upper half of 

the specified register pair. 

4. The stack pointer is incremented. 

Here’s an example. Suppose the stack is loaded as shown 

in Fig. 12-10c with the stack pointer at 20FAH. Then 

execution of POP B does the following: 

1. Byte 25H is read from 20FAH (Fig. 12-10c) and stored 

in the C register. 

2. The stack pointer is incremented to get 20FBH. Byte 

9AH is read from 20FBH (Fig. 12-10d) and stored in 

the B register. The BC register pair now contains 

BC = 9A25H 

3. The stack pointer is incremented to get 20FCH (Fig. 

12-10c). 

Each time we execute a POP, 2 bytes come off the stack. 

If we were to execute a POP PSW and a POP H in Fig. 

12-10c, the final register contents would be 

AF = 5678H 

HL - 1234H 

and the stack pointer would contain 

SP = 2100H 

CALL and RET 

The main purpose of the SAP-3 stack is to save return 

addresses automatically when using CALLs. When a 

CALL address 

is executed, the contents of the program counter are pushed 

onto the stack. Then the starting address of the subroutine 

is loaded into the program counter. In this way, the next 

instruction fetched is the first instruction of the subroutine. 

On completion of the subroutine, a RET instruction pops 

the return address off the stack into the program counter. 

Here is an example: 

Address Instruction 

2000H LXI SP,2100H 

2001H 

2002H 

Address Instruction 

2003H CALL 8050H 

2004H 

2005H 

2006H MVI A,0EH 

20FFH HLT 

8050H 

8059H RET 

To begin with, LXI and CALL instructions take 3 bytes 

each when assembled: 1 byte for the op code and 2 for the 

data. This is why the LXI instruction occupies 2000H to 

2002H and the CALL occupies 2003H to 2005H. 

The LXI loads the stack pointer with 2100H. During the 

execution of CALL 8050H, the address of the next instruc¬ 

tion is saved in the stack. This address (2006H) is pushed 

onto the stack in the usual way; the stack pointer is 

decremented and the high byte 20H is stored; the stack 

pointer is decremented again, and the low byte 06H is 

stored (see Fig. 12-1 la). The program counter is then 

loaded with 8050H, the starting address of the subroutine. 

When the subroutine is completed, the RET instruction 

takes the computer back to the main program as follows. 

First, the low byte is popped from the stack into the lower 

half of the program counter; then the high byte is popped 

from the stack into the upper half of the program counter. 

(a) (b) 

Fig. 12-11 (a) Saving a return address during a subroutine call; 
(b) popping the return address during a RET. 
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After the second increment, the stack pointer is back at 

2100H, as shown in Fig. 12-11 b. 

The stack operation is automatic during CALL and RET 

instructions. All we have to do is initialize the setting of 

the stack pointer; this is purpose of the LXI SP,dble 

instruction. It sets the upper boundary of the stack. Then a 

CALL automatically pushes the return address onto the 

stack, and a RET automatically pops this return address off 

the stack. 

Conditional Calls and Returns 

Here is a list of the SAP-3 conditional calls: 

CNZ address 

CZ address 

CNC address f 

CC address 

CPO address 

CPE address "4 

CP address ^ r 

CM address 

They are similar to the conditional jumps discussed earlier. 

The CNZ branches to a subroutine only if the zero flag is 

reset, the CZ branches only if the zero flag is set, the CNC 

branches only if the carry flag is reset, and so forth. 

The return from a subroutine may also be conditional. 

Here is a list of the conditional returns: 

RNZ 

RZ 

RNC 

RC 

RPO 

RPE 

RP 

RM 

The RNZ will return only if the zero flag is reset, the RZ 

returns only when the zero flag is set, the RNC returns 

only if the carry flag is reset, and so on. 

EXAMPLE 12 5 

SAP-3 has a clock frequency of 1 MHz, the same as SAP- 

2. Write a program that provides a time delay of approxi¬ 

mately 80 ms. 

SOLUTION 

Label Mnemonic Comment 

LXI SP,E000H initialize stack pointer 

MVI E,08H initialize counter 

LOOP: CALL F020H ;Delay for 10 ms 

DCR E ;Count down 

JNZ LOOP 

HLT 

;Test for 8 passes 

You almost always use subroutines in complicated programs; 

this means that the stack will be used to save return 

addresses. For this reason, one of the first instructions in 

any program should be a LXI SP to initialize the stack 

pointer. 

The 80-ms time delay program shown here starts with a 

LXI SP,E000H. This implies that the stack grows from 

address DFFFH toward lower memory. In other words, the 

stack pointer is decremented before the first push operation; 

this means that the stack begins at DFFFH. 

The remainder of the program is straightforward. The E 

register is used as a counter. The program calls the 10-ms 

time delay 8 times. Therefore, the overall time delay is 

approximately 80 ms. 

GLOSSARY 

data pointer Another name for the HL register pair because 

some instructions use its contents to address the memory. 

extended register A pair of CPU registers that act like a 

16-bit register with certain instructions. 

indirect addressing Addressing in which the address of 

data is contained in the HL register pair. 

overflow A sum or difference that lies outside the normal 
range of the accumulator. 

pop To read data from the stack. 

push To save data in the stack. 

stack A portion of memory reserved for return addresses 

and data. 

stack pointer A 16-bit register that addresses the stack. 

The stack pointer must be initialized by an LXI instruction 

before calling subroutines. 
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SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. An_is a sum or difference that lies out¬ 

side the normal range of the accumulator. One way 

to detect an overflow is with the-flag. 

2. (overflow, carry) To reset the carry flag, you may 

use an_followed by a CMC. STC stands 

for_the carry flag. 

3. (STC, set) The ADC instruction adds the- 

flag and the contents of the specified register to the 

contents of the_SBB stands for subtract 

with- 
4. (carry, accumulator, borrow) The RAL rotates all 

bits to the_with CY going to the LSB. 

RRC rotates the accumulator bits to the right with the 

LSB going to the carry flag. 

5. (left) The CMP instruction compares the contents of 

the designated register with the contents of the accu¬ 

mulator. If the two are equal, the zero flag is 

_The CPI compares an immediate byte to 

the contents of the- 

6. (set, accumulator) JM stands for jump if- 

. The program will branch to a new address if the 

_flag is set. JNZ means jump if not zero. 

With this instruction, the program branches only if 

the_flag is reset. 

7. (minus, sign, zero) The LXI instruction is used to 

load register pairs. B is paired off with C, D with E, 

and H with_The HL register pair acts 

like a_pointer with some instructions. 

This type of addressing is called- 

8. (L, data, indirect) The stack is a portion of memory 

reserved primarily for return addresses. The stack 

pointer is a 16-bit register that addresses the stack. It 

is necessary to initialize the stack pointer before 

calling any subroutines. 

PROBLEMS 

12-1. Write a program that adds decimal 345 and 753. 

(Use immediate bytes for the data.) 

12-2. Write a program that subtracts decimal 456 from 

983. (Use immediate data.) 

12-3. Suppose that 1,024 bytes of data are stored be¬ 

tween addresses 5000H and 53FFH. Write a pro¬ 

gram that copies these bytes at addresses 9000H 

to 93FFH. 

12-4. Show a program that provides a delay of approxi¬ 

mately 35 ms. If you use the SAP subroutines of 

Chap. 11, start your program with LXI SP,E000H 

12-5. Write a program that sends 1, 2, 3, ... , 255 to 

port 22 with a time delay of 1 ms between OUT 

22 instructions. (Use a LXI SP,E000H and a 

CALL F010H.) 

12-6. Bytes arrive a port 21H at a rate of approximately 

1 per millisecond. Write a program that inputs 

256 bytes and stores them at addresses 8000H to 

80FFH. (Use CALL F010H.) 

12-7. Suppose that 512 bytes of data are stored at ad¬ 

dresses 6000H to 61FFH and write a program that 

outputs these bytes to port 22H at a rate of ap¬ 

proximately 100 bytes per second. (Use CALL 

F020H.) 

12-8. A peripheral device is sending serial data to bit 7 

of port 21H at a rate of 1,000 bits per second. 

Write a program that converts any 8 bits in the 

serial data stream to an 8-bit parallel word, which 

is then sent to port 22H. (Use CALL F010H.) 

12-9. Suppose that 256 bytes are stored at addresses 

5000H to 50FFH and write a program that con¬ 

verts each of these bytes into a serial data stream 

at bit 0 of port 22H. Output the data at a rate of 

approximately 1,000 bits per second. (Use CALL 

F010H.) 
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PART 3 
PROGRAMMING POPULAR 

MICROPROCESSORS 

Introduction to Microprocessors 
This part of the text is designed to introduce you to some 

of the more popular microprocessors. The design and 

operation of a microprocessor are based on the digital 

circuits which you studied in Part 1. 

You will learn the basic principles of microprocessors 

and how to write simple assembly language programs. In 

the study of computers, programming, and microprocessors, 

one fundamental idea emerges: 

If you do correctly a great number of 

very simple tasks, you will have done 

something complicated. 

If you understand the basic principles and simple programs 

presented here, you will be on your way to understanding 

more complicated ideas. 

Since the microprocessor is a “computer on a chip,” it 

may help to take a quick look at computers before stalling 

to study microprocessors. 

13-1 COMPUTER HARDWARE 

The digital circuits you studied in the first part of this text 

are the building blocks of a computer. In the early days of 

computers, digital circuits were made by using vacuum 

tubes and later were built with transistors. Circuits were 

designed which would act as the “brain” of a computer. 

These circuits were called the central processing unit (CPU). 

The CPU could perform basic arithmetic operations such 

as addition and subtraction, logic operations such as ANDing 

and ORing, and control operations. Thus it could process 

data. 

A CPU cannot be used alone. There are other components 

which are needed to make a computer. For example, we 

said that a CPU can process data. Where is this data? We 

need memory—a place where data can be stored until the 

CPU needs it. And what if the CPU does a calculation and 

comes up with an answer? How would we know what the 

Fig. 13-1 A simplified overview of a microprocessor 
system. 

answer is? We need a way for the CPU to communicate 

with us. We need an output device. Figure 13-1 illustrates 

what a simple system looks like. 

13-2 DEFINITION OF A 
MICROPROCESSOR 

What exactly is a microprocessor? As the name implies, it 

must be small (micro-) and it must be able to process data 

(-processor). A microprocessor is a CPU which is con¬ 

structed on a single silicon chip. What, then, is a CPU? A 

CPU is an electronic circuit which can interpret and execute 

instructions and control input and output. 

In this text, when reference is made to a microprocessor, 

only the microprocessor is being referred to. However, if 

reference is made to a computer, then we are talking about 

a device which contains a microprocessor and several 

subsystems. Figure 13-2 serves to illustrate this. 

13-3 SOME COMMON USES FOR 
MICROPROCESSORS 

Microprocessors can be found in a variety of products. 

Some well-known examples are computers and industrial 

controls. Some not-so-obvious products that use micropro- 
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Fig. 13-2 Block diagram of a complete computer and 
peripherals. 

cessors include answering machines, compact disk players, 

and automobiles. 

The microprocessor supplies electronic products with a 

new dimension. In the past, electronic products have been 

able to make simple decisions because of certain kinds of 

circuitry and/or sensors. The microprocessor, however, has 

multiplied this trait many times: Some devices, most notably 

computers, now almost appear to think. 

13-4 MICROPROCESSORS 
FEATURED IN THIS TEXT 

It is the purpose of this book to examine the most popular 

8-bit microprocessor families in addition to the 16-bit Intel 

8086-8088 family. 

6502 Family 

The 6502 family is supported by this text. The 65C02, an 

advanced version of the 6502 which is used in the Apple 

lie, has some additional instructions and enhanced features 

which can be found in the manufacturer’s programming 

manuals. 

6800 Family 

The 6800/6808 is supported by this text. The 6809 is an 

enhanced version of the 6800. It understands all the 

instructions of the 6800 and includes some other advanced 

features. 

8080/8085/Z80 Family 

The 8080, 8085, and Z80 are also supported in this text. 

The 8080 and 8085 have exactly the same instruction set 

except for two additional instructions included in the 8085. 

The Z80 understands all the 8080/8085 instructions and has 

many other additional instructions. 

Only those instructions common to all three micropro¬ 

cessors are discussed in this text. (The extended Z80 

instructions are not used in the text.) This has the advantage 

of making it possible for students to use a mixture of 8085 

and Z80 microprocessor trainers in the same class at the 

same time with all students on equal footing and with a 

minimum of confusion. Either Z80 or 8085 mnemonics can 

be used interchangeably for the homework problems and 

the object code will be the same. 

8086/8088 Family 

The Intel 8086/8088 is the only 16-bit microprocessor 

discussed in this text. This microprocessor (in addition to 

the 80286, 80386, and 80486) is used in the popular IBM 

PCs, IBM compatibles, and clones. The DOS DEBUG 

utility is used throughout the text. Assemblers are introduced 

in later chapters. 

13-5 ACCESS TO 
MICROPROCESSORS 

Developing skill in programming and interfacing micropro¬ 

cessors requires access to a microprocessor. Here are some 

ways to gain access to a microprocessor supported by this 

text. 

Computers 

The 6502 or one of its derivatives can be found in the entire 

line of Commodore computers including the PET, Vic-20, 

C-64, C-16, Plus-4, and C-128. They can also be found in 

the Apple II line of computers including the Apple II, II + , 

lie, lie, and lie + . They are also included in that portion of 

the Laser line of computers that are Apple-compatible, in¬ 

cluding the Laser 128, Laser 128 EX, and Laser 128 EX/2. 

And last of all, some of the older Atari home computers 

contain this type of microprocessor. 

The 8085 and Z80 can be found in some of the older 

CP/M machines. (CP/M stands for control program for 

microprocessors.) The Z80 was used in Radio Shack’s 

TRS-80 line of computers and is also found in the Com¬ 

modore 128 (the Commodore 128 contains two micropro¬ 

cessors). The Commodore 128 will also run CP/M software 

if that is desired. 

The 8086/8088 are found in all of the IBM PCs and XTs, 

IBM compatibles, and clones. The 80286 is used in AT- 

class machines, and of course the 80386 is used in the 

newer 386s. These microprocessors use a superset of the 

8086/8088 instructions set and can therefore also be used 

with this text. 
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Some IBM compatibles use the NEC-V20 or one of the 

other NEC microprocessors. These are compatible with the 

Intel series of microprocessors and will work equally well. 

Microprocessor Trainers 

Another way to gain access to a microprocessor supported 

by this text is through the use of a microprocessor trainer. 

Heathkit’s ET-3400-A trainer contains a 6808 chip. E&L 

Instruments has the “FOX” (MT-80Z) with a Z80 micro¬ 

processor. Intel makes the SDK-85, which features the 

8085 chip, and the SDK-86, which uses the 8086. Motorola 

makes the MEK6800D with a 6800 chip. 

Software Emulation Programs 

Finally, there are software emulation programs that will 

make a computer act as though it is using another micro¬ 

processor. 
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Programming and Languages 
What is a program and why do we need one? What do we 

mean by program design? What is a programming lan¬ 

guage? Why do we need a language? What is a flowchart? 

How does all of this relate to electronics and digital circuits? 

These are some of the questions we will try to answer in 

this chapter. 

14-1 RELATIONSHIP BETWEEN 
ELECTRONICS AND PROGRAMMING 

A question sometimes raised by electronics students is, 

“Why are we learning about programming microproces¬ 

sors?” 

Programming is a topic which is closely related to 

electronics. Mathematics and physics are topics which 

support or undergird the subject of electronics. They form 

a foundation. Programming is not so much a support subject 

as it is a related subject. Let’s take a closer look at this. 

Digital Electronics and Microprocessors 

What prompted the creation of digital electronics? It was 

the desire to make a machine without moving parts which 

could perform mathematical calculations. Such a machine 

would be much faster than any mechanical calculator. 

Correctly connecting enough digital logic circuits together 

created such a machine. 

Once the calculating machine had been built, there had 

to be a way to tell this machine to add, or subtract, or 

perform some logical operation. Thus programming was 

born. We simply needed a way to tell the machine what to 

do. In the beginning, programming was done by connecting 

wires or patch cords. This was very slow compared to what 

we do today. 

Over the years digital circuits became more complex, 

the calculating machine grew into far more than just a big 

calculator, and the need for ways to communicate with the 

machine grew. Finally, it became possible to put the entire 

computer “brain” on a single chip. 

Until this point an electronics technician might never 

work on or even see a computer. However, when the 

“brain” could be put on a chip, and the cost was measured 

in dollars rather than thousands of dollars, its possibilities 

became endless. 

Designers and engineers realized that these “brains,” or 

microprocessors, could improve the performance of many 

common electronic products and could make new products 

economically possible. With microprocessors everywhere, 

the electronics technician can no longer be unaware of their 

operation. 

The Electronic Technician and Programming 

So why should a technician learn about programming? 

Because the technician will probably eventually work on 

products with microprocessors, and the microprocessor 

cannot be separated from its program. A microprocessor 

without a program would be like a resistor with no resistance 

or a wire with no conductivity. Without the program, a 

microprocessor does nothing. 

Programming is now part of the overall picture that 

electronics is concerned with—like mathematics and phys¬ 

ics. Some technicians will not need as much knowledge 

about programming as others: It depends on what your 

career field is. But everyone should at least be aware of 

the basics. 

The goal of this book is to provide the digital understand¬ 

ing and programming experience which would be appro¬ 

priate for the “typical” electronics student. 

14-2 PROGRAMMING 

In everyday language: 

A program is a very detailed list of steps which 

must be followed to accomplish a certain task. 
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A Familiar Example 

We have all used this concept of programming—of follow¬ 

ing specific steps to accomplish a certain task—but have 

probably not thought of it in these terms. Let’s look at 

something like taking a city bus downtown. You would be 

likely to 

1. Wear clothes appropriate for the weather that particular 
day. 

2. Take some money or tickets. 

3. Go to a nearby bus stop. 

4. Wait for the correct bus. 

5. Get on. 

6. Pay the driver. 

7. Sit down if there were empty seats available. 

8. Wait until the bus arrived in the area you wished to 

go to. 

9. Alert the driver you wished to get off. 

10. Wait for the bus to stop. 

11. And finally get off. 

Figure 14-1 is a flowchart (we’ll talk about flowcharts in 

just a minute) of this process. 

Unless this was your first time riding a bus, you wouldn’t 

think about every detail because much of it is understood 

and is a natural part of your life. You usually dress for the 

weather when you go outside, and you usually take money 

when you go places. With a computer, though, things are 
different. 

Very little is “natural” for a computer. The micropro¬ 

cessor has several temporary storage places where numbers 

can be kept (called registers). The machine can add and 

subtract, it can and and or, it can move numbers from one 

register to another, and it can do other simple things, but 

everything must be specified! One of the things that often 

surprises people learning to program microprocessors is the 

amount of detail which is necessary when writing a program. 

Fig. 14-1 Flowchart of a bus ride. 
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14-3 FUNDAMENTAL PREMISE 

Before we look further at the subject of programming and 

flowcharts, we need to discuss a fundamental concept of 

programming. The concept is this: 

You cannot program the computer to do 

something you don’t know how to do. 

If you use computers only with application software (spread¬ 

sheets, word processors, and so on), this may not always 

be true, but if you want to program microprocessors, it is. 

Before you begin to think about how you will program a 

computer to do something, think about how you would do 

it yourself without a computer. After you know how you 

would do it, you can begin to tell the computer how it 

should do it. 

14-4 FLOWCHARTS 

When you are writing a program, it helps to have an 

organized way to write or express the flow of the program’s 

logic. A flowchart is one way to do this. 
Fig. 14-3 Straight-line program to calculate sales tax and 
display total cost for one item. 

Flowchart symbols 

Figure 14-2 shows some common flowchart symbols. There 

are others, but we’ll need only a few for most of the 

programs we’ll be writing. 

Straight-Line Programs 

The simplest type of program is the straight-line program. 

In this type of program the steps involved follow each 

other, one after another, without any alternate routes or 

paths. Figure 14-3 is an example of a straight-line program. 

This program is similar to one that might be used at the 

cash register of a store. It allows you to enter the price and 

product code of one item. The program then calculates a 5 

percent sales tax, adds the tax to the original price to arrive 

at a total, and finally displays the total cost. The program 

will accept only one item, which means that it would have 

to be “run” again to find the total cost of a second item. 

Since we often buy more than one item at a time, let’s look 

at another flowchart. 

Looping 

A loop is a section of a program which will repeat over 

and over again. We can make the loop repeat indefinitely, 

or make it stop after a certain number of repetitions, or 

make it stop when some condition is met. Look at Fig. 

14-4 and compare it to Fig. 14-3. 

Fig. 14-4 Sales-tax program with loop. 
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These are almost identical, aren’t they? What do you 

think this program will do that the one in Fig. 14-3 didn’t? 

The answer, of course, is that this program is ready to 

accept a new number immediately after displaying the 

previous total. After you enter an item’s price, the total 

cost is shown on the screen and the program then waits for 

you to enter the price of the next item. 

Loops make it easier for programs to perform repetitive 

tasks. The program that uses loops can do the same 

calculations or functions over and over again. 

Branching 

Sometimes we want the computer program to do different 

things based on the situation at the time or based on the 

results of certain operations. We need a way to branch off 

from the main program flow. Branching allows us to write 

one program that can do different things at different times. 

Let’s look at the sales-tax situation again. Study Fig. 14-5 

at this time. This new version of the sales-tax program has 

a branch and a decision symbol. 

Let s look at the decision symbol (diamond). If the 

program is to be able to take an alternate path when certain 

conditions exist, we must give it a chance to check for 

those conditions. The decision diamond represents that 

time. If the item is a nonfood item, it will be taxed as 

usual, and the program flow continues downward. If it is 

Fig. 14-5 Sales-tax program with loop and branch for non- 
taxable food items. 

a food item which is not to be taxed, then we take the 

branch. The branch doesn’t actually say not to tax the food 

item. But by making the total cost equal to the original 

price and bypassing the tax calculation section, we have 

effectively done the same thing. The total that appears will 

be the same as the original price, and the program will then 

loop back to the beginning to wait for the next item. 

Subroutines 

Sometimes we need to have the computer program take 

care of some intermediate task before it can continue with 

the main job at hand. We don’t want it to branch and then 

end up somewhere else after the branch is finished. Rather, 

we want it to go to an intermediate task and then come 

right back to where it was before it left. This is called a 

subroutine. Looking at a subroutine will help clarify this 

new concept. Figure 14-6 shows our new program. 

Everything is the same as in the last (Fig. 14-5) program 

except that we have added a subroutine which handles 

inventory. This subroutine is really just another small 

program that works along with the main one. It reduces the 

inventory total for this particular item by 1. If this total is 

less than 10, then it’s time to order more. Either way, the 

subroutine prints a line on a printer in the administrative 

office with the product code and name of the product. We 

then return ’ from the subroutine to the main program and 

continue where we left off. 

Calling Subroutines 

The act of going to a subroutine is often referred to as 

calling a subroutine, at the end of which we return to the 
main program. 

The greatest advantage in having subroutines is not in 

calling or using them once but in using them several times 

in a program. You write that part of the program only once, 

but you can use it many times. Figure 14-7 illustrates this. 

In Fig. 14-7 the boxes are not process boxes but rather 

representations of certain parts or modules of the whole 
computer program. 

In this hypothetical situation there may be times when 

merchandise needs to be ordered other than w'hen inventory 

drops below 10. For example, if a clerk finds a piece of 

merchandise damaged too badly to sell at a reduced price, 

it may simply be disposed of; however, it must be replaced 

to keep inventory up. The “damaged merchandise” part of 

the program can then call the “inventory-ordering subrou¬ 
tine” at some point. 

Likewise, the store might sometimes give food or clothing 

to charity. This part of the program might also call the 

inventory-ordering subroutine to replace that merchandise. 

This store’s computer program uses the same subroutine 

in three different situations, but the programmer had to 
write the subroutine only once. 

Chapter 14 Programming and Languages 219 



Fig. 14-6 Sales-tax program with inventory control 
reordering subroutine. 

14-5 PROGRAMMING LANGUAGES 

Price entry 
part of 

program 

Damaged- 
merchandise 

reporting 
part of program 

Charities 
bookkeeping 

part of 
program 

Inventory¬ 
reordering 
subroutine 

Fig. 14-7 Repetitive calling of inventory-reordering 
subroutine. 

Now that we can define and flowchart the desired process, 

we need to be able to communicate this process to the 

computer. We need a language which the computer under¬ 

stands. Many languages have been developed for use with 

computers. 

Machine Language 

There is only one language the computer actually under¬ 

stands, and that is machine language, which consists of Is 

and Os. This binary language is fine for the computer but 

not for people. To have to communicate with the computer 

in binary, you would place in its memory a series of 

numbers that might look like this: 

10010100 

01001010 
11101110 

00101001 

It would be nearly impossible to remember what the many 

different patterns of Is and 0s meant, and the probability 

of making a mistake would be very high. Something better 

is needed. 
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Assembly Language 

The first step toward a language that is easier for people to 

work with uses abbreviations to stand for different opera¬ 

tions. For example, the instruction which tells a 6800 

microprocessor to add numbers is the ADDA instruction, 

which stands for ADD accumulator A to a memory location. 

This “language” of abbreviations is called assembly 

language. The “abbreviations” are called mnemonics. A 

mnemonic (pronounced ne-'man-ik) is something that aids 

the memory. Mnemonics are designed to be easy to re¬ 

member and are a significant improvement over binary 
digits. 

Machine language and assembly language are the subjects 

of this book. We refer to them as low-level languages 

because only very simple instructions exist. 

High-level languages 

In-between languages 

Low-level languages 

Fig. 14-8 Some examples of high-level, low-level, and in- 
between languages. 

High-Level Languages 

Over the course of time, people working with computers 

felt it would be helpful to create languages that were more 

like English, so that it would not be so difficult to 

communicate with the computer and so that more advanced 

commands could be created. We call these high-level 
languages. 

For example, many microprocessors do not have the 

ability to multiply or divide. It is obvious, however, that 

these are common mathematical functions that must be 

available to a computer programmer. In machine or assembly 

language one can use repeated additions to multiply or 

repeated subtractions to divide. This is not necessarily the 

best way to multiply or divide, but it is one way. In a high- 

level language there are “multiply” and “divide” com¬ 

mands. The language knows how to create the multiply and 

divide functions even though the microprocessor does not 

have these functions built in. In fact, these languages can 

understand English commands like print, run, do, next, 

and end. The microprocessor does not understand these 

English words, but the language changes (interprets or 

compiles) them into machine language before sending them 
to the microprocessor. 

Many high-level languages have been created over the 

years. FORTRAN (formula translation) is a language that 

handles high-level mathematics very well and is designed 

for scientists and engineers. COBOL, which stands for 

common business-oriented language, is tailored to the needs 

of business. BASIC, which stands for beginner’s all-purpose 

symbolic instruction code, was designed to be easy for 

nonprofessional programmers to learn and use. Pascal, 

named for the French mathematician Blaise Pascal, is 

designed to encourage the programmer to adhere to what 

are considered “correct” programming practices. 

There are some languages that are somewhat “in be¬ 

tween’ ’ the high-level and low-level languages, most notably 

C and FORTH. Figure 14-8 illustrates this. 

14-6 ASSEMBLY LANGUAGE 

Let’s look at the subject of assembly-language programming 
in a little more detail. 

Machine language is the language the computer under¬ 

stands, but it is difficult for people to work with. Assembly 

language gives us the advantages of machine language 

without the disadvantage of doing something that seems so 
unnatural. 

When we write in assembly language, we use abbrevi¬ 

ations called mnemonics for certain operations or functions. 

The assembly language is called source code. It is more 

like English than machine language. The microprocessor, 

however, cannot act upon or execute mnemonics. It doesn’t 

understand mnemonics. We need to convert the assembly 

language or source code into machine language or object 

code. There are a couple of ways to do this. 

Manual Assembly 

Let’s look at manual assembly first. When using this 

technique, you write your program on paper using mne¬ 

monics. Then you look up each mnemonic on a chart. On 

the chart there will be a number which is the machine- 

language code for the assembly-language mnemonic. You 

then write down this object code so that you can later key 

it into the microprocessor trainer or computer. This is called 

manual assembly because you must look up the codes 
yourself. 

Assembly with an Assembler or Monitor 

The other way to create machine-language object code from 

assembly-language source code is through the use of a 

monitor or assembler. Since manual assembly involves 

simply looking up mnemonics on a chart, it seems reasonable 

that the chart could be stored in a computer and the computer 
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could look up the mnemonics and find their corresponding 

object code. Though there is much more to a fairly 

sophisticated assembler or monitor, this is the basic idea. 

A monitor is a program that is normally stored in ROM 

and gives you access to the microprocessor’s various 

registers. It sometimes has in it a simple assembler to 

change mnemonics into machine code and a disassembler 

to change machine code back into mnemonics. 

An assembler program is usually more sophisticated than 

a monitor and has features that are difficult to explain at 

this point, but suffice it to say they are for more serious 

programming than the monitor. A longer period of time is 

required to become skilled in the use of an assembler, but 

it is a more powerful tool. 

14-7 WORKSHEETS 

During the remainder of this book you will be writing 

assembly-language programs. In addition to the flowchart, 

the worksheet is a tool which helps you stay organized as 

you write programs. The worksheet is simply a form on 

which you can write your program. It is laid out in such a 

way that it’s a little easier to stay neat. Figure 14-9 is a 

portion of such a worksheet. 

Name_ 

Program name. 

Date_ 

Sheet _ of 

Address Obj code Labe! Mnemonic Operand/Addr Comment 

Fig. 14-9 Example of a portion of a worksheet. 

GLOSSARY 

assembler A program which translates assembly language 

mnemonics into binary patterns (machine language). 

assembly language A low-level language which uses 

mnemonics in place of binary patterns (machine language). 

branch A section of a program which causes different 

actions to be taken based on conditions. 

disassembler A program which translates binary patterns 

(machine language) into assembly language mnemonics. 

loop A section of a program which will repeat over and 

over again. 

mnemonic Something that aids the memory. Assembly 

language uses mnemonics, which are abbreviations for 

machine-language instructions. 

monitor A program (usually stored in ROM) which gives 

the programmer access to the microprocessor’s stack, 

accumulator, registers, and so forth. It sometimes contains 

a simple assembler. 

straight-line program A program in which each step is 

followed by the next without any alternate routes or paths. 

subroutine A portion of the program which is called upon 

to perform a specific task. When the task is finished, the 

main part of the program is returned to. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Without a_, a microprocessor does noth¬ 

ing. 

2. (program) A_is a very detailed list of 

steps which must be followed to accomplish a certain 

task. 

3. (program) What is the shape of the decision symbol? 
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4. (Diamond)-make programs more practi¬ 
cal for doing repetitive tasks. 

5. (Loops) The only language a computer actually un¬ 

derstands is__ language. 

6. (machine) What does COBOL stand for? 

7* (Common business-oriented language) A program in 

which the steps involved occur one after the other 

without any alternate paths is called a_ 

program. 

8. (straight-line) A section of a program which repeats 

indefinitely, a certain number of times, or while or 

until a certain condition exists is called a_ 
(loop) 

PROBLEMS 

14-1. If you want to write a program to do something, 

what should you think about before you try to 

figure out what computer instructions to use? 

14-2. What is the shape of the process symbol? 

14.3. What provides an alternate path for program 

flow based on certain conditions? 

14-4. What allows program execution to go to an in¬ 

termediate task and then return to the place 

where it was before it started the intermediate 
task? 

14-5. What is one of the advantages of using subrou¬ 
tines? 

14-6. What is assembly language? 

14-7. What does FORTRAN stand for? 

14-8. What does BASIC stand for? 

14-9. What was one of the goals of the creator of the 

Pascal language? 

14-10. What does an assembler translate source code 

(mnemonics) into? 
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System Overview 

New Concepts_ 
We’ll begin this chapter by reviewing computer architecture. 

Then we’ll spend the greater part of the chapter looking at 

microprocessor architecture in general and at the architecture 

of the microprocessor families supported by this text in 

particular. 

15-1 COMPUTER ARCHITECTURE 

Let’s review computer architecture a little. Refer to Fig. 

15-1. 

Memory 

We said that memory was needed so that there would be a 

place for data and instructions to be stored. Data and 

instructions which can be lost after power is removed are 

stored in RAM (random-access memory). Data and instruc¬ 

tions which must never be lost, even after the power is 

turned off, are stored in ROM (read-only memory). Re¬ 

member that ROM is a type of memory which cannot have 

its contents changed once the ROM chip is manufactured. 

PROM and EPROM are used in much the same way as 

ROM but can be programmed after being manufactured 

(PROM) or even programmed more than once (EPROM). 

PROM and EPROM differ from RAM in that they require 

special equipment to program them. 

When we refer to memory in this text, we will usually 

be referring to RAM. 

Addressing 

Since there are many memory locations, it is necessary to 

have a means of referring to specific locations. This is done 

through addressing. Typically, memory locations are num¬ 

bered from 0000 (in hexadecimal numbering) to the highest 

location used by that particular trainer or computer. This 

sequential number which is assigned to each location is its 

address. See Fig. 15-2. 

A memory address is similar to the address of your home. 

Your house has a number or address assigned to it, and no 

other house on your street can have the same address. Inside 

your house are its contents; chairs, beds, and so on. Notice 

Fig. 15-1 Block diagram of a complete computer with 
peripheral devices. (Arrows indicate data flow.) 

Addresses 

Memory 

0000 Contents 

0001 Contents 

0002 Contents 

0003 Contents 

0004 Contents 

0005 Contents 

0006 Contents 

0007 Contents 

Fig. 15-2 Memory addressing. 



that your home’s address and your home’s contents are not 
the same. 

Each memory location has an address and contents. The 

address is necessary to specify which memory location to 

read information from or write information into. The 

contents is the information itself. 

Address Bus 

Most microprocessors can store information and instructions 

in a wide range of memory locations. Usually the memory 

locations are in a memory chip rather than in the micro¬ 

processor. The microprocessor needs a way to tell the 

memory chip which memory location it wants to put data 

into or take data from. It does this through the address bus. 
See Fig. 15-3. 

The address bus is a communications link between the 

microprocessor and the memory chips. Physically, it is 

simply a group of electrical paths which are connected to 

RAM, ROM, and the I/O chips. Through this bus the 

microprocessor can specify the address of any memory 

location in any chip or device. Notice in Fig. 15-3 that 

information travels on the address bus in only one direction, 

from the microprocessor to memory and I/O. There are 

more details involved, but this is the basic idea. 

Data Bus 

Once the microprocessor has specified which memory- 

location or device it wants to put data into or take data 

from, it then needs a set of electrical paths for this 

information to travel on. This set of paths is called the data 
bus. 

It is this set of electrical paths that allows data to flow 

from one chip to the next. Notice in Fig. 15-3 that 

information on the data bus travels both to and from the 

microprocessor, memory, and I/O devices. Eight-bit mi¬ 

croprocessors have a data bus that is 8 bits wide; 16-bit 

microprocessors have a data bus that is 16 bits wide. That 

is, the bus consists of 8 or 16 parallel connecting paths. 

Addressing Range 

Let’s look at the normal range of addresses possible with 
8-bit computers at this time. 

In earlier chapters you studied the binary number system 

and learned that each position represents a certain power 

of 2. This is similar to the way each position in our decimal 

number system represents a certain power of 10. This is 
illustrated below. 

Decimal 103 102 101 10° 
1,000’s 100’s 10s Is 

Binary 23 22 21 2° 
8s 4s 2s Is 

If we look at a decimal number like 9,999j0 (the subscript 

10 means that we are using a number in base 10), it not 

only tells us about a quantity of items, such as apples, but 

also tells us about possible combinations. 

The number 9,999 is a four-digit number. Using the 10 

different decimal digits from 0 through 9, and using no 

more than four digits at a time, there would be 9,999 + 

1, or 10,000, possible numbers you could create. (You add 

the 1 because the number 0000 or simply 0 must also be 

included.) This can also be calculated as 104 = 10,000. 

If you were interested in giving unique addresses to 

10,000 homes on the same street (quite a long street), it 

would be possible to do so by using only four digits. The 

first house would have the address 0, and then you would 

just continue numbering up to 9,999. 

EXAMPLE 15-1 

Using only three digits, how many unique addresses could 

you give to homes on a single street (a decimal number)? 

SOLUTION 

Since 103 — 1,000, this is the number of unique addresses 
that are possible. 

Data bus = bidirectional (two way) 

Fig. 15-3 Data bus and address bus. 
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Now, let’s try the same problem in binary: 11112 is a 

binary number. (The subscript 2 tells us we are using base 

2 or binary numbers.) The size of this number is shown 

below. 

Binary 23 22 21 2° 

8s 4s 2s Is 

1 111 

We have one 8. We have one 4. We have one 2. And we 

have one 1. That is, we have an 8, a 4, a 2, and a 1. If 

we add this up, we get 

8 + 4 + 2 + 1 = 15 

The number 111 12 is the same as 1510 (decimal 15). This 

means that using only 4 binary digits or bits, there are a 

total of 15 + 1, or 16 unique numbers possible. This can 

be calculated by using 24 - 16. 

If you wanted to give unique binary addresses to 16 

houses on the same street (not such a long street), it would 

be possible to do so with only 4 bits. The first house would 

be 0000 or simply 0, the next would be 0001, the next 

0010, and so on up to 1111. 

EXAMPLE 15 2 

Using 12 binary digits, how many unique house addresses 

would be possible? 

SOLUTION 

2V~ = 4,096 unique addresses 

This is essentially what is necessary in the matter of 

addressing memory locations. The highest number that 

exists in binary using only 4 bits is 11112 (1510). That 

means that if we had only four address lines—that is, an 

address bus with only four lines—we would be able to 

have only a maximum of 1610 different addresses. (0000 

counts as one address.) Obviously, this is not enough. Look 

at Fig. 15-4. This illustrates the number of unique addresses 

possible with different numbers of address lines. 

As can be seen in Fig. 15-4, if we decide to use only 

eight address lines, since we are studying 8-bit chips, we 

then limit ourselves to 256 memory locations. (Add the 

values of the first eight positions starting from the far right 

216 215 214 213 212 211 210 29 

32,768 8,192 2,048 512 

65,536 16,384 4,096 1,024 

Fig. 15-4 Powers of 2. Also the number of memory 
addresses available with varying numbers of address lines. 

+ 1.) This is not nearly enough. Most 8-bit chips use 2 

bytes for addressing purposes, which then allows 65,536 

different memory locations. (One byte is 8 bits; 2 bytes is 

16 bits, which then allows 216 combinations.) This is often 

adequate. If not, there are ways to increase this number by 

using a method known as bank switching. 

EXAMPLE 15 3 

How many memory locations could be addressed by a 10- 

line address bus? 

SOLUTION 

210 = 1,024 memory locations can be addressed. 

15-2 MICROPROCESSOR 
ARCHITECTURE 

We now need to look more closely at the actual micropro¬ 

cessor, which is the “brain” of our computer. First, we 

will study those features which most microprocessors have 

in common. Then we will look at each of the microprocessor 

families and study their specific features. 

Accumulator 

One of the most often used parts of a microprocessor is the 

accumulator. The accumulator is a storage place or register 

which often has its contents altered in some way. For 

example, we can add the contents of the accumulator to 

the contents of a memory location. Usually the result of an 

operation is also placed in the accumulator. This action is 

illustrated in Fig. 15-5. 

The microprocessor can take the contents of the accu¬ 

mulator and the data coming in, perform some operation 

on the two, and place the result back in the accumulator. 

There are times when no data is coming in but some 

operation is being performed on the contents of the accu¬ 

mulator only. For example, the microprocessor might find 

the l’s complement of the contents of the accumulator and 

place the result in the accumulator in place of the original 

number. 

Some microprocessors have only one accumulator; others 

have more than one. 

28 27 26 25 24 23 22 21 2° 

256 128 64 32 16 8 4 2 1 
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Accumulator 
Memory 

Data in In contents Out —. 

Fig. 15-5 Accumulator operation. 

Result 

General-Purpose Registers 

General-purpose registers are similar to the accumulator. 

In fact, the accumulator is a special type of register. 

General-purpose registers are temporary storage locations. 

They differ from the accumulator in that operations involving 

two pieces of data are usually not performed in them with 

the result going back into the register itself, as in the case 

of the accumulator. The microprocessor will often alter the 

contents of a register, however. Figure 15-6 shows the 

operation of a general-purpose register. 

One might wonder why a microprocessor needs general- 

purpose registers when it has RAM to temporarily store 

information. The answer is speed. Data in registers can be 

accessed and moved much more quickly than data in RAM. 

Program Counter/Instruction Pointer 

We mentioned earlier that instructions are stored in memory. 

Considering the fact that there can be tens of thousands, 

hundreds of thousands, or even millions of memory loca¬ 

tions, it’s obvious that the microprocessor must keep track 

of the location from which it will be getting its next 

instruction. This is the job of the program counter. 

The program counter is a very special register whose 

only job is to keep track of the location of the next 

instruction which the microprocessor will use. Figure 15-7 

illustrates its operation. 

The program counter “points” to the address of the next 

instruction to be retrieved and used by the microprocessor. 

The act of “getting” an instruction is usually referred to 

as fetching the instruction. The period of time needed for 

this is often called tht fetch cycle. 

Index Registers 

Another type of register is the index register. In the same 

way that the index of a book helps a person locate 

information, the index register can be used to help locate 

data. The index register is normally used as an aid in 

|-Register-1 
Data in-In contents Out-Data out 

Fig. 15-6 General-purpose register operation. 
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Fig. 15-7 Program counter operation. 

accessing data in tables stored in memory. The index 

register(s) can be incremented (increased by 1) or decre¬ 

mented (decreased by 1) but normally does not have other 

arithmetic or logical capabilities. 

We will look at the index register(s) more completely in 
later chapters. 

Status Register 

The status register, sometimes called the condition code 

register, or flag register, is a special register which keeps 

track of certain facts about the outcome of arithmetic, 

logical, and other operations. This register makes it possible 

for the microprocessor to be able to test for certain conditions 

and then to perform alternate functions based on those 

conditions. This is done through the use of flags. 

We will now take an overall look at flags. Don’t be 

concerned if these next few paragraphs are not completely 

clear at this point. They can serve as a refresher for those 

who may have had some experience with microprocessors 

in the past. And for those who are new to this subject, 

reading about them now will at least give you some idea 

of what flags are and how they are used. These concepts 

will be covered again in greater detail as they arise in later 
chapters. 

The status register is divided into individual bits which 

have their own unique functions. Each bit is called a flag. 

Each flag keeps track of, or “flags,” us concerning certain 

conditions. Not every operation or instruction affects every 

flag. Some instructions affect many flags, and some don’t 

affect any at all. Figure 15-8 shows a model of a typical 
status register. 

When referring to flags, the following logic is used. If 

some condition has come to be, or is true, the flag uses a 

1 to say, kkYes, this is true or has happened.” If that 

condition has not occurred, the flag uses a 0 to say, “No, 

this is not true or has not happened.” Causing a flag to 

become 1 is called setting a flag. Causing a flag to become 

0 is called clearing a flag. 
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-- Interrupt flag 

Fig. 15-8 Model of a typical status register, (b’s represent 
bits.) 

The zero flag keeps track of whether the last operation 

which affects this flag produced an answer of zero. This 

flag is set or 1 if a zero result has been produced and is 

cleared or 0 if a nonzero result has been produced. 

The negative flag tells us if the last operation which 

affects this flag produced a negative number. When 8-bit 

signed binary numbers are used, if bit 7 (the eighth bit) of 

the number is 1, then the number is negative and the N 

flag will be set; if bit 7 of the number is 0, then the number 

is positive and the N flag will be cleared or 0. (This negative 

flag is sometimes called a sign flag and is indicated with 

an “S.”) 

The carry flag tells us if the last operation which affects 

this flag produced a carry from bit 7 (in 8-bit systems) of 

the accumulator (bit 7 is the left-most or most significant 

bit) into the carry bit. The carry flag also tells us if, during 

subtraction, a borrow into bit 7 was needed. How a borrow 

is indicated depends on which microprocessor is being 

used. See Fig. 15-9. 

The half-carry flag tells us if the last operation which 

affects this flag was an arithmetic operation which produced 

a carry from bit 3 to bit 4. This feature is primarily used 

with BCD (binary-coded-demical) numbers. 

The overflow flag tells us if the last operation which 

affects this flag caused a result that is outside the range of 

signed binary numbers for the word size being used at the 

time. In the case of 8-bit microprocessors, this is +127 or 

— 128. If this range is exceeded, the overflow flag is set 

(1) to warn the programmer. 

L — 

m □ 0 □ 0 0 0 0 0 
Carry 7 6 5 4 3 2 1 0 

' ag Accumulator 

Fig. 15-9 A “ carry” from bit 7 into the carry flag. 
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Fig. 15-10 Typical stack and stack pointer. 

The interrupt (interrupt mask, interrupt flag, interrupt 

enable bit) prevents maskable interrupts from occurring 

when it is set and allows them when cleared. 

Stack and Stack Pointer 

The stack is a special place in memory. The stack is most 

often used to store certain critical pieces of data during 

subroutines and interrupts. You’ll learn more about these 

later, but let’s look at the structure of a stack at this time. 

Refer to Fig. 15-10. 

The structure of the stack is a first-in-last-out (FILO) 

type of structure. Unlike main memory, where you can 

access any data item in any order, the stack is designed so 

that you can access only the top of the stack. If you want 

to place data in the stack, it must go on top; if you wish 

to remove data from the stack, it must be on top before it 

can be removed. 

Let’s see how the situation in Fig. 15-10 has come to 

be. To do that, refer to Fig. 15-11. Data item #1 is the 

first item we wish to place on the stack. 

Memory 

0000 

A 
0001 

d 0002 

d 

r 
0003 — Stack pointer — 

0004 0008 e 

c a 

s 
0005 

e 0006 

s 
0007 

0008 Top-of-stack 1 
Fig. 15-11 Typical stack and stack pointer. 
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Fig. 15-12 Typical stack and stack pointer. 

At this time the stack pointer is “pointing” to memory 

location 0008; therefore data item #1 will be placed in the 

stack at that memory location. The act of putting a piece 

of data in the stack is called pushing data onto the stack. 

It is as though the data is being pushed in from the top. 

Now look at Fig. 15-12. 

We have pushed data item #1 onto the stack and the 

stack pointer has been decremented or decreased by one, 

which means that it is now pointing to memory location 

0007. Location 0007 is the top-of-the-stack now. Now let's 

push data item #2 onto the stack. The stack will appear as 

it does in Fig. 15-13. 

When data item #2 was pushed onto the stack, it went 

into the location the stack pointer was pointing to—which 

was 0007. The stack pointer was then decremented to 0006. 

This process will be repeated until it appears as it did in 

Fig. 15-10. 

At some point we will need this data in the stack, so we 

will remove it from the top-of-the-stack. This is called 

popping or pulling the data from the stack. We simply 

Memory 
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0003 — Stack pointer — 

0004 0006 e 

s 
0005 

s 

0006 Top-of-stack e 

s 
0007 Data item #2 

0008 Data item #1 

Fig. 15-13 Typical stack and stack pointer. 

reverse the whole process. As each data item is removed, 

the stack pointer will drop, which in this case means that 

it will point to the next-greater memory address. 

EXAMPLE 15-4 

Refer to Fig. 15-13. If we pull data item #2 from the stack, 

will the stack pointer increment or decrement? What hex¬ 

adecimal value will appear in the stack pointer? 

SOLUTION 

The stack pointer will be incremented as data item #2 is 

pulled from the stack. The hexadecimal value 0007 will 

appear in the stack pointer. In fact, the stack will appear 

as it did in Fig. 15-12. 

Width of Registers 

All registers have a maximum capacity. That is, they will 

only hold a certain number of bits. The width is generally 
8, 16, or 32 bits. 

8-Bit Registers 

An 8-bit register is one that is 8 bits wide. This means it 

can hold 1 byte as shown in Fig. 15-14. Most computers 

and trainers you will be using will not display an 8-bit 

register in binary. Instead, they will have a hexademical 

display. If you have forgotten how to convert binary to 

hexadecimal and hexadecimal to binary, review that section 
in Chap. 1. 

|-Register-1 

Data in-In 0100 0011 Out-► Data out 

Fig. 15-14 Eight-bit register model. 

It is often useful to separate the 8 bits into two groups 

of 4. The left group of 4 is called the upper nibble, and 

the right group of 4 is called the lower nibble. This is 

illustrated in Fig. 15-15. 

0101 0011 

Upper nibble Lower nibble 

Fig. 15-15 Upper- and lower-nibble positions. 
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EXAMPLE 15-5 

If a register contained the binary number shown in Fig. 15- 

lb, what would appear in the hexadecimal display for that 

register? 

be represented by 1100 in binary. Putting the four nibbles 

together produces 1011 1111 0011 1100, which constitutes 

the binary contents of this register. 

Specific Microprocessor 
Families___ 
The rest of this chapter is divided into sections, each of 

which is devoted to one particular microprocessor family. 

Go to the section which discusses the microprocessor family 

you are using. 

SOLUTION 

The upper nibble, 1100, is the same as the hexadecimal 

digit C. The lower nibble, 1011, is the same as the 

hexadecimal digit B. Therefore, the hexadecimal display 

will show CB. 

16-Bit Registers 

A 16-bit register of course is 16 bits wide. This is illustrated 

in Fig. 15-17. As you can see, the 16 bits are again separated 

into groups of 4. Each nibble, or group of 4, will be 

represented in the display as 1 hexadecimal digit. 

Fig. 15-17 Sixteen-bit register model. 

EXAMPLE 15-6 

In Fig. 15-18, what are the binary contents of the register 

when the display is as shown? 

Fig. 15-18 Example B. 

SOLUTION 

The far left digit (also called the most significant digit), the 

B, has a binary equivalent of 1011. The F would be 1111. 

The 3 would be 0011. And the hexadecimal digit C would 

15-3 6502 FAMILY 

Let’s look at specific characteristics of the 6502 family of 

microprocessors. 

Accumulator 

The accumulator in the 6502 family of microprocessors is 

8 bits wide. The 6502 has only one accumulator* unlike 

others which have more than one. Figure 15-19 shows what 

it looks like. 

General-Purpose Registers 

The 6502 has no general-purpose registers. The functions 

they perform must be accomplished in the 6502 by using 

the accumulator, index registers, and memory. 

Fig. 15-19 6502 accumulator model. 

Program Counter 

The 6502 family program counter, as shown in Fig. 15-20, 

is 16 bits wide and is divided into an upper half which we 

have labeled PCH (program counter high) and a lower half 

which we have labeled PCL (program counter low). 

Fig. 15-20 Sixteen-bit 6502 program counter and display. 
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Most of the time it operates as one 16-bit counter, but 

there are times, particularly when subroutines are involved, 

when the division into 2 bytes is necessary. The display 

for the program counter will appear as four hexadecimal 

digits as shown in the figure. 

bit, it will be easier to remember. Please note that other 

microprocessors handle this situation with the carry flag 

and subtraction in just the opposite manner. 

Stack and Stack Pointer 

Index Registers 

The 6502 has two index registers. They are each 8 bits 

wide. One is the X index register, and the other is the Y 

index register. 

Status Register 

The 6502 status register contains 8 bits, but only 7 are 

actually used. The layout of this register is shown in Fig. 
15-21. 

The 6502 has several flags in addition to those mentioned 

in the New Concepts section of this chapter. 

The break flag keeps track of what are called “software 

interrupts.” When the programmer puts a BRK (BReaK) 

instruction in the program telling the microprocessor to 

stop, the programmer “interrupts” the program in progress. 

If this occurs, the break flag is set. 

The decimal mode flag, when set, tells the microprocessor 

to assume that any numbers which it is instructed to add 

or subtract are BCD (binary-coded decimal) numbers instead 

of regular binary numbers. This will result in a BCD answer. 

During addition the carry flag in the 6502 is used as 

described in the New Concepts section of this chapter. 

When a carry goes out from bit 7 of the accumulator, it 

goes into the carry bit. During subtraction, however, if a 

borrow is needed from the carry bit by bit 7, then the carry 

flag is cleared (0). If you think of it as though the 1 that 

was needed during the borrow actually came from the carry 

Carry flag 

Zero flag 

Interrupt flag 

Decimal mode flag 

Break flag 

Unused 

Overflow flag 

Negative flag 

Fig. 15-21 6502 family status register, (b’s represent bits.) 

The 6502 has a stack with a maximum size of 256 bytes 

or memory locations. The stack pointer is 8 bits wide with 

a 9th bit that is always set. Figure 15-22 shows it in more 

detail. 

The greatest memory address (lowest position) which can 

be designated as the top-of-the-stack is 1 1111 11112, which 

is 01FF16. Each time another number is pushed onto the 

stack, the top-of-the-stack rises, which means that the stack 

pointer is decremented by one (since smaller-numbered 

memory addresses are toward the top). The smallest address 

which can be designated as the top-of-the-stack is 1 0000 

00002, which is 0100,6. This is not always the top; it is 

simply the highest position (smallest memory address) at 

which the top can exist. 

We will look at the stack and its uses in later chapters. 

Complete Model 

Let’s look at a complete model of the 6502 family of 

microprocessors. Refer to Fig. 15-23. 

In our model we do not show the binary numbers that 

are actually in each register or location but, rather, the 

hexadecimal numbers which appear in the display of 

microprocessor trainers. The exception is the status register, 

in which both binary and hexadecimal are shown. The small 

h’s and b’s represent the data that would be in each register 

or memory location. Each “h” stands for one hexadecimal 

digit or nibble—which is to say, 4 bits. Each “b” stands 

for 1 bit. When we use this model in later chapters, we 

will place actual values in place of the h’s and b’s. 
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Fig. 15-22 6502 family stack and stack pointer. 
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Fig. 15-23 Complete 6502 programming model. 

15*4 6800/6808 FAMILY 

This section covers the Motorola 6800 and 6808 micropro¬ 

cessors. The 6809 is an enhanced version of the 6800/6808, 

but most of this section can be applied to the 6809 as well. 

The 6809 has all of the features of the 6800 plus additional 

ones. The 6800 and 6808 are the primary subjects of this 

section, but some differences in the 6809 are mentioned. 

Accumulators 

The 6800/6808 microprocessors have two 8-bit accumula¬ 

tors. Each has the same capabilities; that is, neither is a 

general-purpose register. Both are true accumulators. (Gen¬ 

eral-purpose registers do not have all of the features of an 

accumulator.) Figure 15-24 illustrates their functions. 

The operation of these accumulators is the same as that 

described in the New Concepts section of this chapter. One 

note of interest concerning the 6809. It has the same 8-bit 

accumulators; however, it has the additional ability to treat 

Data in 

|-Accumulator A-1 

In 8 bits Out -1 

the two as a single 16-bit accumulator known as accumulator 

D and has special instructions for such operation. 

General-Purpose Registers 

The 6800/6808, like the 6502, has no general-purpose 

registers. Their functions must be performed by using the 

accumulators, index register, and memory. 

Program Counter 

The 6800, 6808, and 6809 each have 16-bit program 

counters. The 6800 family program counter, as shown in 

Fig. 15-25, is 16 bits wide but is divided into an upper half 

which we have labeled PCH (for program counter high) 

and a lower half we have labeled PCL (for program counter 

low). Most of the time it operates as one 16-bit counter, 

but there are times, particularly when subroutines are 

involved, when the division into 2 bytes is necessary. The 

display for the program counter will appear as four hex¬ 

adecimal digits as shown in the figure. 

Index Register 

The 6800 and 6808 microprocessors each have one 16-bit 

index register called the X index register. The 6809 has 

two 16-bit registers named the X index register and the Y 

index register. 

The 6800 family’s index registers operate as described 

in the New Concepts section of this chapter and will be 

discussed in more detail in later chapters. 

Condition Code Register 

The 6800/6808 condition code register (called a status 

register in other microprocessors), which is shown in Fig. 

15-26, is composed of 6 flags or bits in an 8-bit register. 

The 2 most significant bits are not used and are always set 

(1). 
In the 6809 the 2 bits that are unused on the 6800/6808 

have functions and are called the E flag and the F flag. 

They will not be discussed in this text. 

Result 
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Fig. 15-24 Models of the 6800/6808 family accumulators. display. 
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Fig. 15-26 6800/6808 status register, (b’s represent bits.) 

The carry flag in the 6800 family is set (1) when either 

a carry or borrow from bit 7 occurs. (The 6502 by contrast 

sets the flag for a carry but clears it for a borrow.) 

All flags used in the 6800/6808 operate as described in 

the New Concepts section of this chapter. 

Stack and Stack Pointer 

The 6800/6808 has a 16-bit stack pointer which uses RAM 

for the stack itself. It operates as described in the New 

Concepts section of this chapter. 

The 6809 has a second stack called the user stack which 

operates in a fashion similar to the first stack, which is 

called the hardware stack. The user stack is not used for 

interrupts and subroutines but is left free for the programmer 
to use. 

Complete Model 

Let s look at a complete model of the 6800 family of 

microprocessors. Refer to Fig. 15-27. 

In our model we do not show the binary numbers that 

are actually in each register or location but, rather, the 

hexadecimal numbers which appear in the display of 

microprocessor trainers. The exception is the status register 

in which both binary and hexadecimal are shown. The small 

ITs and b’s represent the data that would be in each register 

or memory location. Each “h” stands for one hexadecimal 

digit or nibble—which is to say, 4 bits. Each “b” stands 

for 1 bit. When we use this model in later chapters, we 

will place actual values in place of the ITs and b’s. 

15-5 8080/8085/Z80 FAMILY 

This section deals with the 8080 and 8085 microprocessors 

from Intel and the Z80 microprocessor manufactured by 
the Zilog Corp. 

The 8080 and 8085 are nearly identical, the 8085 being 

a slightly improved version of the 8080. Except for two 

instructions, the instruction sets for the two chips are 
identical. 

The Z80 is a considerably enhanced version of the 8080. 

It understands all the instructions of the 8080 and many 

more. It has all the registers of the 8080 plus a number of 

additional registers. We will cover only those aspects of 

the Z80 that are found in the 8080 and 8085 at this time. 

Accumulator 

The 8080/8085/Z80 chips have one 8-bit accumulator. It 

operates as described in the New Concepts section of this 

chapter. Its operation is shown in Fig. 15-28. The Z80 also 

has a second alternate accumulator. 
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Accumulator B 
hh 

XH—X register—XL 

hh | hh 

SPH—Stack pointer—SPL 
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PCh—Program 
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counter—PCL 
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1 1 b b b b b b 
h | h 

Fig. 15-27 Complete 6800/6808 programming model. 

General-Purpose Registers 

The 8080/8085/Z80 chips have an abundance of general- 

purpose registers. These registers are arranged in pairs. 

Notice the arrangement of one of these pairs in Fig. 15-29. 

In this figure, 8 bits of data can go into and out of either 

register B or C. Or, 16 bits can go into and out of the pair, 

at which point they act as one 16-bit register. 

Data in 

|-Accumulator 

In 8 bits Out-1 

-•+-Result 

Fig. 15-28 8080/8085/Z80 accumulator model. 
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Fig. 15-29 Model of 8080/8085/Z80 general-purpose 
registers. 

There are three sets of these general-purpose register 

pairs. They are the BC pair, the DE pair, and the HL pair. 

The letters B, C, D, and E are assigned to stand for each 

register. The letters H and L stand for high and low. The 

HL register pair is usually used for a different purpose than 

the other two pairs. We will discuss that purpose more in 

a later chapter. 

Each of these registers has a mate, or “alternate,” 

register in the Z80. 

Program Counter 

The 8080/8085/Z80 chips each have a 16-bit program 

counter which operates as described in the New Concepts 

section of this chapter. This program counter, as is the case 

with the 6502 family and the 6800 family, is divided into 

two halves for some operations. The upper byte or 8 bits 

are called the PCH (for program counter high), and the 

lower byte is called the PCL (for program counter low). 

See Fig. 15-30. 

Most of the time the program counter operates as one 

16-bit counter, but there are times, particularly when 

subroutines are involved, when division into 2 bytes is 

necessary. The display for the program counter will appear 

as four hexadecimal digits as shown in the figure. 

Index Register(s) 

The 8080 and 8085 have no index registers. The Z80 has 

two—an X index register and a Y index register. The index 

registers in the Z80 are each 16 bits wide. 

Status Register 

The status register in the 8080 and 8085 contains five flags 

in an 8-bit register. See Fig. 15-31. 

The parity flag involves a topic which has not been 

discussed yet. Parity refers to the number of Is in a binary 

number. Even parity exists when there is an even number 

of Is. For example, the binary number 0110 000 has even 

parity because it has two Is, and 2 is an even number. Odd 

parity exists when there is an odd number of Is. For 

example, the binary number 0111 0000 has odd parity 

because there are three Is, and 3 is an odd number. It is 

sometimes useful to keep track of parity for error-checking 

routines and in data communications. If the parity is even, 

the parity flag becomes set (1); if parity is odd, it clears 

(0). 
The Z80 has the same five flags as the 8080 and 8085, 

and in the same positions, plus one additional flag. See 

Fig. 15-32. 

The half-carry flag in the Z80 has exactly the same 

function as the auxiliary carry in the 8085/8080. 

The parity flag in the Z80 has a dual role—that of parity 

checking and that of warning the programmer of 2’s- 

complement overflow. Also, the Z80 has a negative or sign 

flag (the 8080 and 8085 do not have one) which operates 

as described in the New Concepts section of this chapter. 

Stack and Stack Pointer 

The 8080, 8085, and Z80 each have a stack with a 16-bit 

stack pointer which operates as described in the New 

Concepts section of this chapter. 

Complete Model 

Let’s look at a complete model of the 8080/8085/Z80 family 

of microprocessors. Refer to Fig. 15-33 at this time. 

Status register 

Flags 
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Unused 

-Program counter-1 

1111 0000 0100 0001 
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F° I 41 
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Fig. 15-30 Sixteen-bit 8080/8085/Z80 program counter and 
display. 
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Fig. 15-31 8080/8085 status register, (b’s represent bits.) 
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Fig. 15-32 Z80 status register, (b’s represent bits.) 

A couple of points concerning differences between the 

8080/8085 and the Z80 should be noted. Figure 15-33 is a 

model of the 8080/8085. The Z80 has an additional set of 

alternate registers and two index registers which are not 

shown in the model. The status register in the Z80 has an 

additional flag called the negative flag. And the auxiliary 

carry flag in the 8080/8085 is usually called the half-carry 

flag in the Z80. 

In our model we will not show the binary numbers that 

are actually in each register or location but rather the 

hexadecimal numbers which appear in the display of 

microprocessor trainers. The exception is the status register 

in which both binary and hexadecimal are shown. The small 
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Fig. 15-33 Complete 8080/8085 and Z80 (8080 subset) 
programming model. 

h’s and b’s represent the data that would be in each register 

or memory location. Each “h” stands for one hexademical 

digit or nibble, which is to say 4 bits. Each “b” stands for 

1 bit. When we use this model in later chapters, we will 

place actual values in place of the h’s and b’s. 

There is one point of significant difference between the 

8080/8085/Z80 family and the 6502 or 6800 family. In the 

case of the 6502 and 6800 microprocessors, the registers 

and accumulators are completely independent of one an¬ 

other. In the 8080/8085/Z80 family, the six registers, namely 

B and C, D and E, and H and L, can operate as six 

independent 8-bit registers or as three 16-bit register pairs. 

This allows single operations to be performed on 16-bit 

data words. 

15-6 8086/8088 FAMILY 

In this section we will examine the 8086 and 8088 micro¬ 

processors from Intel. The 8088 is the microprocessor used 

in the popular IBM PCs, XTs, and compatibles. The 80286 

used in ATs and the 80386 can also be used with this text. 

Since the 8086/8088 chips are the successors of the 8085, 

they are similar to it but have many additional registers and 

capabilities. 

Accumulator(s) 

The 8086/8088 has an accumulator (shown in Fig. 15-34) 

which is 16 bits wide and is called AX. The upper 8 bits 

is called AH {accumulator high), and the lower 8 bits is 

called AL (accumulator low). 

General-Purpose Registers 

The 8086/8088 has three 16-bit or six 8-bit general-purpose 

registers (besides the accumulator). These are shown in 

Fig. 15-34 and are called the BX, CX, and DX registers. 

Each can be divided into an upper and lower byte called 

BH, BL, CH, CL, DH, and DL, respectively. Also note 

in the figure that A stands for accumulator, B for base, C 

- Accumulator AX - 

AH 
hh 

BH 
hh 

CH 
hh 

DH 
hh 

-Base BX- 

-Count CX- 

-Data DX - 

AL 
hh 

BL 
hh 

CL 
hh 

DL 
hh 

Fig. 15-34 8086/8088 accumulator and general-purpose 
registers. 
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for count, and D for data. This can help you remember the 

main functions of each register. 

Instruction Pointer 

Instead of a program counter, the 8086/8088 has an 

instruction pointer which does what the program counter 

does in the 8-bit microprocessors. The instruction pointer 

is 16 bits wide. 

Index Registers 

The 8086/8088 has several index registers and pointers 

including the base pointer, source index, and destination 

index. All are 16 bits wide. These are not used alone, as 

with the 8-bit chips, but are used in combination with 

registers called segment registers. Figure 15-35 is a model 

of the 8086/8088 pointers and index registers. 

Stack and Stack Pointer 

The 8086/8088 stack is a standard memory stack (as are 

all the 8-bit microprocessors we’ve covered). The 8086/ 

8088, however, can have a very large stack, up to 64K 

(65,536 bytes). The location of the top-of-the-stack is 

calculated by using both the stack pointer and the stack 

segment. 

Status Register 

The status register containing the 8086/8088 flags is 16 bits 

wide, although not all 16 bits are used. This register, shown 

in Fig. 15-36, has a lower byte (8 bits) which is exactly 

the same as the 8-bit 8085 microprocessor’s status register. 

It has the same flags in the same positions. The upper byte 

has four flags which the 8085 does not have. 

The first flag is the trap flag, which controls a single- 

step mode of operation. 

Fig. 15-35 8086/8088 index registers and pointers. 

-FIs 

New 

gs- 

8085-like 

-O D 1 T 

-b b b b 

h | h 

S Z — A — P — C 

b b — b — b — b 

h i h i 

Fig. 15-36 8086/8088 flag register, (b’s represent bits; h’s 
represent hex digits.) 

The interrupt enable flag controls the interrupt request 

pin on the microprocessor chip. 

The direction flag controls whether the source index and 

destination index increment or decrement during string 

operations. 

Finally, the overflow flag alerts the programmer to the 

existence of an arithmetic overflow when set. This is a 

condition in which the legal range for signed binary numbers 

of a particular word size has been exceeded. 

Segment Registers 

The 8086/8088 microprocessor has several other registers 

which do not exist on the 8-bit chips. These are the segment 

registers. We’ll explain very briefly how they are used at 

this time. 

All the pointers and index registers in the 8086/8088 

chips are 16 bits wide; 216 is 65,536 (64K) bytes. The 

address bus, however, is 20 bits wide. We can have memory 

locations extending up to 220 or 1,048,576 (1 mega-) bytes. 

None of the pointers, including the instruction pointer, 

would be able to point to this wide of a range of addresses. 

To solve this problem, segment registers are used. Their 

contents are combined with the contents of the various 

pointers and index registers to form an address which is 20 

bits wide. Exactly how this is done will be explained in a 

later chapter. 

Complete Model 

Figure 15-37 is a complete model of the 8086/8088 micro¬ 
processors. 

In the model shown in Fig. 15-37 the placeholders for 

each binary digit are not shown. Rather, the hexadecimal 

digits that would be seen on a computer or trainer are 

indicated. The exception is the status register, in which 

both binary and hexadecimal placeholders are shown. The 

small h’s and b’s represent the data that would be in each 

register or memory location. Each “h” stands for one 

hexadecimal digit or nibble, which is 4 bits. Each “b” 

stands for 1 bit. When we use this model in later chapters, 

we will place actual values in place of the h’s and b’s. 
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Memory 

0100 hh 

0101 hh 

0102 hh 

0103 hh 

0104 hh 

0105 hh 

0106 hh 

0107 hh 

0108 hh 

0109 hh 

010A hh 

010B hh 

010C hh 

010D hh 

010E hh 

010F hh 

0110 hh 

0111 hh 

0112 hh 

0113 hh 

0114 hh 

0105 hh 

0106 hh 

0107 hh 

■Accumulator AX- 

AH ! AL 
hh | hh 
-Base BX- 

BH ! BL 
hh | hh 
-Count CX- 

CH i CL 
hh | hh 
-Data DX- 

DH 
hh 

DL 
hh 

Source index 
hhhh 

Destination index 
hhhh 

Stack pointer 
hhhh 

Base pointer 
hhhh 

Code segment 
hhhh 

Data segment 
hhhh 

Extra segment 
hhhh 

Stack segment 
hhhh 

Instruction pointer 
hhhh 

New 
Flags - 

-0 D I T 

-b b b b 

8085-like 

S Z — A — P — C 

b b — b — b — b 

Fig. 15-37 Complete 8086/8088 microprocessor programming model. 

GLOSSARY 

accumulator A register in a microprocessor which can 

not only store a byte or word of data but can have its 

contents operated on, with the result of that operation going 

back into the accumulator, replacing the previous value. 

address B inary numbers which are assigned to consecutive 

memory locations. Specific memory locations are accessed 

through their addresses. 

address bus A set of conductors upon which binary 

addresses travel to memory chips. 

data bus A set of conductors which carry binary data to 

and from the microprocessor, memory, and I/O devices. 

fetching The act of going to memory to get an instruction 

which is to be decoded and executed. 

flag One of the bits in the status register. (See status 

register.) 

general-purpose registers Locations which can store a 

byte or word of data similar to RAM but which are inside 

the microprocessor itself. Certain operations can usually be 

performed on the contents of registers. 

index register A register which can be incremented and 

decremented and whose primary function is to point to data 
(often used in tables). 
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program counter A special-purpose register whose pur¬ 

pose is to keep track of the next instruction to be fetched 

from memory. 

RAM An acronym for random-access memory. This type 

of memory loses its data when power is removed. 

ROM An acronym for read-only memory. This type of 

memory does not lose its data when power is removed. 

stack An area (usually in RAM) which holds vital infor¬ 

mation during subroutines and interrupts. It can also be 

used by the programmer as a LIFO (last-in-first-out) data 

storage area. 
status register (condition code register) A special register 

whose individual bits show the status of certain conditions 

or the results of certain operations. 

SELF TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. _is the type of memory which can have 

its contents changed thousands of times per second. 

2. {RAM) The_of a memory location 

is similar to the address of your home and the 

_inside the memory location is similar to 

the beds, chairs, dishes, and so on, in your home. 

3. (address, data) The_of a memory loca¬ 

tion is necessary to specify which of many locations 

is to be written to or read from. 

4. (address) The address bus is usually- 

(unidirectional, bidirectional). 

5. (unidirectional) The data bus is usually- 

6. (bidirectional) Each different bit position in binary 

numbers represents a certain power of- 

7. (2) Probably the most used register in a micropro¬ 

cessor is the_ 

8. (accumulator) A register which helps microproces¬ 

sors to work with tables of data is the- 

9. (index register) When a flag has a-in it, 

this indicates that the condition which the flag tests 

has not come true. 

10. (0) When a flag has a_in it, this indi¬ 

cates that the condition which the flag tests has 

come true. (7) 

PROBLEMS 

General 

15-1. By what means is one memory location differen¬ 

tiated from another? 

15-2. Using decimal numbers, how many combinations 

can be represented by using only five digits? 

15-3. Using binary numbers, how many combinations 

can be represented by using only 20 bits? 

15-4. If we had 20,000lo memory locations, what 

would be the least number of address lines 

needed to describe each location? (Hint: Change 

20,000 to binary or hex and determine the num¬ 

ber of bits needed.) 

15-5. What register can have its contents altered in the 

greatest variety of ways and is the real “work¬ 

horse” in the microprocessor? 

15-6. In simplest terms, what are general-purpose reg¬ 

isters? 

15-7. What advantage do registers have over RAM? 

15-8. What has the sole purpose of keeping track of 

the next instruction to be fetched? 

15-9. In what register are the flags located? 

15-10. What has happened if the zero flag has a 1 in it? 

15-11. Which flag will be set if a carry from bit 7 of 

the accumulator is produced during an arithmetic 

operation? 

15-12. Which flag is primarily used with binary-coded 

decimal numbers? 

15-13. When normal stack instructions are used, can a 

number be pulled from somewhere in the middle 

of the stack? 

15-14. What is taking a number from the top of the 

stack called? 

15-15. If an 8-bit register contained the binary number 

1101 1110, what hexadecimal number would ap¬ 

pear as the display or readout for that register? 

15-16. What are the binary contents of a register whose 

hexadecimal display reads 2A? 

15-17. What would the hexadecimal display of a 16-bit 

register with 1100 0101 1000 00012 as its con¬ 

tents read? 

6502 Family 

15-18. How many general-purpose registers does the 

6502 have? 

15-19. How wide are the index registers in the 6502? 

15-20. What flag, when set, tells the 6502 to assume 

that binary-coded decimal (BCD) numbers are 

being used? 

15-21. What is the maximum size of the 6502 stack? 
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6800 Family 

15-22. How many accumulators does the 6800 have? 

15-23. How wide is the 6800 program counter? 

15-24. How many memory locations can the 6800 pro¬ 

gram counter reference or point to? 

15-25. What are the 2 most significant bits in the 6800 

condition code register used for? 

8080/8085/Z80 Family 

15-26. How many 8-bit general-purpose registers does 

the 8085 have? 

15-27. How many index registers does the 8085 have? 

15-28. How wide is the 8085 stack pointer? 

8086/8088 Family 

15-29. Describe how the 8088 accumulator is labeled 

and arranged. 

15-30. How many 8-bit general-purpose registers does 

the 8088 have? 

15-31. In the 8088 what has the same function as the 

program counter in the 8-bit microprocessors? 

15-32. What 8-bit microprocessor is the lower byte of 

the 8088 flag register patterned after? 

15-33. How large can the 8088 stack be? 
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Data Transfer Instructions 

New Concepts_ 
So far we’ve been able to get an overview of computers, 

computer architecture, microprocessor architecture, pro¬ 

gramming, languages, flowcharting, and hardware. Now 

let’s take a closer look at some of these areas. 

Instruction Sets 

The commands that microprocessors understand are called 

instructions, and the complete “vocabulary” of each chip 

is called its instruction set. 

We will be studying the 6502, 6800/6808, 8080/8085/ 

Z80, and 8086/8088 microprocessor families and each 

family’s instruction set. We will deviate from this plan in 

two respects. 

Rather than study the entire Z80 instruction set, we will 

study only those instructions which are common to the 

8080 and 8085. (The Z80 has many instructions which 

neither the 8080 nor the 8085 understands. However, the 

Z80 understands all the instructions of the other two chips 

with only two exceptions.) 

Also, we will not study the entire 8086/8088 instruction 

set but will omit the loop and string instructions since they 

have no counterpart in the 8-bit microprocessors. 

Organization of This Text 

You may find it helpful to know how this programming 

portion of the text was developed. 

We are ready to begin learning about microprocessor 

instructions. The instructions being discussed in each chap¬ 

ter, the sequence in which the instructions are being 

presented, the sequence of the chapters, and the instruction 

categories have all been carefully planned. 

As mentioned before, this text centers around the most 

popular general-purpose 8-bit microprocessors (the 6502 

family, the 6800/6808 family, and the 8080/8085/Z80 

family) and the 16-bit 8086/8088 family. During the prep¬ 

aration of this text, the instruction sets of each of these 

microprocessors were carefully analyzed, and it was found 

that each chip’s instructions fell into natural groups. After 

each instruction was placed into its natural category, it was 

possible to identify those categories which were common 

to every microprocessor family. Those instructions which 

did not fall naturally into one of these common groups were 

placed in the group in which they most nearly fit. In short, 

a consistent and uniform method of classifying instructions 

was applied to each microprocessor family. In the tables 

section of this book (Part 4) you will find the complete 

instruction set of each chip broken down into these groups 

or categories. 

Next, the chapters were planned to reflect these same 

groups. Thus, rather than trying to make the microprocessors 

fit the scheme of this text, the text was designed around 

the natural characteristics of the microprocessors. Each 

chip’s instruction set has been broken down into the same 

categories as the others, and the appendixes and chapters 

treat each chip family equally. 

Organization within Each Chapter 

Most chapters start with a New Concepts section (which is 

where we are now). The discussion here is general—that 

is, it can be applied equally well to all microprocessor 

families and does not focus on any one family. Then, after 

this general discussion, the remainder of the chapter is 

divided into family-specific sections. 

For example, if you are using the 6808 microprocessor, 

you would read the New Concepts section and then go 

immediately to the 6800/6808 Family section. There, spe¬ 

cific information will be given to help you apply the 

principles discussed in the New Concepts section to the 

6800/6808 microprocessors. 

Now let’s look at our first instruction category. 
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16-1 CPU CONTROL INSTRUCTIONS 

The easiest instruction to learn about is an instruction which 

does nothing, and surprisingly, there is such an instruction. 

Let’s look at it. 

The No Operation Instruction 

The no operation instruction does exactly that: It does 

nothing. This is a waste of time, and wasting time is what 

this instruction does best. 

A microprocessor is quite fast, in some situations too 

fast. We can give it a certain number of these no operation 

instructions to stall it until a certain amount of time passes. 

The no operation instruction has another use—that of 

filling space in the program. When writing programs, we 

must sometimes insert additional instructions into the middle 

of a program to alter the way it works or to fix a problem. 

If you use one of the simpler monitors (instead of an 

assembler, or a monitor with an insert feature), it may not 

have a feature which will let you insert instructions into 

the middle of a program you have entered. When this 

happens, you must rewrite every part of the program 

beginning from the point at which the inserted instruction 

must be placed, to the end. By adding some no operation 

instructions at various locations in the program when you 

first write it, some spaces will have been created where 

new instructions can go. The new instructions can simply 

take the place of the no operation instructions. 

The Halt Instruction 

Called wait, halt, or break (depending on the microproces¬ 

sor), this instruction has the obvious purpose of stopping 

the microprocessor. There is no go instruction—we’ll see 

how that is done shortly—but there must be a way to stop 

the program. In some microprocessor families this is not 

the only function of this instruction, but this is all we need 

to be concerned with at this time. 

16-2 DATA TRANSFER 
INSTRUCTIONS 

This category of instructions has the job of transferring or 

moving data from one place to another. Before studying 

these instructions, we need to consider a basic concept. 

Physical Places 

Sometimes people think that when we speak of moving 

data from one place to another within a microprocessor, 

we are referring only to the “net effect’’ of the transfer, 

and that nothing actually moved. 

If this were so, the operation of a microprocessor would 

resemble what happens when you go to the bank and transfer 

money from your savings account into your checking 

account. Though the net effect of the transfer is to decrease 

the amount of money in the savings account and to increase 

the amount in the checking account, you know that no one 

in the bank actually picked up the money in the savings 

account and placed it in another spot where your checking 

account was. It all happened “on paper.’’ 

This is not the case with microprocessors. The accu¬ 

mulators, general-purpose registers, program counter, index 

registers, and so on, are all real places. While it is true that 

tiny numbers don’t move around inside the chip, the voltages 

representing these numbers can be made to appear in various 

places, so for all practical purposes the numbers themselves 

move. 

If you experience difficulty visualizing what a program 

does, it may help to write down the contents of each register 

and/or memory location. Then as each location is changed 

by the program, change it on your paper. We will use this 

technique in many of the figures. 

Where Data Is Transferred 

Data is moved between registers or between registers and 

memory. The number of possible combinations depends on 

the microprocessor and how many registers it has. Figure 

16-1 shows some typical possibilities. 

How Data Is Transferred 

Different microprocessor instruction sets use different terms 

to represent the act of transferring data. “Move,” “load,” 

“store,’’ and “transfer” are all common terms. 

Though we will use the term “moving,” and even though 

thinking of it in that way will work as you become proficient, 

in the beginning a distinction has to be made. When a 

Fig. 16-1 Some of the possible data transfer combinations. 
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Fig. 16-2 An example of a transfer instruction. 

move, load, transfer, or store instruction is executed, o 

duplicate of the data is actually being placed in the target 

register or destination. 

If you were to move your car from one parking spot to 

another in a parking lot, your car would no longer be in its 

original place. This is true moving. This is not what happens 

in a microprocessor. If, however, you photocopy an im¬ 

portant document, place the copy in a filing cabinet, and 

keep the original, you have not actually moved the document 

to the filing cabinet, but rather you have moved a copy of 

the document. This is what happens in a microprocessor. 

An Example of a Transfer Instruction 

Look at Fig. 16-2. 

Suppose we wanted to transfer the FF in the accumulator 

to the register, which now contains 23. We would write a 

program which instructs the microprocessor to transfer the 

contents of the accumulator to the register. The result of 

this action is shown in Fig. 16-3. 

Fig. 16-3 An example of a transfer instruction. 

Notice that the original FF in the accumulator is still 

there. We simply made a copy of it and placed the copy in 

the register. The original contents of the register are lost. 

Now go to the section of this chapter which discusses 

your particular microprocessor family. 

Specific Microprocessor 
Families 

16-3 6502 FAMILY 

Let’s see how the ideas which were introduced in the New 

Concepts section apply to the 6502 microprocessor family. 

CPU Control Instructions 

The 6502 family has a no operation instruction which uses 

the mnemonic NOP. Refer to the Expanded Table of 6502 

Instructions Listed by Category in Part 4 of this text. 

Look at the NOP instruction, which is the very first 

instruction in this table. In the third column, the Boolean/ 

Arithmetic Operation column, we see that this instruction 

does “nothing,” just as we said it would. Also notice the 

hexadecimal number under the Op (op code) column, in 

this case EA. This is the actual hexadecimal code for NOP. 

Don’t worry about the rest of the NOP information at this 

time. 

The 6502 family doesn’t have an actual halt instruction, 

but the instruction which serves its purpose is the BReaK 

instruction. Refer to the table again. Notice that the BReaK 

instruction uses the mnemonic BRK and has an op code of 

00. 

Data Transfer Instructions 

Look under the BReaK instruction and you will see the 

beginning of the Data Transfer Instructions section of the 

table. In this section you will see a list of all of the different 

types of data transfer instructions available in the 6502 

family. (To those with previous microprocessor experience: 

You may notice that we have excluded transfer instructions 

involving the stack. This is intentional. They have been 

included in the Stack Instructions category.) 

Direction of Data Transfer 

Let’s look at the data transfer instructions more closely. 

The first instruction listed is the LoaD Accumulator instruc¬ 

tion. The boldfaced letters show where the LDA mnemonic 

came from. The third column shows the Boolean/Arithmetic 

Operation. This is a concise and graphic way to state exactly 

what this instruction does. It shows M, which stands for 

memory, moving toward A, which stands for the accu- 
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mulator. To put it another way, the contents of a certain 

memory location are being transferred into the accumulator. 

Recall from the New Concepts section that moving or 

transferring is actually more like making a copy of what’s 

in a particular location and placing the copy in the desti¬ 
nation. 

Referring to the Expanded Table of 6502 Instructions, 

notice that the second and third instructions, LDX and 

LDY, are similar to the LDA. The difference is that they 

copy the contents of a particular memory location and place 

it in either the X register or the Y register instead of the 
accumulator. 

It may help to have a mental picture of our programming 

model of the 6502, shown in Fig. 16-4, as we discuss these 

instructions. 

We have talked about moving or copying the contents 

of some particular memory location to the accumulator, the 

X register, or the Y register. Now let’s consider doing the 
reverse. 

Look at the fourth, fifth, and sixth instructions in the 

table. They are STA, STX, and STY, that is, Store the 

contents of the accumulator in a memory location, store 

the contents of the X register in a memory location, and 

store the contents of the Y register in a memory location, 

respectively. The store instructions are just the reverse of 

the load instructions. (See the Boolean/Arithmetic Operation 
column.) 

Now, continue referring to both the table and Fig. 16-4. 

The next two instructions (TAX and TXA) allow you to 

transfer the contents of the accumulator and X register 

between each other. The last two instructions (TAY and 

TYA) allow you to transfer the contents of the accumulator 

and the Y register between each other. 

mnemonic LDA? No, but if you are using an assembler, 

the assembler translates the mnemonics into binary numbers 

which it does understand. (If you use a hexadecimal keypad 

or type in hex numbers, you do not have an assembler.) 

The point here is that the microprocessor inside your 

computer does not understand English words like “load” 
or mnemonics like LDA. 

If you are using an assembler, the assembler program is 

translating the mnemonics, which the microprocessor does 

not understand, into something it does understand. What 

does the microprocessor understand? Binary numbers. In 

our case we will enter them as their equivalent hexadecimal 

value and let the monitor or assembler translate that into 

binary. For our purposes, at least at this point, well say 

that the microprocessor understands hexadecimal. (The 

monitor is part of the firmware built into your microprocessor 
trainer.) 

Refer to the Expanded Table of 6502 Instructions. If we 

wanted to tell the microprocessor to load the accumulator 

from memory (the first data transfer instruction, LDA) the 

microprocessor chip would actually need the hex code in 

the seventh column over, the Op code column (Op for 

short). We would place the hex number A9, AD, A5, Al, 

Bl, B5, BD, or B9, depending on which variation of the 

instruction we wanted to use, in the computer’s memory 

as the first instruction to execute. 

Let’s try another example. What if you wanted to have 

the microprocessor store the contents of the Y register in 

memory? What would be the hex number the microprocessor 

would need to understand what you wanted to do? (You 

should have said either 8C or 84 or 94 from the STY 

instruction.) 

Op Codes 

Does your computer or microprocessor trainer understand 

the words “load accumulator”? No. Does it understand the 

Accumulator 
hh 

X Register 
hh 

Y Register 
hh 

! Stack pointer 
! hh 

PCH—Program 

hh 
counter—PCL 

hh 

Status register 

N V —BDIZC 

bb—bbbbb 
h | h 

Fig. 16-4 Complete 6502 programming model. 

Sample 6502 Program 

Program Objective 

Let’s create a program which will 

1. Place the number 11 in the accumulator. 
2. Stop. 

Creating the Program 

Refer to the Data Transfer Instructions section of the 

Expanded Table. Do you see an instruction which could be 

used to place a number in the accumulator? Look in the 

Boolean/Arithmetic Operation column. You need an instruc¬ 

tion which has an arrow pointing to the accumulator. There 

are three such instructions—LDA, TXA, and TYA. Since 

we don’t want to involve the X register or Y register, LDA 
will be our choice. 

The next step is to determine which of the LDA instruc¬ 

tions to use. There are eight. The key to this decision is in 

the Address Mode column. The LDA instruction which has 

Immediate in the address column is the one we want. 
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Addr Obj Assembler Comment 

0000 A9 LDA #$11 Load the accumulator with the number (11) 
immediately following the LDA# op code (A9) 

0001 11 

0002 00 BRK Halt 

Fig. 16-5 Sample program. (Note: The addresses should be 
an area where user programs can be placed. If 0000 is not 
such a place on your system, then you will need to change 
these addresses.) 

Immediate addressing tells the microprocessor that the data 

it needs will be coming immediately after the op code. We 

will learn more about addressing modes in the next chapter. 

Finally, you want the program to stop. The instruction 

which does this is in the CPU Control Instructions section 

of the Expanded Table. The BRK instruction is the obvious 

choice. 

Entering the Program 

The completed program is shown in Fig. 16-5. WeTl see 

how to enter it into your microprocessor first by using an 

assembler and then without an assembler. 

Note that the column labeled Obj contains the actual 

6502 op codes while the Assembler column contains the 

mnemonic and data in a format similar to that which is 

used by an assembler. 

Refer to the LDA instruction in the Expanded Table. To 

the right of the word Immediate, you see LDA #$dd. This 

is in the Assembler Notation column and describes how 

many assemblers require that you type this instruction. With 

eight different LoaD Accumulator instructions, the assem¬ 

bler must know which one you want. The format of the 

information after the LDA is how the various forms of the 

command are differentiated. The # means that the data to 

be used is coming immediately after the command itself. 

The $ indicates that it is a hexadecimal number. The dd 

simply stands for two hexadecimal digits of data. (Each d 

stands for one nibble or 4 bits.) 

It is important to remember that we are talking about a 

typical assembler format; however, there is no absolute 

standard that must be followed. Refer to the manual which 

came with your assembler, or ask your instructor for 

information about your assembler’s format. 

We are going to enter this program into memory starting 

at location 0000 (hexadecimal). If the trainer you are using 

does not allow programs to be placed in these memory 

locations, refer to your manual and substitute addresses 

which are valid for your trainer or computer for those shown 

in Fig. 16-5. 

If you are using an assembler, please enter the program 

at this time. It will look similar to what is shown in Fig. 

16-6. 

Address Opcode Data Mnemonic Immediate Hex Data 

0002 00 BRK 

Fig. 16-6 Disassembly of the sample program. (The 
mnemonic and the data to the right of the mnemonic are 
all that’s typed in during assembly.) 

Now place 0s in the accumulator, the X register, and the 

Y register so that you will know what numbers are in each 

register before the program is run. Refer to Fig. 16-7 to 

see what memory and the registers should look like. 

If you are not using an assembler, you must look up the 

op codes by hand in the Expanded Table. This is called 

hand-assembly. Let’s go through the necessary steps for 

hand-assembly. 

To the right of the LDA #$dd, in the op code (op for 

short) column you will see the hexadecimal number A9. 

This is the 6502 op code, which stands for Load the 

accumulator with the number immediately following this op 

code. Set your trainer so that the memory address at which 

the next instruction will be loaded is someplace within the 

area allowed for user programs. We chose 0000, but you 

Accumulator 
00 

X Register 
00 

Y Register 
00 

1 
Stack pointer 

hh 

PCH—Program 
hh 

i counter—PCL 

hh 

Status register 

N V— B D 1 Z C 

bb — bbbbb 

h | h 

Fig. 16-7 6502 sample program. 
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Memory 

0000 A9 

0001 11 - 

0002 00 

0003 hh 

0004 hh 

0005 hh 

0006 hh 

0007 hh 

0008 hh 

0009 hh 

New number 
- (11) replacing — 

old number 
(00) 

Accumulator 
—^ 11 00 —► 

X Register 
00 

Y Register 
00 

1 

_ 
Stack pointer 

hh 

PCH—Program 

hh 
counter—PC(_ 

hh 

Status register 
N V —B DIZC 

bb — bbbbb 
h | h 

Fig. 16-8 6502 sample program. 

Checking the Results of Program (Analysis) 

After running the program, you should have 00 in the X 

register, 00 in the Y register, and 11 in the accumulator. 

The program does what we designed it to do. 

Here’s one for you to try. 

EXAMPLE 16-1 

Manually place 00s in the accumulator, the X register, and 

the Y register. Next, write a program which will 

1. Place the hex number EE in the accumulator. 

2. Transfer (copy) the contents of the accumulator (A) 

into the X register (X). 

3. Transfer (copy) the contents of the accumulator (A) 

into the Y register (Y). 

4. Stop. 

may need to use another location. Enter the number A9 

into the first available memory location. Since this was a 

load accumulator immediate instruction, the microprocessor 

will expect the next address, which immediately follows 

the op code, to contain the number which is to be placed 

in the accumulator. Therefore enter 11 next. In the third 

address enter 00, which is the op code for the BRK 

instruction. 

Enter 0s into the accumulator, X register, and Y register 

at this time so that you will know the condition of these 

registers before the program is run. 

If you check your registers and memory, you should see 

what is shown in Fig. 16-7 (although you may have placed 

the program at a different memory location). The h’s and 

b’s represent hex and binary digits which we are not 

concerned with at this time. 

Running the Program 

Let s use Fig. 16-8 during our analysis of program operation. 

The first op code is A9, which means Load the accumulator 

with the contents of the next memory location, or more 

properly, Place a copy of the contents of the next memory 

location in the accumulator. As you see, the number 11 is 

replacing 00 in the accumulator. The program then continues 

to the next instruction op code, 00, which stands for 
BREAK, and stops. 

SOLUTION 

Figure 16-9 shows the completed program. Figure 16-10 

shows memory and the registers and what happens during 
program execution. 

16-4 6800/6808 FAMILY 

Let’s see how the ideas which were introduced in the New 

Concepts section apply to the 6800/6808 microprocessor 
family. 

CPU Control Instructions 

The 6800/6808 family has a no operation instruction which 

uses the mnemonic NOP. Refer to the Expanded Table of 

6800 Instructions Listed by Category in Part 4 of this text. 

In the third column, called the Boolean/Arithmetic Op¬ 

eration column, we see that this instruction does “nothing,” 

just as we said it would. Also notice the hexadecimal 

number under the op (op code) column, in this case 01. 

This is the actual hex code for NOP. 

The 6800 family doesn’t have an actual halt instruction, 

but the instruction which serves its purpose is the WAIt 

for Interrupt instruction. (Bold type and capital letters 

Addr Obj Assembler Comment 

0000 A9 LDA #$EE Copy the hex number EE into the 
accumulator (A) 0001 EE 

0002 AA TAX Transfer the contents of A into X 
0003 A8 TAY Transfer the contents of A into Y 
0004 00 BRK Stop 

Fig. 16-9 Example 16-1 program listing. 
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Memory 

0000 A9 ! 

0001 EE- 

0002 AA 

0003 A8 

0004 00 

0005 hh 

0006 hh 

0007 hh 

0008 hh 

0009 hh 

1. Transfer "EE" to A 
— 2. Transfer A to X - 

— 3. Transfer A to V — 

Accumulator 
EE 

X Register 
EE 

Y Register 
EE 

Stack pointer 
hh 

PCH—Program counter—PCL 

hh ! hh 

Status register 

N V—BDIZC 

bb — bbbbb 

h | h 

Fig. 16-10 Example 16-1 program analysis. 

identify the mnemonic.) Refer to the Expanded Table of 

6800 Instructions. Notice that the wait for interrupt instruc¬ 

tion uses the mnemonic WAI and has an op code of 3E. 

Data Transfer Instructions 

Look in the Expanded Table at the next entry underneath 

the WAI instruction. This is the first entry in the Data 

Transfer Instructions section, which is a list of all of the 

different types of data transfer instructions available in the 

6800/6808 family. (To those with previous microprocessor 

experience: You may notice that we have excluded transfer 

instructions involving the stack. This is intentional. They 

have been included in the Stack Instructions category.) 

Direction of Data Transfer 

Let’s look at this Data Transfer section a little more closely. 

The first instruction listed is the LoaD Accumulator A 

instruction. The boldfaced letters show where the LDAA 

mnemonic came from. The third column shows the Boolean/ 

Arithmetic Operation. This is a concise and graphic way 

to state exactly what this instruction does. It shows M, 

which stands for memory, moving toward A, which stands 

for the accumulator. To put it another way, the contents of 

a certain memory location are being transferred into the 

accumulator. 

Recall from the New Concepts section that moving or 

transferring is actually more like making a copy of what’s 

in a particular location and placing the copy in the desti¬ 

nation. 

Referring to the table, notice that the second (LoaD 

Accumulator B) and seventh (LoaD X register) instructions 

are similar to the first (LDAA). The difference is that they 

copy the contents of a particular memory location and place 

it either in accumulator B or in the X register instead of 

accumulator A. 

It may help to have a mental picture of our programming 

model of the 6800, shown in Fig. 16-11, as we discuss 

these instructions. 

We have talked about moving or copying the contents 

of some particular memory location to accumulator A, 

accumulator B, or the X register. Now let’s consider doing 

the reverse. 

Look at the third, fourth, and eighth instructions in the 

Expanded Table. They are STAA, STAB, and STX, which 

is to say, store the contents of accumulator A in a memory 

location, store the contents of accumulator B in a memory 

location, and store the contents of the X register in a 

memory location, respectively. The STORE instructions 

are just the reverse of the LOAD instructions. (Note the 

Boolean/Arithmetic Operation column.) 

Accumulator A 
hh 

Accumulator B 
hh 

XH—X Register—XL 
hh | hh 

SPH—Stack pointer—SPL 

hh | hh 

PCH—Program 

hh 

counter—PC|_ 

hh 

Status register 

1 1 H1NZVC 

1 1 b b b b b b 

h | h 

Fig. 16-11 Complete 6800/6808 programming model. 
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Continue referring to both the Expanded Table and Fig. 

16-11. Instructions 5 and 6 in the Expanded Table (TAB 

and TBA) allow you to transfer the contents of accumulator 

A and accumulator B between each other. 

The last three instructions (CLR, CLRA, and CLRB) 

simply transfer or place the number zero in accumulator A 

or B or in a memory location. 

Op Codes 

Does your computer or microprocessor trainer understand 

the words “load accumulator A”? No. Does it understand 

the mnemonic LDAA? If you are using an assembler, the 

assembler translates the mnemonic into binary numbers, 

which it does understand. (If you can type the mnemonic 

LDAA into your computer or trainer, you have an assembler. 

If instead you must use a hexadecimal keypad or type in 

hex numbers, you do not have an assembler.) The point 

here is that the microprocessor inside your computer does 

not understand English words like “load” or mnemonics 

like LDAA. 

If you are using an assembler, the assembler program is 

translating the mnemonics, which the microprocessor does 

not understand, into something it does understand. What 

does the microprocessor understand? Binary numbers. In 

our case we will enter them as their equivalent hexadecimal 

value and let the monitor or assembler translate that into 

binary. For our purposes, at least at this point, we’ll say 

that the microprocessor understands hexadecimal. (The 

monitor is part of the firmware built into your microprocessor 

trainer.) 

Look again at the Expanded Table. If we wanted to tell 

the microprocessor to load the accumulator from memory 

(the first data transfer instruction, LDAA), the micropro¬ 

cessor chip would actually need the hex code in the seventh 

column over, the op code column (op for short). We would 

place the hex number 86, 96, A6, or B6 (depending on 

which variation of the instruction we wanted to use) in the 

computer’s memory as the first instruction to execute. 
(We’ll talk more about these variations later.) 

Let’s look at another example. What if you wanted to 

have the microprocessor store the contents of the X register 

in memory? What would be the hex number the micropro¬ 

cessor would need to understand what you wanted to do? 

You should have said either DF or EF or FF from the STX 

instruction. 

Sample 6800/6808 Program 

Program Objective 

Let’s create a program which will 

L Place the number 11 in the accumulator. 
2. Stop. 

Creating the Program 

Refer to the Data Transfer Instructions section of the 

Expanded Table. Do you see an instruction which could be 

used to place a number in the accumulator? Look in the 

Boolean/Arithmetic Operation column. You need an instruc¬ 

tion which has an arrow pointing to the accumulator. There 

are three such instructions—LDAA, TBA, and CLRA. 

Since we don’t want to involve accumulator B, and since 

we don't want to clear accumulator A, LDAA will be our 
choice. 

The next step is to determine which LDAA instruction 

to use. There are four. The key to this decision is in the 

Address Mode column. The LDAA instruction which has 

Immediate in the address column is the one we want. 

Immediate addressing tells the microprocessor that the data 

it needs will be coming immediately after the op code. We 

will learn more about addressing modes in the next chapter. 

Finally, you want the program to stop. The instruction 

which does this is in the CPU Control Instructions section 

of the Expanded Table. The WAI instruction is the correct 
choice. 

Entering the Program 

The completed program is shown in Fig. 16-12. We’ll see 

how to enter it into your microprocessor first by using an 

assembler and then without an assembler. 

Note that the column labeled Obj contains the actual 

6800 op codes, and the Assembler column contains the 

mnemonic and data in a format similar to that used by an 
assembler. 

Assembler Comment 

0000 LDAA #$11 Load the accumulator with the number (11) 
immediately following the LDAA# op code (86) 0001 11 

0002 Halt 

Fig. 16-12 Sample program. (Note: The addresses should 
be an area where user programs can be placed. If 0000 is 
not such a place on your system, then you will need to 
change these addresses.) 
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Refer to the LDAA instruction in the Expanded Table. 

To the right of the word Immediate you see LDAA #$dd. 

This is in the Assembler Notation column and describes 

how many assemblers require that you type this instruction. 

With four different LoaD Accumulator A instructions, the 

assembler must know which one you want. The format of 

the information after the LDAA is how the different forms 

of the command are differentiated. The # means that the 

data to be used is coming immediately after the command 

itself. The $ indicates that it is a hexadecimal number. The 

dd simply stands for two hexadecimal digits of data. (Each 

d stands for one nibble or 4 bits.) 

It is important to remember that we are talking about a 

typical assembler format; however, there is no absolute 

standard that must be followed. Refer to the manual which 

came with your assembler or ask your instructor for 

information about your assembler’s format. 

We are going to enter this program into memory starting 

at location 0000 (hexadecimal). If the trainer you are using 

does not allow programs to be placed in these memory 

locations, refer to your manual and substitute valid addresses 

in place of those shown in Fig. 16-12. 

If you are using an assembler, please enter the program 

now. It will look similar to what is shown in Fig. 16-13. 

Also place Os in accumulator A, accumulator B, and the 

X (index) register so that you will know what numbers are 

in each register before you run the program. Refer to Fig. 

16-14 to see what the memory and registers should look 

like. 

If you are not using an assembler, you must look up the 

op codes by hand in the Expanded Table. This is called 

hand-assembly. Let’s go through the necessary steps for 

hand-assembly. 

To the right of the LDAA #$dd, in the op code (op for 

short) column you will see the hexadecimal number 86. 

This is the 6800/6808 op code, which stands for Load 

accumulator A with the number immediately following this 

op code. Set your trainer so that the memory address where 

the next instruction will be loaded is someplace within the 

area allowed for user programs. We chose 0000, but you 

may need to use another location. Enter the number 86 into 

the first available memory location. Since this was a Load 

Accumulator A Immediate instruction, the microprocessor 

will expect the next address, which immediately follows 

the op code, to contain the number which is to be placed 

in accumulator A. Therefore enter 11 next. In the third 

Address Op code Data Mnemonic Immediate Hex Data 

0000 86 11 LDAA#$11 

0002 3E WAI 

Fig. 16-13 Disassembly of the sample program. 

Memory 

Fig. 16-14 6800/6808 sample program. 

address enter 3E, which is the op code for the WAI 

instruction. 

Enter 0s into accumulator A, accumulator B, and the X 

(index) register now so that you will know the condition 

of these registers before the program is run. 

If you check your registers and memory, you should see 

what is shown in Fig. 16-14 (although you may have placed 

the program at a different memory location). The h’s and 

b’s represent hex and binary digits which we are not 

concerned with now. 

Running the Program 

Let’s use Fig. 16-15 during our analysis of program 

operation. 

The first op code is 86, which means, Load accumulator 

A with the contents of the next memory location, or more 

properly, Place a copy of the contents of the next memory 

location in accumulator A. As you see, the number 11 is 

A 0002 
d 

. 0003 

Memory 

Fig. 16-15 6800/6808 sample program. 
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Addr Obj Assembler Comment 

0000 86 LDAA #$EE Load accumulator A with the hex number 
immediately following the LDAA# op code (86) 0001 EE 

0002 16 TAB Transfer the contents of A into B 

0003 3E WAI Stop 

Fig. 16-16 Example 16-2 program. 

replacing 00 in the accumulator. The program then continues 

to the next instruction op code, 3E, which stands for WAI, 
and stops. 

Checking the Results of Program (Analysis) 

After running the program, you should have 00 in accu¬ 

mulator B and the X (index) register and 11 in accumulator 

A. The program docs what we designed it to do. 

Here’s one for you to try. 

EXAMPLE 16-2 

First manually place 00s in accumulator A, accumulator B, 

and the X register. Then write a program which will 

1. Load accumulator A with the hex number EE. 

2. Transfer a copy of the contents of the accumulator A 

into accumulator B. 

3. Stop. 

SOLUTION 

Figure 16-16 shows the completed program. Figure 16-17 

shows the memory and registers and what happens during 
program execution. 

16-5 8080/8085/Z80 FAMILY 

Let’s see how the ideas which were introduced in the New 

Concepts section apply to the 8080/8085/Z80 microproces¬ 
sor family. 

CPU Control Instructions 

The 8080/8085/Z80 family has a no operation instruction 

which uses the mnemonic NOP. Refer to the Expanded 

Table of 8085/8080 and Z80 (8080 Subset) Instructions 

Listed by Category in Part 4 of this text. 

In the ninth column, called the Boolean/Arithmetic 

Operation column, we see that this instruction does “noth¬ 

ing?” as we said it would. Also notice the hexadecimal 

number under the op (op code) column, in this case 00. 

This is the actual hex code for NOP. 

The 8080/8085/Z80 family has an actual halt instruction. 

Refer to the Expanded Table again. Notice that the halt 

instruction uses the mnemonic HLT [Z80 = HALT] and 

has an op code of 76. 

Data Transfer Instructions 

Refer to the Expanded Table. Underneath the halt instruction 

you will see the MOV A,A [Z80 = LD A,AJ instruction 

Memory 

0000 86 

0001 EE- 

0002 16 

0003 3E 

0004 hh 

0005 hh 

0006 hh 

0007 hh 

0008 hh 

0009 hh 

1. Load EE into 
accumulator A ** 

— 2. Transfer A into B- 
Accumulator A 

EE 

EE 

XH—X register—XL 

00 | 00 

SPH—Stack pointer—SPL 

hh | hh 

PCH—Program 

hh 
counter—PCL 

hh 

Status register 

1 1 H1NZVC 

1 1 b b b b b b 
h | h 

Fig. 16-17 Example 16-2 program analysis. 
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at the beginning of the Data Transfer Instructions section. 

This section is a list of all of the different types of data 

transfer instructions available in the 8080/8085/Z80 family. 

(To those with previous microprocessor experience: You 

may notice that we have excluded transfer instructions 

involving the stack. This is intentional. They have been 

included in the Stack Instructions category.) 

Direction of Data Transfer 

Let’s look at the data transfer section a little more closely. 

The second instruction listed is the MOVe data to A from 

B instruction. The boldfaced letters help show where the 

MOV A,B mnemonic came from. (If you are using the Z80 

microprocessor, it is the LoaD data into A from B instruc¬ 

tion. The boldfaced letters show where the LD A,B 

mnemonic came from.) The ninth column shows the Boo¬ 

lean/Arithmetic Operation. This is a concise and graphic 

way to state exactly what this instruction does. It shows B, 

which stands for register B, moving toward A, which stands 

for the accumulator. To put it another way, the contents of 

register B are being transferred into the accumulator. 

Recall from the New Concepts section that moving or 

transferring is actually more like making a copy of what’s 

in a particular location and placing the copy in the desti¬ 

nation. 

It may help to have a mental picture of our programming 

model of the 8085/8080/Z80, shown in Fig. 16-18, as we 

discuss these instructions. 

There are many directions in which data could be 

transferred with an accumulator, six registers, and memory. 

This can be seen in the Expanded Table. The first eight 

instructions transfer the contents of a register or memory 

location into the accumulator. (This can be seen in the 

Operation column and the Boolean/Arithmetic Operation 

column.) The second group of eight instructions copy the 

contents of the accumulator, one of the registers, or memory 

into register B. The third group of eight transfer data into 

register C. The fourth group into D. The fifth into E. The 

sixth into H. The seventh into L. And the eighth into a 

memory location. This makes 8 x 8 or 64 instructions just 

to do simple data transfers between registers. 

The next group of eight instructions consists of the Move 

Immediate instructions. They move a specified number 

directly into a register or memory. 

We will leave it to you to glance at the rest of the data 

transfer instructions in the Expanded Table. 

If you have used the 6502 family or 6800/6808 family 

chips before (especially the 6502 family) and are now 

studying the 8085/Z80 family for the first time, you may 

be surprised by the great number of different instructions 

this family has. This is offset, however, by the relatively 

few addressing modes available and the simplicity this can 

offer the programmer. (The 6502 family, by contrast, has 

very few different instructions but has a large number of 

addressing modes for an 8-bit chip from its era.) 

Op Codes 

Does your computer or microprocessor trainer understand 

the statement “Move data to A from B”? No. Does it 

understand the mnemonic MOV A,B? If you are using an 

assembler, the assembler translates the mnemonic into 

binary numbers, which it does understand. (If you can type 

the mnemonic MOV A,B into your computer or trainer, 

you have an assembler. If instead you must see a hexade¬ 

cimal keypad or type in hex numbers, you do not have an 

assembler.) The point here is that the microprocessor inside 

your computer does not understand English words like 

“Move” or mnemonics like MOV A,B. 

Memory 

0000 hh 

0001 hh 

0002 hh 

0003 hh 

0004 hh 

0005 hh 

0006 hh 

0007 hh 

0008 hh 

0009 hh 

000A hh 

Fig. 16-18 Complete 8080/8085 and Z80 (8080 subset) 
programming model. 

— 
Accumulator 

hh 

Register B 
hh 

Register C 
hh 

Register D 
hh 

Register E 
hh 

Register H 
hh 

,_i 

Register L 
hh 

i_ 

SPH—Stack pointer—SP|_ 

hh | hh 

PCh—Program 

hh 

counter—PCL 

hh 

Status register 

S Z — A — P — C 

bb—b —b —b 

h | h 
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If you are using an assembler, the assembler program is 

translating the mnemonics, which the microprocessor does 

not understand, into something it does understand. What 

does the microprocessor understand? Binary numbers. In 

our case we will enter them as their equivalent hexadecimal 

value and let the monitor or assembler translate that into 

binary. For our purposes, at least at this point, we’ll say 

that the microprocessor understands hexadecimal. (The 

monitor is part of the firmware built into your microprocessor 
trainer.) 

Look again at the Data Transfer section of the table. If 

we wanted to tell the microprocessor to load the accumulator 

from register B (the second data transfer instruction, MOV 

A-B [LD A,B], the microprocessor chip would actually 

need the hex code in the eighth column over, the op code 

column (op for short). We would place the hex number 78 

in the computer’s memory as the first instruction to execute. 

Let s look at another example. What if you wanted to 

have the microprocessor copy the contents of the C register 

into the accumulator? What would be the hex number the 

microprocessor would need to understand what you wanted 

to do? You should have said 79 from the MOV A,C 
[LD A,C] instruction. 

Sample 8085/Z80 Program 

(Note: Since we are simultaneously covering the 8085 and 

Z80 microprocessors, we will give the 8085 mnemonic 

first, followed by the Z80 mnemonic in italic print and 

enclosed by square brackets, for example, MVI A dd ILD 
A,ddJ.) 

Program Objective 

Let’s create a program which will 

1. Place the number 11 in the accumulator. 
2. Stop. 

Creating the Program 

Refer to the Data Transfer Instructions section of the 

Expanded Table. Do you see an instruction which could be 
used to place a number in the accumulator? 

[Note: You may want to use the Mini Table of 8085/Z80 

(8080 Subset) Instructions listed by Category at this time. 

There are so many 8085/Z80 data transfer instructions that 

it may prove to be a bit time-consuming to page through 
the Expanded Table.] 

Look in the Boolean/Arithmetic Operation column (sim¬ 

ply labeled Operation in the Mini Table). You need an 

instruction which has an arrow pointing to the accumulator 

(indicated by an A). There are 12 such instructions; using 

8085 mnemonics, they are MOV A,A; MOV A,B; MOV 

A,C; MOV A,D; MOV A,E: MOV A,H; MOV A,L; MOV 

A'M; MVI A,dd; LDAX B; LDAX D; and LDA aaaa. 

[Using Z80 mnemonics, they are LD A,A; LD A,B; LD 

A,C; LD A,D: LD A,E; LD A,H: LD A,L; LD A, (HL); LD 

A,dd; LD A, (BC); LD A, (DE); and LD A, (aaaa)./ 

The next step is to determine which one of these 

instructions to use. The key to this decision can be found 

in the Operation or (Boolean/Arithmetic Operation) column. 

The data transfer instruction we want is one which will 

take a number (which we will place immediately after the 

instruction op code) and will transfer it into the accumulator. 

The first eight instructions mentioned above take a number 

which is already in one of the seven 8085/Z80 registers or 

memory and place it in the accumulator. This is not what 

we want. The last three instructions take a number or data 

byte from a memory location and place it in the accumulator. 

This is not what we want either. The MVI A.dd (MoVe 

Immediate dd to A) [Z80 = LD A, dd (LoaD dd into A)] 

instruction takes the number immediately following the 

move instruction and places it in the accumulator. This is 

what we want since it allows us to specify the number 11 

right after the op code for the move instruction. 

Finally, you want the program to stop. The instruction 

which does this is in the CPU Control Instructions section. 

The halt instruction is the obvious choice. 

Entering the Program 

The completed program is shown in Fig. 16-19. We’ll see 

how to enter it into your microprocessor first using an 
assembler and then without an assembler. 

Note that the column labeled Obj contains the actual 

8085 and Z80 op codes, and the Assembler column contains 

the mnemonic and data in a format similar to that used by 
an assembler. 

Refer to the MVI A,dd [LD A,dd] instruction in the Mini 

Table. These mnemonics are used by assemblers, which 

means that you must type the instruction using this format. 

To the right of the mnemonic, in the Op column, is the op 

code for that particular instruction. The 8085 and Z80 

microprocessors use the same op codes: Only the mnemonics 

are different. The dd simply stands for two hexadecimal 

digits of data. (Each d stands for one nibble or 4 bits.) 

We are going to enter this program into memory starting 

at location 0000 (hexadecimal). If the trainer you are using 

does not allow programs to be placed in these memory 

locations, refer to your manual to determine where programs 

can be placed in memory and substitute those addresses. 

If you are using an assembler, please enter the program 

now. It will look similar to what is shown in Fig. 16-20. 

Also place 0s in the accumulator and all the general- 

purpose registers (registers B, C, D, E, H, and L) so that 

you will know what numbers are in each register before 

you run the program. Refer to Fig. 16-21 to see what the 

memory and registers should look like. 

If you are not using an assembler, you must look up the 

op codes by hand in either the Expanded Table or the Mini 

Table. This is called hand assembly. Let’s go through the 
necessary steps for hand assembly. 
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8085 rr^nemonics 

Addr Obj Assembler Comment 

0000 3E MVI A, 11 Load the accumulator with the number (11) 
immediately following the MVI op code (3E) 

0001 11 

0002 76 HALT Halt 

Z80 mnemonics 

Addr Obj Assembler Comment 

0000 3E LD A, 11 Load the accumulator with the number (11) 
immediately following the LD A,dd op code (3E) 

0001 11 

0002 76 HALT Halt 

Fig. 16-19 Sample program. (Note: The addresses should 
be an area where user programs can be placed. If 0000 is 
not such a place on your system, then you will need to 
change these addresses.) 

If you look up the MVI A,dd [LD AM] mnemonic in 

either the Expanded Table or the Mini Table (for the 8080/ 

8085/Z80), you will see the hex number 3E in the Op 

column. This is the op code which stands for, ”MoVe the 

number Immediately following this op code into the Ac¬ 

cumulator.” [*'.LociD the number following this op code 

into the Accumulator. *9] Set your trainer so that the memory 

address where the next instruction will be loaded is some¬ 

place within the area allowed for user programs. We chose 

0000, but you may need to use another location. Enter the 

hex number 3E into the first available memory location. 

Since this was a MoVe Immediate to Accumulator [LoaD 

Accumulator] instruction, the microprocessor will expect 

the next address, which immediately follows the op code, 

to contain the number which is to be placed in the 

accumulator. Therefore enter 11 next. In the third address 

enter 76, which is the op code for the halt instruction. 

8085 mnemonics 

Address Opcode Data Mnemonic Source Destination 

0000 3E 11 MVI A, 11 

0002 76 HALT 

Z80 mnemonics 

Address Op code Data Mnemonic Source Destination 

0000 3E 11 LD A, 11 
0002 76 HALT 

Fig. 16-20 Disassembly of the sample program. 

Enter 0s into the accumulator and all the general-purpose 

registers at this time so that you will know the conditions 

of these registers before the program is run. 

If you check your registers and memory, you should see 

what is shown in Fig. 16-21 (although you may have placed 

the program at a different memory location). The h's and 

b’s represent hex and binary digits which we are not 

concerned with at this time. 

Running the Program 

Let’s use Fig. 16-22 during our analysis of program 

operation. 

The first op code is 3E, which means, Load the accu¬ 

mulator with the contents of the next memory location, or 

Accumulator 
00 

Register B 
00 

Register C 
00 

Register D 
00 

: 

Register E 
00 

— 
Register H 

00 
___i 

Register L 
00 

SPH—Stack pointer—SPL 

hh | hh 

PCH—Program 
hh 

counter—PCL 

hh 

Status register 

SZ —A —P —C 

b b — b — b — b 

h | h 

Fig. 16-21 8085/Z80 sample program. 
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Memory 

0000 3E New number (11) Accumulator 

0001 11 
|—replacing old number (00) — —► 11 00 —► 

Register B 
00 

Register C 
00 0002 76 

0003 hh Register D 
00 

Register E 
00 

L UUU4 hh 
Register H 

00 
■ _ 

Register L 
00 

i_ 
0005 hh 

0006 hh SPH—Stack pointer—SPL 
hh 1 hh 

0007 
.... .... 

hh 
PCH—Proaram counter—PC, 1 

0008 hh hh hh 

0009 hh 
Status register 

SZ —A —P —C 

000A hh 
b b— b — b — b 

h | h 

Fig. 16-22 8085/Z80 sample program. 

more properly, Place a copy of the contents of the next 

memory location in the accumulator. As you see, the 

number 11 is replacing 00 in the accumulator. The program 

then continues to the next instruction op code, 76, which 
stands for halt, and stops. 

Checking the Results of Program (Analysis) 

After running the program, you should have 00 in all the 

general-purpose registers and 11 in the accumulator. The 

program does what we designed it to do. 

Here’s one for you to try. 

EXAMPLE 16-3 

First manually place 00s in the accumulator and all general- 

purpose registers. Then write a program which will 

1. Place the hex number EE in the accumulator. 

2. Move (copy) the contents of the accumulator (A) into 
register B. 

3. Move (copy) the contents of the accumulator (A) into 
register C. 

4. Stop. 

SOLUTION 

Figure 16-23 shows the completed program in both 8085 

and Z80 mnemonics. Figure 16-24 shows the memory and 

registers and what happens during program execution. 

16-6 8086/8088 FAMILY 

We will approach the 16-bit 8086/8088 microprocessor a 

little differently than we did the 8-bit microprocessors. The 

8-bit sections are designed to fit the needs of a person using 

op code charts and hand assembly in the earlier chapters 

and an assembler in the later chapters. 

In the 16-bit section we assume that you are using the 

DOS DEBUG utility in the earlier chapters. DEBUG is 

readily available to all who use MS-DOS—type machines, 

and it is less sophisticated than assemblers, which keeps 

you closer to the hardware during the early part of the 
learning process. 

In later chapters we will use both an assembler and 

DEBUG in figures and in answers to chapter questions. 

This will allow you to explore the advantages of a full- 

featured assembler and to continue to use DEBUG if you 
wish. 

One final point should be kept in mind. This text is 

designed to make the learning process as simple as possible 

for the beginner. A 16-bit chip like the 8086/8088 is quite 

complex for the beginner. Therefore we do not attempt to 

cover every aspect of this chip. 

CPU Control Instructions 

The 8086/8088 has a no operation (NOP) instruction which 

works as described in the New Concepts section of this 

chapter. A brief description of the NOP instruction can be 

found in the CPU Control Instructions section of the 

Expanded Table of 8086/8088 Instruction Listed by Cate¬ 

gory in Part 4 of this text. The NOP has an op code of 90 
and affects no flags. 

The 8086/8088 has a halt instruction which functions as 

described in the New Concepts section. A description of 

this instruction appears in the CPU Control Instructions 

section of the 8086/8088 instruction set. Its mnemonic is 
HLT, and its op code is F4. 
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8085 mnemonics 

IBB Assembler Comment 

0000 3E MVI A,EE Place the hex number EE in the 
accumulator (A) 

EE 

0002 47 ' MOV B,A Copy into register B the contents of A 

0003 4F MOVC, A 1 Copy into register C the contents of A 

0004 76 HALT Stop 

Z80 mnemonics 

Addr Obj Assembler Comment 

0000 3E LD A,EE Place the hex number EE in the 
accumulator (A) 

0001 EE 

0002 47 Copy into register B the contents of A 

0003 4F Copy into register C the contents of A 

0004 76 1 Stop 

Fig. 16-23 Example 16-3 program. 

Data Transfer Instructions 

The 8086/8088 has eight instructions which we have placed 

in the Data Transfer Instructions section. While the Ex¬ 

panded Table of 8086/8088 Instructions Listed by Category 

lists all eight of these instructions, the most versatile and 

by far the most useful for the beginner is the MOVe 

instruction. 
A copy of our programming model for the 8086/8088 

appears in Fig. 16-25. 

Direction of Data Transfer 

A move can be from (source) a register, memory, or an 

immediate number to (destination) a register or memory. 

While either the source or the destination can be a memory 

location, both cannot be memory locations in the same 

instruction. The source and destination must both be either 

8 bits wide or 16 bits wide; you can’t mix data widths in 

the same instruction. And finally, you can’t move from one 

segment register to another. 

As you have seen from the programming model, the 

8086/8088 has several 8-bit and 16-bit registers. This causes 

the number of move combinations between registers alone 

to number in the hundreds. A few examples are 

MOV AL.DL AL <- -DL 

MOV BH.BL BH -BL 

MOV AX.DX AX DX 

MOV SP.BP SP <- BP 

MOV SI.DI SI <- DI 

MOV BX.DS BX DS 

MOV AL.76 AL 76 

A 

d 

d 

r 

e 

s 

s 

e 

s 

Memory 

0000 3E 

0001 EE- 

0002 47 

0003 4F 

0004 76 

0005 hh 

0006 hh 

0007 hh 

0008 hh 

0009 hh 

000A hh 

-► 1. EE copied into A - 

I- EE copied from A 

— 2. Into B ■ 
^— 3. Into C ' 

Accumulator 
-► EE 

-- 

Register B 
EE ! 

— 

Register C 
EE 

Register D i 
00 

Register E 
00 

Register H 
oo ! 
_i 

Register L 
00 

SPH—Stack pointer—SPL 

_M 
hh | 

PCH—Program counter—PCl 

hh hh 

Status register 

SZ —A —P —C 

bb— b — b — b 

h I h 

Fig. 16-24 Example 16-3 program analysis. 
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Memory 

0100 hh 

0101 hh 

0102 hh 

0103 hh 

0104 hh 

0105 hh 

0106 hh 

0107 hh 

0108 hh 

A 

d 
0109 hh 

d 010A hh 

r 
010B hh 

e 

s 010C hh 

s 
010D hh 

e 

s 010E hh 

010F hh 

0110 hh 

0111 hh 

0112 hh 

0113 hh 

0114 hh 

0115 hh 

0116 hh 

. 
0117 hh 

Fig. 16-25 8080/8086 programming model. 

AH 
-Accumulator AX- 

i 
i AL 

hh i hh 

BH 
case da " 

i 
i BL 

hh i 
i 

i i n 1 ^ V __ 
hh 

CH 
couni ca 

i 
CL 

hh i 
hh 

DH 
uaxa ua ■— 

i 
DL 

hh i 
j hh 

Source index 
hhhh 

Destination index 
hhhh 

Stack pointer 
hhhh 

Base pointer 
hhhh 

Code segment 
hhhh 

Data segment 
hhhh 

Extra segment 
hhhh 

Stack segment 
hhhh 

New 

Instruction pointer 
hhhh 

■ Flags - 

-0 

-b 
D I T 

b b b 

8085-like 

Z — A — P — C 

b — b — b — b 

MOV AX,89E3 AX ^ 89E3 
MOV [1234], AX memory location 

1234 <- AX 
MOV BL,[4456] BL memory 

location 4456 
MOV DX,[BX + DI] DX memory 

location found by 

adding the 

contents of BX 

and DI 
MOV AX,[BX + DI + 0200] AX <— memory 

location pointed to 

by the sum of the 

contents of BX, 

the contents of 

Dl, and the hex 

number 200,6 

The left column shows the instruction exactly as it appears 

when disassembled by DEBUG. The right column indicates 

where the data comes from and where it goes. 

Sample 8086/8088 Program 

Figure 16-26 shows a sequence of commands that will 

demonstrate a simple MOVe instruction and give you 
practice entering programs into DEBUG. 

First, we started DEBUG by typing 

C>debug 

at the DOS prompt as shown. DEBUG responded with a 

which indicates it is waiting for a command. 
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ODEBUG 

ftX=0000 BX=0000 CX=0000 DX=0QD0 SP=bD5E BP=0000 SI=QQD0 DI=D000 
DS-*H2A ES = cn2A SS-T^A CS-V12A IP=0100 NV UP El PL NZ NA PO NC 

n2A:0100 7420 JZ 0122 
-a 
qR2R:0inD mov al/dl 
qqEArDlDE 
-u 1UU 101 
qqEA:flfiDD MOV AL ,DL 
-r 
AX=0DDD BX=00nD CX=D0DD DX=0DDD SP=LDBE BP=0Q[]D SI=D00D DI=DDDD 
Ds=qqaA ES-qqaA ss=qqaA cs=qqaA ip=oido nv up ei pl nz na po nc 
qqpArDicm sado mov al,dl 
-rdx 
DX □□□□ 
: DDf3 
-r 
AX=DDD0 BX=D0D0 CX=DD00 DX=D DF3 SP=LDBE BP=QDDD SI=DDDQ DI=D000 
Ds=qqaA ES-qqaA ss=qqaA cs-bbea ip=dido nv up ei pl nz na po nc 
qqEA:01DD A ADO MOV AL,DL 
-t 

AX-D0E3 BX=0DDD CX=DDQD DX=D0F3 SP=LDBE BP=0DD0 SI=0D0D DI=0CIQ0 
DS=qq2A Es^qqaA ss=qqEA cs^bbea ip=oioe nv up ei pl nz na po nc 
qqaa:dide lb db lb 
-q 

c> 
Fig. 16-26 MOVe instruction (DEBUG screens). 

Next we typed an “r,” which stands for register. This 

causes DEBUG to display the values of all registers as 

shown in Fig. 16-27. 

We will now duplicate (several times) that portion of 

Fig. 16-26 (in bold type) which shows the values in various 

registers. You should compare these sections (as we progress 

through each figure) to our 8086/8088 programming model 

in Fig. 16-25. 
The current values of the general-purpose registers are 

shown in bold type in Fig. 16-28. 

The values of the stack pointer, base pointer, source 

index, and destination index are shown in bold type in Fig. 

16-29. 

-r 
AX=0DDD BX=0000 CX=D0D0 DX=D0D0 SP=LDBE BP=DDDD SI=DDD0 DI=000D 
DS=qqaA es^bbea ss=qqaA cs=qqaA ip=oidd nv up ei pl nz na po nc 
qqaA:Dicm ?4ED jz oiaa 

Fig. 16-27 DEBUG screens (cont.). 

-r 

AX = D00D BX = D00D CX = DD00 DX = DODD SP=LD5E BP^ODOD SI^OQOD DI=DDDD 
DS=qqaA es^bbea ss^bbea cs=qqaA ip=qidd nv up ei pl nz na po nc 

qqEA:74 ED JZ D1EE 

Fig. 16-28 DEBUG screens (cont.). 

-r 
AX=0DDQ BX=DDDD CX=DDDD DX=0Q0D SP=bDSE BP=000D SI=0a00 DI=DDDD 
ds—qqaa es=bbea ss^bbea cs^bbea ip=didd nv up ei pl nz na po nc 
qqEA:U1UU 74ED JZ aiEE 

Fig. 16-29 DEBUG screens (cont.). 

The values in the segment registers are shown in bold in 

Fig. 16-30. 

The value of the instruction pointer and the current status 

of the flags are shown in bold in Fig. 16-31. 

Finally, the address, op code, and assembler notation for 

the next instruction which is to be executed are shown in 

bold type in Fig. 16-32. 

The area shown in bold type in Fig. 16-33 illustrates 

how we then typed an "a,” which is the DEBUG assemble 

command, at the DEBUG prompt. 

-a <ENTER> 
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AX=DOOD BX=ODOD 

DS=qq2A ES=iq2A 
qq5A:DlDD 7A50 

Fig. 16-30 DEBUG screens (cont.). 

CX-DQDD DX-00D0 SP=tD5E BP=0QQQ SI=00DQ DI=DDDD 

ss-qqeA cs=qqsA ip=dioo nv op ei pl nz na po nc 
JZ 0155 

Fig. 16-31 DEBUG screens (cont.). 

-r 
AX=DDD0 BX=0000 

DS=qq5A Es=qq5A 
^EArDlDO 74 50 

CX-0000 DX-0000 SP=LDSE BP=0000 SI=D000 DI=0000 

SS-TTEA CS=qq2A IP=0100 NV UP EI PL NZ NA PO NC 
JZ 0152 

-r 
AX=0000 BX=0000 CX=0DQD DX 

DS=q95A ES=qSEA SS=RR5A CS 
CHEA:0100 74E0 JZ 

Fig. 16-32 DEBUG screens (cont.). 

ODEBUG 
-r 
AX=0000 BX=00DD CX=D000 DX 

DS=qqEA ES=qq5A SS=qq5A CS: 
qq5A:010D 745D JZ 
-a 

qq2A:01DD mov al,dl 
qq5A:010E 
-u 1DD 101 
qqpA:D10D flflDO MOV 
-r 

AX=0000 BX=0000 CX=0000 DX 
DS=qq5A Es^qqaA ss=qq2A cs: 
qqEA:01DD flflDO MOV 
-rdx 
DX 0000 

: OOf 3 
-r 

AX=0000 BX=00QQ CX=D000 DX= 

DS=qq5A ES=qq5A ss=qq2A cs^ 
qqEA:01DD flflDO MOV 
-t 

0000 SP=LD5E BP=0000 SI=0000 DI=DD0D 

qq5A IP=0100 NV UP ei pl nz na po nc 
01 EE 

0000 SP=LD5E BP=000Q SI=0Q00 DI=000D 

qqEA IP=0100 NV UP ei pl nz na po nc 
01 EE 

AL, DL 

□000 SP=LD5E BP=0000 Sl=0000 Dl=0000 

qS5A IP=010D NV UP El PL NZ NA PO NC 
AL, DL 

000D SP=LD5E BP=000Q SI=0D00 DI=00D0 
qR5A IP=01DD NV UP EI PL NZ NA PO NC 

AL, DL 

CX-DOOD DX-DDF3 SP=LD5E BP=DDDO SI=000D DI=DDDQ 

ss=qqaA cs=qqEA ip=oios nv up ei pl nz na po nc 
DB L5 

C> 

Fig. 16-33 DEBUG screens (cont.). 

AX=D0F3 BX=DD00 

DS=qq5A ES=qqoa 
qqEArDIDE LS 
-q 

DEBUG then responded with 

992A:0100 

which is the address at which our program will start. The 

992A is the memory segment, and 0100 is the memory 

location within that segment. If you try this program on 

your computer, your segment will probably not be the same 

as ours. This is normal and will not affect the results ot 
the program. 

We then typed 

mov al,dl <ENTER> 

and DEBUG responded with 

992A:0102 

which is the address of the next available memory location. 

We then pressed <ENTER> to terminate assembly, and 
DEBUG waited for our next command. 
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We told DEBUG to create or assemble the machine code 

for the MOV AL,DL instruction. Then we wanted to check 

to see that this is what DEBUG did. We wanted to 

disassemble the machine code. The DEBUG command for 

this is “u,” which stands for unassemble (DEBUG’s name 

for disassemble). The next command in our program is 

-u 100 101 

which tells DEBUG to unassemble memory locations 100l6- 

101 J<5 within the current code segment. DEBUG responded 

with 

992A:0100 88D0 MOV AL,DL 

992A is the current code segment. 0100 is the memory 

location of the first byte of this instruction. 88DO is the 

machine code for MOV AL.DL, which was the assembly- 

language instruction we typed in. 

We typed the register command, and DEBUG again 

displayed the current status of all registers. DEBUG’s 

response is shown in Fig. 16-34. 
When DEBUG displays the registers, it also displays the 

instruction which it finds at the memory location pointed 

to by the instruction pointer in the current code segment. 

These appear in bold type in Fig. 16-34. Our MOV AL,DL 

instruction appears in the assembly-language section. 

Since our instruction said to move the contents of register 

DL to register AL, we needed to place some value in 

register DL. Notice that at this point AX, BX, CX, and 

DX all contained 0000. Even if the contents of DL were 

copied to AL, we wouldn’t see any difference. We needed 

to place some value in DL which we could observe. 

The area in bold type in Fig. 16-35 shows our next 

command 

-rdx 

which told DEBUG we wanted to change the value in 

register DX. DEBUG responded with 

DX 0000 

which was the current contents of register DX. The cursor 

waited after the colon. If we had typed in a value, that 

value would have been placed in the DX register. If we 

had pressed the <ENTER> key, the value in DX would 

not have changed. 

-r 
AX=0000 BX=0000 
DS=CISBR ES^RRaA 
lIBi:0100 flflDO 

Fig. 16-34 DEBUG screens (cont.). 

ODEBUG 
-r 

AX=0000 BX=0000 
DS=qqaA ES=qqaA 
qqaA:0100 7430 
-a 
qq3A:0100 mov al, 
qqaA:oioa 
-u 100 101 
qqaA:oioo flfiDO 
-r 

AX=0000 BX=0000 
DS=qqaA Es=qqaA 
RRBA:0100 flflDO 
-rdx 
DX 0000 
: OOf 3 
-r 
AX=000D BX=0Q00 
DS=RRBA ES=RciaA 
qqaA:oioo aado 
-t 

AX=00F3 BX=0000 
DS=qqeA Es=qqaA 
qqaA:oioa ts 

-q 

CX=0000 DX=0000 SP=LDSE 
ss=qqaA cs=naA ip=oioo 

BOV AL,DL 

CX=0000 DX=0000 SP=LD5E 
ss=qqaA cs=qqaA ip=oioo 

jz oiaa 

dl 

MOV AL,DL 

CX=0000 DX=0000 SP=fcD5E 
ss=qqaA cs=qqaA ip=oioo 

MOV AL,DL 

CX=0000 DX=00F3 SP=LDSE 
ss=qqaA cs=qqaA ip=oioo 

MOV AL,DL 

CX=0000 DX=00F3 SP=LD5E 
ss=qqaA cs=qqaA ip=oioa 

DB LS 

BP=0000 SI=D000 DI=0000 
NV UP El PL NZ NA PO NC 

BP=0000 SI=0000 DI=0000 
NV UP El PL NZ NA PO NC 

BP=0000 SI=0000 DI=0000 
NV UP El PL NZ NA PO NC 

BP=0000 SI=0000 DI=0000 
NV UP El PL NZ NA PO NC 

BP=0000 SI=0000 DI=000Q 
NV UP El PL NZ NA PO NC 

C> 

Fig. 16-35 DEBUG screens (cont.). 
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We wanted to place a new number in DL. However, we 

could not single out the low byte of the DX register, so we 

simply placed Os in the high byte and our number in the 

low byte. We typed that number (0Gf3) and pressed 
<ENTER>. 

:00f3 < ENTER > 

Figure 16-36 shows how we again used the register 
command (“r”). 

Notice that the value in register DX has been changed 
to the value we typed in. 

Running the Program 

Next we wanted the computer to execute the MOV AL,DL 

instruction. However, we did not want it to continue any 

further than that. Even though we had not entered any other 

instruction into the computer, there were others. When we 

turned the computer on, each unused memory location 

contained some number, even if it was 0016. Most of these 

random numbers were actually the op code for some 

instruction. We didn t want these “random” instructions 
to execute . 

DEBUG has a command called trace which executes the 

next instruction (the one displayed at the bottom of the 

register display) and then stops and automatically displays 

the contents of the registers for viewing. This is what we 
did in Fig. 16-37. 

Notice that the value in DX has been copied into register 

AX. Notice also that the Instruction Pointer has been 

incremented to the position ot the next instruction in memory 

-r 
AX=D0D0 BX=DDDD 

RHEArDlDD A ADD 

Fig. 16-36 DEBUG screens (cout.L 

-t 

which is displayed at the bottom of the register display (in 
bold type). 

Checking the Results 

Figure 16-38 shows the operation of the program by using 

our programming model to illustrate the movement of F3 

from one register to the other. 

Our program worked. In the future we will not discuss 

each 8086/8088 program in such detail, but we have done 

so here to give you an idea of how to monitor the execution 

of a program. We have also introduced you to some DEBUG 

commands. Remember that the DEBUG commands_as¬ 

semble, unassemble, trace, register, and quit—are not 

assembly-language instructions but are commands to the 

DEBUG utility, which helps you to enter, modify, and 

execute assembly-language instructions. 

Finally, you may want to exit from the DEBUG program. 

That command is simply the quit command, which is 

entered with the letter q. You will then be returned to the 
DOS prompt. 

EXAMPLE 16-4 

Place the number FE in register DH. Place the number 12 

in DL. Then write a program that will 

1. Copy DH to AH. 

2. Copy DL to BH. 

Use the trace command to execute the program and follow 
its operation. 

CX=DDDD 
ss=qqeA 

DX=00F3 
CS=qqDA 

MOV 

SP=bD5E 
IP=010D 

AL, DL 

BP=000D SI=0DD0 DI=0DDQ 
NV UP El PL NZ NA P0 NC 

AX=00F3 BX=D00D 
DS=qq^A Es=qq^A 
TT2A: 0102 b5 

Fig. 16-37 DEBUG screens (cont.). 

CX=0000 DX=00F3 SP=bD5E 
ss=qq£A cs=qq^A ip=oio2 

DB b5 

BP=000D SI=DD0D DI=D000 
NV UP El PL NZ NA PO NC 

Memory 
Accumulator AX 

! 
0100 88 AH AL 

0101 DO 
hh \ F3 

DaSe DA" 

0102 hh 
BH 
hh 

! 
i 

BL 
hh 

0103 hh CH 
Co u n LCX - 

! CL 

0104 hh 
hh 1 

- n nv 
hh 

uata ux - 

0105 hh 
DH 
hh j 

DL _ 
F3 

[ 
Fig. 16-38 MOVe instruction (programming model). 
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ODEBUG 

-r 
AX=0000 BX=0000 
DS=CIBFB E5=CIBFB 
3BFB:0100 A3FF72 
-rdx 
DX □□□□ 
: felB 
-r 
AX=0000 BX=Q000 
DS=CIBFB ES=CIBFB 
3BFB:0100 A3FF72 

CX=0000 DX=DQ0Q SP=404E 
SS=9BFB CS=3BFB IP=0100 

MOV [7 2FF],AX 

CX=0000 DX=FE12 SP=404E 
SS=CIBFB CS=CIBFB IP=0100 

MOV [7 2FF],AX 

-a 
3BFB:0100 mov ah,Ah 
1BFB:Q102 mov bh,dl 
IBFB:0104 

BP=0000 SI=0000 DI=00D0 
NV OP El PL NZ NA P0 NC 

DS:72FF=FF1F 

BP=0000 SI=0000 DI=0000 
NV UP El PL NZ NA PO NC 

DS:72FF=FF1F 

-r 

AX^OOOO BX=0000 CX=0000 DX=FE12 SP=404E 
DS=CIBFB ES=RBFB SS=CIBFB CS=9BFB IP=Q100 
3BFB:0100 AfiF4 MOV AH,DH 

-t 

BP=0000 SI=0000 DI=0000 
NV OP El PL NZ NA PO NC 

AX=FE00 BX=0000 CX=0000 DX=FE1E 

DS=9BFB ES=CIBFB SS^BFB CS=cIBFB 

3BFB:0102 
-t 

6QD7 MOV BH 

AX=FE00 BX=1200 CX = 0000 DX^FEIB 

DS=9BFB ES=9BFB SS=CIBFB CS=HBFB 

SBFB:0104 3C3 A CMP 1 AL 

SP=404E bp=oooo si=oooo di=oddq 
IP=D102 NV OP El PL NZ NA PO NC 

DL 

SP=404E BP=0000 SI=0000 DI=0000 
IP=01Q4 NV OP El PL NZ NA PO NC 

3 A 

Fig. 16-39 Example 16-4 (DEBUG screens). 

SOLUTION 

Figure 16-39 shows the process of changing the contents 

of the registers, entering the assembly-language instructions, 

and tracing program execution. Especially notice the areas 

in bold type. (They, of course, will not appear in bold on 

your computer screen.) 

Figure 16-40 shows the same program, illustrating the 

movement of the data with our programming model. 

Memory 

0100 88 

0101 F4 

0102 88 

0103 D7 

0104 hh 

0105 hh 

Fig. 16-40 Example 16-4 (programming model). 

-Accumulator AX - 

AH 
FE 

BH 
12 

CH 
hh 

DH 
FE 

-Base BX- 

-Count CX- 

-Data DX- 

AL 
hh 

BL 
hh 

CL 
hh 

DL —, 
12 
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SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1* The various instructions which form the instruction 

set of most microprocessors fall into natural 

-or groups. 

2. (categories) The_and_are the 

microprocessor chips found in IBM PC compatibles. 

3. (8086, 8088) A technique which is sometimes help¬ 

ful when analyzing a program involves_ 

the contents of each register or memory location and 

updating each as it changes in the program. 

4. (writing) When we talk of moving, loading, transfer¬ 

ring, or storing data, while working with the micro¬ 

processors in this text, are we referring to moving in 

the sense that the data no longer exists in its original 
location? 

5. (No) When we talk about moving, loading, transfer¬ 

ring, or storing data, we are actually_the 
data. 

6. (copying) If you can type mnemonics into your com¬ 

puter or trainer, it must have an_ 

7. (assembler) What do microprocessors understand? 

8. (binary numbers) An assembler translates mnemonics 
into_ 

(binary numbers) 

PROBLEMS 

General 

16-1. What does the NOP (no operation) instruction 
do? 

16-2. What are two purposes of the NOP instruction? 

16-3. If you move, load, or transfer the contents of the 

accumulator to a general-purpose register, what 

is left in the accumulator? 

6502 Family 

16-4. What is the op code for the NOP instruction? 

16-5. What is the op code for the BReaK instruction? 

16-6. What is the op code for the TAX (Transfer 

Accumulator to X register) instruction? 

16-7. What does the TYA instruction do? 

16-8. What does the mnemonic STX stand for? 

16-9. Which instruction would you use to copy the 

contents of the Y register into a memory loca¬ 
tion? 

16-10. Write a program which will 

a. Place the number 45]6 in the accumulator. 

b. Transfer the contents of the accumulator to 

the X register. 

c. Stop. 

6800/6808 Family 

16-11. What is the op code for the NOP instruction? 

16-12. What is the op code for the WAI instruction? 

16-13. What is the op code for the TAB (Transfer 

accumulator A to accumulator B) instruction? 

16-14. What does the TBA instruction do? 

16-15. What does the mnemonic CLRA stand for? 

16-16. Which instruction would you use to copy the 

contents of accumulator B into a memory loca¬ 
tion? 

16-17. Write a program which will 

a. Place the number 89I6 in accumulator B. 

b. Copy the contents of accumulator B to accu¬ 
mulator A. 

c. Stop. 

8080/8085/Z80 Family 

16-18. What is the op code for the NOP instruction? 

16-19. What is the op code for the HALT instruction? 

16-20. What is the op code for the Mov A,D [LD A,D] 

instruction? 

16-21. What does the MOV B,C [LD B,C] instruction 
do? 

16-22. What does the mnemonic MVI A,dd [LD A,dd] 

stand for? 

16-23. Which instruction would you use to store the 

contents of the accumulator in a memory loca¬ 
tion? 

16-24. Write a program which will 

a. Place the number 7816 immediately into the 

accumulator. 

b. Copy the contents of the accumulator into 
register C. 

c. Stop. 

8086/8088 Family 

16-25. What is the DOS utility which we are using in 

this text to do assembly, disassembly, running, 

and debugging of 8086/8088 assembly-language 
programs? 

16-26. What three areas can serve as a source for the 

8088 MOVe instruction? 
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16-27. What are the two areas which can serve as desti¬ 

nations for the 8088 MOV instruction? 

16-28. Which area cannot be both a source and a desti¬ 

nation at the same time? 

16-29. What is the source of a MOV AL,DL instruc¬ 

tion? 

16-30. What is the destination of a MOV AL,76 

instruction? 

16-31. Does the instruction MOV B,[4456] move the 

number 4456 or the contents of memory location 

445616 to register B? 

16-32. What does the DEBUG command “r” stand for 

and what does it do? 

16-33. What does the DEBUG command “a” stand for 

and what does it do? 

16-34. What does the DEBUG command “u” stand for 

and what does it do? 

16-35. What does the DEBUG trace command do? 

16-36. What is the DEBUG quit command? 

16-37. Using DEBUG, write an 8086/8088 assembly 

program which will 

a. Place the number 8916 into the register BL. 

b. Copy the contents of BL into CL. 

{Note: Use DEBUG’s trace command to ex¬ 

ecute the program to see if it works.) 
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Addressing Modes—I 
New Concepts_ 
In this chapter we will study the simplest of the different 

addressing modes. This will provide a foundation for the 

next couple of chapters. In a later chapter we will look at 

the more complex addressing modes. First we need to learn 

what an addressing mode is. 

17-1 WHAT IS AN ADDRESSING 
MODE? 

In an earlier chapter we used the system of addressing 

homes as a way to describe memory addressing. Let’s use 

the same idea to describe addressing modes. 

If you are moving and want to describe to the movers 

how to get to your new home so that they can deliver your 

belongings, you would give them the name of the state, 

city, street, and house number. 

But what if you were moving to an apartment in Canada? 

In that case you would give them the name of the country, 

province, city, street, apartment complex, and apartment 

number. 

Or what if you were moving to a backwoods cabin for a 

summer in the wilderness? You would give them the name 

of the state, county, county road, the direction and number 

of miles to travel on that county road, and finally landmarks 

to help them find the cabin. (OK, you probably won’t have 

a truck moving all of your belongings to a wilderness cabin, 

but the analogy worked well up to that point.) 

You can see that we need more than one way to ‘ ‘address” 

or describe a location because not every method works in 

every circumstance. This is what addressing modes are 

about. 

How you describe a location you want to transfer a 

number to can depend on several factors. Remember that 

while the addressing mode which should be used is very 

apparent in some cases, in other cases choosing the best 

addressing mode requires skill that must be developed over 
time. 

17-2 THE PAGING CONCEPT 

Before we go any further into the subject of addressing 

modes, we need to look at the concept of paging. Paging 

is the concept of dividing memory into blocks of 256 bytes 

each. Each block is called a page. We have to look at how 

we count in hexadecimal to see why this number was 

chosen. 

The number 256 was chosen because that is how far you 

can count using only two hex digits. Actually, FF, which 

is the highest two-digit hex number, is 255 (decimal), but 

if you count 00, you have 256 different numbers, or in this 

case, memory locations. 

Counting from 0016 to FF16 using four hex digits looks 

like this: 

0000 
0001 
0002 

00FE 

00FF 

Notice that the left two digits are always 0. The range of 

hex numbers from 00 to FF is called page 00 (sometimes 

called the zero page). 

The next number after 00FF is 0100. Let’s continue 

counting from there: 

0100 
0101 
0102 

01FE 

01FF 

Notice that the left two digits are 01. This is called page 

one. 
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The next number in the sequence is 0200. This is the 

beginning of page two. Page two ends with CUFF, after 

which comes 0300, the beginning of page three. 

This process continues up to FFFF16. There are 256 of 

these pages, with 256 bytes per page. 

The addressing modes of the 8085 do not reference page 

numbers; however, the 6800/6808 and 6502 do have 

addressing modes that depend upon the concept of paging. 

17-3 BASIC ADDRESSING MODES 

We are now going to study the four most basic addressing 

modes. As you read about each mode, first and foremost 

try to understand the concept. The actual name of the 

addressing mode may be different for the microprocessor 

which you are using. After you read about these four modes, 

go to the section which covers your particular micropro¬ 

cessor for specific details. 

Implied Addressing 

In implied addressing, sometimes called inherent address¬ 

ing, no address is necessary because the location is implied 

in the instruction itself. It is the simplest of all addressing 

modes. You used this mode in Chap. 16, which discussed 

the CPU control instructions. Remember the NOP (no 

operation) instruction? Do we have to tell it where to do 

nothing? No. No addressing is necessary. 

Another example would be the case of a microprocessor 

which has only one accumulator and a certain index register. 

The 6502, for example, has an instruction called 

TAX 

which means 

Transfer Accumulator to X register 

There is only one accumulator, and the specified register 

is the X register. The microprocessor knows exactly where 

the accumulator and the X register are, so we say that the 

address is implied in the instruction itself. The data will be 

transferred from the accumulator to the X register. 

Register (Accumulator) Addressing 

Register addressing, sometimes called accumulator ad¬ 

dressing, involves only internal registers or an accumula¬ 

tors) and no external RAM. For example, the 8085 

microprocessor has an instruction called 

MOV A,B 

which means 

MOVe data to A from B 

Since the data is being moved from one register to another, 

no other address information is needed. The names of the 

registers are enough. 

It should be noted that with some microprocessors it is 

not clear whether this is considered to be a separate 

addressing mode or a special subtype of the implied ad¬ 

dressing mode. See your particular microprocessor section 

for details. 

Immediate Addressing 

Immediate addressing is a mode in which the number or 

data to be operated on or moved is in the memory location 

immediately following the instruction op code. For example, 

the 6800/6808 microprocessor has an instruction called 

LDAA #$dd 

which means 

LoaD Accumulator A with the two hexadecimal ($) 

digits of data (dd) immediately (#) following this 

op code 

In the computer’s memory there will be the hex number 

86, which is the op code for the LDAA immediate instruc¬ 

tion, followed immediately by the two hex digits which we 

have called dd (since we don’t know what their actual value 

is right now). 

Direct Addressing 

Direct addressing uses an op code followed by a 1- or 

2-byte memory address where the data which is to be used 

can be found. The data is outside of the microprocessor 

itself, in one of the many thousands of memory locations. 

The Z80 has an instruction called 

LD A, (aaaa) 

which means 

LoaD the Accumulator with the data found at memory 

location (aaaa) 

Here of course the aaaa is four hex digits, which makes a 

16-bit address. The microprocessor will go to memory 

address aaaa and place a copy of the contents of that address 

in the accumulator. 

Keep in mind that some microprocessors do not call this 

“direct” addressing and that some have more than one 

form of this addressing mode. 
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Specific Microprocessor 
Families 

Go to the section which discusses the microprocessor you 

are using. 

hexadecimal (not decimal). The dd stands for two hex digits 

such as 35 or E2. To load the accumulator with the hex 

number E2, you would type 

LDA #$E2 

17-4 6502 FAMILY 

The 6502 uses the implied and immediate modes as described 

in the New Concepts section of this chapter. The register 

mode and direct mode are a little different. 

Implied Addressing 

For an example of implied addressing refer to the Data 

Transfer Instructions part of the 6502 instruction set in the 

Expanded Table of 6502 Instructions Listed by Category. 

Find the TAX instruction, which is an example of implied 

addressing as noted in the Address Mode column. Notice 

that it Transfers the contents of the Accumulator to the X 

register as indicated in the Operation and Boolean/Arith¬ 

metic Operation columns. Of course, no other information 

is needed since both of these locations are inside the 

microprocessor itself. 

Direct Addressing 

The 6502 has two different types of direct addressing. One 

is called zero page addressing, and the other absolute 

addressing. 

Zero page addressing is direct addressing in which the 

target address is in page zero of memory, somewhere in 

the first 256 bytes of memory, between 000016 and 00FF,6. 

Since the first two hex digits of any address in zero page 

are 00s, the 00s can be omitted, making it possible to 

describe the address with only 1 byte. 

Absolute addressing is a form of direct addressing in 

which the target address can be anywhere from 000016 to 

FFFF16. This requires four hex digits, which is a 2-byte 

address. 

Referring again to the LDA instruction, the third form 

down is the zero page addressing form of the instruction. 

Notice that the assembler notation form appears as 

LDA $aa 

Register (Accumulator) Addressing 

The 6502 doesn’t use register addressing as a dominant 

addressing mode like the 8080/8085 does. It does use it in 

four instances, however, and calls it accumulator address¬ 
ing. 

For example, the 6502 instruction 

The two lowercase a’s indicate a two-digit hex address. 

The second form of the LDA instruction is the absolute 

addressing form. The assembler notation in this case ap¬ 

pears as 

LDA $aaaa 

ASL 

which stands for Arithmetic Shift Left, shifts every bit in 

the accumulator to the left one place. The operand is in the 

accumulator. 

There are only four 6502 instructions which use the 

register or accumulator addressing mode: they are ASL A 

(Arithmetic Shift Left Accumulator), LSR A (Logical Shift 

Right Accumulator), ROL A (ROtate Left Accumulator), 

and ROR A (ROtate Right Accumulator). All these instruc¬ 

tions can be found in the Rotate and Shift Instructions 

section of the Expanded Table of 6502 Instructions Listed 

by Category. 

which means that the address consists of four hex digits (2 

bytes). 

{Note: The 6502 microprocessor expresses addresses in 

reverse low-byte/high-byte order!) 

6502 Summary 

Some examples are 

NOP 

ASL 

LDA #$35 

LDA $ IE 

LDAS123D 

Implied addressing 

Register (accumulator) addressing 

Immediate addressing 

<— Direct (zero page) addressing 

Direct (absolute) addressing 

Immediate Addressing 

Now let’s look at an example of immediate addressing. In 

the Data Transfer section of the 6502 instruction set, notice 

the first form of the LDA instruction. It uses immediate 

addressing, which is what the # in the Assembler Notation 

column stands for. The $ means that the number is 

17-5 6800/6808 FAMILY 

The 6800/6808 uses the implied and immediate modes as 

described in the New Concepts section. The register and 

direct modes are a little different. 
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Implied Addressing 

For an example of implied addressing, refer to the Data 

Transfer Instructions part of the Expanded Table of 6800 

Instructions Listed by Category. 

Find the TAB instruction, which is an example of implied 

addressing as noted in the Address Mode column. Notice 

that it transfers the contents of accumulator A to accumulator 

B as indicated in the Operation and Boolean/Arithmetic 

Operation columns. No other information is needed since 

both of these locations are inside of the microprocessor 

itself. 

which means there are only two hex address digits, indicated 

by aa (a stands for address). The fourth LDAA form is the 

extended addressing form of the instruction. The assembler 

notation in this case appears as 

LDAA $aaaa 

which means that there are four hex address digits (2 bytes). 

6800/6808 Summary 

Some examples are 

Register (Accumulator) Addressing 

The 6800/6808 doesn’t use register addressing as a dominant 

addressing mode the way the 8080/8085 does. Technically, 

it does use it, however, and calls it accumulator addressing. 

Since it is often considered a special form of implied 

addressing by many who use the 6800/6808, it has not been 

included in the Address Mode column of the instruction 

sheets but rather falls under the title of Implied addressing. 

TAB 

TAB 

LDAA #$35 

LDAA $ IE 

LDAA $123D 

<— Implied addressing 

<r- Register (accumulator) addressing 

<— Immediate addressing 

<— Direct addressing 

Direct (extended) addressing 

17-6 8080/8085/Z80 FAMILY 

Immediate Addressing 

Now let’s look at an example of immediate addressing. In 

the Data Transfer section of the 6800/6808 instruction set 

notice the first form of the LDAA instruction. It uses 

immediate addressing, which is what the # in the Assembler 

Notation column stands for. The $ means that the number 

is hexadecimal (not decimal). The dd stands for two hex 

digits such as E2. The instruction which would LoaD 

accumulator A with the value E2 would appear as 

LDAA #$E2 

Direct Addressing 

The 6800/6808 has two different types of direct addressing. 

One is called direct addressing, and the other extended 

addressing. 

Direct addressing is a form of direct addressing in which 

the target address is in page zero of memory—that is, 

somewhere in the first 256 bytes of memory between 0000,6 

and 00FF,6. Since the first two hex digits of any address 

in this range are 00, the 00s can be omitted, making it 

possible to designate the address with only 1 byte. 

Extended addressing is a form of direct addressing in 

which the target address can be anywhere from 000016 to 

FFFF16. This requires four hex digits, which is a 2-byte 

address. 

Referring to the LDAA instruction, notice that the second 

form down is the direct addressing form of the instruction. 

The assembler notation appears as 

LDAA $aa 

The 8080/8085/Z80 uses the implied, immediate, register, 

and direct addressing modes as described in the New 

Concepts section of this chapter. 

Note that the Z80 has all of the addressing modes that 

the 8080/8085 has, plus a number of addressing modes that 

the 8080/8085 does not have. We do not include these 

additional modes of the Z80 in either the text or the 

instruction set tables in this book. Refer to one of the many 

books available about the Z80 to learn about these other 

modes. 

We need to bring your attention to a sometimes confusing 

fact about the 8080/8085/Z80 mnemonics. Look at the Data 

Transfer Instructions section of the Expanded Table of 

8080/8085/Z80 (8080 subset) Instructions Listed by Cate¬ 

gory. Now look at the MOV A,B [Z80 = LD A,B] 

instruction (the second instruction in this section). Notice 

in the Boolean/Arithmetic Operation column that the data 

is moving from B toward A. This means that the mnemonic 

places the destination register before the source register. 

This is true of the entire 8080/8085/Z80 instruction set. 

The MOV A,B instruction is moving data to A from B. 

(Note: The 6502 and 6800/6808 are just the reverse.) 

Implied Addressing 

An example of implied addressing can be seen in the CPU 

Control Instructions section of the 8080/8085/Z80 instruc¬ 

tion set. The NOP instruction uses implied addressing since 

no address is necessary. In the Flag Instructions section 

you can see another example. The STC (SeT Carry flag) 

instruction uses implied addressing. The carry flag is inside 

the 8080/8085/Z80 microprocessor. Therefore no other 

address information is needed. 
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Register (Accumulator) Addressing 

This form of addressing is called register addressing with 

the 8080/8085 (in contrast to the term accumulator ad¬ 

dressing used by the 6502 and 6808). The 8080/8085/Z80 

uses this form of addressing very frequently. In fact, if you 

browse through the Data Transfer Instructions section of 

the Expanded Table of 8085/8080 and Z80 (8080 Subset) 

Instructions Listed by Category, you will find that most of 

these instructions use this form of addressing. 

For example, the instruction MOV A,B [Z80 = LD A,BJ 

moves or makes a copy of the data in the B register and 

places it in the A register. (We normally call this the 

accumulator.) Since external memory is not utilized, and 

both the source of the data and its destination are inside 

the microprocessor, this information is sufficient. 

Immediate Addressing 

The 8080/8085/Z80 microprocessors use the immediate 

mode as described in the New Concepts section at the 

beginning of the chapter. 

To see an example of this mode, scan through the 8080/ 

8085/Z80 instruction set in the Data Transfer Section until 

you come to the MVI A,dd [Z80 = LD A}dd] instruction 

(the 64th instruction in that section). You’ll notice in the 

Address Mode column that this is labeled as using the 

immediate addressing mode. This means that the op code 

for this instruction (3E) would be followed immediately by 

the two hex digits we want moved. 

If the Hex number C8 was the value we wanted to load 

into the accumulator, the 8080/8085 assembly-language 

notation would appear as 

MVI A,C8 [LD A,C8] 

The second instruction, in brackets and in italics, is the 

Z80 form. 

Direct Addressing 

The direct addressing mode as implemented in the 8080/ 

8085/Z80 microprocessors works as described in the New 

Concepts section of this chapter. 

The 8080/8085/Z80 has only one form of direct address¬ 

ing. (The 6502 and the 6800/6808 have two forms of this 

addressing mode.) 

To find an example of this mode, scan through the Data 

Transfer Instructions section of the 8080/8085/Z80 instruc¬ 

tion set until you find the LDA aaaa [LD A,(aaaa)[ 

instruction (the 78th instruction in this section). The op 

code for this instruction is 3A. It uses 3 bytes of memory. 

The 1st byte will be the op code, 3A. The 2d and 3d bytes 

will be the address of the memory location where the data 

can be found. 

{Note: The 8080/8085/Z80 microprocessors express ad¬ 

dresses in reverse low-byte/high-byte order!) If we wanted 

to load the accumulator from memory location 1234, the 3 

bytes of object code would be 

3A 34 12 

in the op code/high-byte/low-byte sequence. 

The assembly-language notation for this instruction would 

appear as 

LDA 1234 [LD A, (1234)] 

8080/8085/Z80 Summary 

Some examples are 

NOP <— Implied addressing 

MOV A,B [LD A,B] Register addressing 

MVI A,C8 [LDA,C8] <— Immediate addressing 

LDA 1234 [LD A, (1234)] <— Direct addressing 

17-7 8086/8088 FAMILY 

Most of the 8086/8088 instructions are implemented as 

described in the New Concepts section of this chapter. 

We need to bring to your attention a sometimes confusing 

fact about 8086/8088 mnemonics. The 8086/8088 mne¬ 

monics place the destination register before the source 

register. This is true of the entire 8086/8088 instruction set. 

The MOV AL,BL instruction is moving data to AL from 

BL. (Note: This is similar to the 8080/8085/Z80 micropro¬ 

cessors.) 

Implied Addressing 

Implied addressing works on the 8086/8088 microprocessors 

as described in the New Concepts section of this chapter. 

Two examples are HLT (halt) and NOP (no operation). 

Register Addressing 

Register addressing also works as described in the New 

Concepts section of this chapter. Since the 8086/8088 chips 

have eight 8-bit (or four 16-bit) general-purpose registers 

in addition to a number of other special-purpose registers, 

there are hundreds of move combinations. Let’s look at 

one of them. 

The instruction which moves the contents of the CX 

register into the BX register looks like this: 

MOV BX,CX 

Again you should notice that where the data is going to 

(BX) is written first, and where the data is coming from 

(CX) is written last. 
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Since only registers are involved, all of which are inside 

the microprocessor, no other information is needed by the 

microprocessor. 

Immediate Addressing 

Immediate addressing on the 8086/8088 is as described in 

the New Concepts section of this chapter. For example, the 

instruction MOV AL,37 would place the hexadecimal 

number 37 in the AL register. 

Memory Segmentation 

Before we can discuss direct addressing, we need to look 

at a feature of the 8086/8088 microprocessors which does 

not exist in any of the 8-bit microprocessors used in this 

book. That feature is memory segmentation. 

Earlier in this chapter we discussed the paging concept. 

Segmentation is an extension of that concept. The 8-bit 

microprocessors use 16-bit addresses. That gives them a 

range from 0000,6 to FFFF16. In decimal that is 65,535, 

which gives us a total of 65,536 different memory locations 

counting location 000016. Another way to express this is as 

64 kilobytes, or 64K. Notice that the addresses from 000016 

to FFFF16 use four hex digits. The two right-most digits 

express which byte is being referred to. The two left-most 

digits express which page the bytes are in. There are 256 

bytes per page and 256 pages from 000016 to FFFF16. 

The 8086/8088 chips use a larger 20-bit address instead 

of the 16-bit address used by the 8-bit chips. Twenty bits 

is five hexadecimal digits. This provides a range from 

00000]6 to FFFFF16. In decimal this is 1,048,575, which 

gives us 1,048,576 memory locations (since we can count 

0000016), or 1 megabyte of memory. 

A segment is a 64K block of memory; thus there could 

be as many as 16 nonoverlapping segments in 1M (mega¬ 

byte) of memory. Unlike a memory page, however, a 

segment is not bound to a certain location. The only 

requirement is that a segment must start on a 16-byte 

memory boundary. Segments can be nonoverlapping, they 

can partially overlap, or they can be superimposed with 

one exactly on top of the other. The 8086/8088 has four 

segment registers and so can manage four different segments 
at a time. 

Direct addressing uses not only the address specified in 

the instruction but also the address in one of the segment 

registers. In the case of move instructions, the data segment 

register is used. The process involves adding the address 

you have specified to the address in the data segment register 

after shifting the data segment register to the left one 

hexadecimal digit. For example, if you said 

MOV DL,[0100] 

and if the data segment register contained 2000, the address 

would be calculated in the following manner. 

2000 data segment register (shifted left) 

T 0100 address 

20100 effective address 

Notice that the contents of the data segment register have 

been shifted to the left one place. (You can think of it as 

adding a 0 to the right side of the data segment register.) 

So the MOV DL,[0100] instruction places a copy of the 

data found at memory location 20100I6 (not location 010016) 

in the DL register. 

We generally won't be concerned with segment registers 

in this text since our programs are simple and very small. 

All the segment registers will be the same, so the offset 

(the address of the instruction pointer) will be all we must 

pay attention to. 

Direct Addressing 

Except for memory segmentation, direct addressing on the 

8086/8088 is quite like that used on the 8-bit chips. When 

we use the term direct addressing in reference to the 8086/ 

8088, we are referring to the direct form of addressing used 

when manipulating data. (See the following topic, Program 

Direct Addressing, for the other use of direct addressing.) 

For example, if the data segment register contains the 

number 0723, and the instruction 

MOV BE,[0100] 

is encountered, the contents of memory location 07330,6 

(07230 + 0100 = 07330) would be copied into the BL 

register. 

Program Direct Addressing 

Program direct addressing is no different from direct 

addressing: It is simply direct addressing used for a different 

purpose. 

Program direct addressing is used with JMP and CALL 

instructions. These instructions direct the “flow” of the 

program. They are not used to manipulate data. Which 

instruction or subroutine is to be executed next can be 

altered with the JMP and CALL instructions. 

For example, the instruction 

JMP 100 

tells the microprocessor to execute the instruction found at 

location 0100 (hex) in the program segment. This is an 

example of program direct addressing. 

The offset (100 in the above example) is added to the 

code segment register rather than the data segment register. 

Remember that the contents of the code segment register, 

like the data segment register, are shifted one hexadecimal 

place to the left before being added to the offset. 
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8086/8088 Summary 

Some examples are 

NOP <— Implied addressing 

MOV BX,CX <— Register addressing 

MOV AL,37 

MOV BL,[0100] 

JMP 100 

Immediate addressing 

Direct addressing 

<— Direct (program direct) addressing 
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Arithmetic and Flags 
In this chapter we will study the arithmetic instructions of 

each of our microprocessor families. We will also look at 

the closely related topic of flags, at how they react to 

arithmetic instructions, and at the instructions which control 

them. 

New Concepts_ 
There are several main topics in this chapter. We will learn 

about (and review) the number systems microprocessors 

use. We will study addition and subtraction (as well as 

multiplication and division on the 16-bit 8086/8088). And 

finally we will study the flags which are affected by these 

arithmetic operations and how to alter the condition of those 

flags. 

18-1 MICROPROCESSORS AND 
NUMBERS 

We must first look at the kind of numbers a microprocessor 

performs arithmetic operations on. You have already studied 

much of this in earlier chapters. 

Binary and Hexadecimal Numbers 

We introduced binary numbers in Chap. 1. If that was the 

first time you had ever seen numbers in another base system, 

the whole subject may have been a bit confusing. It all 

becomes quite natural, though, with time and experience. 

At this point there are a couple of very important skills 

which you must have. You should be able to look at an 8- 

0000 0000 

Fig. 18-1 Decimal values of each bit of an 8-bit binary 
number. 

bit binary number and know the decimal value of each of 

the bit’s positions. This is illustrated in Fig. 18-1. 

You should also be able to add the decimal values of 

each binary digit to determine the decimal value of the 

complete binary number. See Chap. 1 if you have forgotten 

how to do this. 

Another skill which was stressed in Chap. 1 is now 

necessary if you are to work with microprocessors effec¬ 

tively. This is the ability to recognize any 4-bit binary 

number, its hexadecimal equivalent, and its decimal equiv¬ 

alent. The table which illustrates this appeared in Chap. 1 

as Table 1-4 and is repeated here as Fig. 18-2. 

If you are unsure about any of these concepts, review 

Chap. 1. 

Binary-Coded Decimal Numbers 

Binary-coded decimal numbers are just that: They are 

decimal numbers that happen to have each digit represented 

by its 4-bit binary equivalent. For example 

01002 = 410 and 00012 = 110 

Hexadecimal Binary Decimal 

0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 
4 0100 4 

5 0101 5 
6 0110 6 
7 0111 7 

8 1000 8 

9 1001 9 

A 1010 10 

B 1011 11 

C 1100 12 

D 1101 13 

E 1110 14 

F 1111 15 

Fig. 18-2 Hexadecimal-binary-decimal conversion chart. 
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Therefore the BCD (Binary Coded Decimal) equivalent of 

the decimal number 41 is 

0100 0001 

Each nibble (group of 4 bits) stands for one decimal digit. 

The number as a whole is still a decimal number, however. 

ASCII 

ASCII code is different from decimal, binary, hexadecimal, 

and BCD in that it is not a number system but rather a way 

to represent various symbols with different patterns of Is 

and 0s. Each pattern of Is and 0s stands for a different 

letter of the alphabet (uppercase or lowercase), digit, 

punctuation mark, or other useful character. 

We use number systems to count and to perform math¬ 

ematical computations. We don’t use ASCII for these 

purposes. We use ASCII code to represent characters used 

in normal written communication. 

Do not try to memorize the ASCII code. Using charts 

when needed will suffice. If a large amount of data is 

necessary, we usually have some device, primarily the 

standard computer keyboard, to create these ASCII char¬ 

acters. A table (Table 1-6) showing the ASCII code appears 

in Chap. 1. 

Microprocessors and Number Conversions 

Microprocessors “think” in binary numbers. They use 

binary numbers for calculations and logical operations. 

Since binary numbers can be displayed as hexadecimal 

numbers with fewer digits, we often display binary numbers 

as their hexadecimal equivalents when people must enter 

or interpret those numbers. 

The BCD numbers are used in certain situations to aid 

the people who must read them. For this reason some 

microprocessors have instructions which can convert an¬ 

swers resulting from binary mathematical operations to 

binary-coded decimal numbers. We will look at these 

operations later in this chapter. 

Bit Positions 

Sometimes students are confused when people talk about a 

certain “bit.” There are two ways to describe a particular 

bit: by the binary power of 2 reflected in its position and 

by its location, from right to left. Look at Fig. 18-3. 

You will see both methods used in the workplace and in 

other textbooks, so you should become comfortable with 

each. 

18-2 ARITHMETIC INSTRUCTIONS 

We will now review basic binary math and look at typical 

microprocessor instructions which perform mathematical 

0000 0000 

27 26 25 24 23 22 21 2° 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0000 0000 

8th bit 7th bit 6th bit 5th bit 4th bit 3d bit 2d bit 1st bit 

Fig. 18-3 Two methods for describing bit positions. 

computations. Remember that we are now discussing tech¬ 

niques and instructions which are common to most micro¬ 

processors. We will study instructions specific to each 

microprocessor family in its appropriate section later in this 

chapter. 

Addition 

Each microprocessor family included in this text has at 

least one addition instruction. Most have more than one. 

When adding binary numbers the microprocessor pro¬ 

duces two types of information: (1) the sum of the two 

numbers (answer), (2) and information indicating whether 

there were carries in certain columns. 

If you don’t remember how to add binary numbers, you 

may want to review Chap. 6 now. There are really only 

five binary addition combinations to remember: 

(1) (2) (3) (4) (5) 

0 0 1 1 1 

+ 0 + 1 + 0 + 1 1 

0 1 1 10 + 1 

11 

The first three combinations produce the same answer as 

they do in the decimal number base system. Combination 

#4 is simply saying that 1 + 1=2, except that the 2 is 

binary (102 = 210). You should say combination #4 to 

yourself as, “1 plus 1 equals 0, carry 1.” Likewise, the 

fifth combination is saying that 1 + 1 + 1 = 3, except 

that the 3 is binary (1 I2 “ 310). You should express 

combination #5 as, “1 plus 1 plus 1 equals 1, carry 1.” 

The last two combinations are the only new ones that you 

should memorize, since they are the only two that are 

different from our decimal number system. 

To continue our review, let’s see how to add several 

columns. It is common (and very practical) to show 8-bit 

binary numbers in two groups of four (as 2 nibbles). Refer 

to Fig. 18-4. 

As you study Fig. 18-4, you will see that each of the 
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-Half-carry flag 

i 11 i 

1 0 0 1 1 1 0 1 15710 

+ 110 1 10 0 1 + 21710 

1 0 1 1 1 0 1 1 0 37410 

- Carry flag (9th bit) 

Fig. 18-4 Multi-column addition. 

individual additions in each column is one of the five 

combinations we presented a moment ago. 

Now let’s continue using this example as we talk about 

two other closely related subtopics. 

Carry Flag 

The first flag we’ll study is the carry flag. The carry flag, 

during addition, lets us know that the 8-bit sum is not the 

complete answer. If the carry flag is set (has a value of 1), 

it indicates that a 9th bit was produced. 

Let’s look again at Fig. 18-4. Notice the sum shown in 

the decimal version of the example. The decimal answer is 

374. Now look at the binary version of the example. If you 

were to use only the right-most 8 bits (the 8 least significant 

bits), the sum would appear to be 118l0 (0111 01102 = 

11810), which is not the correct sum. The 9th bit, which 

appears at the far left (the most significant bit), would not 

appear in an 8-bit accumulator. The 9th bit would exist in 

the carry flag (so to speak). The 1 in the carry flag would 

indicate a carry from column 8 to column 9. Again, we 

cannot see a 9th bit since the accumulator only holds 8 

bits. (If you are using a 16-bit microprocessor, the function 

of the carry flag is the same as that described above except 

that it indicates the presence of a 17th bit, which will not 

fit into a 16-bit accumulator. 

Substraction also affects the carry flag. We will discuss 

that a little later in this chapter. 

Half-Carry Flag 

Some (but not all) of our microprocessors have a half-carry 

flag. A half-carry flag indicates that a carry has occurred 

from the 4th-bit column to the 5th-bit column. The half¬ 

carry has been marked in Fig. 18-4. 

Overflow Flag 

The overflow flag alerts the programmer to a condition that 

is similar to, but not the same as, that to which the carry 

flag alerts the programmer. All our featured microprocessor 

families have an overflow flag except the 8080/8085. To 

understand what the overflow flag does, we need to take a 

closer look at 2’s-complement arithmetic and signed binary 

numbers. 

Each of our microprocessor families has one or more 

99,999 00,000 

(a) (b) 

Fig. 18-5 (a) Automobile odometer. (b) Automobile 
odometer reset. 

accumulators. All are 8-bit accumulators except the 8086/ 

8088, which has a 16-bit accumulator. Let’s focus our 

discussion on the 8-bit microprocessors. 

If we do not expect to ever need negative numbers in a 

particular application, we can let the binary range of 0000 

0000 to 1111 1111 represent decimal numbers 0 to 255. 

These are called unsigned binary numbers. However, if we 

need to represent negative numbers, we must use the 2’s- 

complement form of the numbers we wish to make negative. 

When we allow both positive and negative numbers, we 

are using signed binary numbers. 

We introduced 2’s-complement numbers in Chap. 6. The 

concept was compared to that of the odometer on a car. 

Remember that the accumulator, like the odometer of a 

car, can contain only a certain number of digits. Most cars 

display 5 digits plus lOths of a mile. If we disregard the 

lOths digit, we have just 5 places. Of course, the highest 

number which can be represented is 99,999 miles. There 

aren’t enough digits to show 100,000 miles. The 1 is lost, 

and only the 00,000 remains. The odometer has reset. 

Figure 18-5 illustrates this. 

The accumulator of a microprocessor has this same 

limitation. If you continuously increment an 8-bit accu¬ 

mulator, you will eventually reach a maximum number 

beyond which the accumulator would have to have another 

digit. Figure 18-6 illustrates this. The accumulator, like the 

odometer, will reset to zero if it is incremented one more 

time. 

When working with 2’s-complement binary numbers, we 

assume that the accumulator can also be rolled backward, 

so to speak, to represent negative numbers. One less than 

zero is 11111111?» which would be equal to —110. One 

less than that would be 111111102, which would be equal 

to — 210. This process would continue as shown in Fig. 

18-7. 

As Fig. 18-7 illustrates, -12810 is as far as we can go 

11111111 

Fig. 18-6 Eight-bit accumulator. 
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Therefore 
0 1111111 +127 

0 0 0 0 0 0 1 1 +3 

00000010 +2 

00000001 +1 

00000000 0 

11111111 -1 

11111110 -2 

1111110 1 -3 

1 0 0 0 0 0 0 0 -128 

Fig. 18-7 Eight-bit 2’s-complement range. 

on the negative end. The reason for this is that one less 

than 100000002 is 011111112, which, if you look at the top 

of Fig. 18-7, is already being used as the equivalent of 

+ 12710. When working with 8-bit 2’s-complement num¬ 

bers, we regard all numbers which have a 1 as the MSB 

(most significant bit) as negative. Numbers with a 0 in the 

MSB are positive. This means that the range for 8-bit 2’s- 

complement binary numbers is + 12710to - 12810 inclusive. 

Let’s review a little. If we are using all 8 bits to represent 

numbers from 0010 to 25510, we refer to these numbers as 

unsigned binary numbers. If we are using the MSB to 

signify whether a number is positive or negative, we have 

a range of —12810 to +127,0. These are called signed 

binary numbers. 

There is a simple procedure by which you can determine 

how to form a negative binary (or hexadecimal) number. 

First, write the binary equivalent of the positive form of 

the number. For example 

1010 = 0000 10102 = 0A16 

Now invert each bit of the binary number. 

0000 1010 becomes 1111 0101 

Then add 1. 

1111 0101 
+_1 

mi ono 

-io10 = mi ono2 = F616 

Notice that the MSB of the binary number is 1, as we said 

it would be. 

To determine what value a negative-signed binary number 

represents, reverse the above process. If you had the binary 

number 

1111 0110 (the number created a moment ago) 

invert each bit 

0000 1001 

and then add 1. 

0000 1001 

+_1 

0000 1010 

Notice that we now have the binary number for 10lo. (A 

small 1 indicates a carry.) We have found that the binary 

number 1111 0110 is the signed binary number for — 10lo. 

The question now is how to interpret certain numbers. 

For example, 

125,0 0111 11012 125,o 

+ 5010 + 0011 00102 +
 

©
 

© 

175,0 1010 11112 81 io 

We know that 125,0 + 5010 II --
j 

L
/l 

9 As you will notice 

in this example, however, the binary number for 17510 

(which is 1010 11112) is also the binary number for — 8110. 

So if we didn’t know what two numbers this was the sum 

of, how would we know how to interpret this answer? If 

we simply found the binary number 1010 11112 in a register, 

how would we know if it was meant to be + 175,0 or 

— 8110? The answer is that we wouldn’t. (The number 

— 8110 is, of course, the wrong answer. We will deal with 

that part of the problem in just a bit.) We must know 

whether we are using unsigned binary numbers or signed 

binary numbers before we see the answer. It is simply a 

matter of agreement beforehand. 

We have been preparing to explain the purpose of the 

overflow flag. We are now ready. The previous example, 

which produced a sum of + 175,0 (1010 11112)? would 

have set the overflow flag in an 8-bit microprocessor. The 

overflow flag tells the programmer that the last answer 

produced was outside the range of + 12710 to - 12810 (0111 

11112 to 1000 00002 or 7F16 to 80,6). If the programmer 

understood this answer to represent an unsigned binary 

number, he or she would ignore the flag. If, however, this 
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was intended to be a signed binary number, the programmer 

would know that this answer, if taken as a signed binary 

number, is incorrect because it has exceeded the range for 

8-bit signed binary numbers. 

The range for unsigned 16-bit binary numbers is O10 

(0000 0000 0000 00002 or 000016) to 65,53510 (Hll mi 
1111 11112 or FFFFl6). The range for signed 16-bit binary 

numbers is + 32,76710 (0111 1111 1111 11112 or 7FFF16) 

to — 32,76810 (1000 0000 0000 00002 or 800016). 

you its decimal value. For example, to calculate the value 

of the binary number 

0100 0001 0000 0010 

you would enter 

214 + 28 + 21 = 16,64210 

into your calculator to get the above answer. 

Addition-with-Carry 

The previous section on addition discussed the carry flag. 

The carry flag signals the programmer that the result of an 

operation has exceeded 8 bits. 

The carry flag has another use, though. The carry from 

the 8th bit to the 9th bit (which is what the carry represents) 

can be used during multiple-precision arithmetic. We use 

multiple-precision arithmetic when the accumulator cannot 

accept numbers large enough for the desired operation. 

Multiple-Precision Binary Numbers 

Until now we have assumed that any numbers we want to 

add would occupy only 1 byte of memory. This is called a 

single-precision number. One-byte unsigned numbers can 

range from 0 to 255. Two-byte unsigned numbers can range 

from 0 to 65,535. These are called double-precision binary 

numbers. Three-byte unsigned binary numbers can range 

from 0 to 16,777,215. These are called triple-precision 

numbers. 

When we construct a double-precision number, we use 

the same techniques to determine its value as when we 

work with a single-precision number. Recall from earlier 

chapters that each binary position has a value and that each 

value is twice as large as the value to its right. If you have 

a calculator which will calculate powers of a number, it is 

quite easy to determine the value of a double-precision 

binary number. Refer to Fig. 18-8. 

You see that the least significant bit (LSB) has a value 

of 2°. This is equal to the number 1. (If you try this on a 

scientific calculator, it should give you that answer.) To 

determine the value of a double-precision number, add the 

value of each position which has a 1 in it. This will give 

0000 0000 0000 0000 

Fig. 18-8 Powers of 2 for a double-precision binary 
number. 

Add-with-Carry 

Let’s step through a double-precision addition problem. 

Remember that we will be using the carry flag. Figure 

18-9 shows an example. 

The least significant bytes (LSBs) are on the right. They 

occupy the positions which have the least value. The most 

significant bytes are on the left. They occupy the positions 

which have the most value. 

As you can see, several carries occur in this example. 

We are interested in the carry from the LSB to the MSB. 

That carry would actually be held in the carry flag of the 

microprocessor. 

A typical microprocessor program to add these two binary 

numbers (using English phrases instead of microprocessor 

instructions) would appear as follows: 

CLEAR CARRY FLAG 

LOAD ACCUMULATOR WITH LSB OF ADDEND 

ADD THE LSB OF THE AUGEND TO THE 

ACCUMULATOR 

STORE THE LSB OF THE SUM IN MEMORY 

LOAD THE ACCUMULATOR WITH THE MSB 

OF THE ADDEND 

ADD-WITH-CARRY THE MSB OF THE AUGEND 

TO THE ACCUMULATOR 

STORE THE MSB OF THE SUM IN MEMORY 

Notice that we simply add the LSB of each number, but 

we add-with-carry the MSB of each number. When the 

microprocessor sees the add-with-carry instruction, it ac¬ 

tually adds three numbers. It adds the addend (MSB), 

augend (MSB), and the carry flag. This brings the carry 

from the LSB into the MSB. 

- Carry (carry flag) from least significant 
byte (LSB) being carried into the most 
significant byte (MSB). 

1111 i iii 

0100 0111 0110 0101 Addend 

+ 0010 0001 1101 0111 + Augend 

0110 1001 0011 1100 Sum 

MSB LSB 

Fig. 18-9 Double-precision addition-with-carry. 
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Subtraction 

Each of the microprocessor families included in this text 

has at least one subtraction instruction. Most have more 

than one. 

When subtracting binary numbers, the microprocessor 

produces two types of information: (1) The difference 

between the two numbers (answer) and (2) whether there 

were borrows in certain columns. 

If you don’t remember how to subtract binary numbers, 

you may want to review Chap. 6 now. There are really 

only four binary combinations you need to remember: 

(1) (2) (3) (4) 

0 1 1 >0 
-0 -0 -1 -1 

0 1 0 1 

The first three combinations produce the same answer as 

they do in the decimal-number base system. Combination 

#4 requires a borrow, which is shown by the small 1 set 

as a superscript. You cannot have 0 and subtract 1 from it. 

If you can borrow a 1 from the next-higher column, the 

subtraction becomes possible. If there is a higher column 

from which to borrow, this combination is really 2l0 - 110 

= 110. That is, 102 is created after the borrow occurs, and 

now the top number is larger than the bottom number. The 

carry flag is used if there is no higher column from which 

to borrow. You might say that it now becomes a “borrow” 

flag. 

The last combination is the only new one that you will 

need to memorize since it is the only one that is different 

from our decimal number system. 

The above discussion appeared in Chap. 6 and has been 

reviewed here for your convenience. 

To continue our review, let’s see how to subtract several 

columns. As in addition, it is common (and very practical) 

to show 8-bit binary numbers in two groups of four (as two 

nibbles). Refer to Fig. 18-10. 

As you study Fig. 18-10, you will see that each individual 

subtraction in each column is one of the four combinations 

we presented a moment ago. When a borrow occurs, we 

have shown the borrowed 1 as a superscript 1 next to the 

0 which needed it. The 1 that was borrowed from is crossed 

off, and its new value, 0, is shown above it. 

Negative (Sign) Flag 

The negative flag, sometimes called the sign flag, tells us 

whether the number in the accumulator is a positive or 

- From carry flag (indicates a borrow) 

I- Half carry 

w o * 

^10/ ^ 0 1 1 339 (after borrow) 

- 1 1 0 0 1 0 0 0 - 200 

1 0 0 0 1 0 1 1 139 

Fig. 18-10 Subtraction of binary numbers. 

negative number. Since the most signficant bit of the 

accumulator is the sign bit (when using signed binary 

numbers), the negative flag simply reflects the status of that 

bit. If the most significant bit is 0, the negative flag is 0, 

and this is a positive number. If the most significant bit is 

1, the negative flag will be 1, and this is a negative number. 

While the negative flag always indicates the status of bit 

7 of the accumulator, it is up to the programmer to determine 

whether the number is to be interpreted as a signed or 

unsigned binary number. 

Figure 18-11 illustrates how the negative flag works. 

Zero Flag 

The zero flag shows that the last operation produced a result 

of 0. This does not apply just to the accumulator but can 

apply to other registers as well. This is especially helpful 

when repeatedly decrementing (reducing by 1) an index 

register to determine the number of times a loop has 

executed. Knowing when a register has reached 0 is also 

useful when branching to other parts of a program and 

when determining whether or not to activate (call or enter) 

certain subroutines. 

The one unusual feature of the zero flag is that it contains 

a 1 when the result is 0, and the flag is 0 when the result 

is anything other than 0. While this may appear confusing 

at first, it becomes second nature as you gain experience 

with microprocessors. 

The idea here is that a 0 says that something is false or 

has not occurred. A 0 says, “No, this number was not the 

number zero.” 

A 1 says that something is true or has occurred. A 1 

says, “Yes, this number is the number zero.” 

Subtraction-with-Carry (Borrow) 

The same carry flag that informs us that an addition problem 

produced a sum which carried a 1 into the 9th bit also tells 

us something about subtraction problems. Now it tells us 

that to produce the answer (difference) the microprocessor 

had to borrow a 1 from a 9th bit. This occurs when the top 

number (minuend) is smaller than the bottom number 

(subtrahend). 

0110 0100 

Accumulator 

Positive signed 
binary number 

□ 
Negative flag 

Negative signed 
binary number 

1 0 0 0 1 1 1 0 | | 1 | 
Accumulator Negative flag 

Fig. 18-11 The negative flag. 
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Refer again to Fig. 18-10. Notice that a borrow was 

required from a column that doesn’t actually exist. There 

is no 9th column. The carry flag acts as that column. It 

tells us that a borrow from this “imaginary” column was 

necessary. 

Most microprocessors set the carry flag (make it a 1) 

when a borrow is necessary (l=true). The exception to 

this is the 6502 microprocessor. It clears the carry flag, as 

though the borrow actually came from the flag itself. In the 

6502 you must set the carry flag before you start a subtraction 

problem so that, if a borrow is necessary, a 1 will be 

present. 
Some microprocessors also monitor the 4th bit during 

subtraction. This is the half-carry flag which was mentioned 

earlier in this chapter. 

Multiplication and Division 

The 8-bit microprocessors featured in this text do not have 

multiplication or division instructions (the 6809, a relative 

of the 6800 and 6808, does have a MULtiply instruction). 

However, the 16-bit 8086/8088 has both multiply and divide 

instructions, which will be discussed in the 8086/8088 

section of this chapter. 

There are several software algorithms for both multipli¬ 

cation and division which work well with the 8-bit micro¬ 

processors. 

18-3 FLAG INSTRUCTIONS 

Each of our microprocessors has instructions to alter the 

state of its flags. Which of their flags and how many of 

their flags can be directly altered vary. 

The 8080/8085 has the fewest instructions for setting and 

clearing flags. The 6502, 8086/8088, and 6800/6808 all 

have the ability to set and clear many of their flags directly. 

The 6800/6808 has an instruction which makes it possible 

to move the status of all the flags into accumulator A and 

to copy the contents of accumulator A into the flag register. 

All our microprocessors except the 6800/6808 have the 

ability to push all the flags onto the stack and retrieve them 

from the stack. The 6800/6808 can accomplish the same 

task by transferring the flags to accumulator A and then to 

the stack in a two-step process. 

We’ll discuss the specific uses for each flag instruction 

in the Specific Microprocessor Families section of this 

chapter. The uses for flag instructions can be generalized, 

however. We use the flags primarily during arithmetic 

operations and for control of loops, branches, and subrou¬ 

tines. 

Since we use the flags to give us information about the 

outcome of arithmetic operations, we often need to set or 

clear flags before these math operations so that we are 

certain of their exact condition before the operation begins. 
We use flags to determine whether or not certain loops 

should be repeated, whether branches into other parts of 

the program should be taken, and whether certain subrou¬ 

tines should be called. Flags are used to make decisions 

about which microprocessor instructions should be executed 

next. This is the same as saying that the flags are used by 

the program to make decisions. For these reasons we may 

want to set or clear certain flags before or after certain 

instructions are executed. 

Specific Microprocessor 
Families_ 
Let’s study the arithmetic and flag instructions for each of 

our microprocessor families. We’ll be using short routines 

to study operations for which each microprocessor has 

specific instructions. We will not develop long routines to 

facilitate arithmetic operations which are not inherent to 

each microprocessor family. This will help you to become 

familiar with your microprocessor’s basic arithmetic and 

flag instructions. 

18-4 6502 FAMILY 

The 6502 probably has the fewest different arithmetic 

instructions of any of our microprocessor families. However, 

by conscientiously setting and clearing the appropriate flags 

before arithmetic operations, this chip performs math op¬ 

erations adequately. 

Arithmetic Instructions 

The 6502 does not have normal add and subtract instruc¬ 

tions. It has only add-with-carry and subtract-with-carry. 

Both of these instructions use the value in the accumulator 

as one of their operands with another value which can be 

an immediate value, or a value in memory, in addition to 

the value in the carry flag. The value in memory can be 

addressed any one of seven different ways. Let’s see how 

to use these instructions. 

Addition-with-Carry 

Let’s start with a very simply addition program. Figure 18- 

12 illustrates this type of program. 

Notice first that we have used the CLC (CLear Carry) 

instruction before we even loaded the accumulator with our 

first operand. This is necessary when using the 6502 

microprocessor. If the carry flag is set from a previous 

operation, the ADC (ADd-with-Carry) instruction will add 
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1 1 

0 10 0 10 0 1 4916 7310 

+ 0 0 0 1 1110 + 1E,6 + 30to 

0 110 0 111 6716 10310 

Addr Assembler Comment 

0340 18 CLC Prepare for addition problem 

0341 A9 LDA #$49 Load accumulator with first number (49) 

0342 49 

0343 69 ADC #$1E Add IE to the number in the accumulator 
and place the answer in the accumulator 0344 IE 

0345 00 BRK Stop 

Fig. 18-12 Simple 6502 addition problem. 

the 1 in the carry flag to the answer and will cause the 

answer to be incorrect (it will be 1 greater than the correct 

result). 

Pay particular attention to the accumulator and the 

processor status register. Notice their contents both before 

and after you run the program. (You may want to write 

down their values before and after so that you can study 

their behavior.) You will find that the accumulator will 

have the number 6716 in it (which is the correct answer) 

and that only the BRK (BReaK) flag will be set. 

Let’s look at the processor status register a little more 

closely. Refer to Fig. 18-13 now. 

Examining the flags from right to left, let’s consider eacn 

and why it was or was not set during the last problem. 

The carry flag would have been set if a carry from the 

8th bit to the 9th bit (which doesn’t exist, so it goes into 

the carry flag) had occurred, but none did. 

The zero flag would have been set if the answer had 

been 0, but it wasn’t. 

Status register 

Flags 

N V — B D 1 z c 

0 0 X 1 0 0 0 0 

1- Carry flag 

- Zero flag 

- Interrupt flag 

- Decimal mode flag 

--- Break flag 

- Unused 

- Overflow flag 

- Negative flag 

Fig. 18-13 6502 processor status register. 

Don’t worry about the interrupt flag since we haven’t 

introduced this subject yet. 

We dealt with the two operands as though they were 

hexadecimal numbers so we didn’t set the decimal flag. 

The break flag was set because we used the break 

instruction to stop the program. 

The status of the unused flag doesn’t matter. 

We did not exceed the range of decimal + 127 to — 128 

(hexadecimal 7F to 80); therefore the overflow flag was not 

set. 

Finally, we did not have a 1 in the 8th bit of the 

accumulator so the answer could not have been negative; 

therefore the negative flag was not set. 

The Negative Flag 

Let’s look at a problem which produces a negative answer. 

Refer to Fig. 18-14 now. 

Notice that this is exactly the same problem that was 

used in Fig. 18-12 except that we have changed the first 

operand, which used to be 4916 into C916, which is the 

decimal number — 5510, if we consider these numbers to 

be signed binary numbers. We know that — 5510 + 30lo 

= — 2510. Since this is a negative answer, we know that 

the negative flag should be set after the program is run. 

Load the program and run it. Again write down the 

contents of the accumulator and processor status register 

before and after running the program so that you can 

compare them. After the program is run, the accumulator 

should contain the value E716. The processor status register 

should contain BO. 

Let’s examine the status register again. The binary value 

for B016 is 1011 00002. If you put those bits into the 

appropriate positions in the status register as shown in Fig. 

18-15, you will see that 3 bits or flags are set. 

The break flag is again set because we used the break 

instruction to stop the program. We do not care about the 

status of the unused bit. 
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1 1 
110 0 100 1 C9i6 o

 

in
 

L
fi 
1 

+ 0 0 0 1 1110 + IE,6 + 3010 

1110 0 111 E7,6 -2510 

Obj Assembler Comment 

18 CLC Prepare for addition problem 

A9 LDA #$C9 Load accumulator with first number (C9) 

C9 

0343 69 ADC #$1E Add IE to the number in the accumulator 
and place the answer in the accumulator 0344 IE 

00 BRK Stop 

Fig. 18-14 Simple 6502 addition problem with negative 
answer. 

which produces a negative answer. 

i iiii 1111 

1100 1001 

+0011 0111 

1 0000 0000 

The negative flag is now set, however. This is what we 

expected to see. The sum of the addition problem was 

— 2510 (E716). If we assume that our numbers are signed 

binary numbers, then any number that has a 1 in the 8th 

bit is negative. E716 has a 1 in the 8th bit. The negative 

flag simply reflects the state of the 8th bit. 

The Zero Flag 

Now let’s change the program so that we get a sum of 0. 

Then we can see how the flags react to this situation. 

Figure 18-16 shows the problem and the program to 

solve the problem. 

We are again assuming that our numbers are signed 

binary numbers. The problem is C916 + 3716 = 0016, 

which is — 5510 + 5510 = 0lo. You should go through the 

binary addition now before you run the program. Notice 

both the answer and any carries. 

Write down the contents of the accumulator and the 

processor status register before and after running the pro¬ 

gram. You will notice that we are using the same program 

as in the last problem but have again changed one of the 

operands. 

C9-J6 “55-iq 

+ 3716 + 55-tp 

0016 O-io 

Addr Comment 

0340 18 CLC Prepare for addition problem 

0341 A9 LDA #$C9 Load accumulator with first number (C9) 

0342 C9 

69 ADC #$37 Add 37 to the number in the accumulator 
and place the answer in the accumulator 1 37 

00 BRK Stop 

Fig. 18-16 Simple 6502 addition problem which produces a 
sum of 0. 
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Now enter and run the program. The accumulator should 

contain 0016, and the status register should contain 33. If 

you place the bits of the status register in their proper places 

as shown in Fig. 18-17, you will see how the flags have 

responded to this problem. 

Notice that the break flag and unused flag have again 

been set as before. The value of the unused flag has no 

meaning, and the break flag simply shows that we used a 

break to stop the program. 

The zero flag is set, as we supposed it would be. The 

carry flag is also set. Notice in the binary addition that a 

carry did indeed occur from the 8th to a nonexistent 9th 

bit (which the carry flag acts as). 

Status register 

Flags 

N V — B D 1 2 C 

0 0 1 1 0 0 1 1 

Fig. 18-17 6502 status register after an addition problem 
which produces a sum of 0. 

The Overflow Flag 

When the overflow flag is set, it tells us that if the numbers 

which were just added or subtracted are signed binary 

numbers, then the valid range for such numbers has been 

exceeded and the result is incorrect. The valid range for 8- 

bit microprocessors, which the 6502 is, is + 127 to - 128. 

Let’s change our problem to create an overflow. 

Figure 18-18 shows our problem and program. Notice in 

this problem that we are assuming that all values are to be 

interpreted as signed binary values. 

The problem shown here is 12310 + llljo =_ 

First go through the binary addition and enter the program. 

Then write down the values in the accumulator and processor 

status register, run the program, and finally write down the 

ending values of the accumulator and status register. 

Status register 

Flags 

N V — B D 1 z c 

1 1 1 1 0 0 0 0 

Fig. 18-19 6502 status register after an addition problem 
which creates an overflow. 

Figure 18-19 shows what the value in the status register 
should be. 

You should have a sum of EA16 in the accumulator and 

F0l6 in the status register. EA16 is the correct sum if you 

are using unsigned binary numbers! If you interpret EA16 

as a signed binary number, it has a value of -2210. This 

is not the correct answer. We have exceeded our valid 

range for signed binary numbers. 

The status register has a value of F0. This means that in 

addition to the unused flag and the break flag, both the 

overflow and the negative flags have been set. 

It makes sense for the negative flag to be set because the 

8th bit of the accumulator is set. This indicates a negative 

number if the value is a signed binary number. 

The overflow flag is set because we have exceeded our 

range of 7F16 (12710) to 8016 (— 12810), giving an incorrect 
result. 

The Decimal Flag 

Because of differences in the way binary and decimal 

numbers round, and because numeric output to humans is 

usually decimal, it is sometimes better to actually do 

arithmetic calculations by using decimal numbers rather 

than binary numbers. Actually, true decimal numbers are 

not used. Rather, a mixture of binary and decimal, called 

binary-coded decimal, is used. (The method used to create 

BCD numbers is covered in Chap. 1 and they have been 

discussed subsequently. You should review that section of 

1111 iii 

0 111 10 11 7B16 12310 

+ 0110 1111 + 6Fle + 11110 

1110 10 10 EA16 234-iq 

Addr Obj Assembler Comment 

0340 18 CLC Prepare for addition problem 

0341 A9 LDA #$7B Load accumulator with first number (7B) 

0342 7B 

0343 69 ADC #$6F Add 6F to the number in the accumulator 
and place the answer in the accumulator 0344 6F 

0345 00 BRK Stop 

Fig. 18-18 Simple 6502 addition problem which produces 
an overflow. 
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Chap. 1 now if you are unsure of what BCD numbers are 

or how they are formed.) 
One of the problems encountered when using BCD 

numbers is that, as the binary nibbles are added, invalid 

results are sometimes obtained. 

Most microprocessors have an instruction called decimal 

adjust (or something similar). This instruction changes the 

number in the accumulator to what it would be if the last 

two numbers operated on had been BCD numbers instead 

of binary numbers. The 6502 handles this a little differently. 

It requires that you set a flag designed just for this purpose 

and enter a ‘ ‘decimal mode, ’ ’ so to speak. When the decimal 

0 1 0 0 0 1 1 1 BCD 4710 

+ 0011 0110 BCD + 36-iq 

flag is set, all operands are assumed to be packed BCD 

numbers. 

Let’s look at an example. In Fig. 18-20 we have compared 

a decimal addition problem to the binary version of the 

same problem. 

First notice the difference between BCD and binary 

addition. BCD addition is not the same as binary addition. 

BCD is decimal addition using four binary digits to represent 

each decimal digit. 

The program shown in Fig. 18-20 will help you understand 

the difference between binary and BCD addition (and 

subtraction). This program does the addition problem twice, 

0 1 0 0 0 1 1 12 47-ie 

+ 0 0 11 o i i o2 + 3616 

7Di6 I 1 0 0 0 0 0 1 1 BCD 8310 0 1 1 1 1 1 0 12 

Decimal (BCD) Binary 

This is not the same as this! 

Assembler Comment 

0340 D8 CLD Prepare to do binary addition 

0341 18 

mbm A9 LDA #$47 This is being interpreted as a binary number 

0343 A7 

KOHOH ADC #$36 This also is being considered a binary number 

IKIHSI 8D STA $03A0 We'll store the binary answer in memory location 
03A0 A0 

0348 03 

0349 08 PHP Put the flags on the stack 

KB 68 PLA Transfer flags from stack to accumulator 

8D STA $03A1 We'll store the status of the flags from the binary 
addition in the memory location immediately 
following the binary sum, which is location 03A1 

034C A1 

034D 03 

034E ■B Prepare for decimal addition 

034F 18 CLC 

0350 A9 LDA #$47 This number is being interpreted as a decimal 
number KB 47 

hum 69 ADC #$36 This number likewise is being considered a decimal 
number 36 

1 0354 8D STA $03A2 We'll store the decimal answer in memory location 
03A2 IIBB A2 

0356 03 

0357 08 Put the flags on the stack [ 

0358 68 Transfer the flags to the accumulator 

0359 8D STA $03A3 We'll store the status of the flags resulting from this 
decimal addition in the memory location immediately 
following the decimal sum, that is, location 03A3 

035A A3 

035B 03 

035C 00 BRK Stop 

Fig. 18-20 Binary vs. BCD addition. 
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once using binary numbers and once using BCD numbers. 

The result of the binary addition is stored in memory 

location 03A016, and the resulting flags in location 03A116. 

The result of the BCD addition is stored in location 03A216, 

and the resulting flags in location 03A316. Enter and run 

this program to see what results you get. (Don’t be concerned 

about the reference to the stack in the program. We’ll study 

the stack in a later chapter. For now just think of it as a 

temporary storage area.) When we ran the program we 

found the following: 

location 03A016 = 

location 03A116 = 

location 03A216 = 

location 03A316 = 

binary sum = 7D 

binary flags = 30 

BCD sum = 83 

BCD flags = F8 

The status of the binary flags indicates only that the break 

instruction had been used to stop the program. No other 

flags were set. 

The status of the flags after the BCD addition indicates 

that the decimal flag was set. (We set this flag to get into 

the "‘decimal mode.”) The negative flag was set but has 

no valid meaning. It was simply following the state of the 

8th bit of the accumulator. The overflow flag was set, but 

it also has no valid meaning in BCD arithmetic. 

Subtraction-with-Carry 

Subtraction-with-carry is the opposite of addition-with- 

carry. As in addition, there is no simple subtract instruction, 

only subtract-with-carry. 

The 6502 handles borrows differently from the way most 

other microprocessors do. Most microprocessors set the 

carry flag if either a carry or a borrow occurs. The 6502 

sets the flag if a carry occurs and clears the flag if a borrow 

occurs. It is important to remember that the carry flag must 

be set before a subtraction problem (or the first section of 

a multiple-precision subtraction problem) so that if a borrow 

is needed, it can clear the carry flag, which then indicates 

that the borrow has occurred. If the carry flag is not set 

before starting the subtraction, the answer will be incorrect. 

(It will be 1 less than the correct result.) 

Figure 18-21 illustrates the correct way to write a program 

to do single-precision subtraction. 

You should assemble and run this program. When we 

did, we found that the result in the accumulator was FF. 

We also found that the overflow and negative flags had 

been set. The negative flag was set because the 8th bit of 

the answer is a 1, which indicates a negative-signed binary 

number. The overflow flag was set because 7F16 = 12710, 

and 80l6 = - 12810; therefore 

127 

- -128 

255 

and 25510 is outside the valid range for 8-bit signed binary 

numbers. (The valid range is + 12710 to - 12810.) 

18-5 6800/6808 FAMILY 

The 6800/6808 has a variety of add and subtract instructions 

which can use either of its two accumulators and can address 

memory locations in several ways. The 6800/6808 can also 

add and subtract binary-coded decimal (BCD) numbers. 

Arithmetic Instructions 

The 6800/6808 has add, subtract, add-with-carry, subtract- 

with-carry, add accumulator A to accumulator B, subtract 

accumulator B from accumulator A, and decimal adjust 

accumulator A instructions. These instructions use the value 

in one of the accumulators as one of their operands and 

another value which can be an immediate value or a value 

in memory. Let’s see how to use these instructions. 

Addition 

Let’s start with a very simple addition program. Figure 

18-22 illustrates this type of program. 

Pay particular attention to the accumulator and the 

condition code register (status register). Notice their contents 

both before and after you run the program. (You may want 

to write down their values before and after so you can study 

Addr Obj Assembler Comment 

0340 38 SEC Remember this step! 

0341 A9 LDA #$7F 

0342 7F 

0343 E9 SBC #$80 

0344 80 

0345 00 BRK 

Fig. 18-21 Subtraction-with-carry. 
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1 1 

0 10 0 10 0 1 49ie 

o
 

00 
I--* 

+ 0 0 0 1 1110 + 1 ^16 + 3010 

0 110 0 111 6716 1 03iq 

Obj Assembler Comment 

86 LDAA #$49 Load accumulator with first number (49) 

49 

8B ADDA #$1E Add IE to the number in the accumulator and 
place the answer in the accumulator 

0004 WAI Stop 

Fig. 18-22 Simple 6800/6808 addition problem. 

their behavior.) You will find that the accumulator will 

have the number 6716 in it (which is the correct answer) 

and that only the half-carry flag will be set. 

Let’s look at the status register a little more closely. 

Refer to Fig. 18-23 now. 

Examining the flags from right to left, let’s consider each 

and why it was or was not set. 

The carry flag would have been set if a carry from the 

8th bit to the 9th bit (which doesn’t exist, so it goes into 

the carry flag) had occurred, but none did. 

We did not exceed the range of +127l0 to —12810 

(hexadecimal 7F to 80); therefore the overflow flag was not 

set. 

The zero flag would have been set if the answer had 

been zero, but it wasn’t. 

We did not have a 1 in the 8th bit of the accumulator so 

the answer could not have been negative; therefore the 

negative flag was not set. 

Don’t worry about the interrupt flag since we haven’t 

introduced this subject yet. 

The half-carry flag was set because we had a carry from 

the 4th bit to the 5th bit. (Information about the half-carry 

is useful when dealing with BCD numbers.) 

The status of the unused flags doesn’t matter. 

The Negative Flag 

Now let’s look at a problem that produces a negative 

answer. See Fig. 18-24. 

Notice that this is exactly the same problem as the last 

one except that we have changed the first operand, which 

was 4916, into C916, which is the number — 5510 if we 

consider these numbers to be signed binary numbers. We 

know that - 5510 + 3010 = — 2510. Since this is a negative 

answer, we know that the negative flag should be set after 

the program is run. 

Write down the contents of the accumulator and processor 

status register before running the program so that you know 

what the initial conditions are. Now load the program and 

run it. After you run the program, the accumulator should 

Fig. 18-23 6800/6808 status register. 
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1 1 
110 0 10 0 1 C916 -55,o 

+ 0 00 1 1110 + 1E16 + 30,o 
1110 0 111 CjO 

r** 
L

U
 -25,o 

Addr Obj Assembler Comment 

0000 86 LDAA #$C9 Load accumulator with first number (C9) 
0001 C9 

8B ADDA #$1E Add IE to the number in the accumulator and 
place the answer in the accumulator IE 

| 0004 3E WAI Stop 

Fig. 18-24 Simple 6800/6808 addition problem with negative 
answer. 

contain the value E716. The status register should contain 
XX101000. 

Let’s examine the status register again. If you put the 

bits into their appropriate positions in the status register as 

shown in Fig. 18-25, you will see that 2 bits or flags are 
set. 

Status register 

Flags 

1 1 H 1 N Z V c 

1 1 1 0 1 0 0 0 

Carry flag 

Overflow flag 

Zero flag 

Negative flag 

Interrupt flag 

Half-carry flag 

Unused 

Unused 

Fig. 18-25 6800/6808 status register after an addition 
problem which produces a negative answer. 

i 1111 iii 

1100 1001 

+0011 0111 

1 0000 0000 

The half-carry flag is again set because we had a carry 

from the 4th to the 5th bit of the result. The difference is 

that the negative flag is now set. This is what we expected 

to see. The sum of the addition problem was -2510 (E716). 

If we assume that our numbers are signed binary numbers, 

then any number that has a 1 in the 8th bit is negative. 
E716 has a 1 in the 8th bit. 

The Zero Flag 

Now let’s change the program slightly so that we get a sum 

of 0. Then we can see how the flags react to this situation. 

Figure 18-26 shows the problem and the program to 
solve the problem. 

We are again assuming that our numbers are signed 

binary numbers. The problem is C916 + 3716 = 0016 

( 55iq + 5510 = 0lo). You should go through the binary 

addition of these two numbers now before you run the 

program. Notice both the answer and the carries. 

Again write down the contents of the accumulator and 

the status register before and after running the program. 

You will notice that we are using the same program as the 

ast example but have changed one of the operands. 

Now enter and run the program. The accumulator should 

contain 0016, and the status register should contain XX1001012. 

If you place the bits of the status register value in their 

C9i6 -55,o 

+ 3716 + 55-iq 

00ie 010 

I^S Obj Assembler Comment 

0000 86 LDAA #$C9 Load accumulator with first number (C9) 
0001 C9 

8B ADDA #$37 Add 37 to the number in the accumulator and 
place the answer in the accumulator 1 37 

1 0004 3E WAI Stop 

Fig. 18-26 Simple 6800/6808 addition problem which 
produces a sum of 0. 
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Fig. 18-27 6800/6808 status register after an addition 
problem which produces a sum of 0. 

proper places as shown in Fig. 18-27, you will see how 

the flags have responded to this problem. 

Notice that the half-carry flag has again been set. The 

zero flag is set, as we supposed it would be. The carry flag 

is also set. Notice in the binary addition that a carry did 

indeed occur from the 8th to a nonexistent 9th bit (which 

the carry flag acts as). 

The Overflow Flag 

When the overflow flag is set, it tells us that if the numbers 

which the microprocessor just added or subtracted are 

signed binary numbers, the valid range for such numbers 

has been exceeded and the result is incorrect. The valid 

range for 8-bit microprocessors is +127 to —128. Let’s 

change our problem to create an overflow. 

Figure 18-28 shows our problem and program. Note that 

in this problem we are assuming that all values are to be 

interpreted as signed binary values. 

This problem is 12310 T 11110 =-First g° 

through the binary addition and enter the program. Then 

write down the values of the accumulator and status register, 

run the program, and finally write down the final values of 

the accumulator and status register. 

Figure 18-29 shows what the value in the status register 

should be. 

You should have a sum of EA16 in the accumulator and 

XX1010102 in the status register. EA16 is the correct sum 

if you are using unsigned binary numbers! If you interpret 

EA,6 as a signed binary number, it has a value of -2210. 

Status register 

Flags 

1 H 1 N Z V 

D D a D a D a a 
Fig. 18-29 6800/6808 status register after an addition 
problem which creates an overflow. 

This is not the correct answer. We have exceeded our valid 

range for signed binary numbers. 

The status register has a value of XX101010. This means 

that in addition to the half-carry flag, both the overflow and 

the negative flags have been set. 

It makes sense for the negative flag to be set because the 

8th bit of the accumulator is set. This indicates a negative 

number if the value is a signed binary number. 

The overflow flag is set because we have exceeded our 

range of 7F16 (12710) to 8016 (— 12810), and the result is 

incorrect. 

Decimal Addition 

Because of differences in the way binary and decimal 

numbers round, and because numeric output to humans is 

usually decimal, it is sometimes helpful to actually do 

arithmetic calculations by using decimal numbers rather 

than binary numbers. Actually, true decimal numbers are 

not used. Rather a mixture of binary and decimal, called 

binary-coded decimal, is used. (The method used to create 

BCD numbers is covered in Chap. 1, and they have been 

discussed subsequently. You should review that section of 

Chap. 1 now if you are at all unsure of what BCD numbers 

are or how they are formed.) 

One of the problems encountered in using BCD numbers 

is that, as the binary nibbles are added, invalid results are 

sometimes obtained. 

Most microprocessors have an instruction called decimal 

adjust (or something similar). This instruction changes the 

1111 iii 

0 111 10 11 7B16 123i0 

+ 0110 1111 + 6F16 +m10 

1110 10 10 EA16 234,0 

■Snag 

—1— 
E 

Fig. 18-28 Simple 6800/6808 addition problem which 
produces an overflow. 
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number in the accumulator to what it would be if the last 

two numbers operated on were packed BCD (binary-coded 

decimal) numbers instead of binary numbers. 

Let s look at an example. Figure 18-30 compares a 

decimal addition problem to the binary version of the same 
problem. 

Notice first the difference between BCD and binary 

addition. BCD addition is not at all the same as binary 

addition. BCD is decimal addition using four binary digits 

to represent each decimal digit. 

The program shown in Fig. 18-30 will help you understand 

the difference between binary and BCD addition (and 

subtraction). This program does the addition problem twice, 

once using binary numbers and once using BCD numbers. 

The result of the binary addition is stored in memory 

location A016, and the resulting flags in location Al16. The 

result of the BCD addition is stored in location A216, and 

the resulting flags in location A316. Enter and run this 

program to see what results you obtain. When we ran the 

program, we found the following: 

location A016 = binary sum = 7D 

location Al16 = binary flags = 000000 

0 1 0 0 0 1 1 1 BCD 4710 

+ 0011 0110 BCD + 3610 

location A216 = BCD sum = 83 

location A316 = BCD flags = 001000 

The status of the binary flags indicates that no flags were 

set as a result of the binary addition. After the BCD 

addition, the negative flag was set but has no valid meaning. 

It is simply following the state of the 8th bit of the 
accumulator. 

Subtraction 

Subtraction is the opposite of addition. All the flags operate 

the same except the carry flag. After subtraction, the carry 

flag indicates whether or not a borrow has occurred. You 

can think of it as a 4‘borrow” flag. A 1 in the carry flag 

position indicates that a borrow from the nonexistent 9th 

bit was required to do the subtraction. A 0 indicates that 

no borrow from the 9th bit was required. 

Figure 18-31 illustrates how to write a program to do 

single-precision subtraction. 

You should assemble and run this program. When we 

did, we found that the result in the accumulator was FF. 

0 10 0 o 1 1 12 4716 

+ 0011 0 1 1 0? + 3616 

7D16 | 1 0 0 0 0 0 1 1 BCD 8310 | 0111 1 1 0 12 

Decimal (BCD) Binary 

This is not the same as this1 

Addr Obj Assembler Comment 

86 LDAA #$47 This is being interpreted as a binary number 
47 

8B ADDA #$36 This also is being considered a binary number 
0003 36 

0004 97 STAA #A0 We'll store the binary answer in memory location 
03A0 IWIliSi A0 

0006 07 TPA Transfer flags to accumulator 
0007 97 STAA #A1 We'll store the status of the flags from the binary 

addition in memory location A1 0008 A1 

0009 86 LDAA #$47 This number is being interpreted as a decimal number 
000A 47 

8B ADDA #$36 This number likewise is being considered a decimal 
number oooc 36 

000D 19 DAA Make the answer decimal 
000E _ 97 STAA $A2 We'll store the decimal answer in memory location 

03A2 000F 

CM
 

<
 

IHKwflil 07 TPA Transfer the flags to the accumulator 
0011 97 STAA $A3 We'll store the status of the flags resulting from 

this decimal addition in memory location A3 0012 A3 

0013 3E WAI Stop | 

Fig. 18-30 Binary vs. BCD addition. 
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Addr Assembler Comment 

0000 86 LDAA #$7F 

0001 7F 

0002 01 SUBA #$80 

80 

0004 3E WAI 

Fig. 18-31 Subtraction. 

We also found that the overflow, negative, and carry flags 

had been set. The negative flag was set because the 8th bit 

of the answer is a 1, which indicates a negative-signed 

binary number. The overflow flag was set because 7F16 = 

12710, and 8016 = - 12810; therefore 

127 

-(-128) 

255 

and 25510 is outside the valid range for 8-bit signed binary 

numbers (the valid range is + 127,0 to — 128,0). The carry 

flag was set because a borrow from a 9th bit was needed 

to complete the subtraction. 

18-6 8080/8085/Z80 FAMILY 

The 8080/8085/Z80 family has a variety of add and subtract 

instructions. The 8080/8085/Z80 can also work with binary- 

coded decimal (BCD) numbers. 

1 1 
0100 1001 

+ 0001 1110 

0110 0111 

Arithmetic Instructions 

The 8080/8085/Z80 family has add, subtract, add-with- 

carry, subtract-with-borrow, immediate mode and decimal 

adjust accumulator A instructions. These instructions use 

the value in the accumulator as one of their operands and 

another value in one of the other registers as the other 

operand. Let’s see how to use these instructions. 

Addition 

Let’s start with a very simple addition program. Figure 

18-32 illustrates this type of program. 

Pay particular attention to the accumulator and the status 

register. Notice their contents both before and after you 

run the program. (You may want to write down their values 

before and after so that you can study their behavior.) You 

will find that the accumulator will have the number 6716 in 

it (which is the correct answer) and that only the half-carry 

flag will be set. 

Let's look at the status register a little more closely. 

Refer to Fig. 18-33. 

49t6 7310 

+ 1E16 + 30iq 

6716 10310 

Addr Obj Assembler Comment 

1800 3E MVI A,49 Load accumulator with first number (49) 

1801 49 

1802 C6 ADI IE Add IE to the number in the accumulator and 
place the answer in the accumulator 

1803 IE 

1804 76 HALT Stop 

(8080/8085 mnemonics) 

Obj Comment 

| 1800 3E LD A,49 Load accumulator with first number (49) 

49 

1802 C6 ADD A,IE Add IE to the number in the accumulator and 
place the answer in the accumulator 

1803 IE 

1804 76 HALT Stop 

(Z80 mnemonics) 

Fig. 18-32 Simple 8080/8085/Z80 addition problem. 
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Fig. 18-33 8080/8085/Z80 status registers after addition 
problem. 

Examining the flags from right to left, let’s consider each 

and why it was or was not set. 

The carry flag would have been set if a carry from the 

8th bit to the 9th bit (which doesn’t exist, so it goes into 

the carry flag) had occurred, but none did. 

(Note to Z80 users: Ignore the negative flag.) 

The parity flag was not set because the answer 0110 

01112 has an odd number of Is. That is to say it has odd 

parity, which is indicated by a 0. (Note to Z80 users: We 

did not exceed the range of decimal +127 to -128- 

hexadecimal 7F to 80; therefore the parity!overflow flag 
was not set.) 

The microprocessor set the auxiliary carry (half-carry) 

flag because we had a carry from the 4th bit to the 5th bit. 

(Information about the half-carry is useful when dealing 
with BCD numbers.) 

The zero flag would have been set if the answer had 
been zero, but it wasn’t. 

We did not have a 1 in the 8th bit of the accumulator so 

the answer could not have been negative; therefore the sign 
flag was not set. 

The status of the unused flags doesn’t matter. 

The Sign Flag 

Let s look at a problem that produces a negative answer. 
See Fig. 18-34. 

Notice that this is the same problem as the last one 

except that we have changed the first operand. It used to 

4916, but it is now C916, which is the decimal number 

-5510 if we consider these numbers to be signed binary 

numbers. We know that -5510 + 3010 = -2510. Since 

this is a negative answer, we know that the sign flag should 
be set after the program is run. 

Write down the contents of the accumulator and status 

register before running the program so that you know the 

initial conditions. Load the program and run it. After the 

program is run, the accumulator should contain the value 

E716. The status register should contain 10-1-1-0 [Z80 = 
10-1-000]. 

Let’s examine the status register. If you put the status 

register bits into the appropriate positions in the status 

register as shown in Fig. 18-35, you will see what the bits 
indicate. 

The auxiliary-carry [half-carry] is set again because we 

had a carry from the 4th to the 5th bit of the result. 

The difference this time is that the sign flag is now set. 

This is what we expected to see. The sum of the addition 

problem was — 2510 (E716). If we assume our numbers are 

signed binary numbers, then any number that has a 1 in 

the 8th bit is negative. E716 has a 1 in the 8th bit. The sign 

flag simply reflects the state of the 8th bit. 

[Note to 8085 users: Your parity flag is 1 this time 

because the answer (E716) has an even number of Is in it 

and even parity is indicated by a 1 in the parity flag. Note 

to Z80 users: Your parity!overflow flag is 0 just like last 

time because the answer did not exceed the range from 
+ 127l0 to -128l0.] 

The Zero Flag 

Now let’s change the program slightly so that we get a sum 

of 0. That way we can see how the flags react to this 
situation. 

Figure 18-36 shows the problem and the program to 
solve the problem. 

We are again assuming that our numbers are signed 

binary numbers. The problem is C916 + 3716 = 0016 
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1 1 

110 0 100 1 C9ie -5510 

+ 00 0 1 1110 +
 

m
 

CD
 + 30io 

1110 0 111 E716 -2510 

Obj Assembler Comment 

1800 3E 

1801 C9 

■■ C6 ADI IE Add IE to the number in the accumulator and 
place the answer in the accumulator 

1803 IE 

1804 76 HALT Stop 

(8080/8085 mnemonics) 

Addr Obj Assembler Comment 

1800 3E LD A,C9 Load accumulator with first number (C9) 

1801 C9 

C6 ADD A#1E Add IE to the number in the accumulator and 
place the answer in the accumulator 

IE 

1804 76 HALT Stop 

(Z80 mnemonics) 

Fig. 18-34 Simple 8080/8085/Z80 addition problem with 
negative answer. 

(-5510 + 5510 = O10). You should go through the binary 

addition of these two numbers now before you run the 

program. Notice both the answer and the carries. 

Again write down the contents of the accumulator and 

the status register before and after running the program. 

You will notice that we are using the same program but 

have changed one of the operands. 

Now enter and run the program. The accumulator should 

contain 00! 6 and the status register should contain 01-1-1-1 

[Z80 = 01-1-001]. If you place the bits of the status 

register value in their proper places as shown in Fig. 

18-37, you will see how the flags have responded to this 

problem. 

Notice that the half-carry flag has again been set. 

The zero flag is set, as we supposed it would be. 

The carry flag is also set. Notice in the binary addition 

Fig. 18-35 8080/8085/Z80 status registers after an addition 
problem which produces a negative answer. 

Status register 

Flags 

S z — H — P N c 

1 0 — 1 — 0 0 0 

1- Carry flag (CY) 

- Negative flag 

- Parity/overflow (PV) 

- Unused 

- Half carry 

- Unused 

- Zero flag 

-—- Sign flag 

Z80 Status register 
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1 1111 111 

11 00 1 0 0 1 C916 -5510 

+ 0 0 1 1 0 1 1 1 + 37i6 + 55-iq 

1 0000 0000 0016 010 

Obj Assembler Comment 

1800 3E MVI A,C9 Load accumulator with first number (C9) 
C9 

C6 ADI 37 Add 37 to the number in the accumulator and 
place the answer in the accumulator ■sa 37 

76 HALT Stop 

(8080/8085 mnemonics) 

Addr Obj Assembler Comment 

3E LD A,C9 Load accumulator with first number (C9) 
C9 

C6 ADD A,37 Add 37 to the number in the accumulator and 
place the answer in the accumulator 37 

76 HALT Stop 

(Z80 mnemonics) 

Fig. 18-36 Simple 8080/8085/Z80 addition problem which 
produces a sum of 0. 

that a carry did indeed occur from the 8th bit to a nonexistent 

9th bit (which the carry flag acts as). 

The 8085 parity flag is set indicating an even number of 

Is. (Note to Z80 users: Your parity!overflow flag is cleared 

indicating you have not exceeded the range for 8-hit signed 

binary numbers, from + 72710 to -72<S10.) 

The Parity Flag [Z80: Parity/Oveiflow Flag] 

The 8080/8085 and Z80 microprocessors differ slightly in 

the function of this flag. Let’s look at the 8080/8085 first. 

Status register 

Flags 

S z — A — P — C 

0 1 — 1 — 1 — 1 

8080/8085 Status register 

Status register 

Flags 

S Z — H — P N C 

0 1 — 1 — 0 0 1 

Z80 Status register 

Fig. 18-37 8080/8085/Z80 status registers after an addition 
problem which produces a sum of 0. 

The 8080/8085 microprocessors have a parity flag which 

simply tells us how many Is are in the accumulator after 

an arithmetic or a logic operation. Even parity exists when 

an even number of Is are in the accumulator. Odd parity 

exists when an odd number of Is exist in the accumulator. 

Even parity is shown by a 1 in the parity flag, and odd 

parity by a zero in the parity flag. 

The Z80 has a combination parity/overflow flag. During 

logic operations it indicates parity as just described for the 

8080/8085. During arithmetic operations, however, it acts 
as an overflow flag. 

When an overflow flag is set, it tells us that if the 

numbers which were just added or subtracted are signed 

binary numbers, then the valid range for such numbers has 

been exceeded and the result is incorrect. The valid range 

for 8-bit microprocessors is +127 to -128. Let’s change 

our problem to create an overflow. 

Figure 18-38 shows our problem and program. In this 

problem it is important to note that we are assuming that 

all values are to be interpreted as signed binary values. 

This problem is + 12310 + 11110 =-First go 

through the binary addition and enter the program. Then 

write down the values in the accumulator and status register, 

run the program, and finally write down the values of the 

accumulator and status register after the program has run. 

Figure 18-39 shows what the value in the status register 
should be. 

You should have a sum of EA16 in the accumulator and 

10-1-0-0 [Z80: 10-1-100] in the status register. EA16 is the 

correct sum if you are using unsigned binary numbers! If 
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1111 111 

0 111 10 11 7B16 123iq 

+ 0110 1111 + 6F16 + 111io 

1110 10 10 ea16 23410 

Assembler Comment 

1800 3E MVI A,7B Load accumulator with first number (7B) 

1801 7B 

1802 C6 ADI 6F Add 6F to the number in the accumulator and 
place the answer in the accumulator 1803 6F 

1804 76 HALT Stop 

(8080/8085 mnemonics) 

Addr Obj Assembler Comment 

1800 3E LD A,7B Load accumulator with first number (7B) 

1801 7B 

1802 C6 ADD A,6F Add 6F to the number in the accumulator and 
place the answer in the accumulator im 6F 

1804 76 HALT Stop 

(Z80 mnemonics) 

Fig. 18-38 Simple 8080/8085/Z80 addition problem which 
produces an overflow. 

you interpret EA16 as a signed binary number, it has a value 

of — 2210. This is not the correct answer. We have exceeded 

our valid range for signed binary numbers. 

The status registers of both the 8080/8085 and the Z80 

microprocessors have a 1 in the half-carry flag as before. 

Now however, both also have a sign flag that is set. It 

makes sense for the sign flag to be set because the 8th bit 

of the accumulator is set. This indicates a negative number 

if the value is a signed binary number. 

Status register 

Flags 

S Z — A — P — c 

1 0 — 1 — 0 — 0 

8080/8085 Status register 

Status register 

Flags 

S Z — H — P N C 

1 0 — 1 — 1 0 0 

Z80 Status register 

Fig. 18-39 8080/8085/Z80 status registers after an addition 
problem which creates an overflow. 

The parity flag of the 8080/8085 is 0 because the answer 

(EA16) contains five Is and 5 is an odd number. However, 

the parity/overflow flag of the Z80 acts as an overflow flag 

during an arithmetic instruction and is 1 because we have 

exceeded our range of 7F16 (12710) to 8016 (— 12810) for 

8-bit signed binary numbers, and the result is therefore 

incorrect. 

Decimal Addition 

Because of differences in the way binary and decimal 

numbers round, and because numeric output to humans is 

usually decimal, it is sometimes useful to do arithmetic 

calculations by using decimal numbers rather than binary 

numbers. Actually, true decimal numbers are not used. 

Rather a mixture of binary and decimal, called binary- 

coded decimal is used. (The method used to create BCD 

numbers is covered in Chap. 1, and they have been discussed 

subsequently. You should review that section of Chap. 1 

now if you are unsure of what BCD numbers are or how 

they are formed.) 

One of the problems involved in using BCD numbers is 

that as the binary nibbles are added, invalid results are 

sometimes obtained. 

Most microprocessors have an instruction called decimal 

adjust (or something similar). This instruction changes the 

number in the accumulator to what it would be if the last 

two numbers operated on had been packed BCD numbers 

instead of binary numbers. 
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Let’s look at an example. Figure 18-40 compares a 

decimal addition problem to the binary version of the same 

problem. 

Notice first the difference between BCD and binary 

addition. BCD addition is not at all the same as binary 

addition. BCD is decimal addition using 4 bits to represent 
each decimal digit. 

The program shown in Fig. 18-40 will help you understand 

the difference between binary and BCD addition (and 

subtraction). This program does the addition problem twice, 

once using binary numbers and once using BCD numbers. 

The result of the binary addition is stored in memory 

location 18A016, and the resulting flags in location 18A116. 

The result of the BCD addition is stored in location 18A216, 

0 1 0 0 0 1 1 1 BCD 4710 

+ 0011 0110 BCD + 3610 

■ 1000 

and the resulting flags in location 18A316. Enter and run 

this program to see what results you get. When we ran the 

program, we found the following: 

location 18A016 = binary sum = 7D 

location 18A116 = binary flags = 00-0-1-0 

[Z80:00-0-000] 

location 18A2l6 = BCD sum = 83 

location 18A316 = BCD flags = 10-1-0-0 

[Z80:10-1-000] 

The status of the flags after the binary addition indicates 

that no flags were set (except the 8080/8085 parity flag 

indicating even parity). 

0 1 0 0 0 1 1 12 4716 

+ 0 0 1 1 0 1 1 02 + 3616 

~7Di6 I 
0 0 11 BCD 8310 | , 0 111 110 1 

Decimal (BCD) Binary 

This is not the same as this! 

Addr Obj Assembler Comment 

1800 3E MVI A,47 This is being interpreted as a binary number 
1801 47 

1802 C6 ADI 36 This also is being considered a binary number 
1803 36 

1804 32 STA 18A0 We'll store the binary answer in memory location 
18 A0 1805 A0 

1806 18 

1807 F5 PUSH PSW Put the flags and accumulator in stack 
1808 Cl POP B Retrieve flags and accumulator into register B and C 
1809 79 MOV A,C Move the flags from register C to the accumulator 
180A 32 STA 18A1 We'll store the status of the flags from the binary 

addition in memory location 18A1 180B A1 

180C 18 

180D 3E MVI A, 47 This is being interpreted as a decimal number 
180E 47 

180F C6 ADI 36 This also is being considered a decimal number 
1810 36 

1811 27 DAA Convert the answer to decimal 
1812 32 STA 18A2 We'll store the decimal answer in memory location 

18A2 1813 A2 

1814 18 

1815 F5 PUSH PSW Put the flags and accumulator in stack 

1816 Cl POP B Retrieve flags and accumulator into registers B and C 
1817 79 MOV A,C Move the flags from register C to the accumulator 
1818 32 STA 18A3 We'll store the status of the flags from the binary 

addition in memory location 18A3 1819 A3 

181A 18 

181B 76 HALT Stop 

(8080/8085 mnemonics) 

Fig. 18-40 Binary vs. BCD addition. (Continued on next page.) 
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Addr Obj Assembler Comment 

1800 3E LD A,47 This is being interpreted as a binary number 

1801 47 

1802 C6 This also is being considered a binary number 

mem 36 

1 1804 32 We'll store the binary answer in memory location 
18A0 1805 A0 

1806 18 

1807 PUSH AF Put the flags and the accumulator in stack 

1808 Retrieve flags and accumulator into registers B and C 

1809 79 LD A,C Move the flags from register C to the accumulator 

180A 32 LD<18A1),A Well store the status of the flags from the binary 
addition in memory location 18A1 180B A1 

180C 18 

180D 3E LD A, 47 This is being interpreted as a decimal number 

! 180E 47 

180F C6 ADD A,36 This also is being considered a decimal number 

1810 36 

1811 27 DAA Convert the answer to decimal 

1812 32 LD (18A2), A We'll store the decimal answer in memory location 
18A2 1813 A2 

1814 18 

1815 F5 PUSH AF Put the flags and accumulator in stack 

1816 Cl POP BC Retrieve flags and accumulator into registers B and C 

^hh^h 79 LD A,C Move the flags from register C to the accumulator 

32 LD (18A3),A We'll store the status of the flags from the binary 

addition in memory location 18A3 1819 A3 

181A 18 

181B 76 HALT Stop 

(Z80 mnemonics) 

Fig. 18-40 (Continued) 

After the BCD addition, the sign flag was set, but it has 

no valid meaning. It simply follows the state of the 8th bit 

of the accumulator. 

Several points must be kept in mind when doing decimal 

addition and subtraction on the 8080/8085 and Z80 micro¬ 

processors. 

With the 8080/8085 microprocessors, the DAA instruc¬ 

tion only works after addition. Also, the DAA instruction 

works only with the accumulator. 

With the Z80 microprocessor, the DAA instruction can 

be used after either addition or subtraction. This is made 

possible by the addition of the negative flag which the 

8080/8085 does not have. This flag simply keeps track of 

whether an addition or subtraction was just performed. This 

flag is used in combination with the half-carry flag to correct 

the BCD answers. 

Subtraction 

Subtraction is the opposite of addition. All the flags operate 
the same except the carry flag. After subtraction, the carry 

flag indicates whether a borrow has occurred. You can 

think of it as a k‘borrow” flag. A 1 in the carry flag position 

indicates that a borrow from the nonexistent 9th bit was 

required to do the subtraction. A 0 indicates that no borrow 

from the 9th bit was required. 

Figure 18-41 illustrates how to write a program to do 

single-precision subtraction. 

You should assemble and run this program. When we 

did, we found that the result in the accumulator was FF. 

We also found that the overflow (.Z80), sign, and carry 

flags had been set. The sign flag was set because the 8th 

bit of the answer is a 1 which indicates a negative-signed 

binary number. The overflow flag was set because 7F16 = 

12710 and 8016 = — 12810; therefore 

127 

-(-128) 

255 

and 255io is outside the valid range for 8-bit signed binary 
numbers. (The valid range is + 127,0 to — 12810.) The 
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Addr Obj Assembler Comment 

1800 3E MVI A,7F 

1801 7F 

1802 D6 SUI80 

1803 80 

1804 76 HALT 

(8080/8085 mnemonics) 

Addr Obj Assembler Comment 

1800 3E LD A,7F 

1801 7F 

1802 D6 SUB A,80 

1803 80 

1804 76 HALT 

(280 mnemonics) 

Fig. 18-41 Subtraction. 

carry flag was set because a borrow from a 9th bit was 

needed to complete the subtraction. 

18-7 8086/8088 FAMILY 

The 8086/8088 has a variety of arithmetic instructions and 

various support instructions. The 8086/8088 can also work 

with ASCII and binary-coded decimal (BCD) numbers. 

Arithmetic Instructions 

The 8086/8088 has add, subtract, add-with-carry, subtract- 

with-borrow, ASCII adjust, multiply, divide, integer mul¬ 

tiply, integer divide, and conversion instructions. These 

instructions use a value in one of the registers, memory, 

or an immediate number as their operands. Let’s see how 
to use these instructions. 

DEBUG Revisited 

In just a moment we are going to begin studying some 

sample arithmetic programs for the 8086/8088 micropro¬ 

cessor. However, we must first learn more about the DEBUG 
utility. 

Until now, we have assembled each program with 

DEBUG and then executed the program by using the trace 

command. Trace executes one instruction, displays the 

contents of the registers and flags, and then stops. This 

works well when the program is only a few lines long or 

when you must carefully observe the effect each instruction 

has on the registers. It is very slow, however. 

DEBUG has another command which executes an entire 

program without stopping until the end. This is the g (go) 

command. Of course, the computer has to know where to 

start. If you just use the g command the computer assumes 

that it should start program execution at the memory location 

indicated by the instruction pointer (IP). If that is not where 

you want to start, such as when you want to execute a 

program for the second time, you have two ways to specify 

where to start. One way is to change the instruction pointer 

with the r (register) command. This is accomplished as 

follows: 

-rip 

IP 0100 

:0100 

You should start your assembly-language programs at or 

after address 0100H. The other way is to specify a starting 

point as part of the g (go) command. To start at memory 

location 0100H, for example, you would type 

g = 0100 

Execution would start at address 0100 even though the 

instruction pointer might not contain that address. 

When you use the g (go) command, the computer also 

has to know where to stop. You might think that the HLT 

(HaLT) instruction would work just fine. When you are 

using DEBUG, however, a different instruction is needed 

to stop the program. You are using DEBUG to control the 

computer. When your assembly-language routine is finished, 

control of the computer must be returned to DEBUG. DOS 

(the computer’s disk operating system) has a routine which 

will do this. This routine is accessed by executing the 
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INT 20 instruction. For example, the arithmetic program 

we’re going to study shortly looks like this: 

MOV AL,49 

ADD AL,1E 

INT 20 

Notice the use of INT 20 to stop program execution. There 

are a number of these DOS functions which handle the 

computer’s housekeeping chores. 

The g command is faster than individual t (trace) com¬ 

mands, and we can tell the computer where to start and 

stop, but it has one major disadvantage. When you use the 

r (register) command to view the registers after the program 

has run, they will have the same values they had in them 

before the program was run. This doesn’t give you a chance 

to study the registers and flags to learn about how the 

program works. 

The solution to this problem is breakpoints. A breakpoint 

is an address where you want program execution to stop. 

A breakpoint is specified as part of the g command. The 

difference between using a breakpoint to stop the program 

and INT 20 is that, when the breakpoint is reached, all the 

registers will be automatically displayed and their contents 

will not have been returned to their previous values. This 

allows you to see what all the registers and flags look like 

at that exact point in the program. For example: 

g 0104 

tells DEBUG to start program execution at the address 

indicated by the instruction pointer and to stop at address 

0104. Notice that the instruction at address 0104 will not 

be executed. Instructions or data at address 0103 will be 

the last that the program will use. After the program stops 

at address 0104, the contents of the registers and flags will 

be automatically displayed. 

The starting and stopping points for program execution 

can be combined into one command. For example: 

g = 0100 0104 

will cause program execution to start at address 0100 and 

to stop at address 0104. The contents of the registers and 

flags will be automatically displayed. 

When you run programs using a breakpoint, you need to 

remember that the instruction pointer will not be reset. 

Therefore, you’ll have to change it back to the program’s 

starting point if you wish to run the program more than 

once or specify the starting point in the g command as just 

shown. 

If you wish, the t (trace) command can still be used to 

execute instructions one at a time. 

Now let’s try running a short program which will show 

you how to use these DEBUG commands and will allow 

you to learn about the 8086/8088 ADD instruction. 

Addition 

Let’s start with a very simple addition program. Figure 

18-42 illustrates this type of program. 

We have shown the program twice: the first time using 

the g command without a breakpoint, showing that the 

registers will in fact be the same as before the program was 

run, and the second time using the g command with a 

breakpoint, showing that the contents of the registers will 

reflect how the program alters them. From this point on in 

this text we will use a breakpoint to stop program execution. 

Being able to see how a program affects the registers is 

important since our primary purpose is to explain what the 

program has accomplished and how it functions by studying 

the registers and flags after it has run. 

Pay particular attention to AL and the flags. Notice their 

contents both before and after the program is run. You will 

And that the accumulator will have the number 67]6 in it 

(which is the correct answer) and that only the auxiliary 

flag will be set. 

Let’s look at the flags a little more closely. Examining the 

flags from right to left, let’s consider each and why it was 

or was not set. Refer to the bottom portion of Fig. 18-42. 

There was no carry (NC) because no carry from the 8th 

bit to the 9th bit (which doesn’t exist so it goes into the 

carry flag) occurred. 

The parity was odd (PO) because the answer, 0110 01112, 

has an odd number of Is. 

There was an auxiliary carry (AC) because we had a 

carry from the 4th bit to the 5th bit. (Information about the 

half-carry is useful when dealing with BCD numbers.) 

There was no zero (NZ) because the answer wasn’t 0. 

The answer was positive or “plus” (PL) because we did 

not have a 1 in the 8th bit of the accumulator so the answer 

could not have been negative. 

Don’t worry about the enable interrupt (El) or auto¬ 

increment (UP) flags for the moment. 

There was no overflow (NV) because we did not exceed 

our range for valid 8-bit signed binary numbers +127 to 

-128. 

In fact, if you compare the state of the flags before the 

program was run with the state of the flags after it was run, 

only one of them changed. That was the auxiliary carry 

(AC) flag. 

The Sign Flag 

Let’s look at a problem that produces a negative answer. 

See Fig. 18-43 at this time. 

Notice that this is exactly the same problem as the last 

one except that we have changed the first operand, which 

used to be 4916 into C916 (— 5510 if we consider these 

numbers to be signed binary numbers). We know that 

— 5510 + 3010 = -2510. Since this is a negative answer, 

we know that the sign flag should be set after the program 

is run. 
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1 1 
0100 1001 

+ 0001 1110 

0110 0111 

49i6 73-10 

m
 

O)
 + 30io 

6716 10310 

B>DEBUG 

-r 

AX=DDD0 BX=0000 CX=DDDD 

DS=BFFD ES=BFFD SS=BFFD 

BFFD:0100 7420 JZ 

-a 

BFFD:0100 mov al,<q 

BFFD:0102 add al,le 

BFFD:0104 int 20 
BFFD: 010L 

-u 0100 0105 

BFFD:D10D BQ^q MOV AL,^q 
BFFD:0102 041E ADD AL, IE 
BFFD : 0104; CD2D INT 20 

-g 

Program terminated normally 
-r 

AX=0000 BX=0000 CX=D00D DX=0000 SP=FFEE BP=DDD0 SI=DD0D DI=0000 

DS^BFFD ES=BFFD SS=BFFD CS=BFFD IP=0100 NV UP El PL NZ NA PO NC 
BFFD:DIDO BO^q MOV AL,^q 

Program assembled, unassembled, and executed 
without using a breakpoint to stop program 
(notice that registers have returned to their previous state) 

DX=QDDD SP=FFEE BP=0000 SI=0DDD DI=0DDD 

CS=BFFD IP=D1DD NV UP El PL NZ NA PO NC 
0122 

B>DEBUG 

-r 

AX^OOOO BX=0000 CX=DDQD 

DS^BFFD ES=BFFD SS=BFFD 

BFFD:7420 JZ 

-a 

BFFD:0100 mov al,4q 

BFFD:0102 add al,le 
BFFD:0104 int 20 
BFFD:010L 

-u 0100 0105 

BFFD:0100 B04q MOV AL,45 
BFFD:0102 041E ADD AL , IE 
BFFD:0104 CD20 INT 20 

-g 0104 

AX=00b7 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=000D DI=D000 

DS=BFFD ES=BFFD SS—BFFD CS=BFFD IP=D104 NV UP El PL NZ AC PO NC 
BFFD:0104 CD20 INT 20 

Program assembled, unassembled, and executed using a 
breakpoint to stop and display contents of registers and flags 
(notice that registers have not returned to their previous state) 

Fig. 18-42 Simple 8086/8088 addition problem. 

DX=0000 SP=FFEE BP=0000 31=0000 DI=0000 

CS=flFFD IP=0100 NV UP El PL NZ NA PO NC 
0122 
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1 1 

110 0 10 0 1 C9ie -55iq 

+ 0 0 0 1 1110 + lE-ie + 30-|o 

1110 0 111 E716 -2510 

-r 

RX=0DD0 BX=000Q 
DS=AFFD ES=AFFD 

AFFD:Dion Bocq 

CX^DDDD 
SS=AFFD 

MOV 

DX=0DD0 

CS—AFFD 

AL, CS 

SP=FFEE 

IP=D10D 

BP=DDDD SI-DDDD DI=DD00 

NV UP El PL NZ NA PO NC 

-a 
AFFD:mov al/C^ 
AFFD:D1DE add al,le 
AFFD:01jD4 int ED 
AFFDiDlOL 

-u DIDO D104 
AFFD:01D0 BDC^ 
AFFD:D1DE D41E 
AFFD: D1D4 CDED 

MOV ALfC9 

ADD AL,IE 

INT ED 

-g 104 

AX=00E7 BX=DOOO CX^ODOO DX=0DQD 

DS-AFFD ES=AFFD SS=AFFD CS=AFFD 

AFFDldlDA CDED INT ED 

SP-FFEE 

IP=0104 

BP=ODDD SI-DDDd DI=DDOO 
NV UP El NG NZ AC PE NC 

Fig. 18-43 Simple 8086/8088 addition problem with a 

negative answer. 

Assemble the program and run it. Observe the contents 

of AL and the status register before and after running the 

program so that you can compare them. After the program 

is run, AL should contain the value E716. The status register 

shows that only two flags have changed in exactly the same 

way as in the last example. The parity flag indicates even 

parity, and we have an auxiliary carry, just like the last 

example. 

The difference this time is that we have a negative (NG) 

answer. This is what we expected to see. The sum of the 

addition problem was — 2510 (E716). If we assume that our 

numbers are 8-bit signed binary numbers, then any number 

that has a 1 in the 8th bit is negative. E716 has a 1 in the 

8th bit. The sign flag simply reflects the state of the most 

significant bit (8th or 16th depending on whether we are 

using 8-bit or 16-bit numbers). 

have a half-carry (AC), we have even parity (PE), and of 

course the zero flag indicates that our answer was in fact 0 

(ZR). You should be able to look at the problem itself and 

at the flags before and after the program was run and be 

able to see why the flags have responded the way they 

have. 

The Parity Flag 

The 8086/8088 microprocessor has a parity flag which 

simply tells us how many Is are in the accumulator after 

an arithmetic or logic operation. Even parity exists when 

an even number of Is are in the accumulator. Odd parity 

exists when an odd number of Is exist in the accumulator. 

Even parity (PE) and odd parity (PO) are indicated in the 

flags section of the DEBUG display. 

The Zero Flag 

Now let’s change the program slightly so that we obtain a 

sum of 0. Then we can see how the flags react to this 

situation. 

Figure 18-44 shows the problem and the program to 

solve the problem. 

We are again assuming that our numbers are signed 

binary numbers. The problem is C916 + 3716 = 0016, 

which is — 5510 + 5510 = 010. You should go through the 

binary addition of these two numbers now before you run 

the program. Notice both the answer and the carries. Notice 

also that we are using the same program as in the last 

example but have changed one of the operands. 

We have a carry out of the most-significant bit (CY), we 

Overflow Flag 

When the overflow flag is set, it tells us that if the numbers 

which were just added or subtracted are signed binary 

numbers, then the valid range for such numbers has been 

exceeded and the result is incorrect. The valid range for 

8-bit calculations is +127 to —128. The valid range for 

16-bit calculations is +32,767 to —32,768. Let’s modify 

our problem to create an overflow. 

Figure 18-45 shows our problem and program. Remember 

that we are assuming that all values are to be interpreted 

as 8-bit signed binary values. 

This problem is 12310 + 11110 =-First go 

through the binary addition and enter the program. Then 

write down the values you think will be found in AL and 
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1 1111 1111 

110 0 100 1 C916 -5510 

+ 0011 0 111 + 3716 + 5510 

1 0 0 0 0 0 0 0 0 00,6 °io 

-r 
RX=D000 BX=0000 CX=0000 DX—0DD0 SP-FFEE BP=0000 SI=0000 DI=DDDD 
DS=AFFD ES=AFFD SS=flFFD CS=AFFD IP=0100 NV DP El PL NZ NA PO NC 
flFFD: 0100 7450 JZ □122 

-a 

AFFD:0100 raov al, CS 
AFFD:0102 add al. 3? 
AFFD:0104 int 50 

AFFD: 010L 

-u 0100 0104 

AFFD:0100 BOCR MOV AL, CH 
AFFD:0105 043? ADD AL , 37 
AFFD:0104 CD50 INT 20 

-g 104 

fiX=0000 BX=0000 CX=DDD0 DX=Q000 SP=FFEE BP=0000 SI=0000 DI=DDDD 
DS=AFFD ES=AFFD SS=flFFD CS=flFFD IP=D1D4 NV DP El PL ZR AC PE CY 
AFFD:0104 CD50 INT 20 

Fig. 18-44 Simple 8086/8088 addition problem which 
produces a sum of 0. 

the status register, run the program, and finally note the 

final values of AL and the status register. 

You should have a sum of EA,6 in the accumulator and 

should find that there has been an auxiliary carry (AC), 

that the sign bit indicates that this is a negative number 

(NG), and that there has been an overflow (OV). EA16 is 

the correct sum if you are using unsigned binary numbers! 

If you interpret EAI6 as a signed binary number, it has a 

value of — 2210. This is not the correct answer. We have 

exceeded our valid range for 8-bit signed binary numbers. 

1111 1111 

0 111 10 11 7B16 12310 

+ 0110 1111 + 6F,g + 111,0 

1110 10 10 ea,6 234,o 

-r 

AX=0000 BX=00Q0 cx^oooo DX=0000 SP=FFEE BP=0000 si=oooa Di=oooa 
DS=flFFD ES=flFFD SS=AFFD CS=fiFFD IP=0100 NV UP El PL NZ NA PO NC 
flFFD:DIDO 7420 JZ 0122 

-a 

flFFD: 0100 mov al, 7b 
flFFD: 0102 add al. fcf 

flFFD:0104 int 20 
flFFD:010L 

-U 0100 0104 
flFFD: BO? B MOV AL, 7B 
flFFD:0102 04LF ADD AL, LF 
flFFD:DICK CD20 INT 20 

-g 104 

AX=00EA BX=0D00 cx^oooo DX=000Q SP-FFEE BP=0 000 SI=000D Di=oaaa 
DS=flFFD ES^flFFD SS=flFFD CS = flFFD IP=0104 0V UP El NG NZ AC PO NC 
AFFD: aim CD20 INT 20 

Fig. 18-45 Simple 8086/8088 addition problem which 
produces an overflow. 
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0 10 0 0 111 BCD 47io 0 10 0 0 1 1 12 4716 

+ 0011 0 110 BCD + 36-jo + 0011 0 1 1 02 + 3616 

10 0 0 0 0 11 BCD o
 

co 
00 , 0 111 1 1 0 12 7D16 

Decimal (BCD) Binary 

This is not the same as this! 

-r 
AX=DODD BX=ODOO 
DS=flFFD ES=AFFD 
flFFD:0100 74E0 

CX=0000 DX=DDDD SP^FFEE BP=0000 SI=ODDD DI=0000 
SS=flFFD CS=flFFD IP=D1D0 NV UP El PL NZ N A PO NC 

JZ DIES 

-a 
flFFD:0100 
flFFDiOlOE 
flFFD:0104 
flFFD : 0107 
flFFD:OlOfl 
flFFD:OIOS 

flFFD:010D 
flFFD:Q1QF 
flFFD:Dill 
flFFD:0110 

flFFD:0115 
flFFD:011b 
6FFD:0117 
flFFD:01IB 

flFFD : dliID 

mov al,47 
add al,3L 
mov [01A0],al 
pushf 
pop bx 
mov [01Al],bx 
mov al,47 
add al,3L 
daa 
mov [01A3]/al 
pushf 
pop bx 
mov [01A4],bx 
int E0 

1st operand (binary) 
add Ed/ put sum in al (binary) 
store sum 
copy flags 
retrieve flags 
store flags 
1st operand 
add Ed, put sum in al (binary) 
convert sum to BCD 
store BCD sum 
copy flags 
retrieve flags 
store flags 
return to DEBUG 

-g 011b 

AX~0 0 A3 BX = FAT2 
DS=AFFD ES=AFFD 
flFFD:011B CDE0 

CX-OOOD DX-Q000 SP=FFEE BP=0000 SI=0000 DI=D00D 
SS=flFFD CS=flFFD IP-QllB OV UP El NG NZ AC P0 NC 

INT E0 

-d 01A0 01AF 
flFFD:01A0 7D 0L FE S3 TE FA 73 LE-74 LI 7fl ED G5 7E LF }. yntax erro 

Fig. 18-46 Binary vs. BCD addition. 

Decimal Addition 

Because of differences in the way binary and decimal 

numbers round, and because numeric output to humans is 

usually decimal, it is sometimes helpful to do arithmetic 

calculations by using decimal numbers rather than binary 

numbers. Actually, true decimal numbers are not used. 

Rather a mixture of binary and decimal, called binary- 

coded decimal, is used. (The method used to create BCD 

numbers is covered in Chap. 1, and they have been discussed 

subsequently. You should review that section of Chap. 1 

now if you are unsure of what BCD numbers are or how 

they are formed.) 

One of the problems involved in using BCD numbers is 

that as the binary nibbles are added invalid results are 

sometimes obtained. 

Most microprocessors have an instruction called decimal 

adjust (or something similar). This instruction changes the 

number in the accumulator to what it would be if the last 

two numbers operated on had been packed BCD numbers 

instead of binary numbers. 

Let’s look at an example. Figure 18-46 is a decimal 

addition problem which is compared to the binary version 

of the same problem. 

Notice first the difference between BCD and binary 

addition. BCD addition is not at all the same as binary 

addition. BCD is decimal addition using 4 bits to represent 

each decimal digit. 

The program shown in Fig. 18-46 will help you understand 

the difference between binary and BCD addition (and 

subtraction). This program does the addition problem twice, 

once using binary numbers and once using BCD numbers. 

The result of the binary addition is stored in memory 

location 01A0I6, and the resulting flags in locations 01A1,6 

and 01A216. The result of the BCD addition is stored in 

location 01A316, and the resulting flags in locations 01A4!6 

and 01A516. Assemble and run this program to see whether 

you obtain the same results. When we ran the program we 

found the following: 

location 01A016 = binary sum = 7D 

location 01A116 = binary flags (low byte) = 06 
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Fig. 18-47 8086/8088 flag chart. 

location 01A216 — binary flags (high byte) = F2 

location 01A316 = BCD sum = 83 

location 01A416 = BCD flags (low byte) = 92 

location 01A516 = BCD flags (high byte) = FA 

Figure 18-47 will help you understand what the stored 

flag values mean. 

When you store the value of the flag register (status 

register), you can place the hexadecimal values on the chart 

in Fig. 18-47. You can then convert the hexadecimal values 

to binary values and look in the 0 row or 1 row to see what 

conditions the flags indicate existed at a certain point in the 

program. 

In this example we have placed the values of the flags 

after the binary addition in Fig. 18-48. 

First notice that we have reversed the order of the 

hexadecimal values for the flags. The PUSHF instruction 

pushes the current value of the flags onto the stack. The 

POP BX then retrieves that value into the BX register. At 

this point the values are still in their correct order. In fact, 

if you will refer to Fig. 18-46, those areas have been printed 

in bold to illustrate this fact. Notice that BX contains 

FA9216. Look at memory locations 01A416 and 01A516. 

Notice that those 2 bytes have been reversed. PUSH and 

POP instructions do not reverse the bytes. However, MOV 

instructions do. The MOV instruction places the data into 

memory in a low-byte/high-byte order, which has the effect 

of reversing the bytes when the memory locations are 

examined. 

The binary addition problem produced an answer of 7D,6, 

as we expected. There were no carries or overflows, and 

we have even parity. These conditions are shown in bold 

type in Fig. 18-48. 

The BCD addition produced a sum of 83BCD, as we 

thought it would. Don’t be concerned about the flags at this 

point. Simply notice that they are different. They reflect 

Fig. 18-48 Conditions after the binary addition. 
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Fig. 18-49 Conditions after the BCD addition. 

conditions that result from the conversion from binary to 

BCD (see Fig. 18-49.) 

Subtraction 

Subtraction is the opposite of addition. All the flags operate 

the same except the carry flag. After subtraction, the carry 

flag indicates whether a borrow has occurred or not. You 

can think of it as a “borrow” flag. A 1 in the carry flag 

position indicates that a borrow from a nonexistent bit was 

required to do the subtraction. A 0 indicates that no borrow 

was required. 

Figure 18-50 illustrates how to write a program to do 

single-precision subtraction. 

You should assemble and run this program. When we 

did, we found that the result in AL was FF. We also found 

that there was an overflow, the answer was negative, and 

there was a carry. The answer was negative because the 

8th bit of the answer is a 1, which indicates an 8-bit 

negative signed binary number. There was an overflow 

because 7F16 = 12710 and 8016 = — 128IO; therefore 

127 

-(-128) 

255 

and 25510 is outside the valid range for 8-bit signed binary 

numbers. (The valid range is + 127I0 to -12810.) There 

was a carry because a borrow from a 9th bit was needed 

to complete the subtraction. 

Multiplication 

The 8-bit microprocessors featured in this text do not have 

a multiply instruction. To multiply, the programmer must 

use many instructions to accomplish what the 8086/8088 

does with just one instruction. 

There are several ways the 8086/8088 can multiply. It 

can multiply signed binary numbers by using the Integer 

MULtiply (IMUL) instruction. It can also multiply unsigned 

binary numbers by using the MULtiply (MUL) instruction. 

Whether signed or unsigned, the 8086/8088 can multiply 

two 8-bit binary numbers to produce a 16-bit answer or 

two 16-bit binary numbers to produce a 32-bit answer. 

AX=aDDD BX=DDDD CX=00DD DX=00DD SP=379E BP=D0DD SI=DDDD DI=DDDD 
DS=qCQL. ES=9CflL SS=qCflb CS=9CflL IP=D1DD NV UP El PL NZ NA PO NC 
SCflbrDIDD flBFE MOV DI,SI 

-a 
RCatrOlOO mov al,7f 
9Cflt:D105 sub al,A0 
qCAb:0104 int 20 
qCAbrDlOb 

-g 010< 

AX=0QFF BX=000D CX=00D0 DX=0000 SP=3?qE BP=0000 SI=0000 DI=0000 
Ds=qcab Es=qcAt ss^qcat cs=qcat, ip=oio< ov up ei ng nz na pe cy 
qcat:0104 CD20 INT 2D 

;load first operand 
;subtract second operand 
;return control to DEBUG 

Fig. 18-50 Subtraction. 
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IE 

X FC 

1DBB 

B>DEBUG 

-r 
AX=0000 BX=0000 CX=0000 DX=0000 SP=3?qE BP=0000 SI^OOOO DI=ODOO 

DS=qCAb ES^qCAb SS=SCflb CS=qCAb IP=01D0 NV UP El PL NZ NA PO NC 
qCAbrOlOO ABFE MOV DI,SI 

-a 
RCAb:0100 
qCflt:0102 
qCAb:0104 
qCflb: 010b 
qCAb:D10A 

-g 10b 

AX=1DA A BX^OOFC CX=0000 DX-0000 SP=3?SE BP=OODO 31=0000 DI=DDDD 

DS=qC6b-ES=qefiL S3=qCflb-CS=qCflb-IP=010b-&V—UP El PL NZ NA PO CY 
qCAb:010b CDED INT ED 

mov al / IE ;first operand 
mov bl, FC ;second operand 
mul bl ;mul automatics 
int E0 ;return control 

(no immediate mode allowed) 
lly uses value value in al or ax 
to DEBUG 

Fig. 18-51 Eight-bit multiplication on the 8086/8088. 

If two 8-bit numbers are to be multiplied, one of them 

must be placed in AL. The other can be in a register or 

memory location. Immediate mode multiplication is not 

allowed. That is, you cannot do this: 

mov al,lE 

mul al,FC 

int 20 

You cannot specify a number to be multiplied by the number 

in AL in the instruction itself. You must move it to a 

register or memory location. 

The problem IE x FC and the program to solve it are 

shown in Fig. 18-51. 

FFE2 

X 12D3 

Notice that we moved the first number into AL and then 

the second into BL. We then only needed to say 

mul bl 

because the microprocessor assumes that the first number 

is in AL. The answer is placed in AX. 

The only two flags that have any meaning after a MUL 

or 1MUL instruction are the overflow and carry flags. If 

the upper byte of the answer (AH) is 00, then both of these 

flags will be cleared. Any other result in AH causes both 

of these flags to be set. Since the value in AH in our 

example is not 0, both the overflow and carry flags are set 

after the program is run. 

Figure 18-52 illustrates a 16-bit multiplication problem. 

12DOCB46 

B>DEBUG 
-r 
AX=0000 BX-DDDD 
DS=9BBE ES=qBBF 

-a 

SBBF:DlDb 

SBBF:DIDA 

C3 

mov ax, FFEE 
mov bx, 12D3 
mul bx 
int E0 

CX=0000 
SS^qBBF 

RET 

DX-0000 SP=4<0E BP=0000 SI=0000 DI=0000 
CS=SBBF IP=0100 NV UP El PL NZ NA PO NC 

;first lb-bit operand 
;second lb-bit operand 
;multiply ax by bx 
;return control to DEBUG 

-g 10 A 

AX = CB 4 b 
DS=qBBF 

BX=1ED3 
ES=SBBF 

qBBF: 010 A CDE0 

CX=0000 DX = 12D0 SP^^iOE 
SS=RBBF CS=qBBF IP=010A 

INT ED 

BP—0000 SI=0000 DI=000D 
OV UP El PL NZ NA PO CY 

Fig. 18-52 Sixteen-bit multiplication on the 8086/8088. 
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58 remainder 2 

FB ) 564A 

B>DEBUG 
-r 
RX=DC1DD BX=0000 CX=DDOO DX=OOOD SP=4SDE 
DS==IBRE ES=qBA2 SS=C1BR5 CS=qBAE IP=01D0 
^BRE:ElEtRlDS RND [D5A1],SP 

-a 
3BA2: Q1DD mov ax f 5L4 A ;dividend (IL-bits 
3BAE : D1D3 mov bl / EB ;divisor (fl-bits) 
3BA2:D1D5 div bl ;divide ax by bl 
3BAE:DliD? int 2D jreturn control to 
3BA2:DlQq 

-g ID? 

Ax=oasa BX=DDEB CX=DDD0 DX=DDDD SP=< 5DE 
DS^RBAE! E5=3BAE SS=RBA2 CS=qBA2 IP=D1D7 
3BAE:□!□? CD20 INT 2D 

BP=DDDD SI=DDDD DI=0DDD 
NV UP El PL NZ NA P0 NC 

DS : □ 5A1=EC103 

DEBUG 

BP=DDDO SI=DDDD DI=DDDD 
NV UP El PL NZ AC PO CY 

Fig. 18-53 A 16-bit number divided by an 8-bit number 
using the 8086/8088 DIV instruction. 

The process is similar to that used in 8-bit multiplication. 

You use 16-bit registers instead of 8-bit, and the answer is 

32-bits wide! The upper 2 bytes (16 bits) are found in DX, 

and the lower 2 bytes are found in AX. 

The flags respond as they do for 8-bit multiplication. 

Division 

We handle division in a way which is similar to, yet the 

opposite of, the way multiplication is handled. 

When division is done, the dividend (number to be 

divided) must be twice as wide (16 or 32 bits) as the divisor 

(8 or 16 bits). Figure 18-53 illustrates how a 16-bit dividend 

is divided by an 8-bit divisor. 

Notice how we again moved the operands into a register 

to prepare for the actual division. Our 16-bit dividend 

(564A16) was placed in AX and the 8-bit divisor (FB16) was 

placed in BL. Notice that we simply say 

div bl 

and the microprocessor assumes we are dividing BL into 

AX. 

Now notice how the answer is displayed. The answer is 

5816, with a remainder of 216. The quotient appears in the 

lower half of AX (AL), and the remainder is in the upper 

half of AX (AH). This is where the answer to a problem 

which divides a 16-bit number by an 8-bit number is found. 

Figure 18-54 illustrates how to divide a 32-bit binary 

number by a 16-bit binary number. 

To perform this type of problem, you must place the 

most significant 16 bits of the dividend in register DX. 

Place the least significant 16 bits of the dividend in register 

AX. Then place the 16-bit divisor in BX or CX. After the 

division the answer (quotient) will be found in register AX, 

with the remainder in register DX. 

GLOSSARY 

ASCII American Standard Code for Information Inter¬ 

change. A binary code in which letters of the alphabet, 

numbers, punctuation, and certain control characters are 

represented. 

BCD (binary-coded decimal) Decimal numbers which 

replace each decimal digit with its 4-bit binary equivalent. 

multiple-precision number A number which is composed 

of more than one binary word. 

single-precision number A number which is composed 

of one binary word. In an 8-bit microprocessor this is an 

8-bit number, and in a 16-bit microprocessor this is a 16- 

bit number. 
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_789A remainder 8 

45CE } 20E28DF4 

B>DEBUG 
-r 
AX=ODOQ BX=DDDD CX=DDDD DX=ODDD SP=4ECE BP=DDDD SI=DDDD DI=DDDD 
DS=RB13 ES^BBIB SS=9B13 CS=SB13 IP=Q1DD NV UP El PL NZ NA PO NC 
3B13: D1DD 7420 JZ 0125 

-a 
SB13:0100 mov dx,5DE5 
3B13 : EI103 mov ax,flDE4 
3B13:DIDO mov bx,45CE 
3B13:0103 div bx 
3B13:010B int 50 
3B13:01DD 

;most significant word of dividend 
;least significant word of dividend 
;divisor 
;divide DXAX register pair by BX 
;return control to DEBUG 

-g 10b 

AX = 7 AT A BX=4SCE CX=0D0D DX = D006 SP=4ECE BP=DGD0 SI=DDD0 DI=DDDD 
DS=9B1.3 ES=qB13 SS^GBIB CS=RB13 IP=D10B NV UP El NG NZ AC PE CY 
3B13:010B CD50 INT 50 

Fig. 18-54 A 32-bit number divided by a 16-bit number 
using the 8086/8088 microprocessor. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Binary-coded decimal numbers are decimal numbers 

in which each digit is represented by its_- 

_equivalent. 

2. (4-bit binary) What is the binary value for 10lo? 

3. {10102) When 8-bit binary numbers are added, the 

carry flag indicates when a carry from the 

_bit to the_bit has oc¬ 

curred. 

4. (8th, 9th) When 8-bit binary numbers are added, the 

half-carry flag indicates when a carry from the 

_bit to the_bit has oc¬ 

curred. 

5. (4th, 5th) A number which can be represented by 1 

byte is called a_-precision number. 

6. (single) After subtraction, the carry flag indicates 

whether or not a_has occurred. 

7. (borrow) Do the 8-bit microprocessors featured in 

this text have multiply or divide instructions? 

(No) 

PROBLEMS 

General 

18-1. What two types of information are generated by 

a microprocessor during addition? 

18-2. What does 12 + 12 + I2 = ? 

18-3. What is 

1010 11102 
+ 0011 01112 

18-4. What is 

0111 1111 0110 1101 
+ 0001 1000 1111 quo 

18-5. When we are using all 8 bits to represent the 

numbers 110 to 25510, we refer to these as_ 

binary numbers. 

18-6. When we use 8-bit binary numbers to represent 

values from — 12810 to 3-12710, we refer to 

these as_binary numbers. 

18-7. Find the 8-bit signed binary value for — 10010. 

18-8. What flag warns the programmer that the last 

answer produced exceeds the valid range for 

signed binary numbers? 

18-9. What flag tells the programmer whether the 

number in the accumulator is positive or nega¬ 

tive? 
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Specific Microprocessor Families 

Solve the following problems using the microprocessor of 
your choice. 

18-10. Write a program which will add the unsigned 

binary numbers 6716 and 2316. Determine which 

flags are altered by the program and why. 

18-11. Write a program which will subtract the signed 

binary number 4D16 from 7F16. Determine which 

flags are altered by the program and why. 

18-12. Write a program which will add the decimal 

numbers 4010 and 52I0. 

18-13. With your computer or microprocessor trainer 

store the unsigned binary numbers 6716 and 2316 

in two consecutive memory locations. Now write 

a program which will find the sum of these two 

numbers and store the sum in a free memory 

location. (8086/8088 users: To store 6716 and 

2316 in memory locations use the DEBUG e 

(enter) command. For example, typing 

-e 0180 67 23 00 00 

will enter 67, 23, 00, and 00 into memory loca¬ 

tions 0180, 0181, 0182, and 0183, respectively.) 
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Logical Instructions 
This chapter discusses the logical instructions of our featured 

microprocessors. These instructions, along with the arith¬ 

metic and shift and rotate instructions, give us the ability 

to alter bits and bytes (data) in a predictable fashion. 

You may wish to review logic gates before beginning 

this chapter. Microprocessors use logical instructions the 

way digital circuits use logic gates. 

New Concepts 
There are really only four basic logical functions: and, or, 
exclusive-or, and not. The nand, nor, exclusive-nor, 
and NEGate functions are simply extensions of the four 

basic functions. 

We will look at each of the basic four plus a couple of 

other special instructions some of the microprocessors have. 

We will also discuss masking, a primary use of the logical 

instructions. 

19-1 THE and INSTRUCTION 

When we and 2 bits or conditions, we are saying that the 

output bit, or condition, is true only if both the input bits, 

or conditions, are true. For example, there will be a voltage 

at the output of a circuit only if there is voltage at both of 

Input Output 

B A Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Fig. 19-1 and truth table. 

0110 1110 

AND 1 1 0 0 0 1 0 0 

0100 0100 

Fig. 19-2 ANDing 2 bytes together. 

0 AND 0 

1 AND 0 

1 AND 1 

1 AND 0 

0 AND 0 

1 AND 0 

1 AND 1 

0 AND 1 

is 0 

is 0 

is 1 

is 0 

is 0 

is 0 

is 1 

is 0 

its inputs. Or, a bit in memory will be 1 only if 2 other 

input bits are also 1. Or, a drill will begin to lower only if 

the workpiece has been secured and the worker’s hands are 

away from the bit. 

ANDing Bits 

The truth table to and 2 bits, or conditions, is shown in 

Fig. 19-1. Notice that the only way to get a 1 out is to put 

two Is in. 

ANDing Bytes 

We can and entire bytes, or words also. We simply apply 

the logic shown in the table to each bit. It’s almost like 

turning a truth table on its side. For example, a problem in 

which we must and 2 bytes is shown in Fig. 19-2. 

Notice that we have applied the logic from the and truth 

table to each bit. The only Is in the answer are in columns 

where both the inputs are also 1. 

EXAMPLE 19-1 

Solve the following logical problem. 

1011 1110 and 0111 0001 is ???? ???? 
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SOLUTION 

1011 1110 

AND 01110001 

0011 0000 

Masking 

A common use of the and instruction is to and bits or 

bytes with a mask. A mask allows us to change some bits 

in a certain way while allowing others to pass through 

unchanged. Look at the example shown in Fig. 19-3. 

Notice that the upper nibble of the data byte passed 

through the Is of the mask unchanged. However, every bit 

of the lower nibble passing through the 0s was cleared. 

ANDing a mask to data can be viewed in either of two 

ways. You can say that selected data bits pass through 

unchanged while all others are cleared. Or, you can say 

that selected data bits are cleared while others pass through 

unaltered. 

EXAMPLE 19-2 

Devise a mask which when ANDed to an 8-bit data byte 

will clear all bits except the’first 2 (2 least significant bits). 

SOLUTION 

0000 0011 

For example: 

11111111 data 

and 0000 0011 <— mask 

0000 0011 

Input Output 

B A Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Fig. 19-4 or truth table. 

look at it another way, the only way to get a 0 out is to 

have 0s at both inputs. 

ORing Bytes 

We can or entire bytes, or words also. We simply apply 

the logic shown in the table to each bit. For example, the 

same problem used in the previous section, but now ORing 

the 2 bytes together, is shown in Fig. 19-5. 

Notice that we have used the logic from the or truth 

table and applied it to each bit. The only 0s in the answer 

are in columns where both the inputs are also 0. 

EXAMPLE 19-3 

Solve the following logical problem. 

1011 1110 or 0111 0001 is ???? ???? 

SOLUTION 

1011 1110 

OR 0111 0001 

mi mi 

19-2 THE or INSTRUCTION 

When we or 2 bits or conditions, we are saying that the 

output will be true (or 1) if either of the input bits or 

conditions is true (1) or if both of the input bits or conditions 

are true. 

ORing Bits 

The truth table to OR 2 bits or conditions is shown in Fig. 

19-4. 

Notice that you get a 1 out if any input is a 1. Or, to 

Masking 

A common use of the or instruction is to or bits or bytes 

with a mask. A mask allows some bits to pass through 

unchanged while others are changed in a certain way. Look 

at the example shown in Fig. 19-6. 

0 110 1110 

OR 1 1 0 0 0 1 0 0 

1110 1110 

0 AND 0 is 0 

1 AND 0 is 1 

1 AND 1 is 1 

1 AND 0 is 1 

0 AND 0 is 0 

1 AND 0 is 1 

1 AND 1 is 1 

0 AND 1 is 1 

AND 

10 0 1 

1111 

10 0 1 

0 0 0 0 

• data 

■ mask 

1001 0000 

Fig. 19-3 Using the and instruction to mask bits. Fig. 19-5 ORing two bytes together. 
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1 0 0 1 1 0 0 1 --data 

OR 1 1 1 1 0 0 0 0 -*-mask 

1111 1001 

Fig. 19-6 Using the or instruction to mask bits. 

Notice that the lower nibble of the data byte passing 

through the 0s of the mask was unchanged while every bit 

of the upper nibble passing through the Is was set. 

ORing a mask to data can be viewed in either of two 

ways. You can allow selected data bits to pass through 

unchanged while all others are set. Or, you can allow 

selected data bits to be set while all others pass through 

unaltered. 

EXAMPLE 19-4 

Devise a mask which when ORed to an 8-bit data byte will 

set all bits except the first 2 (2 least significant bits). 

SOLUTION 

mi noo 
For example: 

0000 0000 <— data 

or 1111 1100 <— mask 

1111 1100 

0 110 1110 

XOR 1 1 0 0 0 1 0 0 

1010 1010 

0 and 0 is 0 

1 AND 0 is 1 

1 AND 1 is 0 

1 AND 0 is 1 

0 AND 0 is 0 

1 AND 0 is 1 

1 AND 1 is 0 

0 AND 1 is 1 

Fig. 19-8 xoRing two bytes together. 

Notice that the only way to get a 1 out is to have one, 

but not both, of the inputs be a 1. 

xoRing Bytes 

We can xor entire bytes, or words also. We simply apply 

the logic shown in the table to each bit. For example, the 

same problem shown in the previous two sections, but this 

time xoRing the 2 bytes, is shown in Fig. 19-8. 

Notice that we have used the logic from the xor truth 

table and applied it to each bit. The only Is in the answer 

are in columns where one but not both the inputs are 1. 

EXAMPLE 19-5 

Solve the following logical problem. 

19-3 THE EXCLUSIVE-OR (EOR, XOR) 
INSTRUCTION 

When we exclusively or (eor, xor) 2 bits or conditions, 

we are saying that the output bit or condition is true only 

if one or the other of the input bits or conditions is true, 

but not both. For example, there will be a voltage at the 

output of a circuit only if there is voltage at one or the 

other, but not both, of its inputs. 

xoRing Bits 

The truth table to xor 2 bits or conditions is shown in Fig. 

19-7. 

Input Output 

B A Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Fig. 19-7 xor truth table. 

1011 1110 XOR 0111 0001 is ???? ???? 

SOLUTION 

1011 1110 
xor 0111 0001 

noo mi 

Masking 

A common use of the xor instruction is to xor bits or 

bytes with a mask. A mask allows some bits to pass through 

unchanged while others are changed in a certain way. Look 

at the example shown in Fig. 19-9. 

Notice that the lower nibble of the data byte passed 

through the 0s of the mask unchanged while every bit of 

the upper nibble passing through the Is was inverted. 

xoRing a mask to data can be viewed in either of two 

ways. You can allow selected data bits to pass through 

1 0 0 1 1 0 0 1  -data 

xor 1 1 1 1 0 0 0 0 -mask 

0110 1001 

Fig. 19-9 Using the xor instruction to mask bits. 
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unchanged while all others are inverted. Or, you can allow 

selected data bits to be inverted while all others pass through 

unaltered. 

EXAMPLE 19-6 

Devise a mask which when xoRed to an 8-bit data byte 

will invert all bits except the first 2 (2 least significant bits). 

SOLUTION 

mi lioo 

For example: 

mi mi <—data 

xor nil noo <— mask 

0000 0011 

19-4 THE not INSTRUCTION 

When we not or invert bits or conditions, we are saying 

that the output bit or condition is the opposite of the input 

bit or condition. For example, if there is a voltage at the 

input, there will not be one at the output; or if there is no 

voltage at the input, there will be a voltage at the output. 

NOT-ing (Inverting) Bits 

The truth table for the not function is shown in Fig. 

19-10. 

Input Output 

A Y 

0 1 

1 0 

Fig. 19-10 not truth table. 

NOT-ing (Inverting) Bytes 

We can not or invert entire bytes, or words also. We 

simply apply the logic shown in the table to each bit. An 

example of inverting or complementing a number is shown 

in Fig. 19-11. 

NOT 1111 0000 is 0000 1111 

Fig. 19-11 “NOT-ing” or inverting a binary number. 

Notice that we have changed every 0 to a 1 and every 1 

to a 0—that is, we have inverted every bit of the byte. 

This is the l’s complement of the number. 

EXAMPLE 19-7 

Solve the following logical problem. 

not 1011 1110 is ???? ???? 

SOLUTION 

0100 0001 

19-5 THE neg (negATE) 
INSTRUCTION 

The NEGate instruction finds the 2’s complement of a 

number. To find the 2’s complement, we first find the l’s 

complement and then add 1. An example is shown in Fig. 

19-12. 

Specific Microprocessor 
Families 
Let’s see how these instructions work in the different 

microprocessor families. 

19-6 6502 FAMILY 

The 6502 has three of the instructions discussed in the New 

Concepts section of this chapter plus one instruction not 

discussed there. These are the and, or, eor, and bit 

instructions. Let’s look at each. 

The and Instruction 

The 6502 and instruction works exactly as described in the 

New Concepts section. If we use the same example we 

used in Fig. 19-3 in the New Concepts section, we will 

find that the 6502 does in fact and bytes as discussed. 

Figure 19-13 shows our original problem and solution 

plus a 6502 program which solves the problem. After 

running this program, you will find that the accumulator 

contains 90,6. This is exactly what we expected after 9916 

was masked with F016. 

1111 0000 -number 

0 0 0 0 1 1 1 1 - 1's complement 

+_1_ -add 1 

0001 0000 -2's complement (original number NEGated) 

Fig. 19-12 NEGating a number (2’s complement). 
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1 0 0 1 1 0 0 1 --data 

and 1 1 1 1 0 0 0 0 -*-mask 

1001 0000 

0340 AO qq LDA *$qq 

0345 30 FO AND #$FO 
□ 344 □□ BRK 

Fig. 19-13 Using the 6502 and instruction to mask bits. 

1 0 0 1 1 0 0 1 --data 

OR 1 1 1 1 0 0 0 0 -*-mask 

1111 1001 

U3AU ar qq lda #$qq 

□ 343 00 FO ORA #$FO 

3344 00 BRK 

Fig. 19-14 Using the 6502 or instruction to mask bits. 

If you check the 6502 instruction set, you will find that run the program. We expected the accumulator to have 6916 

the and instruction affects the negative and zero flags. In after EORing. 

this case the negative flag is set because the 8th bit of the The eor instruction also affects the negative and zero 

accumulator is 1, indicating a 2’s-complement negative flags. This time neither is set; the result is neither negative 

number. nor zero. 

;load A with 1001 1001 
;OR mask 
; stop 

;load A with 1001 1001 
;AND mask 
; stop 

The or Instruction 

The 6502 or instruction also works exactly as described in 

the New Concepts section. If we use the example from Fig. 

19-6 in the New Concepts section, we find that the 6502 

does or bytes as discussed there. 

Figure 19-14 shows our original problem and solution 

plus a 6502 program which solves the problem. After 

entering and running the program, you will find that the 

accumulator contains F916. This is the value we expected 

the accumulator to have. 

The or instruction also affects the negative and zero 

flags. You will find that the negative flag is again set 

because the 8th bit is 1, indicating a 2’s-complement 
negative number. 

The eor Instruction 

The 6502 eor instruction also works as described in the 

New Concepts section. If we use the example from Fig. 

19-9 in the New Concepts section, we’ll find that the 6502 

does eor bytes as discussed there. 

Figure 19-15 shows our original problem and solution 

plus a 6502 program which solves the problem. Enter and 

The bit Instruction 

The bit instruction was not described in the New Concepts 

section and is somewhat unusual. Refer to the bit instruction 

in the Expanded Table of 6502 Instructions Listed by 

Category. 

The bit instruction ands a memory location with the 

accumulator. However, the result is not stored anywhere. 

Neither the accumulator nor the memory location is changed. 

If the result of the and is zero, the zero flag is set. If 

the result is not zero, the zero flag is not set. 

The negative and overflow flags are affected in an unusual 

way. The status of the negative and overflow flags is not 

determined by the result of the and process but rather is 

copied from bits 6 and 7 (7th and 8th bits) of the memory 
location. 

A program which illustrates the operation of the bit 

instruction is shown in Fig. 19-16. 

The bit instruction is useful when using the flags to 

control branching. You can alter the flags with a logical 

condition without actually changing the accumulator or 

memory location. 

1 0 0 1 1 0 0 1 -data 

EOR 1 1 1 1 0 0 0 0 -mask 

0110 1001 

□ 340 Aq qq LDA #$qq ;load A with 1001 1001 

□ 343 40 FO EOR #$F0 ;E0R mask 
□ 344 00 BRK ;stop 

Fig. 19-15 Using the 6502 eor instruction to mask bits. 
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034D A3 CO LDA #$CO ;load A with 1100 □□□□ 
□ 342 AD A0 □ 3 STA #Q3AD ;store HDD □□□□ in location □ 3AD 
□ 34 5 Ag □ □ LDA #$□□ ; load A with □□□□ □□□□ 
□ 34 7 EC A0 □ 3 BIT $□3 AD ;AND A (□□□□ □□□□) with D34D (HDD 
□ 34 A □ □ BRK ; stop 

After running the program: 

negative flag = 1/ overflow flag = 1, break flag = 1/ zero flag = 1, accumulator = □□ 
Fig. 19-16 Using the 6502 bit instruction. 

19-7 6800/6808 FAMILY 

The 6800/6808 has all the instructions discussed in the New 

Concepts Section plus one instruction not discussed there. 

These are the anda/andb, oraa/orab, eora/eorb, bita/ 

bitb, com/coma/comb, and neg/nega/negb instructions. 

Notice that each instruction has a mnemonic for each 

accumulator and that some (com and neg) have one for 

memory locations also. Let’s look at each. 

Clearing the Flags 

The 6800/6808 examples which follow cover both the result 

of the logical operation and the condition of the flags. It is 

helpful to be able to clear the flags before the examples are 

run so that the previous condition of the flags is not confused 

with the effect the example had on the flags. 

Place the following program in an area of memory you 

do not plan to use for the examples. Then run this program 

to clear both accumulators and all flags before running each 

example program. 

xxxx 4F CLRA ;clear A 

xxxx 5F CLRB ; clear B 

xxxx 06 TAP ;clear flags 

xxxx 3E WAI ;stop 

The anda/andb Instruction 

The 6800/6808 and instruction works exactly as described 

in the New Concepts section. If we use the same example 

we discussed in the New Concepts section (Fig. 19-3), we 

will find that the 6800/6808 does in fact and bytes as 

discussed. 
Figure 19-17 shows our original problem and solution 

plus a 6800/6808 program which solves the problem. If 

you will notice the condition of the accumulator and flags 

after running this program, you will find that the accumulator 

contains 90,6 as we expected. 

If you check the 6800/6808 instruction set, you will find 

that the and instruction affects the negative and zero flags. 

(The overflow flag is always cleared.) In this case the 

negative flag is set because the 8th bit of the accumulator 

is 1, indicating a 2’s-complement negative number. (It is 

assumed that the flags just discussed were cleared before 

the program was started.) 

The oraa/orab Instruction 

The 6800/6808 oraa/orab instruction also works exactly 

as described in the New Concepts section. We’ll use the 

example found in Fig. 19-6 in the New Concepts section. 

Figure 19-18 shows our original problem and solution 

plus a 6800/6808 program which solves the problem. After 

entering and running the program, you will find that the 

accumulator contains F916. This is what we expected. 

The or instruction also affects the negative and zero 

flags. (The overflow flag is always cleared.) The negative 

flag is again set because the 8th bit of A is 1, indicating a 

2’s-complement negative number. 

The eora/eorb Instruction 

Let’s look at the 6800/6808 eora/eorb instruction. If we 

use the example from Fig. 19-9 in the New Concepts 

section, we will find that the 6800/6808 does eor bytes as 

discussed. 

Figure 19-19 shows our original problem and solution 

from Fig. 19-9 plus a 6800/6808 program which solves the 

problem. Enter and run the program. You will find that the 

accumulator contains 69,6. 

The eor instruction also affects the negative and zero 

flags. (The overflow flag is always cleared.) In this case 

neither was set; the result is neither negative nor zero. 

1 0 0 1 1 0 0 1  -data 

and 1 1 1 1 0 0 0 0 -mask 

1001 0000 

□□□□ al gg 
□ □□e A4 FO 
□ □□4 3E 

ldaa #$gg 
ANDA #$F0 
WAI 

Fig. 19-17 Using the 6800/6808 and instruction to mask bits. 

;load A with 1QD1 
;AND mask 
; stop 
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1 0 0 1 1 0 0 1  -data 

OR 1 1 1 1 0 0 0 0 -mask 

1111 1001 

□□□□ at sr ldaa #$qq 

□ 002 aA FO ORAA *$FO 
0004 3E WAI 

Fig. 19-18 Using the 6800/6808 oraa/orab instruction to 
mask bits. 

;load A with 1001 1001 
;0R mask 
; stop 

1 0 0 1 1 0 0 1  -data 

XOR 1 1 1 1 0 0 0 0 -mask 

0110 1001 

□ooo at qq ldaa #$qq 

□002 aa FO EORA #$FO 
UUUA 3E WAI 

Fig. 19-19 Using the 6800/6808 eora/eorb instruction to 
mask bits. 

;load A with 1001 1001 
;EOR mask 
; stop 

The bita/bitb Instruction 

The bit instruction was not described in the New Concepts 

section. Refer to the bit instruction in the Expanded Table 

of 6800/6808 Instructions Listed by Category. 

The bit instruction ands a memory location with one of 

the accumulators. However, the result is not stored any¬ 

where. Neither the accumulator nor the memory location 

is changed. 

If the result of the and is zero, the zero flag is set. If 

the result is not zero, the zero flag is not set. If the result 

of the and is a negative 2’s-complement number, the 

negative flag is set. Regardless of the result, the overflow 

flag is cleared. 

A program which illustrates the operation of the bit 

instruction is shown in Fig. 19-20. 

The bit instruction is useful when the flags are used to 

control branching. You can alter the flags with a logical 

condition without actually changing the accumulator or 

memory location. 

The com/coma/comb Instruction 

The complement instruction (com/coma/comb) finds the 

l’s complement of each bit in the byte that’s being 

complemented. That is, it inverts every bit in the byte. An 

example problem and a 6800/6808 program to solve the 

problem are shown in Fig. 19-21. 

After running this program, you should find 5516 in A 

and the carry flag set. 

Referring to the 6800/6808 instruction set, you will find 

that the com instructions affect the negative and zero flags. 

In addition, they always clear the overflow flag and set the 

carry flag. In this example the negative flag is clear because 

the result (55]6) is not a negative number. Nor is it zero; 

therefore the zero flag is not set. The overflow flag is 

automatically cleared, and the carry flag automatically set. 

The NEG/NEGA/NEGB Instruction 

The neg/nega/negb (negate) instructions are very similar 

to the com/coma/comb instructions. The neg instructions, 

□000 at FF 
□□□2 as co 
UUUA 3E 

LDAA #$FF 

BITA #$co 
WAI 

;load A with 1111 1111 
;AND A with 1100 0000 
; stop 

After running the program: 

A = FF flags = 001000 

Fig. 19-20 Using the 6800/6808 bita instruction. 

10 10 10 10 -original number (AA-|6) 

0 10 1 0 10 1 -1's complement of original number (5516) 

□ □□□ at, AA LDAA *$AA 

0002 A 3 COMA 

0003 3E WAI 

Fig. 19-21 Using the 6800/6808 com/coma/comb 

instructions. 

;load A with 1010 1010 
;invert all bits (0101 0101) (55h) 
; stop 
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-*-original number (95-iq) 

-Vs complement 

-plus 1 

-2's complement (-95-iq) 

;load A with DID! 1111 

; E 1 s complement of A 
; stop 

0 10 1 1111 

10 10 0 0 0 0 

+ 1 

10 10 0 0 0 1 

□□□□ AG 5F LDAA#$5F 
□ DDE A 0 NEGA 
□ □□3 3E WAI 

Fig. 19-22 Using the 6800/6808 neg/nega/NEGB 

instructions. 

however, find the 2’s complement of a number instead of 

the l’s complement. Recall that the 2’s complement is 

found by first finding the l’s complement and then add¬ 

ing 1. 

Figure 19-22 shows an example problem and program 

using the negate instruction. 

After running the program you will have Al16 in the 

accumulator and the negative and carry flags set. 

The negative flag is set because the 8th bit of A is set 

indicating a 2’s-complement negative number. 

Why the carry flag is set requires a little explanation. 

One way to look at a 2’s-complement number is to view it 

as a l’s-complement number with 1 added to it. There is 

another point of view, however. 

Remember how we described the creation of negative 

numbers as being like rotating an odometer backward? The 

original number used in this example is 0101 11112, which 

is 9510. If we rotate our odometer backward from 00 by 95 

places, we will arrive at the binary number 1010 0001. 

Rotating the odometer backward from 00 is the same as 

subtracting from 00. 

Now think about subtracting a number from 00. Would 

a borrow from the carry bit be required? Yes, because any 

number is larger than 0 and a borrow would be required to 

subtract it from 00. To subtract 95 from 00 requires a 

borrow, which is why the carry flag is set. 

If you think about it, the carry flag would have been set 

regardless of what number we would have used. When you 

use the NEG instruction, the only time the carry flag won’t 

be set is if you negate the number 00, because subtracting 

00 from 00 does not require a borrow. 

19-8 8080/8085/Z80 FAMILY 

The 8080/8085/Z80 has four of the instructions discussed 

in the New Concepts section, although one has a different 

name. These are the and (ana [and]), or (ora [OR]), xor 

(xra [XOR]), and not (CMA [CPL]) instructions. (Z80 mne¬ 

monics are shown in brackets.) Let’s look at each. 

The ana [and] Instruction 

The 8080/8085/Z80 ana [and] instruction works as de¬ 

scribed in the New Concepts section. If we use the example 

from Fig. 19-3 in the New Concepts section, we will find 

that the 8080/8085/Z80 does in fact and bytes as discussed. 

Figure 19-23 shows our original problem and solution 

plus an 8080/8085/Z80 program which solves the problem. 

If you will notice the condition of the accumulator and flags 

after running this program, you will find that the accumulator 

has a 9016 in it as we expected. The sign, auxiliary carry, 

and parity flags will be set. 

If you check the 8085/Z80 instruction set, you will find 

that the and instruction affects the sign, zero, and parity 

1 0 0 1 1 0 0 1  -data 

and 1111 0000 -*-mask 

1001 0000 

A0A5 program 

1 ACID 3E qq mvi A,qq ; load A with 1001 1DD1 
1A02 0G FO MVI B fFO ;load B with mask (1111 DDDD) 
1AD4 AQ ANA B ;AND A with mask 
IADS ?G HLT ; stop 

ZAD ; program 

1 ADO 3E qq ld A,qq ;load A with 1DD1 1D01 
1ADE □ G FO LD B,FO ;load B with mask (1111 0000) 
iack AD AND B ; AND A with mask 

1AD5 7G HALT ; stop 

Fig. 19-23 Using the 8080/8085/Z80 ana [and] instruction 
to mask bits. 
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10 0 1 1 

OR 1111 0 

1111 1 

fiOflB program 

1600 3E 33 MVI Af33 
IflO 3 0b FO MVI B,FO 

1A04 B0 ORA B 

1605 7b HLT 

ZAO program 

1600 3E 33 LD A,33 
1603 0b FO LD B,FO 
1A 04 B0 OR B 
1605 7b HALT 

Fig. 19-24 Using the 8085/Z80 or instruction to mask bits. 

flags. The and instruction always sets the auxiliary carry 

[half-carry] flag and always clears the carry flag. (Note: If 

you are using an 8080 microprocessor, the auxiliary flag 

works a little differently than it does in the 8085 and Z80. 

Check the Expanded Table.) 

The sign flag is set because this is a negative number. 

The zero flag is clear because the result was not zero. The 

auxiliary flag is set because it is always set by this instruction. 

The parity flag is set because there are an even number of 

Is. And the carry flag is clear because that flag is always 

cleared by the and instruction. 

The ora [or] Instruction 

The 8085/Z80 or instruction also works as described in the 

New Concepts section. We’ll use the example from Fig. 

19-6 in the New Concepts section. 

Figure 19-24 shows our original problem and solution 

plus an 8085/Z80 program which solves the problem. After 

entering and running the program, you will find that the 

0 1 -*-data 

0 0 -*-mask 

0 1 

;load A with number (1001 1001) 

;load B with mask (1111 □□□□) 

;0R number and mask 

; stop 

;load A with number (!□□! !□□!) 

;load B with mask (1111 □□□□) 

;OR number and mask 

; stop 

accumulator has a value of F916 and that the sign and parity 

flags have been set. 

We expected the accumulator to have F916 after ORing. 

The or instruction set the sign flag because F916 is a 2’s- 

complement negative number. The parity flag is set because 

there are an even number of Is in F916 (1111 10012). The 

zero flag is clear because the result (F916) is not zero. All 

other flags are automatically cleared by the or instruction. 

The xra [xor] Instruction 

Let’s look at the 8085/Z80 xor instruction. If we use the 

example from Fig. 19-9 in the New Concepts section, we’ll 

find that the 8085/Z80 does xor bytes as discussed. 

Figure 19-25 shows our original problem and solution 

plus an 8085/Z80 program which solves the problem. After 

entering and running the program, you will find that the 

accumulator contains 6916 and that only the parity flag is 

set. Examine the figure and the Expanded Table to find 

why this is so. 

1 0 0 1 1 0 0 1 -data 

xor 1 1 1 1 0 0 0 0 -mask 

0110 1001 

6065 program 

1 ADD 3E 33 MVI A,33 ; load A with number (10D1 1001) 
1603 0b FO MVI B,FO ; load B with mask (1111 0000) 

1604 Afl XRA B ; XOR number with mask 

1605 7b HLT ; stop 

zao program 

1600 3E 33 LD A,33 ; load A with number (1001 1D01) 

1603 0b FO LD B,FO ; load B with mask (1111 0000) 

1604 Afl XOR B ; XOR number with mask 

1605 7b HALT ; stop 

Fig. 19-25 Using the 8085/Z80 xor instruction to mask 

bits. 
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NOT 1010 1010 is 0101 0101 

A0A5 program 

1A 0 0 BE AA MVI A , A A ;load A with 1010 1010 

1A0E 2F CMA ;invert all bits (0101 0101) (S5h) 
1A03 7b HLT ; stop 

ZAO program 

1A 00 BE AA LD A,AA ;load A with 1010 1010 
1A 02 2F CPL ;invert all bits (0101 0101) (5Sh) 
1A03 7b HALT ; stop 

Fig. 19-26 Using the 8085/Z80 complement instruction. 

The cma [cpl] Instruction 

The complement instruction (cma [CPL]) finds the l’s 

complement of each bit in the byte that’s being comple¬ 

mented. That is, it inverts every bit in the byte. An example 

problem and an 8085/Z80 program to solve the problem 

are shown in Fig. 19-26. 

After running this program, you should find the value 

5516 in A. If you are using an 8085, you will find that none 

of the flags has been affected or changed by the CMA 

instruction. If you are using a Z80, you will find that the 

half-carry and parity flags have been set. The Z80 always 

sets these two flags after the CPL instruction. 

19-3 in the New Concepts section, we find that the 8086/ 

8088 does in fact and bytes as discussed. 

Figure 19-27 shows our original problem and solution 

plus an 8086/8088 program which solves the problem. 

Notice the condition of the accumulator and flags before 

and after running this program. 

After masking 9916 with F016, 9016 is exactly what we 

expected. If you check the 8086/8088 instruction set, you 

will find that the and instruction affects the sign, zero, and 

parity flags. The overflow and carry flags are always cleared 

(NV, NC), and the auxiliary flag is undefined. In this case 

the sign flag is set (NG) because the 8th bit of the accumulator 

is 1, indicating a 2’s-complement negative number. 

19-9 8086/8088 FAMILY 

The 8086/8088 has all the instructions discussed in the New 

Concepts section. These include the and, or, xor, not, 

and neg instructions. Let’s look at each. 

The and Instruction 

The 8086/8088 and instruction works as described in the 

New Concepts section. If we use the example from Fig. 

The or Instruction 

The 8086/8088 OR instruction also works as described 

earlier in the New Concepts section. We’ll use the example 

from Fig. 19-6 in the New Concepts section. 

Figure 19-28 shows our original problem and solution 

plus an 8086/8088 program which solves the problem. After 

entering and running the program, you will find that AL 

has a value of F9,6 as we expected. 

1 0 0 1 1 0 0 1 -data 

and 1 1 1 1 0 0 0 0 -mask 

1001 0000 

ax=oodo bx=oooo cx^ooaa dx=oooo sp=f?be bp=dddd si^odoo di^oooo 

ds^boaa es=roaa ss^qoaA cs=qoAA ip=qioo nv up ei pl nz na po nc 

qoa a:Bern mov AL,qq 

-a 100 

R0AA:010D MOV AL,qq 

BOA A : 0102 AND AL/EO 

BOflAiOlO^ INT 50 

B0AA:010b 

-g U1UA 

AX=00B0 BX=0000 CX=0000 DX=0□□□ SP=F75E BP=D00D SI=DDDD DI=0000 

DS=B0AA ES=B0AA SS=B0AA CS=BDAA IP=01QA NV UP EI NG NZ NA PE NC 

BOAAiDIOA CD20 INT ED 

;load A with 1001 1001 

; AND A with mask 

;return control to DEBUG 

Fig. 19-27 Using the 8086/8088 and instruction to mask bits. 
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1001 1001 

OR 1 1 1 1 0 0 0 0 

1111 1001 

data 

mask 

-r 

flX=DD00 BX=0D00 CX=D00D DX=0CD0 SP=Ffl3E BP=0DDD SI=0DDD DI=DDDD 
DS=qo7c Es=qa?c ss=qo?c cs=qa?c ip=oiod nv up ei pl nz nr po nc 
3D7C:BDqq MOV AL,qq 

-a 

^□?C:D1DQ MOV AL,99 
907C:D1CIE OR AL,F0 
907C:D1D4 INT ao 
9D7C:Dint 

-g IUA 

flX=DOFq BX=DDDD CX=0000 DX=D0DD SP=Ffl3E BP=000D SI=0000 DI=DD00 
DS=qD7C ES=q07C SS=qD7C CS=qD?C IP=01CK NV UP EI NG NZ NR PE NC 
C\U?C:UIUA CDED INT EG 

;load A with number (IDDl !□□!) 
;OR number and mask 
; stop 

Fig. 19-28 Using the 8086/8088 or instruction to mask bits. 

The or instruction also affects certain flags. The sign 

flag is set (NG) because this is a 2’s-complement negative 

number. The overflow flag is cleared (NV) because the or 

instruction always clears it. The carry flag is also cleared 

for the same reason (NC). We have even parity (PE), and 

the result is not zero (NZ). 

The xor Instruction 

Let’s look at the 8086/8088 xor instruction using the 

example from Fig. 19-9 in the New Concepts section. 

Figure 19-29 shows our original problem and solution 

plus an 8086/8088 program which solves the problem. After 

entering and running the program, you will find that AL 

has a value of 6916. This is what we expected. 

The xor instruction affects the flags in the same way as 

the OR and and instructions. Examine the flags that are 

affected by this instruction to see whether they responded 

as you expected. 

The not Instruction 

The invert instruction (NOT) finds the l’s complement of 

each bit in the byte that’s being complemented. That is, it 

inverts every bit in the byte. An example problem and an 

8086/8088 program to solve the problem are shown in Fig. 

19-30. 

After running this program, you should find the value 

5516 in AL. And since this instruction does not affect any 

1 0 0 1 1 0 0 1 -data 

XOR 1 1 1 1 0 0 0 0 -mask 

0110 1001 

-r 

AX^DDDD BX=DDCm 
DS=ci □ 9F ES=909F 
9D9F:7<ED 

-a 
9D9F:MOV AL 
909F:D1DE XOR AL 
9G9F:DICK INT EG 
9D9F 

-g IDA 

AX=00L9 BX=DG0Q CX^DDOD DX=0GGD SP=FLGE BP-DGGD SI=000D DI=DG0G 
DS=9G9F ES=9G9F SS=9G9F CS=9D9F IP=G1D< NV UP EI PL NZ NA PE NC 
9D9F:Q1D4 CDED INT ED 

Fig. 19-29 Using the 8086/8088 xor instruction to mask bits. 

CX=DDDD DX=DDG0 SP=FLDE BP=00D0 SI=DDDD DI=DDDD 
SS=9D9F CS=909F ip=dioo nv up EI PL nz na po nc 

JZ D1EE 

;load A with number (1D01 IDDl) 
;XOR number with mask (1111 □□□□) 
;return control to DEBUG 
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NOT 10 10 10 10 is 0 10 1 0 10 1 

-r 
ax=oooo bx=oooo cx=oooo dx=oooq sp=fbie bp=oooo si=dodo di=dddd 
DS-HOAE ES=H0AE SS=H0AE CS=R0AE IP=0100 NV UP El PL NZ NA PO NC 

HOAE:0100 74E0 JZ 01EE 

-a 

HOAE:0100 MOV AL, A A 

HOAE:010E NOT AL 

H0AE:D1Q< INT ED 
HOAE:DIDO 

-g 104 

AX=0055 BX=DDDD CX=OODO DX^OOOO SP-F51E BP=OOOD SI=0000 DI=0000 

DS=SOAE ES=SOAE SS=HOAE CS^HOAE IP=0104 NV UP El PL NZ NA PO NC 

HDAE:DICK CDED INT EO 

Fig. 19-30 Using the 8086/8088 not instruction. 

;load A with number (1010 1D1D) 

;invert all bits of number (D1D1 D1D1) (55h) 

;return control to DEBUG 

flags, you should find that every flag is exactly as it was 

before the instruction was executed. 

The neg Instruction 

The neg (negate) instruction is very similar to the not 

instruction. The neg instruction, however, finds the 2’s 

complement instead of the l’s complement. Recall that the 

2’s complement is found by first finding the l’s complement 

and then adding 1. 

Figure 19-31 shows an example problem and program 

using the negate instruction. After running the program, 

you will have Al16 in the accumulator. 

Notice also that the sign flag is set (NG) as well as the 

carry flag (CY). 

The negative flag is set because the 8th bit of AL is set 

indicating a 2’s-complement negative number. 

Why the carry flag is set requires a little explanation. 

One way to look at a 2’s-complement number is to view it 

as a l’s-complement number with 1 added to it. There is 

another point of view, however. 

Remember how we described the creation of negative 

numbers as being like rotating an odometer backward? The 

original number we used in this example is 0101 111 12, 

which is 9510. If we rotate our odometer backward from 

00 by 95 places, we will arrive at the binary number 1010 

0001. Rotating the odometer backward from 00 is the same 

as subtracting from 00. 

Now think about subtracting a number from 00. Would 

a borrow from the carry bit be required? Yes, because any 

0 10 1 1111 -original number (95qo) 

1 0 1 0 0 0 0 0 -Vs complement 

+ 1 -plus 1 

1 0 1 0 0 0 0 1 -2's complement (-95io) 

-r 

AX-0000 BX=D0DD 
DS=R0EA ES=H0EA 

R0EA:0100 74E0 

-a 

HDEA:0100 MOV AL 

HDE A : OIjOE NEG AL 

HOEA:0104 INT E0 

HOEA:Q1QL 

-g 104 

AX=00A1 BX=0000 CX=0000 DX=0000 SP^FISE BP=0000 SI=0000 DI=0000 

DS=H0EA ES=H0EA SS^HOEA CS^ROEA IP=D104 NV UP El NG NZ NA PO CY 

HOEA:0104 CDE0 INT E0 

Fig. 19-31 Using the 8086/8088 neg instruction. 

CX^OOOO DX=00□0 SP=F15E BP=0000 SI=0000 DI^OOOO 

SS^HOEA CS=H0EA IP=0100 NV UP El PL NZ NA PO NC 

JZ 01EE 

,5F ;load A with number (0101 1111) 

;find E*s complement of number in AL 

;return control to DEBUG 
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number is larger than 00 and a borrow would be required 

to subtract it from 00. To subtract 95 from 00 required a 

borrow, which is why the carry flag was set. 

If y<>u think about it, the carry flag would have been set 

regardless of what number we used. When you use the neg 

instruction, the only time the carry flag won’t be set is 

when you negate the number 00 itself, because subtracting 

00 from 00 does not require a borrow. 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Name the four basic logical instructions. 

2. (and, or, xor, and NOT) When we and 2 bits, we 

are saying that the output bit will be 1 only if both 
inputs bits are_ 

3. (1) A mask allows us to change some bits in a byte 

while allowing others to pass through_ 

4. (unchanged) When we_two bits together, 

we are saying that the output bit will be a 1 if either 

or both of the input bits are 1. 

5. (OR) When ORing bits, the only way to get a_ 

out is to have both inputs be_ 

6. (0y 0) When using the XOR instruction, if both input 

bits are the same, the output bit will be a_(0, 1). 

7. (0) When xoRing bits, the only way to get a 1 out is 

for (both, either)-of the input bits to be 
a 1. 

8. (either) When we not or invert bits, we are saying 

that the output bit is the_(same as, oppo¬ 

site of) the input bit. 

9. (opposite of) To NEGate a number is to find the 2’s 

complement of the number. This involves finding the 

-and then adding_ 

(1' s complement, l) 

PROBLEMS 

General 

19-1. 1011 1100 

AND 0110 1Q1Q 

19-2. Devise a mask which, used with the and in¬ 

struction, would allow all bits to pass through 

unaltered except the most significant. The most 

significant should be cleared. 

19-3. 01101110 

or 0011 0101 

19-4. Devise a mask which, used with the or instruc¬ 
tion, would allow all bits to pass through unal¬ 

tered except the most significant. The most sig¬ 

nificant should be set. 

19-5. 0101 0101 

xor oon mi 
19-6. Devise a mask which, used with the xor in¬ 

struction, would invert all bits except the 2 most 

significant. The 2 most significant should pass 

through unaltered. 

19-7. Invert the binary number 0111 1011. 

19-8. Negate the number 0110 1110 (8-bit answer). 

Specific Microprocessor Families 

Solve the following problems by using the microprocessor 
of your choice. 

19-9. Write and run a program which will place the 

binary number 1100 1001 in the accumulator and 

then and it with the binary number 1011 1101. 

19-10. Write and run a program which will place the 

number CC16 in the accumulator and then use 

the or instruction to set every bit in the lower 

nibble of the accumulator while allowing every 

bit in the upper nibble to remain unchanged. 

Advanced Problems 

Solve the following problems using the microprocessor of 
your choice. 

19-11. Write and run a program which will; 

a. place 4516 in the accumulator. 

b. add 2F,6 to the number in the accumulator. 

c. use a mask to invert every bit in the lower 

nibble of the sum yet not alter the upper 
nibble. 

d. subtract 0001 11002 from the last result. 

e. create another mask (using the AND instruc¬ 

tion) which will allow all bits of the last result 

to remain unchanged except the least signifi¬ 

cant 3 bits which should be cleared. 
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19-12. ASCII values for the digits 0 through 9 are 

shown below. 

0 00110000 
1 00110001 
2 00110010 
3 0011 0011 

4 00110100 

5 0011 0101 
6 0011 0110 
7 00110111 

8 0011 1000 
9 00111001 

It may sometimes be desirable to change an ASCII number 

into its binary equivalent. For this problem, write and run 

a program which uses a mask to change the ASCII value 

for 5 into its binary equivalent. 
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Shift and Rotate Instructions 

In this chapter we’ll study two relatively straightforward 

concepts—shifting and rotating. Shifts and rotates can be 

used for parallel-to-serial data conversion, serial-to-parallel 

data conversion, multiplication, division, and other tasks. 

New Concepts_ 

The concepts of rotating and shifting are quite simple. Let’s 

look at each in its “generic” form; then, as usual, we’ll 

study each microprocessor family. The microprocessors’ 

instructions which perform each of these functions differ 

only slightly. 

20-1 ROTATING 

Rotating bits is exactly what it sounds like—moving bits 

in a circle. Let’s look at a typical rotate instruction to start 

our discussion. Figure 20-1 shows a typical rotate left 
instruction. 

Figure 20-2 illustrates each step involved when a bit is 

rotated eight times. Figure 20-2 first shows an 8-bit accu¬ 

mulator and carry flag. The accumulator is loaded with the 

value 0116, and the carry flag is cleared. Next, a sequence 

of eight rotate lefts are performed. Notice that the 1 just 

keeps moving 1 bit position each time. 

Microprocessors can rotate toward the right or left. Some 

also have other forms of rotation in which the carry flag is 

involved in a slightly different way. We’ll look at those in 

the Specific Microprocessor Families section. 

20-2 SHIFTING 

Shifting, like rotating, is exactly what it sounds like. And, 

like rotating, shifting can be toward the left or right. The 

-7 ... 0 - 

-► C - 

Fig. 20-1 Typical rotate left instruction. 

8080/8085 is the only microprocessor family being studied 

in this text which does not have shift instructions. The 

8080/8085 has only rotate instructions. 

Let’s look first at the concept of shifting toward the left. 

Figure 20-3 illustrates what is known as a logical shift left 

or arithmetic shift left. Bits are shifted one at a time toward 

the left, with the bit in the 8th position (bit 7) being shifted 

into the carry flag. 

Two things should be noticed which make this instruction 

different from the rotate instruction. First, the contents of 

the carry flag do not “wrap around” to bit 0; its contents 

are simply lost. Second, 0s are automatically shifted into 

bit 0 (least significant bit). 

Look at Fig. 20-4 for an example of this type of shifting. 

We have loaded the value 9916 into the accumulator and 

have cleared the carry flag. Next we execute eight consec¬ 
utive shifts. Notice that 

1. 0s keep coming in from the left. 

2. The bits in the accumulator keep shifting 1 bit to the 

left. 

3. The bits shift from the most significant bit of the 

accumulator into the carry flag. 

4. Bits shifting out of the carry flag are lost. 

Shifts to the right are possible also. Figure 20-5 shows 

a typical logical shift to the right. This is basically the 

opposite of the shift left. 

Figure 20-6 shows a typical arithmetic shift to the right. 

The arithmetic shift right instruction duplicates whatever 

was in the most significant bit and moves copies of it to 

the right with each shift. 
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C -7 ... 0 - 0 

Fig. 20-3 Typical arithmetic shift left or logical shift left. 
_ Accumulator 

0 

Carry flag 

Fig. 20-2 Rotating left eight times. 

20-3 AN EXAMPLE 

Let’s look at an example which uses the rotate instruction. 

It is often useful to be able to move a nibble of data from 

one part of a register to the other. 

For example, let’s say we wanted to clear every bit in 
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Fig. 20-6 Typical arithmetic shift right. 

the upper nibble of the accumulator and then move every 

bit of the lower nibble into the upper nibble. There are no 

instructions for moving a nibble from one place to another. 

The rotate instruction can help accomplish this, though. 

Figure 20-7 shows our problem. 

First, we’ll use a mask to clear out the upper bit. This 

is shown in Fig. 20-8. 

Next we’ll clear the carry bit (since this bit will be rotated 

into the least significant bit of the lower nibble). Then we’ll 

rotate toward the left four times. This is shown in Fig. 

20-9. 

If you compare the final value in Fig. 20-9 with our 

initial value in Fig. 20-9, you’ll see that we have moved 

the lower nibble into the upper nibble, which is what we 

wanted to do. 



Upper nibble Lower nibble 

110 0 110 1 

Fig. 20-7 Situation in which we want to clear the upper 
nibble and then move every bit of the lower nibble into the 
upper nibble. 

1100 1101 

AND 0000 1111 

0000 1101 

Fig. 20-8 Using the and instruction to mask off the upper 
nibble. 

Initial value 

After 1 rotate to the left 

After 2 rotates to the left 

After 3 rotates to the left 

Final value—after 4 rotates to 
the left 

Fig. 20-9 Using the rotate through carry instruction to 
move the lower nibble into the upper nibble. 

Specific Microprocessor 
Families 

□ □□1 0340 . org f $D34□ 
□ □□2 □ 340 ; 

□ □03 034 0 1A CLC 
□ □□4 0341 A3 01 LDA #$□1 
□ □□5 0343 2 A ROL A 
□ 00b □ 344 3 A ROL A 
□ □□7 0345 3 A ROL A 
□ □□A □ 34 0 3 A ROL A 
□ DDR 0347 3 A ROL A 
□ 010 034 A 3 A ROL A 
□ Oil 0343 3 A ROL A 
0013 □ 34 A 3 A ROL A 
0013 □ 34B 00 BRK 
0014 034C 1 
0015 034C .end 

Fig. 20-11 6502 program which rotates left eight times. 

The ROR (ROtate Right) instruction uses the same 

concept as the ROL instruction and affects flags in the same 

way. It simply rotates the bits in the opposite direction. 

Figure 20-11 shows a program which clears the carry 

flag and rotates the accumulator toward the left eight times. 

If you have a monitor which can single-step (“walk”) 

through the program, cause it to do so, and check the 

accumulator and carry flag after each step. 

If you cannot single-step, then use a break (BRK) 

instruction after each ROL instruction so that you can 

observe the movement of the bits in the accumulator. After 

each BRK you will have to make your trainer or computer 

begin program execution again at the next ROL instruction 

to see the shifting action continue. 

Let’s study the shift and rotate instructions for each of our 

microprocessor families. 

20-4 6502 FAMILY 

The 6502 has two rotate instructions and two shift instruc¬ 
tions. Let’s look at them. 

The ROL and ROR Instructions 

The 6502 ROL (ROtate Left) instruction works as described 

in the New Concepts section of this chapter and as shown 

in Fig. 20-10. Figure 20-10 is taken from the Rotate and 

Shift Instructions section of the Expanded Table of 6502 

Instructions Listed by Category. 

In Fig. 20-10 the “7 . . . 0” represents bits 0 through 

7 of a byte. Here the “byte” is the value in the accumulator. 

The “C” represents the carry bit of the status register. 

The ROL instruction causes each bit to move to the left 

one place. Bit 7 moves into the carry bit (flag), and the 

carry bit moves into bit 0. 

- 7 ... 0 - 

-► C - 

Fig. 20-10 6502 ROtate Left instruction. 

The ASL and LSR Instructions 

The 6502 shift instructions also work as described in the 

New Concepts section of this chapter. The Arithmetic Shift 

Left instruction is shown in Fig. 20-12. 

C -7 ... 0 - 0 

Fig. 20-12 6502 arithmetic shift left instruction. 

The Logical Shift Right instruction is shown in Fig. 

20-13. Both are quite simple. 

0 -► 7 ... 0-► C 

Fig. 20-13 6502 logical shift right instruction. 

An Example 

Let’s look at the same example which was used in the New 

Concepts section. Remember, our objective was to clear 

the upper nibble and then to move the lower nibble of the 

accumulator into the upper nibble of the accumulator. 

Figure 20-14 shows our original problem. 

Upper nibble Lower nibble 

110 0 110 1 

Fig. 20-14 Situation in which wc want to clear the upper 
nibble and then move every bit of the lower nibble into the 
upper nibble. 
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□□□1 □ 34 □ -org $0340 

□ DDE □ 340 * 

ano3 □ 34 □ E3 OF AND #$OF 

□ □□4 □ 34E 1A CLC 
□ □□5 □ 343 E A ROL A 

□ □□b □ 344 E A ROL A 

□□□? □ 345 EA ROL A 
□ □DA □ 34b EA ROL A 
□ □03 □ 347 □ □ BRK 

□ □ID □ 34 A * 

□ □11 □ 3 4 A .end 

Fig. 20-15 6502 program which clears the upper nibble of 
the accumulator and then moves the lower nibble into the 
upper nibble. 

A 6502 program which can solve this problem is shown 

in Fig. 20-15. Manually place the initial value of CD16 in 

the accumulator before running the program. After the 

program is run, you should find the value D016 in the 

accumulator. 

20-5 6800/6808 FAMILY 

The 6800/6808 has two rotate instructions and three shift 

instructions. 

The ROL/ROLA/ROLB and ROR/RORA/RORB 
Instructions 

The 6800/6808 ROL/ROLA/ROLB instructions work as 

described in the New Concepts section and as shown in 

Fig. 20-16. Figure 20-16 is taken from the Rotate and Shift 

Instructions section of the Expanded Table of 6800/6808 

Instructions Listed by Category. 

In Fig. 20-16 the “7 . . . 0” represents bits 0 through 

7 of a byte. In this case the “byte” is the value in a 

memory location, accumulator A, or accumulator B. The 

“C” represents the carry bit of the status register. 

The ROL/ROLA/ROLB instructions cause each bit to 

move to the left one place. Bit 7 moves into the carry bit 

(flag), and the carry bit moves into bit 0. 

The ROR/RORA/RORB (ROtate Right) instructions use 

the same concept as the ROL/ROLA/ROLB instructions 

and affect flags in the same way. They simply rotate the 

bits in the opposite direction. 

Figure 20-17 shows a program which clears the carry 

flag and rotates accumulator A toward the left eight times. 

- 7 ... 0 - 

-► C - 

Fig. 20-16 6800/6808 ROL/ROLA/ROLB instructions. 

;mask off upper nibble 

;clear the carry flag 

;rotate left four times 

□ □□1 □ □□□ . org $□□□□ 
□ □□E □ □□□ » 

□ □□3 □ □□□ □ C CLC 

□ □□4 □ □□1 Ab □! LD A A & $ □ 1 

□ □□5 □ □□3 43 ROLA 

□ □□b □ □□4 43 R0LA 

□ □□? □ □□5 43 ROLA 

□ □□A □ □□b 43 ROLA 

□ □□3 □ □□? 43 ROLA 

□ □!□ □ □□A 43 ROLA 

□ □11 □ □□3 43 ROLA 

□ □IE □ □□A 43 ROLA 

□ 013 □ □□B 3E WAI 

□ 014 □ □□C » 

□ □15 □ □□C . end 

Fig. 20-17 6800/6808 program which rotates left eight 
times. 

If you have a monitor which can single-step (“walk”) 

through the program, cause it to do so and check the 

accumulator and carry flag after each step. 

The ASL/ASLA/ASLB, ASR/ASRA/ASRB, and 
LSR/LSRA/LSRB Instructions 

The 6800/6808 shift instructions also work as described in 

the New Concepts section of this chapter. The Arithmetic 

Shift Left instruction is shown in Fig. 20-18. 

The Arithmetric Shift Right instruction is shown in Fig. 

20-19. The Logical Shift Right instruction is shown in Fig. 

20-20. All are quite simple. 

C -7 ... 0 - 0 

Fig. 20-18 6800/6808 arithmetic shift left instruction. 

I-► 7...0-► C 

Fig. 20-19 6800/6808 arithmetic shift right instruction. 

0 -► 7 ... 0-► C 

Fig. 20-20 6800/6808 logical shift right instruction. 
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7 . . . 0 An Example 

Let’s look at the same example which was used in the New 

Concepts section. Remember, our objective was to clear 

the upper nibble and then to move the lower nibble of the 

accumulator into the upper nibble of the accumulator. 

Figure 20-21 shows our original problem. 

Upper nibble Lower nibble 

110 0 110 1 

Fig. 20-21 Situation in which we want to clear the upper 
nibble and then move every bit of the lower nibble into the 
upper nibble. 

A 6800/6808 program which can solve this problem is 

shown in Fig. 20-22. Manually place the initial value of 

CDi6 in the accumulator before running the program. After 

the program is run, you should find the value D0I6 in the 
accumulator. 

20-6 8080/8085/Z80 FAMILY 

The 8080 and 8085 have four rotate instructions and no 

shift instructions. We will place the Z80 form of the 

instructions in square brackets. (The Z80 does have several 

multibyte shift instructions which we will not study at this 

time because the 8080 and 8085 do not share these 

instructions.) 

The RAL [RLA] and RAR [RRA] Instructions 

The 8080/8085/Z80 RAL [RLA] (Rotate A Left [Rotate 

Left A] instructions work as described in the New Concepts 

section and as shown in Fig. 20-23. Figure 20-23 is taken 

from the Rotate and Shift Instructions section of the 

Expanded Table of 8080/8085/Z80 Instructions Listed by 
Category. 

In Fig. 20-23 the “7 . . . 0” represents bits 0 through 

7 of a byte. In this case the “byte” is the value in the 

accumulator. The “C” represents the carry bit of the status 
register. 

i-c-1 
Fig. 20-23 The 8080/8085/Z80 RAL [RLA] instruction. 

The RAL [RLA] instruction causes each bit to move to 

the left one place. Bit 7 moves into the carry bit (flag), and 

the carry bit moves into bit 0. 

The RAR [RRA] instruction uses the same concept as 

the RAL [RLA] instruction and affects flags in the same 

way. It simply rotates the bits in the opposite direction. 

Figure 20-24 shows a program which clears the carry 

flag and rotates the accumulator toward the left eight times. 

If you have a monitor which can single-step (“walk”) 

through the program, cause it to do so and check the 

accumulator and carry flag after each step. 

The RLC [RLCA] and RRC [RRCA] Instructions 

The RLC [RLCA] (Rotate Left with Carry [Rotate Left 

with Carry A]) and RRC [RRCA] (Rotate Right with Carry 

[Rotate Right with Carry A]) instructions work just a little 

differently from the other rotate instructions we have 

discussed. The RLC [RLCA] instruction is shown in Fig. 
20-25. 

The RRC [RRCA] instruction is shown in Fig. 20-26. 

In the case of the RLC [RLCA] instruction, all bits in 

the accumulator move toward the left. The bit rotating out 

of bit 7 goes into the carry flag and around into bit 0 of 

the accumulator. 

In the case of the RRC [RRCA] instruction, all bits in 

the accumulator move toward the right. The bit rotating 

out of bit 0 goes into the carry flag and around into bit 7 

of the accumulator. 

An Example 

Let’s look at the same example which was used in the New 

Concepts section. Remember, our objective was to clear 

the upper nibble and then to move the lower nibble of the 

accumulator into the upper nibble of the accumulator. 

Figure 20-27 shows our original problem. 

□ □□1 □ □□□ . org $□□□0 
□ □□a □ □□□ ; 
□ □□3 □ □□□ A4 OF ANDA #$0F 
□ □□4 □ □□a OC CLC 
□ □□5 □ □□3 43 ROLA 
□ DDE, □□□< 43 ROLA 
□ □□? □ □□5 43 ROLA 
□ □□A □ □□□ 43 ROLA 
□ □□q □ □□? 3E WAI 
□ □ID □ □□a t 
□ nn □ □□A . end 

Fig. 20-22 6800/6808 program which moves the lower 
nibble of the accumulator into the upper nibble. 

;mask off upper nibble 
;clear the carry flag 
;rotate left four times 
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ADAD/ADAB program ZAD program 

□ □□1 IflDD .org lADDh □ 001 1 ADD .org lADDh 
□ □□3 1ADD j □ DDE 1 ADD ; 
□ □□3 IflDD 3E □! MVI A,D1H DDD3 1 ADD BE D1 LD A,D1H 
uuua 1AD3 1? RAL UUUA 1A D3 17 RLA 
□ □□5 1AD3 17 RAL □ □□5 1AD3 17 RL A 
□ □□b 1AD4 17 RAL DDDb 1AD4 17 RLA 
□ □□7 ians 17 RAL □ □□7 1AD5 17 RLA 
□ □□A lADb 17 RAL □ □□A lADfc 17 RLA 
□ □□3 1A 07 17 RAL □ DDR 1AD7 17 RLA 
□ □ID 1ADA 17 RAL □ □ID 1 AD A 17 RLA 
□ nil iaoq 17 RAL □ Dll 1 ADR 17 RLA 
□ □13 1A DA 7b HLT □ □13 1ADA 7b HALT 
□ □13 1A0B 9 □ □13 1ADB 9 
uuia 1ADB . end uuia 1ADB . end 

Fig. 20-24 8080/8085 and Z80 programs which rotate left eight times. 

C —i-7 ... o 

Fig. 20-25 8080/8085/Z80 RLC [RLCA] instruction. 

I-^ 7...0-r—C 

Fig. 20-26 8080/8085/Z80 RRC [RRCA] instruction. 

An 8080/8085/Z80 program which can solve this problem 

is shown in Fig. 20-28. Manually place the initial value of 

CD16 in the accumulator before running the program. After 

the program is run, you should find the value D016 in the 

accumulator. 

Upper nibble Lower nibble 

110 0 110 1 

Fig. 20-27 Situation in which we want to clear the upper 
nibble and then move every bit of the lower nibble into the 
upper nibble. 

20-7 8086/8088 FAMILY 

The 8086/8088 has four rotate instructions and three shift 

instructions. They are discussed starting on the next page. 

ADAD/ADA5 p rogram 

□ □□1 1 ADD .org lADDh 
□ □□3 1 ADD y 

□ □□3 IflDD Eb OF ANI DFH mask off upper nibble 

UQUA 1AD3 37 STC set the carry flag then 

□ □□5 1 ADB 3F CMC complement it 

□ □□b 1AD4 17 RAL rotate left four times 

□ □□7 1AD5 17 RAL 

□ □□A 1 ADb 17 RAL 

□ □□R 1AD7 17 RAL 

□ □ID 1ADA 7b HLT 

□ Dll 1 ADR > 

□ □13 IflDR . end 

ZAD program 

□ □□1 IflDD .org lADDh 
□ □□3 IflDD > 

□ □□3 IflDD Eb OF AND DFH mask off upper nibble 
UUUA 1AD3 37 SCF set the carry flag then 
□ □□5 1AD3 3F CCF complement it 
DDDb 1AD A 17 RLA rotate left four times 
□ □□7 1 ADB 17 RLA 

□□□a IflOb 17 RLA 

□ □□R 1AD7 17 RLA 

□ □ID IflDfl 7b HALT 

□ □11 IflDR > 

□ □13 IflDR . end 

Fig. 20-28 8080/8085 and Z80 programs which clear the upper nibble of 
the accumulator and then move the lower nibble into the upper nibble. 
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The RCL and RCR Instructions 

The RCL and RCR instructions work as described in the 

New Concepts section of this chapter and as shown in Fig. 

20-29. Figure 20-29 is taken from the Rotate and Shift 

Instructions section of the Expanded Table of 8086/8088 

Instructions Listed by Category. 

In Fig. 20-29 the “MSB . . . LSB” represents bits 0 

- -MSB ... LSB -*-1 

-*- C- 

Fig. 20-29 The 8086/8088 RCL and RCR instructions. 

through 7 of a byte or bits 0 through 15 of a word. The 

“C” represents the carry bit of the status register. 

The RCL instruction causes each bit to move to the left 

one place. The MSB moves into the carry bit (flag), and 

the carry bit moves into the LSB. 

The RCR instruction uses the same concept as the RCL 

instruction and affects flags in the same way. It simply 

rotates the bits in the opposite direction. 

Figure 20-30 shows a program which clears the carry 

flag and rotates AL toward the left eight times. We then 

single-step through the program. Follow each step and pay 

particular attention to AL and the carry flag. 

C>DEBUG 
-r 

AX=DQDD BX=0QDD CX=DDDD DX=00D0 SP=FFEE 
D S=7 7 SB ES=7?5B SS=7 7 5B BS=775B IP=D1DD 
77 SB:DIDO 74E0 JZ □ 1EE 

-a 

775B: CLC 
775B:0101 MOV AL, □ 1 
77 SB:D103 RCL AL, 1 
77SB:0105 RCL AL, 1 
775B:D1D7 RCL AL, 1 
775B:010S RCL AL, 1 
775B:Q10B RCL AL, 1 
775B:D10D RCL AL, X 
775B:D1DF RCL AL, 1 
775B :0111 RCL AL, 1 
77SB:D113 INT E0 
77SB:0115 

-r 

AX=DDQ0 : BX=DD0D CX=00D0 DX=DD0D SP=FFEE 
DS=77SB ES=77 SB SS-775B CS—77 5B IP 
775B: Ffl CLC 
-t 

AX=D0DD 1 BX=0DD0 CX=D000 DX=DD00 SP^FFEE 
DS=775B ES=775B SS=775B CS=77 SB IP=D1D1 
77SB:Q101 BDD1 MOV AL, □ 1 
-t 

AX=0DD1 BX=00D0 CX=DDD0 DX=00DD SP=FFEE 
DS=775B ES=775B SS=7 7 SB CS=77 SB IP=D103 
77 SB:D1D3 DDD0 RCL AL, 1 
-t 

AX=0DDE BX=acma CX=D0D0 DX=DDD0 SP=FFEE 
DS=775B ES=775B SS=775B CS—77 SB IP=D1D5 
7? SB:D1D5 DDD0 RCL AL, X 
-t 

ax=oooz Bx=oaaa CX=DDDD DX=0DD0 SP=FFEE 
DS=77 SB ES=7?5B SS=7 7 SB CS=77 SB IP=D1D7 
77SB :D1D7 DDDD RCL AL, 1 
-t 

AX=000fl BX=0Q00 CX=DDD0 DX=DDD0 SP=FFEE 
DS=775B ES=775B SS=77 SB CS=77SB ip^axos 
77 SB:DIOR DDD0 RCL AL, X 
-t 

BP=D000 SI=D0DD DI=D0Q0 

NV UP El PL NZ. N'A PQ NC. 

BP=D000 SI=000D DI=0000 
NV OP El PL NZ NA PO NC 

BP=Q0DD SI=0D00 DI=D00D 

NV UP El PL NZ NA PO NC 

BP=D0D0 SI=0000 DI=00D0 
NV UP El PL NZ NA PO NC 

BP=D000 SI=0D00 DI=0000 

NV UP El PL NZ NA PO NC 

BP=ODD0 SI=D000 DI=00D0 
NV UP El PL NZ NA PO NC 

BP=[]000 SI=00DD DI=0000 

NV UP El PL NZ NA PO NC 

Fig. 20-30 8086/8088 RCL instruction. 
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AX=DD1D BX=DOOO 

DS=775B ES=775B 
775B:D1DB DDDD 

-t 

RX=DDED BX=DDOD 
DS=77 SB ES=77SB 

775B:D1DD DDDD 

-t 

AX-DD4D BX=OOOD 

DS=77SB ES=775B 

77SB:DIOF DODD 

-t 

AX=DDflO BX=ODDO 

DS=775B ES=775B 

77SB:Dill DDDD 

-t 

AX=OOOD BX=DDOD 

DS=77SB ES=77BB 

775B:D113 CD2D 

-t 

Fig. 20-30 (cont.) 

CX=00DQ DX=DDDD SP=FFEE 

SS=775B CS=77SB IP=D1DB 
RCL AL/1 

CX=DDDD DX=DDDD SP—FFEE 

SS=775B CS=77SB IP=01DD 

RCL AL 11 

CX=00Q0 DX=DDDD SP-FFEE 
SS=775B CS=77SB IP=D1DF 

RCL AL/1 

CX=D0DD DX=DD□□ SP=FFEE 

SS=77SB CS=775B IP=D111 

RCL AL/1 

CX=DDD0 DX=DDDD SP=FFEE 

SS=775B CS=7?5B IP=D113 

INT 20 

BP=D0DD SI=DODO DI=ODDD 

NV UP El PL NZ NA PO NC 

BP=DDDD SI=D000 DI=DDDD 

NV UP El PL NZ NA PO NC 

BP=00D0 SI^DDDD DI=ODDD 

NV UP El PL NZ NA PO NC 

BP-DDDD SI=DDDD DI=DDDD 

OV UP El PL NZ NA PO NC 

BP=DDD0 SI=00DD DI=DDDD 

OV UP El PL NZ NA PO CY 

The ROL and ROR Instructions 

The ROL (ROtate Left) and ROR (ROtate Right) instruc¬ 

tions work just a little differently from the other rotate 

instructions we have discussed. The ROL instruction is 

shown in Fig. 20-31. 

The ROR instruction is shown in Fig. 20-32. 

The drawings shown here are slightly different from 

those shown in the instruction-set description, but if you’ll 

look closely, you’ll see that they are really the same. 

In the case of the ROL instruction, all bits move toward 

the left. The bit rotating out of the MSB goes into the carry 

flag and around into the LSB. 

In the case of the ROR instruction, all bits move toward 

the right. The bit rotating out of the LSB goes into the 

carry flag and around into the MSB. 

C MSB ... LSB 

Fig. 20-31 8086/8088 ROL instruction. 

MSB ... LSB 

Fig. 20-32 8086/8088 ROR instruction. 

C 

20-34. The SHift logical Right instruction is shown in Fig. 

20-35. All are quite simple. 

C -MSB ... LSB - 0 

Fig. 20-33 8086/8088 SAL/SHL instruction. 

I-► MSB ... LSB-► C 

Fig. 20-34 8086/8088 shift arithmetic right instruction. 

0 -► MSB ... LSB-► C 

Fig. 20-35 8086/8088 shift logical right instruction. 

An Example 

Let’s look at the same example which was used in the New 

Concepts section. Remember, our objective was to clear 

the upper nibble and then to move the lower nibble of AL 

into the upper nibble of AL. Figure 20-36 shows our original 

problem. 

An 8086/8088 program which can solve this problem is 

shown in Fig. 20-37. Manually place the initial value of 

CD16 in AL before running the program. After the program 

is run, you should find the value D016 in AL. 

The SAL/SHL, SAR, and SHR Instructions 

The 8086/8088 shift instructions work as described in the 

New Concepts Section of this chapter. The Shift Arithmetic 

Left/SHift logical Left instruction is shown in Fig. 20-33. 

The Shift Arithmetic Right instruction is shown in Fig. 

Upper nibble Lower nibble 

110 0 110 1 

Fig. 20-36 Situation in which we want to clear the upper 
nibble and then move every bit of the lower nibble into the 
upper nibble. 

326 Digital Computer Electronics 



ODEBUG 
-r 
AX=GD00 BX=QDDQ 
DS=77BQ ES=77B0 
77BD:2ZDF 

-rax 
AX 0000 
: DOcd 

CX=0D00 DX=D0DD SP=FFEE 
SS=77BD BS=?7B0 IP=D10D 

AND AL,GF 

BP=00Q0 SI=G00G DI=0G0G 
NV UP El PL NZ NA P0 NC 

-a 
77BD:Q1QD AND AL, OF 
77B0:0102 CLC 
77B0 :0103 RCL AL,1 
77B0:0105 RCL AL,1 
77B0:0107 RCL AL,1 
77B0:010CI RCL AL,1 
77B0:010B INT 20 
77B0: 010D 

;mask off upper nibble 
;clear the carry flag 
rrotate left four times 

-r 
AX=00CD BX=0000 
DS=?7B0 ES=77B0 
77BQ:0100 240F 

-g 01Gb 

CX=0000 DX=0000 SP=FFEE 
SS=77BQ CS=77B0 IP=0100 

AND AL,OF 

BP=0000 SI=0QQQ DI=GDDG 
NV UP El—Pi NZ NA PO NC 

AX=D0Dd BX=00QQ 
DS=77BD ES=77BD 
77BD:D1DB CD2G 

CX=000D DX=G0GQ SP=FFEE 
SS=??BQ CS=77BG IP=01DB 

INT 2D 

Fig. 20-37 8086/8088 program which clears the upper nibble 
of AL and then moves the lower nibble into the upper 
nibble. 

BP=00Q0 SI=0000 DI=DD0D 
OV UP El PL NZ NA PO NC 

SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Does rotating or shifting move the carry bit into one 

of the ends of the affected register?_ 

2. (Rotating) Does rotating or shifting move 0s into one 
of the ends of the affected register?_ 

3. (Shifting) Which of the following instructions dupli¬ 

cates the current value of the most significant bit and 

makes it the new value of the most significant bit? 

Rotate right, rotate left, logical shift right, logical 

shift left, arithmetic shift right, or arithmetic shift 
left? 

(Arithmetic shift right) 

PROBLEMS 

Specific Microprocessor Families 

Solve the following problems using the microprocessor of 
your choice. 

20-1. Write a program which will place the number 3416 

in the accumulator, clear the lower nibble (F), 

and then move the upper nibble (C) into the lower 

nibble by using a rotate instruction. (Write the 

program so that if the carry flag happens to be set 

(1) prior to running the program, it will not rotate 

the 1 from the carry flag into the upper nibble of 

the accumulator.) 

20-2. The ASCII value for numbers is the same as the 

hex value for numbers except that the ASCII 

value has a 3 as a prefix. For example, the ASCII 

value for 0 is 30, the ASCII value for 1 is 31, the 

ASCII value for 2 is 32, the ASCII value for 3 is 
33, and so on. 
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Write a program that will place the hex value 

23 in the accumulator and will then take the upper 

nibble (2h), change it to its ASCII value (32h), 

and store it in a memory location. The program 

should then take the lower nibble (3h), change it 

to its ASCII value (33h), and store it in another 

memory location. 

Restrictions: (1) You cannot use shift instruc¬ 

tions (but you may use rotate instructions). (2) 

You must make the program so that it will work 

for any original value, not just 23h. (That value 

was picked randomly.) 

Hints: (1) You should store the original value 

(23) in a memory location so that you can use it 

more than once. (2) You will need to use rotate 

instructions, masks, and arithmetic instructions. 

(3) You need to set aside three memory locations: 

one for the original value (23h), one for the ASCII 

value for 2 (32h), and one for the ASCII value 

for 3 (33h). 

20-3. Place the ASCII value for 8 (38h) in one memory 

location and the ASCII value for 9 (39h) in an¬ 

other location. Then write a program which will 

take these two ASCII values, convert them to 

their hex equivalents (8h and 9h), and combine 

them into a 1-byte, 2-digit, hex number (89h). 

20-4. Since the value of a binary digit doubles in value 

each time it is moved to the left by one place, 

and becomes one-half of its previous value each 

time it is moved to the right one place, it is 

possible to multiply and divide by shifting/rotat¬ 
ing. 

Write a program which will load the value 1C16 

into the accumulator and multiply it by 8 by 

shifting it. 

6502, 6800/6808, and 8086/8088 users: You 

should use the arithmetic shift left type of instruc¬ 

tion because it automatically shifts 0s into the 

least significant bit. 

8086/8088 users: You have an actual multiply 

instruction but shouldn’t use it for this program, 

since this chapter is intended to help you write 

programs using shift and rotate instructions. 

Z80 users: You have an arithmetic shift left 

type of instruction, but you cannot use it here 

because it is not part of the 8080/8085 instruction 

subset. Use the following procedure for the 8080/ 

8085. 

8080/8085 users: You do not have any shift 

instructions; therefore, you should alternately 

clear the carry flag and rotate to achieve an effect 

similar to that of the arithmetic shift left instruc¬ 

tion. 

All users: There are other ways to multiply. 

This simply illustrates one way, and not necessar¬ 

ily the best or easiest for your particular micro¬ 

processor. 
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Addressing Modes—II 
New Concepts_ 
In this chapter we’ll study some of the more complex 

addressing modes. The different microprocessor families 

will show more variation at this point than they did in our 

earlier chapter on basic addressing modes. 

The 6502 has more addressing modes than any other 

8-bit microprocessor. Some are used quite often, but several 

are used with only a few instructions. Since the 6502 has 

no general-purpose registers and only one accumulator, it 

must use memory very often and is therefore said to have 

a memory-intensive architecture. 

The 6800/6808 has a moderate number of different 

addressing modes, and students learning about it should 

not have difficulty. The 6800/6808 also lacks general- 

purpose registers but does have two accumulators. It is also 

considered to have a memory-intensive architecture. 

The 8080/8085 has the fewest number of addressing 

modes of any of the 8-bit microprocessors. Students will 

find it easiest to learn in this respect. (The Z80 has more 

addressing modes, but those beyond the ones the 8080/ 

8085 has will not be studied at this time.) The 8080/8085 

has six general-purpose registers in addition to an accu¬ 

mulator and is therefore said to have a register-intensive 

architecture. 

The 8086/8088, being a successor to and relative of the 

8080/8085, has many general-purpose registers. Because it 

is a 16-bit microprocessor, it also has many addressing 

modes. 

To summarize, the 6502 has 56 different instructions 

which use one or more of 13 addressing modes. When you 

combine the instructions and addressing modes, you produce 

152 different op codes. 

The 6800/6808 has 107 different instructions which use 

one or more of seven addressing modes. The 6800/6808 

has 197 different op codes. 

The 8080/8085 has 246 different instructions which have 

only one addressing mode each. There are five different 

addressing modes. This provides a total of 246 different op 
codes. 

The 8086/8088 has 24 addressing modes (they are 

presented in 11 addressing-mode categories in this text) and 

approximately 91 different assembly-language instructions. 

This is just part of the picture, however. 

Each 8086/8088 instruction can have many variations, 

the MOVe instruction probably being the best example. 

MOV is considered one assembly-language instruction; yet 

the 8086/8088 recognizes 28 different assembly-language 

forms of the MOV instruction (move to a register, move 

immediate, move byte to memory, move word to register, 

and so on). Each of the 28 assembly-language forms can 

have many different machine-level instructions which may 

be composed of up to 6 bytes (with eight 8-bit registers; 

the ability to move any one of them to any other produces 

10s of different machine-level instructions just for moving 

8-bit registers). 

To put it simply, there are hundreds of variations of the 

MOV instruction alone. The possible variations of all 91 

different assembly-language instructions number some¬ 

where between 3,000 and 4,000. 

How can anyone learn so many combinations? First, if 

you are using the 8086 or 8088, you will be concentrating 

on learning about the 91 different assembly-language in¬ 

structions, not every possible variation. Second, once you 

learn any one instruction, MOV, for example, most of the 

variations will seem very natural. It’s not like rote memo¬ 

rization. 

Which microprocessor is easiest to learn? That’s hard to 

say. They each have strengths and weaknesses. And which 

feature is a strength and which is a weakness depend on 

what you as the programmer want to do. 

(Note: Do not try to memorize all of these addressing 

modes at this time. Read this chapter and then refer back 

to it as you need to in the chapters to come.) 

(Additional Note: Reference will be made in this chapter 

to concepts and instructions which have not yet been 



covered. This is necessary to explain the various advanced 

addressing modes. This method of organizing the text has 

the great advantage of placing all necessary information 

regarding addressing modes in two easy-to-locate chapters.) 

21-1 ADVANCED ADDRESSING 
MODES 

Some addressing modes which will be described in this 

chapter use a multistep process to find the address of the 

data or the next instruction to be executed. There may be 

one or more intermediate addresses, but the final address 

at which the data or instruction is to be found will be 

referred to as the effective address. 

There are three fundamental advanced addressing modes, 

although some microprocessors also feature variations of 

these three. 

Relative Addressing 

□□□□ □ 1 NOP 

□ □01 □ 1 NOP 

□ □□2 2D BRA $02 

□ □□3 □ 2 

□ □□4 □ 1 NOP- 

□ □□5 □ 1 NOP 

□ □□b □ 1 NOP — 

□ □□? □ 1 NOP 

□ □□A □ 1 NOP 

/Vote what is happening here. 
The BRanch Always instruction 
causes the microprocessor to 
branch forward 2 places from the 
next instruction in memory! 
Thus the next instruction to be 
executed is at memory location 
0006. 

Fig. 21-1 An example of relative branching forward using 
the 6800/6808. 

The program counter always points to the next memory 

location to be accessed. In the case of relative jumps, it 

points to the next instruction after the jump instruction. 

We start counting from the memory location being pointed 

to by the program counter when the jump instruction is 

being executed. This memory location is not the location 

of the jump instruction itself, and it is not the byte after 

the jump instruction, but is the next instruction in memory, 

which is usually two memory locations after the jump 

instruction. 

Relative addressing is a mode in which your destination is 

described relative to where you are now. You aren’t directed 

to an absolute memory location but rather to an address 

higher or lower than where you are now. 

This form of addressing is not used to describe where to 

find data but rather where the program should find its next 

instruction. But let’s back up just a bit. 

In an earlier chapter we described the program counter 

and its function (the 8086/8088 uses the term instruction 

pointer instead of program counter). It keeps track of the 

next memory location to be accessed. Normally the locations 

are taken in order. The microprocessor gets an instruction, 

goes to the next byte in memory to get the next instruction 

or data, then to the next, and so forth. Sometimes, however, 

we need to “jump” or “branch” to a different area in 

memory to get our next instruction, for example, when we 

want to repeat a section of the program. (This saves time 

compared to writing a portion of a program many times if 

it is to be executed many times.) 

Relative addressing involves 2 bytes (on 8-bit micropro¬ 

cessors). The first is the op code for the jump or branch 

instruction. The second byte tells how far and in what 

direction the microprocessor should jump. The second byte 

is a signed binary number—that is, it can be positive or 

negative. If it’s positive, the microprocessor jumps forward 

in memory (to a higher-numbered address). If it’s negative, 

it jumps backward (to a lower-numbered address). There 

is a limit, however, to how far you can jump with this 

form of addressing. On 8-bit microprocessors the range is 

from -128,0 to + 12710 bytes. On 16-bit microprocessors 

the range is from -32,76810 to +32,76710 bytes. 

The next task is to determine exactly what point we start 

counting from. For example, if we tell the microprocessor 

to jump forward 10 memory locations, where do we start 

counting from? We must again look at the program counter. 

Let’s look at an example. Refer to Fig. 21-1. The 6800/ 

6808 has an instruction called BRA (BRanch Always), 

which uses relative addressing. 

The four-digit numbers in the left column are memory 

addresses. The two-digit numbers in the next column are 

op codes. The third column contains the assembly-language 

mnemonics. Memory location 0002 contains the op code 

20, which is the op code for the BRA instruction. The next 

memory location, 0003, contains the number 02, which is 

the same 02 referred to in the BRA $02 instruction. 

The NOPs are simply dummy instructions placed there, 

in this example, so that we have something to skip over 

when the branch is implemented. Again, memory address 

0002 contains the op code for BRA, which is 20. Address 

0003 contains the number of places we wish to move 

relative to where the program counter will be while it’s 

executing this instruction! Since the program counter is 

always pointing to the next instruction in memory, it will 

contain 0004. 000416 + 0216 = 000616. This is the next 

instruction to be executed. 

Now let’s try branching backward. Figure 21-2 shows 

an example. 

At this point a review of 2’s-complement negative 

numbers may be in order. Remember the odometer? Let’s 

look at it again, in decimal first. 

□ □□□ □ 1 NOP 
□ □□1 □ 1 NOP 
□ □□2 □ 1 NOP — 
□ □□3 □ 1 NOP 
UUUA 2D BRA $FC 
□ □□5 FC 
□ 00b 01 NOP - 
□ □□? □ 1 NOP 
□ □□A 01 NOP 

Fig. 21 -2 An example of 
the 6800/6808 

This program branches backward 
4 places from address 0006. This 
is because FC16 is the 2's- 
complement hexadecimal number 
for -4-16. The NOP at memory 
location 0002 will be the next 
instruction to be executed. 

relative branching backward using 
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Negative 2*s-Complement Numbers 

Let’s say you buy a brand-new car and the odometer reads 

00,000. Now suppose your odometer rolls forward if the 

car drives forward, and rolls backward if the car drives 

backward. Let’s drive backward from 00,000. 

00,000 
99,999 

99,998 

99,997 

99,996 

use another technique. A two-digit hexadecimal number is 

made up of 8 binary bits, each representing a power of 2. 

Find 28 and then subtract the number you wish to make 

negative. In the case of -4, for instance, take 2?0 - 410 

= 25210. Now convert 25210 to hexadecimal; it should be 

FC. (To do the same thing with a 16-bit number, use 216 

instead of 28.) 

Or, should no calculator be handy at the time, use the 

technique described in Chap. 6, that of taking the 2’s 

complement of the number you wish to make negative. In 

the case of —4 it looks like this: 

We could say that driving backward is like creating negative 

numbers: 99,999 is 1 mile less than 00,000. What’s 1 less 

than 0? Minus one, of course. 99,998 is 2 miles less than 

00,000. What’s 2 less than 0? Minus two is. Let’s look at 

some odometer readings from driving backward and their 

negative equivalents, along with some odometer readings 

from driving forward and their positive equivalents. 

00,003 +3 

00,002 -F2 

00,001 +1 
00,000 0 

99,999 -1 

99,998 -2 

99,997 -3 

99,996 -4 

Now let’s show the same situation with a 1-byte hexa¬ 

decimal odometer. 

03 +3 

02 +2 
01 +1 
00 0 
FF -1 

FE -2 

FD -3 

FC -4 

Now look at Fig. 21-2 again. Do you see where the FC 

came from? It's —4. 

What if you had to have a negative number like — 4010? 

Counting backward in hexadecimal would require too much 

time. There are several options. First, experiment with your 

calculator. Most scientific calculators now convert numbers 

back and forth between decimal, binary, octal, and hex¬ 

adecimal. Many even do calculations in all number bases. 

Try entering — 410 and converting it to hexadecimal. If the 

calculator handles negative conversions, you’ll get many 

F’s and a C at the end. Simply ignore all the leading F’s 

and use just the last two digits, the final FC. 

If your calculator does conversions between decimal and 

hexadecimal but won’t handle negative numbers, you can 

0000 0100 

mi ion 
+ i 

mi lioo 
I I 
F C 

+ 4 

1 ’s complement (invert all bits) 

add 1 

2’s complement for —4 

convened to hexadecimal 

Indirect Addressing 

Indirect addressing is an addressing mode in which the 

data does not appear after the op code (as in immediate 

addressing), nor does its memory location appear after the 

op code (as in direct addressing), but rather a memory 

location follows the op code, and in this location is another 

address where the data may be found. It’s like finding the 

address of an address. {Indirect addressing is indeed a 

fitting name.) 

There are two basic types of indirect addressing: absolute 

indirect addressing and register indirect addressing. The 

6502 uses absolute indirect addressing. The 8080/8085/Z80 

uses register indirect addressing. The 8086/8088 uses reg¬ 

ister indirect addressing for data and program indirect 

addressing for jumps (which we’ll study later). The 6800/ 

6808 has no indirect addressing (indirect addressing was 

added to the 6809). 

Let’s look at an example of this addressing mode and 

then develop the topic further in the Specific Microprocessor 

Families section of this chapter. The 6502 has an instruction 

which looks like this 

JMP ($aaaa) 

which means JuMP indirect (indicated by the parentheses) 

to the address indicated by aaaa. If the address were 100016, 

it would be written as 

JMP ($1000) 

This tells us that at memory location 1000 and 1001 we 

can find the address the microprocessor should jump to. 

The address found at these two locations is loaded into the 

program counter. (It takes two locations because addresses 

in the 6502 are 16 bits wide but memory locations are only 

8 bits wide.) 
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Indexed Addressing 

Indexed addressing involves using a register called an index 

register, with a number called an offset, to calculate the 

address where the data is located. Let’s look at an example 

using the 6800/6808. 

One version of the 6800/6808’s load accumulator A 

instruction looks like this 

LDAA $ff,X 

which means 

LoaD Accumulator A with the value in the 

memory location found by adding the 

contents of the X register to the 

hexadecimal offset ff. 

For example, if the X register contains the number 100016 

and the instruction is written as 

LDAA $22,X 

we calculate the address where the data is located in this 

way 

X + ff = address 

100016 + 22]6 - 102216 

The microprocessor then goes to address 1022 and places 

a copy of its contents in accumulator A. 

You might be curious as to why we would want an 

addressing mode like this. One reason is its usefulness in 

accessing individual pieces of data in a data table. The 

index register can be incremented (increased by 1) or 

decremented (decreased by 1) easily, allowing the program¬ 

mer to access each item in the table. 

The 6502 microprocessor has two index registers, the X 

register and the Y register, and it has six different types of 

indexed addressing! The 6800/6808 has only one index 

register, the X register, with only one type of indexed 

addressing. The 8080/8085 has no index registers at all (the 

Z80 has two, X and Y) and has no indexed addressing 

mode. The 8086/8088 has two index registers, the source 

index and the destination index, and has several types of 

indexed addressing. 

Specific Microprocessor 
Families 

Go to the section which discusses your particular micro¬ 

processor. 

21-2 6502 FAMILY 

The 6502’s numerous addressing modes make it unusual 

among 8-bit microprocessors. It has 13 different addressing 

modes. Allow us to offer a few words of encouragement 

at this time. 

First, don’t expect everything to make sense in the 

beginning. It takes time before all these new concepts 

become clear and you feel comfortable with them. Inciden¬ 

tally, the subject of addressing modes is the only difficult 

aspect of the 6502. In fact, the 6502 has the fewest different 

instructions of any of the 8-bit microprocessors—only 56 

(the 6800/6808 has 107; the 8080/8085 has 246). 

Relative Addressing 

The relative addressing mode occurs in only one category 

of 6502 instruction, the Conditional Jump (Branch) cate¬ 

gory. Look at that section of the Expanded Table of 6502 

Instructions Listed by Category. No other category uses 

this type of addressing, and this category uses no other 

type of addressing. 

The subject of branching is coming in a later chapter, 

but it is necessary to discuss branching instructions for a 

moment to continue our coverage of the relative addressing 

mode. 

The status register is where the 6502’s flags are located. 

They keep track of certain events. If the result of the last 

calculation were 0, for instance, the zero flag bit would 

contain a L If we wanted to know whether the last result 

was a 0, we would check the zero flag. A 1 would mean 

yes, and a 0 would mean no. If we wanted the program to 

perform one action if the result of the last operation was a 

0, and another if the result of the last operation was not a 

0, we would write our program so that it would check the 

zero flag. 

Let’s look at the BEQ instruction. The assembler notation 

looks like this 

BEQ $rr 

which means 

Branch rr bytes from where the program 

counter is now and do what it says to do 

there if the result of the last operation 

was EQual to 0. 

You’ll notice that the Operation column of the instruction 

table has a shorter version of that description. 

Let’s look at a program fragment. Refer to Fig. 21-3. 

After the BEQ instruction and its operand in locations 

0007 and 0008 have been fetched, the program counter will 

have already incremented to 0009, which is where we start 

counting for the branch (jump). 
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0005 EA 

□ DDL EA 

□□□7 FD 

□□□a D3 
□ooq ea 

□ □□A EA 

□ □□B EA 

□ □□C EA 

□□□D EA 
□□□E EA 

NOP 

NOP 

BEQ $03 

NOP - 

NOP 

NOP 

NOP — 

NOP 
NOP 

Memory location 0007 contains FO, 
the op code for BEQ. The next 
location, 0008, contains 0316, which 
is the distance the program is 
going to jump relative to where the 
program counter is at the end of 
this instruction. Remember: 
this jump occurs only if the last 
operation set the zero flag (which 
we are assuming for this example). 

This would load the contents of memory location aaaa 

into the low byte of the program counter (PCL). The contents 

of memory location aaaa + 1 would be loaded into the high 

byte of the program counter (PCH). (This reverse low-byte/ 

high-byte order is normal for the 6502.) 

Let’s look at an example. If you refer to Fig. 21-4, you 

will see that the instruction 

JMP ($0004) 

Fig. 21-3 6502 example of relative addressing. Note: The 
zero flag is assumed to be set from a previous operation. 

Refer back to the New Concepts section of this chapter 

to see how a backward branch or jump would work and 

how to use 2’s-complement negative numbers. 

Indirect Addressing 

There is only one 6502 instruction which uses the indirect 

addressing mode. That instruction is the JMP instruction, 

which is found in the Unconditional Jump Instructions 

category in the Expanded Table of 6502 Instructions Listed 

by Category. 

This particular instruction can be used with two different 

addressing modes. In the absolute addressing mode, the 

microprocessor simply jumps to the specified address. When 

written this way 

JMP $aaaa 
it means 

Jump to address aaaa16 and continue 

program execution from that point. 

In the indirect addressing mode, however, it would be 

written this way 

JMP ($aaaa) 

and would mean 

JuMP to the address which can be found 

at memory location aaaa and aaaa + 1. 

0000 tC JMP ($0004) 

0001 04 

0005 00 

□003 EA NOP 
0004 IF-*-low byte- 

0005 01-high byte 

does not mean that address 0004 is where the program is 

supposed to jump to, but rather that location 0004 contains 

the address it’s supposed to jump to. 

Indexed Addressing 

Indexed addressing is the subject of the remainder of this 

6502 section. There are four basic indexed addressing 

modes, and two more which use a mixture of indexed and 

indirect addressing. 

It should be noted that while the 6502 family has a great 

number of addressing modes which use the index registers, 

it is the only family which has index registers which are 

only 8-bits wide. The 6800/6808, Z80, and 8086/8088 all 

have 16-bit index registers. Keep this in mind if you use 

the 6502 in addition to one of the other microprocessors. 

Zero Page,X and Absolute ,X Addressing 

You may remember from the New Concepts section of this 

chapter that the 6502 has two index registers, X and Y, 

and six different forms of indexed addressing. Here are the 

first two of the six forms. The difference between these 

two forms is the range of addresses possible. 

These first two forms, and the next two, are so similar 

to the description in the New Concepts section that you 

will probably have little difficulty understanding them. If 

you don’t remember how the indexed form of addressing 

works, go back and reread the description now. 

Look in the Data Transfer Instructions category of the 

Expanded Table of 6502 Instructions Listed by Category. 

We will use the LDA instruction to illustrate the zero 

page,X and absolute,X addressing modes. 

This is where the effective address 
is being stored. 01 IF is placed in 
the program counter. 

□ HE next instruction - This is the location of the next 

□ 150 instruction to be executed. 

Fig. 21-4 Example of 6502 indirect addressing mode. 
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First notice the Assembler Notation column for the zero 

page,X and absolute,X forms of the LDA instruction. For 

these two the assembler notation is 

LDA $ff,X <— zero page,X 

LDA $ffff,X absolute,X 

In both cases the offset (ff or ffff) is a hexadecimal number 

which is going to be added to the value in the X register. 

The sum of these two values provides the address of the 

data which is to be loaded into the accumulator. 

For example, if the X register contained the hexadecimal 

number 10, the instruction 

LDA $034E,X 

would add those two values, 

034E16 + 10I6 = 035E16 

and place a copy of the contents of memory location 035E16 

in the accumulator. 

When zero page,X addressing is used, the offset (the 

number being added to the X register) is two hex digits 

wide and the X register is also two hex digits wide. Two 

hex digits can address memory locations only in page 0 

(0016 to FF16). When this addressing mode is used, it is 

assumed that the data is somewhere in page 0. If the sum 

of the offset and the X register is greater than FF]6 then 

the most significant digit is truncated and only the first two 

digits are used! For example, if the X register contained 

FF, the instruction 

LDA $04,X 

would add the offset to the X register 

04l6 + FF16 = 10316 (The 1 will be dropped.) 

so the data will be retrieved from location 0316! Numbers 

larger than FF16 wrap around to the beginning of page 0. 

When absolute,X addressing is used, the offset is a four¬ 

digit hexadecimal number ranging from 0000,6 to FFFF16. 

This allows the data to be located anywhere in the entire 

6502 address range. If the sum of the offset and the X 

register exceeds FFFF16, then the microprocessor again 

performs a wraparound back to 000016. 

Zero Page,Y and Absolute ,Y Addressing 

Notice in the Data Transfer Instructions section of the 

Expanded Table of 6502 Instructions Listed by Category 

that the LDX instruction uses both absolute,Y and zero 

page,Y addressing. These work exactly the same as abso¬ 

lute^ and zero page,X, except that they use the Y register 

instead. 

The absolute,X, absolute,Y, and zero page,X addressing 

modes are used by many 6502 instructions. Zero page,Y 

addressing is used by only two instructions, however— 

LDX and STX. 

Indirect Indexed Addressing 

Indirect indexed addressing, as the name implies, is a 

mixture of indirect addressing and indexed addressing. 

Notice that the word 4'indirect” is first, and the word 

“indexed” is next. In this form of addressing, the indirect 

part of the address calculation is accomplished first; then 

the indexing is taken into consideration. 

Refer to this form of the LDA instruction in the Data 

Transfer Instructions section of the Expanded Table of 6502 

Instructions Listed by Category. Remember the word or¬ 

der—indirect, then indexed; and notice the assembler no¬ 

tation—LDA ($aa),Y. 

To understand the assembler notation for this form of 

addressing, it helps to remember one of the rules of algebra. 

In algebra, expressions are read from left to right, and when 

parentheses are encountered, they are read from the inside 

to the outside. Let’s look at an example. 

LDA ($aa),Y 

The $aa stands for a two-digit hexadecimal address. Because 

only two digits are allowed, this address must be between 

0016 and FF16. At this address, and the one following it (aa 

and aa + 1), is a 16-bit address stored in reverse low-byte/ 

high-byte order. This address is then added to the Y register 

to produce the actual (effective) address where the operand 

(data) is stored. Notice that we worked our way from left 

to right and from the inside toward the outside as we 

analyzed this instruction. 

For example, let’s say that 

Y register = 1016 

memory location 2D = 00 

memory location 2E = CO 

If we write the instruction 

LDA ($2D),Y 

the microprocessor will look in addresses 2D and 2E and 

use their contents to form another address, C000. It will 

then take the number C00016 and add it to the Y register: 

C00016 + 1016 = C01016 

C010,6 is where the data is actually stored. 

334 Digital Computer Electronics 



To summarize, 

LDA ($aa),Y 

means 

LoaD the Accumulator with the contents 

of an address formed by adding the 

contents of memory location aa and aa + 1 

(low-byte/high-byte order) to the Y 

register. 

Indexed Indirect Addressing 

This form of addressing is also a mixture of indexed and 

indirect addressing, but it is the reverse of the previous 

indirect indexed addressing. 

It will be helpful here, as in the previous explanation, to 

think of how algebraic expressions are written, from left to 

right and from the inside to the outside. 

We will again use the LDA instruction. Look at the 

indexed indirect form of this instruction. In the Assembler 

Notation column it appears as 

LDA ($ff,X) 

In this form of addressing, the microprocessor takes the 

two-digit offset (ff16) and then adds it to the value found 

in the X register. (If the sum of ff and X is greater than 

FF16, the sum will be truncated so that only the two least 

significant digits remain.) The address formed by the sum 

of ff and the X register and the following address contain 

the effective address stored in reverse low-byte/high-byte 

order. 

Let’s try an example. If 

X register = 1016 

and we write the instruction 

LDA ($11,X) 

then the microprocessor will add 11]6 to the X register 

1 116 + 10l6 = 2116 

creating the address 2116. However, this is not where the 

operand (data) is stored! At addresses 2116 and 2216 the 

effective address is stored in reverse low-byte/high-byte 

order. So if 

memory location 21 = 00 

memory location 22 = CO 

then the address C000/6 is created. Memory address C00016 

does contain the operand! 

To summarize, 

LDA ($ff,X) 

means 

LoaD the Accumulator with the contents 

of the memory location pointed to by the 

contents of memory location ff + X and ff 

+ X + 1. 

21-3 6800/6808 FAMILY 

The 6800/6808 microprocessor has only two addressing 

modes which must be covered in this chapter—relative 

addressing and indexed addressing. (The 6800/6808 has no 

form of indirect addressing.) 

Relative Addressing 

The 6800/6808 uses relative addressing with all of its branch 

instructions. These fall into three instruction categories, 

Unconditional Jump (Branch) Instructions, Conditional Jump 

(Branch) Instructions, and Subroutine Instructions. This 

form of addressing works exactly as described in the New 

Concepts section of this chapter. (In fact, the 6800/6808 

was used as our example in that section.) 

Let’s go over this mode again by using the program 

fragment in Fig. 21-5. 

Since 0216 is a positive number, we branch forward by 

that many spaces starting with the memory location which 

will be pointed to by the program counter after the BRA 

instruction and its operand have been fetched. 

It is important to remember that the BRA operand is a 

2’s-complement signed binary number and thus can be 

either negative or positive within a range from -F 12710 to 

— 128I0. A negative number indicates a backward branch, 

and a positive number indicates a forward branch. 

Indexed Addressing 

The subject of indexed addressing, as discussed in the New 

Concepts section, was illustrated by using the 6800/6808. 

We present that information again here for your conven¬ 

ience. 

□ □ID 
□ □11 

2D 
□ 2 

BRA $(05) 

0012 □ 1 NOP- 
□ □13 □ 1 NOP 
□ □14 □ 1 NOP — 
□ DIB □ 1 NOP 

Fig. 21-5 An example of relative addressing. 
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One version of the 6800/6808’ s load accumulator A 

instruction looks like this 

LDAA $ff,X 

which means 

LoaD Accumulator A with the value in the 

memory location found by adding the 

contents of the X register to the 

hexadecimal offset ff. 

For example, if the X register contained the number 100016 

and the instruction were written as 

LDA $22,X 

we would calculate the address where the data was located 

in this way: 

X + ff = address 

100016 + 2216 = 102216 

We would go to address 1022 and place a copy of its 

contents in accumulator A. 

21-4 8080/8085/Z80 FAMILY 

The 8080/8085 microprocessor is easier to learn in some 

respects than the other 8-bit microprocessors. One reason 

is that the 8080/8085 has the fewest number of addressing 

modes. And while the 8080/8085 has the most number of 

different instructions (246, in contrast to the 6502 with 

only 56 and the 6800/6808 with 107), each instruction 

works with only one addressing mode (in contrast to the 

6502, which has some instructions which operate in as 

many as eight different addressing modes). 

As we talk about the 8080/8085/Z80 family, you should 

remember that although the Z80 is treated as a part of the 

8080/8085 family in this text, it is a significantly enhanced 

member of the 8080/8085 family. It has many multibyte 

instructions and several addressing modes which the 8080/ 

8085 does not have. At this time we will cover only those 

aspects of the Z80 which it has in common with the 8080/ 

8085. 

Register Indirect Addressing 

The only advanced addressing mode which the 8080/8085 

has is register indirect addressing. Although indirect ad¬ 

dressing was covered in the New Concepts section of this 

chapter, register indirect addressing was not covered since 

it is a variation of indirect addressing which, among the 

8-bit microprocessors, is unique to this family. 

Register indirect addressing uses the contents of a 16- 

bit register pair (most often the HL register pair) as a pointer 

for the operand. 

For example, refer to the Data Transfer Instructions 

section of the Expanded Table of 8085/8080 and Z80 (8080 

Subset) Instructions Listed by Category and look at the 

MOV A,M [Z80 = LD A,(HL)] instruction. (The MOV 

A,M instruction is the eighth instruction in this category.) 

The 8085 form is written 

MOV A,M 

which means 

MOVe to the Accumulator the number found 

at the Memory location pointed to by the 

HL register pair. 

The Z80 form is written 

LD A,(HL) 

which means 

LoaD the Accumulator with the number 

found at the memory location pointed to 

(parens) by the HL register pair. 

which says the same thing the 8085 form did but in different 

words. 

To give an example, if 

register pair HL = 100016 

and you entered MOV A,M [Z80 LD A,(HL)] into your 

assembler, the microprocessor would go to memory location 

100016 and place a copy of its contents in the accumulator. 

There are a few occasions when either the BC or the DE 

register pair is used instead of the HL pair. You may want 

to page through the Expanded Table of 8085/8080 and Z80 

(8080 Subset) Instructions Listed by Category to see some 

of the instructions that use this addressing mode. 

21-5 8086/8088 FAMILY 

Because the 8086/8088 is a 16-bit microprocessor, it uses 

a greater number of addressing modes than the 8-bit 

microprocessors, and the modes are more complex. We 

covered the basic 8086/8088 addressing modes in a previous 

chapter and will try to give a simple, yet sufficiently 

complete description of each of the advanced modes at this 

time. 
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Register Relative Addressing 

Register relative addressing uses two numbers, added 

together, to determine the address of the source. This form 

of addressing is especially useful in addressing arrays (tables 

of data). 

Some examples of register relative addressing using the 

format used by DEBUG (an MS-DOS utility which helps 

to kkdebug” programs and includes an assembler and 

disassembler) are 

MOV AL,[BX + 0100] 

MOV AX,[DI + 0200] 

MOV [SI+ 0500],CL 

MOV [BP + 20],BL 

MOV DI,[BX + 0400] 

Figure 21-6 illustrates how this form of addressing works. 

The instruction 

MOV AL,[BX + 0100] 

is used as an example. Notice first the brackets surrounding 

the BX + 0100. This is required by DEBUG and indicates 

that the two numbers added together (the value in register 

BX + 0100]6) will point to the location of the data being 

moved to AL. 

We can use the number in the source (0100) to indicate 

the location of the beginning of the table. The value in the 

register indicated in the source operand tells us which item 

in the table is the desired data item. 

Notice in Fig. 21-6 that 0100 is the beginning of the 

table and that 03 (the value in BX) is the data item we 

need. We need the fourth item in the table starting at 

address 0100. The contents of memory location 0103 (E3) 

have been copied to register AL. 

It is important to remember that we have added the 

displacement (0100) to the value in the indicated register 

(BX) to form an address (0103) in the current data segment! 

Program Relative Addressing 

Program relative addressing is used with JMP and CALL 

instructions. This mode specifies where the next program 

instruction is located without using absolute addressing. 

This allows you to write relocatable assembly-language 

programs. 

Figure 21-7 shows an 8086/8088 instruction which is not 

using program relative addressing. (We’ll show you program 

relative addressing in a moment.) This figure is using direct 

addressing. We have listed the same line of code three 

times. 

The first line shows the code as it appeared on our 

computer after being disassembled by DEBUG. 

The second line shows DEBUG’s disassembly broken 

into its major components. The address is the address of 

the current memory location. We did not type the address; 

DEBUG picked that address for us. The machine code 

contains the actual bits which will tell the 8086/8088 what 

to do. The assembly language is what we typed in when 

using DEBUG. 

The third line shows even greater detail. Notice that the 

code segment the program is to jump to (8888) and location 

within the segment (0100) are actually contained in the 

machine code (the bytes are reversed). 

Figure 21-8 shows a JMP instruction written using 

DEBUG which does use program relative addressing, 

instead of direct addressing as in Fig. 21-7. 

Line one shows the information as it appeared on our 

screen when disassembled by DEBUG. 

Line two illustrates the major components of the disas¬ 

sembly. We typed in the assembly language, and DEBUG 

provided us with the machine code. 

The third line shows the components in greater detail. 

The most interesting fact is that the address we specified 

as our target address is not the same as the address DEBUG 

generated. Let’s see what DEBUG did. 

The JMP op code, EB, is in memory location 0100 as 

indicated in the “location within segment’' portion of the 
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864E:0111 EA00018888 JMP 8888:0100 

|864E:0111 |EA00018888| | JMP 8888:0100 

Address Machine code Assembly language (DEBUG) 

Location within segment 

Fig. 21-7 Direct addressing. 

line. That means the next byte, OE, is in address 0101. 

(DEBUG does not show the 0101.) Therefore, the next 

instruction is at memory location 0102. 

How far is it from memory location 0102 to our target 

address of 0110? Remember, these are hexadecimal num¬ 

bers. 

011016 - 010216 = El6 

To reach the target address of 0110, the microprocessor 

will have to jump forward a number of spaces from the 

point (the instruction) at which the instruction pointer is 

pointing when this instruction is executed; the number of 

spaces is E16. The 0E in Fig. 21-8 was calculated by 

DEBUG as the position of our target relative to where the 

instruction pointer will be when this instruction is being 

executed. 

Relative addressing tells the microprocessor how far to 

jump forward or backward from the instruction after the 

JMP instruction. The next instruction is used because the 

instruction pointer always points to the next instruction to 

be executed. 

Location within segment to jump to 

A positive relative address signifies a jump forward; a 

negative relative address signifies a jump backward. 

Register Indirect Addressing 

Register indirect addressing uses a register to point to a 

memory location rather than specifying that location di¬ 

rectly. BX, BP, SI, and DI are used as pointers. All of 

them except BP point to locations in the data segment; BP 

points to a location in the stack segment. The registers can 

point to either the source or the destination operand. 

An assembly-language instruction which uses indirect 

addressing is shown in Fig. 21-9. 

The format of the instruction line in bold print in Fig. 

21-9 is the format that DEBUG uses. (The code segment 

on your computer will probably not be the same as the one 

shown in Fig. 21-9.) 

Most of the different components of the instruction line 

in bold have been identified in the figure. [BX] is labeled 

as the source. The brackets around BX indicate that the 

operand is not the contents of BX; rather the operand will 

be found at the address pointed to by BX. 

864E:0100 EB0E JMP 0110 

|864E:0100| | EB0E | | JMP 0110 

Address Machine code Assembly language (DEBUG) 

Code segment | JMP op code | Address specified 

Location within segment Relative address generated by DEBUG 

Fig. 21-8 Program relative addressing. 
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0100 

0101 

0102 

0103 

0104 

0105 

0106 

0107 

0108 

0109 

010A 

Memory 

8B 

07 

hh 

hh 

hh 

hh 

hh 

hh 

AA 

BB 

hh 

- Code segment 

82CC:0100 8B07 

Address-1 Machine 
within segment code 

AA replaces hh- 

BB replaces hh - 

BX- 
points I 

to memory 
location 0108 

Source 
destination - 

MOV AX,| [BX] 

Assembly 
language 

■ Accumulator AX ■ 

AH 

- hh 

AL 

hh 
Base BX 

BH 

01 

BL 

08 

Fig. 21-9 Register indirect addressing. 

If you look at the contents of BX, you will see the value 

0108. That means that the actual operand is in memory 

location 0108. In this case we are moving a 16-bit word 

rather than an 8-bit byte. Since it takes two memory 

locations to hold a whole word, we will find the operand 

in locations 0108 and 0109. The 16-bit values in locations 

0108 and 0109 are copied into AX, which is the destination. 

Figure 21-10 is a screen dump of Fig. 21-9 obtained by 

using DEBUG. 

In the first line 

-d 100 lOf 

tells DEBUG to “dump” the contents of memory locations 

010016 through 010F16 to the screen so that we can see 

them. The hyphen halfway through the memory dump 

separates those 16 bytes into two sections to make the 

display easier to read. We have shown the contents of 

locations 0100 and 0101 in bold because they are the object 

code for the 

MOV AX,[BX] 

instruction. The contents of memory locations 0108 and 

0109 are in bold because they are the locations being pointed 

to by register BX. 

The -r tells DEBUG to display its registers. We have 

shown the contents of registers AX and BX in bold in this 

illustration because they are the two registers being referred 

to in this example. 

The -t is the DEBUG trace command. This tells DEBUG 

to execute the next instruction and then stop. The next 

instruction is 

MOV AX,[BX] 

Notice the contents of register AX after the trace command. 

The contents of memory locations 0108 and 0109 have 

been copied to register AX as was illustrated in Fig. 21-9. 

Take some time to compare Figs. 21-9 and 21-10. You 

may notice that the code segments in the two figures differ. 

That’s because we created the figures on two different days, 

and the memory arrangement in our computer was not 

exactly the same both days. This is normal and something 

you should expect to see as you try these figures and 

-a mu mt 
HDES:AB D7 □□ □□ □□ □□ □□ 00-AA BB □□ □□ DO □□ 0Q □□ 

-r 
AX=DD00 BX=D10A 
DS=qDEq es^deh 
HDEH:0100 ABD7 

CX=00DD DX=DDDD SP—FDbE 
ss=qoEq cs^qopq ip=didd 

MOV AX,[BX1 

BP=D00Q SI=0000 DI=000D 
NV UP El PL NZ NA PO NC 

DS:010A-BBAA 

-t 

AX=BBAA BX=D1DA CX^ODOn DX=DDGD SP=FDLE 
DS-qnaq ES=qoEs ss=R0Eq cs^hdeh ip=dide 
RDEG:010E □□□□ ADD [BX+SI],AL 

Fig. 21-10 DEBUG screen dump of Fig. 21-9. 

BP=0D00 SI=000D DI=D0DD 
NV UP El PL NZ NA PO NC 

DS:DIDA=AA 
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examples on your computer. Everything will be the same 

except the code segment, and that will almost never match 
ours. 

Again, in the case of register indirect addressing, at least 

one of the operands is in a memory location pointed to by 

the value in a register (BX, BP, SI, DI). 

Program Indirect Addressing 

Program indirect addressing is used by CALL and JMP 

instructions. It allows the memory location where the 

program is to fetch its next instruction to be stored in a 

register, in a memory location pointed to by a register, or 

in a memory location pointed to by a register with a 

displacement. 

Normally instructions are stored in memory in sequential 

order, with the microprocessor fetching one after another. 

When a JMP instruction uses direct addressing, the address 

the microprocessor is to jump to is placed immediately after 

the jump instruction itself. 

A CALL instruction causes the microprocessor to go to 

another area of memory where a subroutine is stored, 

execute the subroutine, and then return to where it left off 

before it began the subroutine. The CALL, like the JMP 

instruction, can use direct addressing and place the location 

of the subroutine immediately after the CALL instruction. 

When either the CALL or the JMP instruction uses one 

of the 16-bit registers (AX, BX, CX, DX, SP, BP, SI, or 

DI), it means that the destination for the JMP or CALL is 

located in that register. For example 

JMP AX 

instructs the microprocessor to look in register AX and 

jump to the location stored in AX. That is, AX “points” 

to the correct memory location. 

When either the JMP or the CALL instruction uses a 

register placed inside brackets ([BX], [BP], [SI], or [DI]), 

it means that register contains an address, and that address 

contains another address, which is the actual destination 

for the JMP or CALL. For example, 

JMP [BX] 

instructs the microprocessor to look in register BX. Let's 

say BX = 0200. Next the microprocessor looks at address 

0200 and 0201. There it will find another address which is 

its actual destination. 

When either the JMP or the CALL instruction uses one 

of the registers with brackets ([BX], [BP], [SI], or [DI]) 

and a displacement, the microprocessor is instructed to add 

the displacement to the contents of the register, forming an 

address, and then to look at thax address and get another 

address, which is the actual destination. For example 

JMP [BX + 0100] 

instructs the microprocessor to add 010016 to the value in 

BX. Let’s say that BX contains 0500J6. 

050016 + 010016 = 060016 

The microprocessor now looks in addresses 0600 and 0601 

and gets another address. This is the destination address 

where the next instruction is to be fetched or the subroutine 

begins. 

Base plus Index Addressing 

Base plus index addressing also uses the concept of cal¬ 

culating the address where data is located rather than using 

direct addressing, which explicitly states where the data is 

located. 

When base plus index addressing is used, the contents 

of one of the base registers (either BX or BP) and the 

contents of one of the index registers (either SI or DI) are 

added to calculate the address of the operand. For example, 

MOV AX,[BX + DI] 

instructs the microprocessor to add the value in register BX 

to the value in register DI. This sum is the location of the 

data which is to be copied into register AX. This is illustrated 

in Fig. 21-11. 

Base plus index addressing is useful for working with 

tables of data. The base register (BX or BP) can point to 

the beginning of the data table. The index register (SI or 

DI) can then point to the specific piece of data within the 

table. The program can then increment or decrement the 

index register to point to the next or preceding piece of 

data in the table. 

Base Relative plus Index Addressing 

Base relative plus index addressing combines the features 

of base plus index addressing and register relative address¬ 

ing. Examples of base relative plus index addressing are 

MOV DX,[BX + SI+10] 

MOV [BX + DI + 20],AX 

In the first example, the microprocessor would add the 

values in registers BX and SI and the number 1016. The 

sum is the memory location of the data which is to be 

copied into register DX. 

In the second example, the microprocessor would copy 

the contents of register AX to a memory location whose 

address would be calculated by finding the sum of 2016, 

the value in register BX, and the value in register DI. 
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Fig. 21-11 Base plus index addressing. 

1 his addressing mode is useful for working with two- desired data (for example, a field within a record within a 

dimensional data tables. The displacement (the number) file, or a specific piece of data in a data table). The program 

can point to the beginning of the table, since this is the can then increment or decrement the base register to point 

constant value. The base register (BX) can point to the first to the next or previous record in the file and increment or 

of the two dimensions (for example, a record in a file or decrement the index register to point to the next or previous 

an area in a data table). The index register (SI or Dl) can field in the record, 

then point to the specific memory location containing the 
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Branching and Loops 

In this chapter we’ll study branching and loops. A branch 

instruction (or jump instruction) causes the program to 

“skip” forward or backward and to execute instructions 

from this new memory location. 

A loop involves executing a series of microprocessor 

instructions and then branching backward to repeat the same 

set of instructions. This “loop” is finally broken, or exited 

from, when some condition is met. 

The previous chapter introduced you to the remainder of 

the addressing modes (the more difficult ones) which had 

not been covered in the earlier chapter on addressing. From 

this point on we will use many of the different types of 

addressing modes available to each microprocessor. You 

should refer back to either of the chapters on addressing 

whenever necessary. 

New Concepts 
We’ll study unconditional branching (or jumping) first; then 

we’ll discuss the slightly more difficult subject of conditional 

branching. Later we’ll look at loops and how to control 

them through the use of conditions and counters. 

22-1 UNCONDITIONAL JUMPS 

The simplest type of branch or jump is an unconditional 

one. This means that the program will jump to the indicated 

memory location every time this part of the program is run. 

The jump can be forward or backward. 

With unconditional jumps, most of the microprocessors 

featured in this text use some form of direct or indirect 

addressing to indicate where the next instruction should be 

fetched from. The exceptions to this are the 6800/6808, 

which can also use relative addressing, and the 8086/8088, 

which also uses relative addressing, at least for jumps 

within a single memory segment. 

To jump forward, you simply indicate the address of the 

next instruction to be executed. WeTl look at exactly how 

the different addressing modes are used in the Specific 

Microprocessor Families section of this chapter. 

22-2 CONDITIONAL BRANCHING 

Conditional branching, like unconditional branching, causes 

program execution to continue with an instruction which is 

not the next instruction in memory. We either skip forward 

or backward from where we are now. Whether or not 

program execution does skip depends on a certain condition. 

The microprocessor determines whether a condition is 

true or not true by the condition of the flags. To be able to 

predict whether or not a condition will be true when the 

microprocessor reaches the point at which the conditional 

branch occurs, one must know how the preceding instruc¬ 

tions affect the flags. How each instruction affects each of 

the flags is shown in several of the instruction-set tables 

for each microprocessor. 

When we branch forward, we have the effect of skipping 

over a certain number of instructions, if certain conditions 

exist, and not skipping over them if those conditions do 

not exist. Figure 22-1 shows a generic example of branching 

forward. 
When we branch backward, the instructions between 

where we branched from and where we branched to are 

executed again. They could in fact be executed many times. 

This creates a loop which will not be exited from until 

some condition is met. Figure 22-2 shows a generic example 

of branching backward. 

In Fig. 22-2, we are not branching backward from address 

0009 because of the instruction at that memory location. 

Rather, we are branching backward because of the instruc- 



□ 000 INSTRUCTION 

0001 DATA 

□ 000 INSTRUCTION 

0003 DATA 

0004 INSTRUCTION 
0005 INSTRUCTION 

□ 000 INSTRUCTION 

0007 COND JUMP 

□ □□A □ 0 A0 

This area is skipped over if 
condition exits. If condition 
doesn't exist, this area is not 
skipped over. 

□ 0 A0 INSTRUCTION 

□ 0A1 DATA 

□ 0 A0 INSTRUCTION 

□ 0 A3 END 

Fig. 22-1 Example of generic forward conditional jump. 

tion at location 0007 and the address at location 0008. The 

arrow is drawn from location 0009 because that will be the 

instruction pointed to by the program counter or instruction 

pointer when the branch occurs. Remember, the instruction 

pointer or program counter points to the next instruction to 

be executed, not the one currently being executed. 

22-3 COMPARE AND TEST 
INSTRUCTIONS 

Many (but not all) microprocessor instructions affect the 

flags. The flags then tell something about the results of the 

instruction. There are instructions, however, compare and 

test instructions, which actually do nothing except affect 

flags. 

For example, the arithmetic instructions actually accom¬ 

plish some task, such as adding, subtracting, multiplying, 

or dividing, and also affect the flags depending on the result 

of the operation. Compare and test instructions, however, 

compare a register or memory location to another, to zero, 

or and two registers, without producing any result or 

changing any register or memory location—that is, no 

answer is produced. The flags, however, respond just as if 

an answer had been produced. A conditional branch instruc¬ 

tion can then check the flags and determine whether a 

certain condition is true or false and then branch or not 

branch accordingly. 

22-4 INCREMENT AND DECREMENT 
INSTRUCTIONS 

Sometimes you may want to repeat a section of your 

program a certain number of times. A register or memory 

location is used to count how many times the section has 

been repeated. This register or memory location being used 

as a counter can either count up (increment) to a certain 

value or count down (decrement) to a certain value. Since 

it is easy to test for the occurrence of zero (just check the 

zero flag), counters often start at a certain number and 

decrement to zero. When the counter reaches zero, we 

know how many times that section of the program has 
repeated. 

This technique produces a loop and uses conditional 

branching in a way that is similar to that discussed in the 

last section, although the intent is a little different. In the 

last section we were talking about situations when you want 

to branch if an operation produces a certain result. In this 

section we are discussing situations when we simply want 

something to be repeated a certain number of times. 

22-5 NESTED LOOPS 

It’s possible to nest loops one inside the other. Figure 

22-3 shows what this looks like. 

The operand immediately following the conditional branch 

instruction may not be the actual address to branch to but 

rather the value needed by some other form of addressing 

such as relative addressing. 

Remember also that we do not branch from the memory 

location containing the conditional branch instruction; nor 

do we branch from the next address which determines 

where we branch to, but from the instruction after that. 

In Fig. 22-3 you can see that an inner loop will be 

repeated until the conditions necessary for the program to 

“drop through” the bottom of the loop exist, in which case 

the program may go back to the beginning of the outer 

loop, depending again on the conditions which exist. 

0000 INSTRUCTION 
□ □□1 DATA 

□ □□E INSTRUCTION 
□ □□3 DATA 
0004 INSTRUCTION 
0005 INSTRUCTION 
□ 00b INSTRUCTION 
0007 COND JUMP 
00 0 A □ 000 
□ ooq INSTRUCTION 

Fig. 22-2 Example of generic backward conditional jump. 

This area is repeated if certain 
condition exists. This area is not 
repeated if condition does not 
exist. 
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□ □□□ INSTRUCTION - 

□□01 data 
□□□0 INSTRUCTION 

□003 data 
□ □□4 INSTRUCTION 

□□□5 data 
□ □□0 INSTRUCTION - 

□□□7 data 
□□□fl INSTRUCTION 

□□□3 data 
□ □□A CONDITIONAL BRANCH BACKWARDS 
□□□B □□□L 

□□□C INSTRUCTION - 
□□□D data 
□ □□E INSTRUCTION 

□□□E data 
□□ID CONDITIONAL BRANCH BACKWARDS 
□□11 □□□□ 
□012 INSTRUCTION - 

Fig. 22-3 Generic nested loops. 

Specific Microprocessor 
Families 
Let’s look at each of our microprocessors’ instructions to 

see how branching and loops are handled. 

22-6 6502 FAMILY 

The 6502 microprocessor family has a variety of instructions 

to handle unconditional jumps, conditional branching, com¬ 

paring, incrementing, and decrementing. We’ll look at 

several tasks and see how the 6502 microprocessor handles 

them. 

You should enter each program into your computer or 

microprocessor trainer and single-step through it, watching 

the appropriate registers, memory locations, and flags to 

understand how each program works. 

Unconditional Jumps 

The forward unconditional jump using absolute addressing 

is easiest to understand. An example is shown in Fig. 

22-4. 

The program begins by loading the accumulator with 

FF16. In a moment we are going to subtract another number 

from FF16. First, however, we need to jump to the area of 

memory where the subtract instruction is. We have placed 

the subtract instruction several memory locations forward 

from this point to show, in a very simple manner, how the 

unconditional jump instruction operates. 

The next instruction is our jump instruction. In the source 

code column of line 0004 the instruction 

JMP MINUS 

appears, which might be different from what you were 

expecting. 

The instruction is saying to jump to a place called 

MINUS. To be able to jump to a place with a certain name 

is not a native ability of the 6502 microprocessor. Our 

assembler is making this possible. Line 0008 has the label 

MINUS in the label column. This is the place we want to 

jump to. Notice the address at the MINUS label. The 

address is 0348. Now look back at line 0004. In the op 

code column you see 4C, which is the op code for an 

unconditional jump. Then come the numbers 48 03. If you 

reverse those two sets of numbers, you have 0348. This is 

the memory location of the instruction labeled MINUS. If 

you use an assembler, you can use labels and the assembler 

will calculate the address for you. If you are hand-assembling 

these programs, you must enter the address as shown in 

the op code column, in the reverse low-byte/high-byte 

order. If you are using an assembler which does not allow 

labels, you will need to use the format shown in the 6502 

tables. Namely, 

JMP $0348 

□ □□1 □ 340 . org $□340 ;beginning of code 
□□□a □ 34D 
□ □□3 □ 34D A3 FE START: LDA #$FF ;minuend 
□ □□4 □ 343 4 C 4a □ 3 JMP MINUS ;forward unconditional jump 
□ □□5 □ 345 EA NOP 
□ □□£> □ 34 L EA NOP ;misc. instructions 
□ □□? □ 347 EA NOP 
□ □□a □ 34a 3a MINUS: SEC jprepare for subtraction 
□ □□□ □ 345 E5 EE SBC #$EE ;subtrahend 

□ □ID □ 34B aD 4 F □ 3 STA ANSWER ;store difference 
□ □11 □ 34E □□ BRK ; stop 
□Die □ 34F 
□ □13 □ 34F □□ ANSWER .db $□□ ;memory area for answer 
□ □14 □ 35D ; (initialized to □□) 
□ □15 □ 3 5 □ . end 

Fig. 22-4 Forward unconditional jump with the 6502 
microprocessor. 
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After the jump instruction are several NOPs which could 

be other instructions or just unused memory in a particular 

microprocessor system. 

Line 0008 is the next instruction to be executed. It sets 

the carry flag in preparation for the subtraction instruction. 

In line 0009 we subtract EE16 from FF16 (in the accumulator). 

In line 0010 we store the result of our subtraction in a 

memory location called ANSWER. Look at line 0013, labeled 

ANSWER. In the op code column are the initials .db. They 

stand for define byte. We are telling the assembler to reserve 

a memory location, namely, a single byte of memory, with 

the name ANSWER. The assembler is initializing the 

memory location ANSWER with a value of 0. Our program 

can then put any other number we wish in that location. 

Notice also that the memory location of ANSWER is 

034F16. In the op code column of line 0010 we see 8D 4F 

03. 8D is the op code for storing the value of the accumulator 

in a certain memory location. If you reverse the order of 

4F 03, you have 034F, which is the memory location of 

ANSWER. Again, the assembler made life simpler by 

figuring out where the next available memory location 

would be and setting aside that location for the ANSWER. 

Finally, in line 0011 the program stops. 

You should enter this program and single-step through 

it, making sure that everything works as described. 

Conditional Branches 

Now let’s see an example of conditional branching. Figure 

22-5 shows such an example. 

In this program we are going to do several things 

differently from the way they were done in the last program. 

First, we are using a conditional jump or branch rather than 

an unconditional one. Second, we are branching backward 

rather than forward. Third, we are creating a loop by 

branching backward and repeating a section of the program. 

Finally, we are using a register as a counter to control how 

many times the loop repeats. 

In line 0003 we place the number 316 in the X register. 

This register controls how many times we will branch 

backward. In line 0004 we clear the Y register making it 

00,6 so that it can be used to count how many times the 

loop repeats. 

Line 0005 marks the beginning of the loop; we have 

named that location REPEAT. In this line we increment the 

Y register since we are beginning to pass through the loop, 

in this case for the first time. The Y register is keeping 

track of how many times the loop is passed through. Line 

0006 represents the fact that there could be many instructions 

inside the loop which are going to be repeated. 

Line 0007 decrements (reduces by 1) the X register. The 

X register keeps track of how many times through the loop 

are remaining. 

Line 0008 is where we meet our conditional branch 

instruction. BNE means Branch if Not Equal. Your first 

thought might be, “Not equal to what?” If you check the 

Expanded Table for the 6502, you’ll see it is Branch if the 

last result is Not Equal to 0. 

All the conditional branch instructions are influenced by 

the most recent instruction that affected the flag they check. 

In this case the zero flag is checked. What was the last 

instruction which sets or clears the zero flag? The DEX 

(DEcrement X register) instruction. If the X register were 

reduced to 0, the zero flag would be set. Has the X register 

been reduced to 0? On this first pass through the loop, it 

gets reduced from 3 to 2. No, the X register is not equal 

to 0. 

The branch instruction says, “Branch if the last result is 

Not Equal to 0.” Clearly this is true: the last result is not 

0, so we branch. Branch to where? We branch to the 

memory location known as REPEAT. Notice that the location 

called REPEAT, in line 0005, is memory location 034416. 

Now look again at line 0008. DO is the op code for the 

BNE instruction, and FB is where it is branching to. Is FB 

the memory location of REPEAT? No. The BNE instruction 

uses relative addressing. FB]6 is a negative-signed binary 

number telling us how many places to move from where 

we are now. FBi6 is — 510. We must branch five memory 

location backward from memory location 034916. 

It will be helpful to enter this program into your computer 

or microprocessor trainer and single-step through it. We’ve 

gone through the loop only once in our discussion here. 

□ □□1 □ 34D .ORG $□340 
□ □□a □ 340 
□ □□3 □ 34 □ AE □ 3 START: LDX *$□3 ;initialize X (repeats) 
□ □□4 □34 a AD □ □ LDY #$□□ jinitialize Y 
□ □□5 □ 344 CB REPEAT: INY ;times loop has repeated 
□ □□□ □ 345 EA NOP ;misc instructions 
□ □□? □ 341 CA DEX jdecrement X 
□□□a □ 347 DO FB BNE REPEAT ;if X not equal to □ then 
□□□3 □ 343 ; branch back to start of 
□ □10 □ 343 ; loop 
□ □ii □ 343 □ □ BRK ; stop 
□ DIE □ 34 A 
□ □13 □ 34 A .END 

Fig. 22-5 A backward conditional jump creating a loop 
with the 6502 microprocessor. 
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Pay special attention to the X register, the Y register, and 

the zero flag. 

Compare Instructions 

The compare instructions allow us to compare the values 

in two registers and/or memory locations, and to set the 

flags accordingly, without changing either of the original 

values. The appropriate branch instruction can then cause 

program execution to continue at the desired location. The 

program in Fig. 22-6 will allow you to observe the compare 

instructions. 

The program simply loads the value 0516 into the accu¬ 

mulator and compares the numbers 0416, 0616, and 0516 to 

it. If you will refer to the Expanded Table of 6502 

Instructions and look in the Operation column, you will 

see what we mean by “compare.” 

To “compare” means to subtract the number you are 

“comparing” from the number being “compared to.” For 

example, line 0004 of the program in Fig. 22-6 sets the 

flags as though 04l6 had been subtracted from 0516, without 

actually changing the value in the accumulator. 

Lines 0005 and 0006 likewise subtract 0616 and 0516, 

respectively, from the value in the accumulator without 

altering the accumulator. 

A point needs to be made at this time about the carry 

flag in the 6502 microprocessor. Most microprocessors set 

a flag (value of 1) to say, “Yes, this condition exists.” 

For example, setting the zero flag (value of I) means, 

“Yes, the last value (or current value) is a zero.” When a 

flag is reset (value of zero) it means “No, this condition 

does not exist.” 

The 6502 handles the carry flag in an unusual way. It is 

inverted. After addition this flag will appear as expected. 

A 1 means that a carry occurred, and a 0 means that a 

carry did not occur. After subtraction, however, a 1 means 

that a borrow did not occur, and a 0 means that a borrow 

did occur. Be careful to remember this exception when 

using 6502 compare instructions to prepare for branch 

instructions. 

This program’s only purpose is to allow you to see how 

the flags are affected by each compare instruction. Enter 

the program and single-step through it. Watch the flags 

after each instruction and make sure that you understand 

why they react the way they do. 

An Example Program 

We’ll now look at an example program which uses a com¬ 

pare instruction, increment instructions, and a conditional 

branch instruction. This program looks at two numbers in 

memory, determines which is larger, and then places the 

larger value in a third memory location. It also uses a form 

of indexed addressing. Refer to Fig. 22-7 at this time. 

After entering this program into your computer or trainer, 

but before running it, you must place values of your choice 

into the two memory locations indicated in the notes at the 

beginning of the program. 

This program uses the X register to help point to the 

next memory location to load a number from or store a 

number in. The first instruction in line 0008 initializes the 

X register with a value of 0016. 

Memory location 03A016 is the beginning of a series of 

memory locations which this program uses. A common 

way to address successive memory locations is to use some 

form of indexed addressing. Location 03A016 is the begin¬ 

ning of the list, and the X register will point to each 

successive number in the list. In line 0009 we load the 

accumulator with the first number from the list. The memory 

location of this number is formed by adding 03A016 to the 

value of the X register, which is 0016 at this moment, to 

form the address of the first number in the list, in location 

03A016. 

In line 0010 we increment the X register to a value of 

0116 so that it points to the next number. 

In line 0011 we compare the value held in memory 

location 03A116 to the value in the accumulator. If the value 

in the accumulator is larger, then no borrow will be needed 

to perform the comparison (which involves subtraction). 

Therefore the carry flag will be set. 

We find in line 0012 that, if the carry flag is set, then 

we branch forward to line 0014. This will be the case if 

the value in the accumulator is the larger value. In line 

0014 the X register is incremented so that it points to the 

last memory location. In line 0015 we store the value now 

in the accumulator in that final memory location. 

If during the comparison in line 0011 the value in the 

accumulator is smaller, a borrow is required to perform the 

comparison (involving subtraction) and the carry flag is 

cleared. In line 0012 the carry flag is not set and the branch 

does not occur. Therefore, the next instruction in line 0013 

is executed. This instruction loads the second number into 

□ □Dl □ 34D .org $D34□ 
□ □□5 □ 34D 
□ □□3 □ 340 A3 □ 5 START: LDA 
□ □□4 □ 342 C3 □ 4 CMP #$D4 
□ □□5 □ 344 C9 □ b CMP *$Db 
□ □□b □ 34 b C9 □ 5 CMP #$05 
□ 0 □? □ 34 A □ □ BRK 
OOOfl □ 34 3 
□ □□4 □ 343 . end 

Fig. 22-6 Using the compare instruction. 

initial value 
compare each of these numbers 

to A and set flags as though 
each had been subtracted from A 
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□ 001 
□ □□e 
□ □03 
□ □□4 

□ □□5 
□ not 
□ □□? 

□ □□□ 
□ ODD 
□ □□□ 
□ 000 
0000 

□ 34D 
□ 34D 

;place a number in memory location $0340 and another in $D3A1, 
, this program will determine which is larger and place 
, the larger in location $03AE (Note: Do not use two 
; numbers which are equal.) 

.org $D34 0 

□ □□A □ 340 AE □ □ START: LDX #$00 
□ □□3 □ 34 E BD AD □ 3 LD A $03A0 , X 
□ 010 0345 EA I NX 
□ on □ 341 DD AD □ 3 CMP $03 A0 , X 

□ DIE □ 34 3 BD □ 3 BCS FOUND 
□ 013 034B BD AD 03 LDA $03A0, X 

□ 014 034E EA FOUND: INX 
0015 034F 3D A0 03 STA $03A0, X 
□ □It 035E □ □ BRK 
0017 □ 353 
001A □ 353 .end 

;initialize X register 
I load A from mem 03AD + □□ = 03AD 
;point to next mem loc 
;compare data in mem D3AD + 

□1 = D3A1 to A 
;if A is larger jump forward to Found; 
; otherwise load A from mem 03A0 + 

□1 = 03A1 
;point to next mem loc 
;store A in mem 03A0 + 0E = 03A3 
; stop 

Fig. 22-7 An example 6502 program. 

the accumulator. Obviously, if the first number is not the 

larger, the second one must be. After loading the accu¬ 

mulator with the second number in line 0013, we continue 

in lines 0014 and 0015 to store that value in the third 
memory location. 

This program will give you an idea how to use some of 

the new instructions in this chapter and how to use indexed 
addressing. 

22-7 6800/6808 FAMILY 

The 6800/6808 microprocessor family has a variety of 

instructions to handle unconditional jumps and branches, 

conditional branching, comparing, incrementing, and dec¬ 

rementing. We’ll look at several tasks and see how the 

6800/6808 microprocessor handles them. 

You should enter each program into your computer or 

microprocessor trainer and single-step through it, watching 

the appropriate registers, memory locations, and flags to 

understand how each program works. 

Unconditional Jumps 

The forward unconditional jump using extended addressing 

is probably easiest to understand. An example is shown in 
Fig. 22-8. 

(Technical Note: We have started this program at address 

010016 rather than our usual 000016. Addresses from 000016 

to 00FF,6 form page 0 of memory. Some instructions can 

use direct addressing, if the desired location is on page 0, 

or extended addressing, if the desired location is on a 

memory page other than page 0. Our particular assembler 

had trouble handling forward references on page 0. Switch¬ 

ing to a page other than page 0 provided a simple solution 

to this problem.) 

The program begins by loading accumulator A with FF16. 

In a moment we are gong to subtract another number from 

this one. First we need to jump to the area of memory 

where the subtract instruction is. We have placed the 

subtract instruction several memory locations forward from 

this point to show, in a very simple manner, how the 

unconditional jump instruction operates. 

0001 □ !□□ . org $□!□□ 
□ DDE □ 100 
□ 003 □ 100 At FF START: LDA A *$FF 
0004 010E 7E 01 □ A JMP MINUS 
□ □□5 □ 105 □ 1 NOP 
□ oot □ IDt □ 1 NOP 
□ 007 □ 107 □ 1 NOP 
□ □□A □ IDA A0 EE MINUS: SUBA #$EE 
□ □□3 □ 10 A B7 □ 1 □ E ST A A ANSWER 
0010 □ 1DD 3E WAI 
□ □11 010E 
□ □IE □ 10E 00 ANSWER .db $□□ 
□ □13 □ IDF 
□ □14 □ 10F . end 

Fig. 22-8 Forward unconditional jump with the 6800/6808 
microprocessor. (Note that address is $0100 rather than 
$0000. This prevents an assembler error caused by a 
forward reference to a label on zero page.) 

;beginning of code 

;minuend 
;forward unconditional jump 

;misc. instructions 

;subtrahend 
;store difference 
; stop 

;memory area for answer 
; (initialized to □□) 
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The next instruction is our jump instruction. In the source 

code column of line 0004 the instruction 

JMP MINUS 

appears, which might be different than what you were 

expecting. 

The instruction is saying to jump to a place called 

MINUS. To be able to jump to a place with a certain name 

is not a native ability of the 6800/6808 microprocessor. 

Our assembler is making this possible. Line 0008 has the 

label MINUS in the label column. This is the place we 

want to jump to. Notice the address at the MINUS label. 

The address is 0108. Now look back at line 0004. In the 

op code column you see 7E, which is the op code for an 

unconditional jump. Then come the numbers 01 08. This 

is the memory location of the instruction labeled MINUS. 

If you use an assembler, you can use labels and the 

assembler will calculate the address for you. If you are 

hand-assembling these programs, you must enter the address 

as shown in the op code column. If you are using an 

assembler which does not allow labels, you will need to 

use the format shown in the 6800/6808 instruction-set 

tables. Namely 

JMP $0108 

After the jump instruction are several NOPs which could 

be other instructions or just unused memory in a particular 

microprocessor system. 

In line 0008 we subtract EE16 from FF16 (in accumulator 

A). In line 0009 we store the result of our subtraction in a 

memory location called ANSWER. Look at line 0012, 

labeled ANSWER. In the op code column are the initials 

.db. They stand for define byte. We are telling the assembler 

to reserve a memory location, namely, a single byte of 

memory, with the name ANSWER. The assembler is 

initializing the memory location ANSWER with a value of 

0. Our program can then put any other number we wish in 

that location. 

Notice also that the memory location of ANSWER is 

010E16. In the op code column of line 0009 we see B7 01 

0E. The op code for storing the value of the accumulator 

in a certain memory location is B7. 010E is the memory 

location of ANSWER. Again, the assembler made life 

simpler by figuring out where the next available memory 

location would be and setting aside that location for the 

ANSWER. 

Finally, in line 0010 the program stops. 

You should enter this program and single-step through 

it, making sure everything works as described. 

Conditional Branches 

Now let’s see an example of conditional branching. Figure 

22-9 shows such an example. 

In this program we are going to do several things 

differently from the way they were done in the last program. 

First, we are using a conditional jump or branch rather than 

an unconditional one. Second, we are branching backward 

rather than forward. Third, we are creating a loop by 

branching backward and repeating a section of the program. 

Finally, we are using a register as a counter to control how 

many times the loop repeats. 

In line 0003 we place the number 3]6 in the X register. 

This register controls how many times we will branch 

backward. In line 0004 we clear accumulator B, making it 

0016 so that it can be used to count how many times the 

loop repeats. 

Line 0005 marks the beginning of the loop, and we have 

named that location REPEAT. In this line we increment 

accumulator B since we are beginning to pass through the 

loop, in this case for the first time. Accumulator B is 

keeping track of how many times the loop is passed through. 

Line 0006 represents the fact that there could be many 

instructions inside this loop which are going to be repeated. 

Line 0007 decrements (reduces by 1) the X register. The 

X register keeps track of how many times to go through 

the loop remain. 

Line 0008 is where we meet our conditional branch 

instruction. BNE means Branch if Not Equal. Your first 

thought might be, “Not equal to what?” If you check the 

Expanded Table for the 6800/6808, you’ll see that it is 

Branch if Not Equal to 0. 

□ □□1 □ ODD .ORG $□□□□ 
□ □□5 □ □00 
□ 003 □ □□□ CE □ □ 03 START: LDX #$DDD3 ;initialize X (repeats) 

□ 004 □ 003 Ct □ 0 LDAB *$00 initialize B 

0005 □ □□5 5C REPEAT: INCB ;times loop has repeated 

□ 000 □ □□£> □ 1 NOP ;misc. instructions 

0007 □ □07 □ 3 DEX ;decrement X 

□ □□a □ □□a E0 FB BNE REPEAT ;iT X not equal to □ then 

□ □□3 □ □□A ; branch back to start of 

0010 □ □□A ; loop 

□ Oil □ □□A 3E WAI ; stop 

ooia □ DOB 
□ 013 □ 00B .END 

Fig. 22-9 A backward conditional jump creating a loop 
with the 6502 microprocessor. 
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All the conditional branch instructions are influenced by 
the most recent instruction that affected the flag they check. 
In this case the zero flag is checked. What was the last 
instruction which sets or clears the zero flag? The DEX 
(DEcrement X register) instruction. If the X register was 
reduced to 0, the zero flag would be set. Has the X register 
been reduced to 0? On this first pass through the loop, it 
gets reduced from 3 to 2. No, the X register is not equal 
to 0. 

The branch instruction says, “Branch if Not Equal to 
0.” Clearly this is true: the last result is not 0, so we 
branch. Branch to where? We branch to the memory location 
known as REPEAT. Notice that the location called RE¬ 
PEAT, in line 0005, is memory location 000516. Now look 
again at line 0008. The op code for the BNE instruction is 
26, and FB is where it’s branching to. Is FB the memory 
location of REPEAT? No. The BNE instruction uses relative 
addressing. FB]6 is a negative-signed binary number telling 
us how many places to move from where we are now. FB16 
is 510. We must branch five memory locations backward 
from memory location 000A16. 

It will be helpful to enter this program into your computer 
or microprocessor trainer and single-step through it. Pay 
special attention to the X register, accumulator B, and the 
zero flag. 

Compare Instructions 

The compare instructions allow us to compare the values 
in two registers and/or memory locations and to set the 
flags accordingly without changing either of the original 
values. The appropriate branch instruction can then cause 
program execution to continue at the desired location. The 
program in Fig. 22-10 allows you to observe how the 
compare instructions work. 

The program simply loads the value 0516 into accumulator 
A and compares the numbers 04,6, 0616, and 0516 to it. If 
you refer to the Expanded Table of 6800/6808 Instructions 
and look in the Operation column, you will see what we 
mean by “compare.” 

To “compare” means to subtract the number you are 
comparing” from the number being “compared to.” For 

example, line 0004 of the program in Fig. 22-10 sets the 
flags as though 0416 had been subtracted from 0516, in 
accumulator A, without actually changing the value in the 
accumulator. 

□□□1 □ □□□ . org $□□□□ 
□ □□2 □ □□□ 
□ 003 □ □□□ fib □ 5 START: LDAA #$□5 
□ □04 □ □□2 A1 □ 4 CMPA #$04 
□ □05 □ □□4 A1 □ t CMP A ft $ G b 
□ □□□ □ □□t, A1 □ 5 CMPA ft$us 
□ □□? □□□a 3E WAI 
□ □□A □ □□3 
□ □05 □ □□5 . end 

Fig. 22-10 Using the compare instruction. 

Line 0005 and 0006 likewise subtract 0616 and 0516, 
respectively, from the value in accumulator A without 
altering the accumulator. 

This program’s only purpose is to allow you to see how 
the flags are affected by each compare instruction. Enter 
the program and single-step through it. Watch the flags 
after each step and make sure that you understand why they 
react the way they do. 

An Example Program 

We’ll now look at an example program which uses a 
compare instruction, increment instructions, and a condi¬ 
tional branch instruction. This program looks at two numbers 
in memory, determines which is larger, and then places the 
larger value in a third memory location. It also uses a form 
of indexed addressing. Refer to Fig. 22-11 at this time. 

After entering this program into your computer or trainer 
but before running it, you must place values of your choice 
into the two memory locations indicated in the notes at the 
beginning of the program. 

This program uses the X register to help point to the 
next memory location to load a number from or store a 
number in. The first instruction in line 0008 initializes the 
X register with a value of 01A016. 

Memory location 01A016 is the beginning of a series of 
memory locations which this program uses. A common 
way to address successive memory locations is to use some 
form of indexed addressing. Location 01A016 is the begin¬ 
ning of the list, and the X register will point to each 
successive number in the list. In line 0009 we load the 
accumulator with the first number from the list. The memory 
location of this number is formed by adding 0016 to the 
value in the X register, which is 01A016, to form the address 
of the first number in the list, at location 01A016. 

In line 0010 we increment the X register to a value of 
01A116 so that it points to the next number. 

In line 0011 we compare the value held in memory 
location 01A116 to the value in accumulator A. If the value 
in the accumulator is larger, then no borrow will be needed 
to perform the comparison (which involves subtraction). 
Therefore the carry flag will be clear. 

We find in line 0012 that, if the carry flag is clear, then 
we branch forward to line 0014. This will be the case if 
the value in the accumulator is the larger value. In line 
0014 the X register is incremented, so it points to the last 

initial value 
compare each of these numbers 

to A and set flags as though 
each had been subtracted from A 

Chapter 22 Branching and Loops 349 



□□□1 □□□□ ; place a number in memory location $Q1AD and another in $D1A1; 

nan? □□□□ ; this program will determine which is larger and place 
□ ana □ □□□ ; the larger in location $D1A? (Note: Do not use two 
□ □□4 □□□□ ; numbers which are equal.) 
□ nan □ □□□ 
□ nan □ i □ □ .org $□!□□ 
□ □□? □ i □ □ 
□ □□A □i □ □ CE □ 1 AD START: LDX #$□!AD ;initialize X register 
□ nan □ 1D3 At □ □ LDAA $□□,X ;load A from mem 01AD + □□ = D1AD 
ama □ 1D5 □ A INX ;point to next mem loc 
ami □ IQ t A1 □ □ CMPA $□□/X ;compare data in mem Q1AD + □□ - 

□1A1 to A 

□ □15 □ IQfl 54 □ 5 BCC FOUND ;if A is larger jump forward to Found 
□ □in □ IGA At □ □ LDAA $□□fX ; otherwise load A from mem D1A1 + 

□□ = D1A1 
□ Q14 □ 1 DC □ A FOUND : INX ;point to next mem loc 
□ □15 □ 1DD A? □ □ STAA $□□,X ;store A in mem D1A5 + □□ = D1A5 

□ nib □ IDF 3E WAI ; stop 
□ □17 QUO 
□aifl □ 11" . end 

Fig. 22-11 An example 6800/6808 program. 

memory location. In line 0015 we store the value now in 
accumulator A in that final memory location. 

If, during the comparison in line 0011 the value in the 
accumulator is smaller, a borrow is required to perform the 
comparison (involving subtraction) and the carry flag is set. 
In line 0012 the carry flag is not clear and the branch does 
not occur. Therefore, the next instruction in line 0013 is 
executed. This instruction loads the second number into the 
accumulator. Obviously, if the first number is not the larger, 
the second one must be. After loading accumulator A with 
the second number in line 0013, we continue in lines 0014 
and 0015 to store that value in the third memory location. 

This program will give you an idea how to use some of 
the new instructions in this chapter and how to use indexed 

addressing. 

22-8 8080/8085/Z80 FAMILY 

The 8080/8085/Z80 microprocessor family has a variety of 
instructions to handle unconditional jumps, conditional 
branching, comparing, incrementing, and decrementing. 
We’ll look at several tasks and see how the 8080/8085/Z80 
microprocessor handles them. 

You should enter each program into your computer or 
microprocessor trainer and single-step through it, watching 
the appropriate registers, memory locations, and flags to 
understand how each program works. 

Remember that we will show both 8080/8085 and Z80 
programs in the figures and that in the text we will show 
8080/8085 mnemonics first with Z80 mnemonics in 
brackets. 

Unconditional Jumps 

The forward unconditional jump using direct addressing is 
probably easiest to understand. An example is shown in 
Fig. 22-12. 

The program begins by loading the accumulator with 
FF16. In a moment we are going to subtract another number 
from this one. First we need to jump to the area of memory 
where the subtract instruction is. We have placed the 
subtract instruction several memory locations forward from 
this point to show, in a very simple manner, how the 
unconditional jump instruction operates. 

The next instruction is our jump instruction. In the source 
code column of line 0004 the instruction 

JMP MINUS [JP MINUS] 

appears, which might be different than what you were 
expecting. 

The instruction is saying to jump to a place called 
MINUS. To be able to jump to a place with a certain name 
is not a native ability of the 8080/8085/Z80 microprocessor. 
Our assembler is making this possible. Line 0008 has the 
label MINUS in the label column. This is the place we 
want to jump to. Notice the address at the MINUS label. 
The address is 1808. Now look back at line 0004. In the 
op code column you see C3, which is the op code for an 
unconditional jump. Then come the numbers 08 18. If you 
reverse these two sets of numbers, you have 1808. This is 
the memory location of the instruction labeled MINUS. If 
you use an assembler, you can use labels and the assembler 
will calculate the address for you. If you are hand-assembling 
these programs, you must enter the address as shown in 
the op code column, in the reverse low-byte/high-byte 
order. If you are using an assembler which does not allow 
labels, you will need to use the format shown in the 8080/ 
8085/Z80 instruction-set tables. Namely 

JMP aaaa [JP aaaa] 

After the jur n instruction are several NOPs which could 
be other instructions or just unused memory in a particular 
microprocessor system. 
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ADAD/ADA5 program 

□ □□1 1A 0 □ .org lAOOh ;beginning of code 
□ □□a 1A □□ 
□ □□3 1A □ □ 3E FF START: MVI A,DFFh ;minuend 
□ □□4 1A0E C3 □ A 1A JMP MINUS ;forward unconditional jump 
□ □□5 1AD5 □ □ NOP 
□ 00b lAOb □ □ NOP ;misc. instructions 
0007 1A07 □ □ NOP 
□ □□A 1 ADA Db EE MINUS: SUI DEEh ;subtrahend 
□ □09 1ADA 3E 0E 1A STA ANSWER ;store difference 
□ 010 1 ADD 7b HLT ; stop 
□ □11 1ADE 
□ □IE 1A0E □ □ ANSWER .db DDh ;memory area for answer 
□ □13 1ADF ; (initialized to 00) 
□ □14 1A0F . end 

ZAO ] program 

□ □□1 1A 00 .org lADDh ;beginning of code 
0005 1A00 
□ □□3 1 ADD 3E FF START: LD A,DFFh ;minuend 
□ □□4 1A0E C3 □ A 1A JP MINUS ;forward unconditional jump 
□ □□5 1AQ5 □ □ NOP 
000b 1 A0b □ □ NOP ;misc. instructions 
0007 1AQ7 00 NOP 
□ □□A 1AQA Db EE MINUS: SUB DEEh ; subtrahend 
□ □□9 1A0 A 3E □ E 1A LD (ANSWER),A ;store difference 
0010 1A0D 7b HALT ; stop 
□ □11 1A0E 
□ □IE 1A0E □ □ ANSWER .db D0h ;memory area for answer 
□ □13 1ADF ; (initialized to 00) 
□ 014 1AQF .end 

Fig. 22-12 Forward unconditional jump with the 8080/8085/ 
Z80 microprocessor. 

In line 0008 we subtract EE16 from FF16 (in the accu¬ 
mulator). In line 0009 we store the result of our subtraction 
in a memory location called ANSWER. Look at line 0012, 
labeled ANSWER. In the op code column are the initials 
.db. They stand for define byte. We are telling the assembler 
to reserve a memory location, namely, a single byte of 
memory, with the name ANSWER. The assembler is 
initializing the memory location ANSWER with a value of 
0. Our program can then put any other number we wish in 
that location. 

Notice also that the memory location of ANSWER is 
180E]6. In the op code column of line 0009 we see 32 0E 
18. The op code for storing the value, of the accumulator 
in a certain memory location is 32. If you reverse 0E 18, 
you have 180E, which is the memory location of ANSWER. 
Again the assembler made life simpler by figuring out 
where the next available memory location would be and 
setting aside that location for the ANSWER. 

Finally, in line 0010, the program stops. 
You should enter this program and single-step through 

it, making sure that everything works as described. 

Conditional Branches 

Now let’s see an example of conditional branching. Figure 
22-13 shows such an example. 

In this program we are going to do several things 
differently from the way they were done in the last program. 
First, we are using a conditional jump or branch rather than 
an unconditional one. Second, we are branching backward 
rather than forward. Third, we are creating a loop by 
branching backward and repeating a section of the program. 
Finally, we are using a register as a counter to control how 
many times the loop repeats. 

In line 0003 we place the number 316 in register B. This 
register controls how many times we will branch backward. 
In line 0004 we clear register C making it 00,6 so that it 
can be used to count how many times the loop repeats. 

Line 0005 marks the beginning of the loop, and we have 
named that location REPEAT. In this line we increment 
register C since we are beginning to pass through the loop, 
in this case for the first time. Register C is keeping track 
of how many times the loop is passed through. Line 0006 
represents the fact that there could be many instructions 
inside this loop which are going to be repeated. 

Line 0007 decrements (reduces by one) register B. 
Register B keeps track of how many times we have left to 
go through the loop. 

Line 0008 is where we meet our conditional branch 
instruction. JNZ means Jump if Not Zero. [JP NZ means 
JumP if Not Zero.] Your first thought might be, “If what 
isn’t zero?” 
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ADAD/ADA5 program 

□ □□1 1 ADD .ORG lADDh 
□ ODE 1A0D 
□ □□3 1 ADD □ b □ 3 START: M VI B, D3h ;initialize B (repeats) 

□ □□4 1ADE □ E □ □ M VI C, DDh ;initialize C 

□ □□3 1A D4 □ C REPEAT: INR C ;times loop has repeated 

□ □□b 1A D 5 □ □ NOP ;misc instructions 

□ □□? 1 ADb □ 5 DCR B decrement B 

□ □□A 1AD? CE □ 4 1A JNZ REPEAT ;if B not equal to □ then 

□ □□3 1 ADR ; branch back to start of 

□ DID 1 ADR ; loop 

□ □11 1 ADR ?b HLT ; stop 

□ □IE 1ADB 
□ □13 1ADB .END 

ZAD program 

0D01 1 ADO .ORG lAODh 

□ DDE 1ADD 
□ □□3 1 ADD 0b D3 START: LD B/D3h ;initialize B (repeats) 

□ 004 1ADE 0E □ D LD C/DDh initialize C 

□ □□5 1AD4 DC REPEAT: INC C ;times loop has repeated 

□ □□b 1AD5 □ D NOP ;misc instructions 
□ □□? 1 AOb □ 5 DEC B ; decrement B 

□ □□A 1A □? CE □ 4 1A JP NZ,REPEAT ;if B not equal to □ then 

□ □□3 1 AD A ; branch back to start of 

□ □ID 1 AD A ; loop 

□ □11 1 ADR 7b HALT ; stop 

□ □IE 1ADB 
□ □13 1ADB .END 

Fig. 22-13 A backward conditional jump creating a loop 
with the 8080/8085/Z80 microprocessor. 

All the conditional branch instructions are influenced by 

the most recent instruction that affected the flag they check. 

In this case the zero flag is checked. What was the last 

instruction which sets or clears the zero flag? The DCR B 

(DeCRement B) [DEC B (DECrement B)] instruction. If 

register B were reduced to 0, the zero flag would be set. 

Has register B been reduced to zero? On this first pass 

through the loop, it gets reduced from 3 to 2. No, register 

B is not equal to 0. 

The jump instruction says, “Jump if not zero.” Clearly 

this is true: the last result is not 0, so we do jump. Jump 

to where? We jump to the memory location known as 

REPEAT. Notice that the location called REPEAT, in line 

0005, is memory location 180416. Now look again at line 

0008. C2 is the op code for the JNZ [JP NZ] instruction. 

If you reverse the two sets of numbers 04 18, you form 

1804, which is the memory location of the REPEAT label. 

It will be helpful to enter this program into your computer 

or microprocessor trainer and single-step through it. Pay 

special attention to register B, register C, and the zero flag. 

Compare Instructions 

The compare instructions allow us to compare the values 

in two registers and/or memory locations and to set the 

flags accordingly without changing either of the original 

values. The appropriate jump instruction can then cause 

program execution to continue at the desired location. The 

program in Fig. 22-14 allows you to experiment with the 

compare instructions. 

This program loads the value 0516 into the accumulator 

and compares the numbers 0416, 0616, and 0516 to it. If you 

will refer to the Expanded Table of 8080/8085/Z80 Instruc¬ 

tions and look in the Operation column, you will see what 

we mean by “compare.” 

To “compare” means to subtract the number you are 

comparing from the number being “compared to.” For 

example, line 0004 of the program in Fig. 22-14 sets the 

flags as though 0416 had been subtracted from 0516, without 

actually changing the value in the accumulator. 

Lines 0005 and 0006 likewise subtract 0616 and 0516, 

respectively, from the value in the accumulator without 

altering the accumulator. 

This program’s only purpose is to allow you to see how 

the flags are affected by each compare instruction. Enter 

the program and single-step through it. Watch the flags 

after each step and make sure you understand why they 

react the way they do. 

An Example Program 

We’ll now look at an example program which uses a 

compare instruction, increment instructions, and a condi- 

352 Digital Computer Electronics 



ADAD/AOAS program 

□ □□1 1A □□ .org lADDh 
□ □02 1 ADD 
□ □□3 1A 0 □ 3E □ 5 START: MVI A, 05h 
□ □□4 1 ADD FE □ 4 CPI 04h 
□ □□5 1A D4 FE □ t CPI Dbh 
□ □□£> 1ADL FE □ 5 CPI D5h 
□ □□? 1 AD A 7b HLT 
□ □□A 1AD9 
□□□q 1A09 .end 

ZAO program 

□ □□1 1 ADD .org lAOOh 
□ □□2 1 ADD 
□ □□3 1 ADD 3E □ 5 START: LD A,D5h 
□ □□4 1 ADD FE □ 4 CP 04h 
□ □□5 1A D4 FE □ b CP 0bh 
□ DDL 1 ADD FE □ 5 CP 05h 
□ □□7 1 AD A 70 HALT 
□ □□A 1A 09 
□ 003 1A D9 . end 

Fig. 22-14 Using the compare instruction. 

initial value 
compare each of these numbers 

to A and set flags as though 
each had been subtracted from A 

initial value 
compare each of these numbers 

to A and set flags as though 
each had been subtracted from A 

tional branch instruction. This program looks at two numbers 

in memory, determines which is larger, and then places the 

larger value in a third memory location. It also uses register 

indirect addressing. Refer to Fig. 22-15 at this time. 

After entering this program into your computer or trainer, 

but before running it, you must place values of your choice 

into the two memory locations indicated in the notes at the 
beginning of the program. 

This program uses the HL register pair to help point to 

the next memory location to load a number from or store 

a number in. The first instruction in line 0008 initializes 

the HL register pair with a value of 18A016. 

Memory location 18A016 is the beginning of a series of 

memory locations which this program uses. A common 

way to address successive memory locations is to use some 

form of indexed addressing. The 8080/8085 does not actually 

have an index register; however, the HL register pair can 

be used with register indirect addressing to accomplish 

much the same thing. Location 18A016 is the beginning of 

the list, and the HL register pair will point to each successive 

number in the list. In line 0009 we load the accumulator 

with the first number from the list. The memory location 

of this number is pointed to by the value in the HL register 
pair. 

In line 0010 we increment the HL register pair to a value 

of 18A116 so that it points to the next number. 

In line 0011 we compare the value held in memory 

location 18A116 to the value in the accumulator. If the value 

in the accumulator is larger, then no borrow will be needed 

to perform the comparison (which involves subtraction). 
Therefore the carry flag will be clear. 

We find in line 0012 that, if the carry flag is clear, then 

we branch forward to line 0014. This will be the case if 

the value in the accumulator is the larger value. In line 

0014 the HL register pair is incremented so that it points 

to the last memory location. In line 0015 we store the value 

now in the accumulator in that final memory location. 

If, during the comparison in line 0011 the value in the 

accumulator is smaller, a borrow is required to perform the 

comparison (involving subtraction) and the carry flag is set. 

In line 0012 the carry flag is not clear and the branch does 

not occur. Therefore the next instruction in line 0013 is 

executed. This instruction loads the second number into the 

accumulator. Obviously, if the first number is not the larger, 

the second one must be. After loading the accumulator with 

the second number in line 0013, we continue in lines 0014 

and 0015 to store that value in the third memory location. 

This program will give you an idea how to use some of 

the new instructions in this chapter and how to use register 
indirect addressing. 

22-9 8086/8088 FAMILY 

The 8086/8088 microprocessor family has a variety of 

instructions to handle unconditional jumps, conditional 

branching, comparing, incrementing, and decrementing. 

We’ll look at several typical tasks and see how the 8086/ 

8088 microprocessor handles them. 

You should enter each program into your computer or 

microprocessor trainer and single-step through it, watching 

the appropriate registers, memory locations, and flags to 

understand how each program works. 
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ADAD/ADA5 program 

□ □□1 □□□□ ; place a number in memory location lAADh and another in lAAlh 
□ DDE □□□□ ; this program will determine which is larger and place 
□ □□3 □ □□□ ; the larger in location lAAEh (Note: Do not use two 
□ DDZ □□□□ ; numbers which are equal.) 
□ □□5 □ □□□ 
□ □□b 1 ADD * org 1A □ □ h 
□ □□? 1 ADD 
□ □□A 1ADD El AD ia START: LXI H,lAADh ;initialize HL register 
□□□q 1AD3 7E MOV A, M ;load A from mem IAAO 
□ DID 1ADZ E3 INX H ;point to next mem loc 
□ □ii IADS BE CMP M ;compare data in mem 1AA1 to A 
□ die 1A Db DE □ A 1A JNC BOUND ;if A is larger jump forward to Bound 
□ □13 lAoq 7E MOV A f M ; otherwise load A from mem 1AA1 
□ □1Z 1 ADR E3 BOUND : INX H ;point to next mem loc 
□ □IS 1A DB 77 MOV M, A ;store A in mem IA AE 
□ nib 1A DC 7b HLT ; stop 
□ □17 1 ADD 
□□Ifl 1ADD .end 

ZAD program 

□ □□1 □ □□□ ;place a number in memory location lAADh and another in lAAlh 
□ □□E □ □□□ ; this program will determine which is larger and place 
□ □□3 □ □□□ ; the larger in location lAAEh (Note: Do not use two 
□ DOZ □ □□□ ; numbers which are equal.) 
□ □□5 □ □□□ 
□ □□b 1 ADD .org lAODh 
□ □□7 1 ADD 
□ □□A 1 ADD El AD IA START: LD HL,lAADh ;initialize HL register 
□ □□3 1A03 7E LD A,(HL) ;load A from mem 1AAD 
□ DID 1 ADZ E 3 INC HL ;point to next mem loc 
□ □11 IADS BE CP (HL) ;compare data in mem 1AA1 to A 
□ □IE 1A Db DE □ A IA JP NC,BOUND ;if A is larger jump forward to Bound 
□ □13 1A □□ 7E LD A,(HL) ; otherwise load A from mem 1AA1 
□ □1Z 1 AD A E3 FOUND: INC HL ;point to next mem loc 
□ □15 1ADB 77 LD (HL),A ;store A in mem 1AAE 
□ □lb 1 ADC 7b HALT ; stop 
□ □17 1 ADD 
□ □IA 1 ADD .end 

Fig. 22-15 An example 8080/8085/Z80 program. 

Using An Assembler 

We need to explain a few things about using an assembler 

with the 8086/8088 microprocessor. Look at Fig. 22-16 for 

a moment. The 

page ,132 

command tells the assembler to create a list file (Fig. 22- 

lb is a list file) that is up to 132 columns wide. This gives 

us more room for the comments at the ends of the lines. 

The top portion above the program, which reads 

CODE SEGMENT 

ASSUME CS:CODE, DS:CODE, SS:CODE 

ORG lOOh 

and the bottom portion, which reads 

CODE ENDS 

END START 

are required by the assembler. This information has to do 

with where in memory we want the program to be and how 

we want to handle memory segmentation. This model 

allows the program to be assembled and linked to form an 

.EXE file which can then be converted to a .COM file with 

the EXE2B1N DOS utility. A complete discussion of these 

concepts is beyond the scope of this text. If you will use 

this model, however, you will be able to use DEBUG to 

examine the file and use the trace command to single-step 

through it. 

After you assemble and link the file, use the EXE2BIN 
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1 
E 

3 □□□□ 
4 
5 D1DD 
L 
? □ i □ n 
A D10E 
3 0104 

ID 01D5 
11 0105 
IE 
13 0103 
14 nine 
15 
it niDE 

17 
1A 
13 D1DF 
En 
El 

BD FF 
EB D3 
3D 
3D 
3D 
EC EE 
AE D1DE R 
CD ED 

DD 

page , 13 E 

CODE SEGMENT 
ASSUME CS:CODE, 
ORG lODh 

START: MOV AL,OFFh 
JMP SHORT MINUS 
NOP 
NOP 
NOP 

MINUS: SUB AL,DEEh 
MOV ANSWER,AL 
INT EOh 

ANSWER DB □ Dh 

CODE ENDS 

END STA 

DS:CODE, SSrCODE 

;minuend 
jforward unconditional jump 

;misc. instructions 

;subtrahend 
;store difference 
; stop 

;memory area for answer 
; (initialized to □) 

Fig. 22-16 Forward unconditional jump with the 8086/8088 
microprocessor (using an assembler). 

utility to change it to a .COM file. Then load the file 

(filename.ext) by typing 

debug filename.ext 

at the DOS prompt. 

Unconditional Jumps 

The forward unconditional jump using direct addressing is 

probably the easiest to understand. Look again at Fig. 

22-16. The same program entered with DEBUG is shown 

in Fig. 22-17. 

The program begins by loading AL with FF16. In a 

moment we are going to subtract another number from this 

one. First we need to jump to the area of memory where 

the subtract instruction is. We have placed the subtract 

instruction several memory locations forward from this 

point to show, in a very simple manner, how the uncon¬ 

ditional jump instruction operates. 

ODEBUG 
-r 
AX=Q000 
DS=3F3D 

-a 

BX-0000 CX-0000 DX—□□□□ SP=FFEE BP=000D SI=0000 DI=00DD 
ES=3F3D SS=3F3D CS=3F3D IP D1DD NV UP El PL NZ NA PO NC 

3F3D:010E 

BDFF MOV AL,FF 

MOV AL, FF ;minuend 
JMP D107 ;forward unconditional jump 
NOP 
NOP ;misc. instructions 
NOP 
SUB AL, EE ;subtrahend 
MOV [□IDE] /AL ;store difference 
INT ED ; stop 

-u lOd 

3F3D:010D BDFF 
3F3D:010E EBD3 
3F3D:DICK 3D 
3F3D:0105 3D 
3F3D:010b 3D 
3F3D:Q1D7 ECEE 
3F3D:D1D3 AEDED1 
3F3D:D1DC CDED 

MOV AL,FF 
JMP D1D7 
NOP 
NOP 
NOP 
SUB AL,EE 
MOV [D1DE]/AL 
INT ED 

Fig. 22-17 Forward unconditional jump with the 8086/8088 
microprocessor (using DEBUG). 
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The next instruction is our jump instruction. In the 

source-code column of line 8 in Fig. 22-16 the instruction 

JMP SHORT MINUS 

appears, which might be different from what you were 

expecting. 

The instruction is saying to jump to a placed called 

MINUS. To be able to jump to a place with a certain name 

is not a native ability of the 8086/8088 microprocessor. 

Our assembler is making this possible. Line 12 has the 

label MINUS in the label column. This is the place we 

want to jump to. Notice the address at the MINUS label. 

The address is 0107. Now look back at line 8. In the op 

code column you see EB, which is the op code for an 

unconditional jump. Then comes the number 03. This is 

the number of memory locations by which we must move 

forward from the instruction after the JMP instruction. 

Moving forward 03 places takes us to memory location 

0107. This is the memory location of the instruction labeled 

MINUS. If you use an assembler, you can use labels and 

the assembler will calculate the relative address for you. 

The term SHORT tells the assembler that this place called 

MINUS is within 127 bytes of our current location. 

If you are using DEBUG to assemble these programs, 

you must enter the program as shown in Fig. 22-17. Toward 

the top of Fig. 22-17 we simply say 

JMP 0107 

Notice further down in Fig. 22-17 where we disassembled 

the program that JMP 0107 disassembles to EB03. Our 

assembler and DEBUG produced the same code. 

After the jump instruction are several NOPs which could 

be other instructions or just unused memory in a particular 

microprocessor system. 

In line 12 of Fig. 22-16 we subtract EE16 from FF16 (in 

AL). In line 13 we store the result of our subtraction in a 

memory location called ANSWER. Look at line 16, labeled 

ANSWER. In the op code column are the initials DB. This 

stands for define byte. We are telling the assembler to 

reserve a memory location, namely, a single byte of 

memory, with the name ANSWER. The assembler is 

initializing the memory location ANSWER with a value of 

0. Our program can then put any other number we wish in 

that location. 

Notice also that the memory location of ANSWER is 

010E16. In the op code column of line 13 we see A2 010E. 

A2 is the op code for storing the value of AL in a certain 

memory location. Again the assembler made life simpler 

by figuring out where the next available memory location 

would be and setting aside that location for the ANSWER. 

If you used DEBUG as shown in Fig. 22-17, then you 

had to specify memory location 010E as shown. 

Finally, in line 14 of Fig. 22-16, the program stops. 

You should enter this program and single-step through 

it, making sure that everything works as described. This is 

shown in Fig. 22-18. 

-r 

AX-DDDD BX=0000 CX=0Q00 DX=DDD0 SP-FFEE BP=Q000 SI-DODO DI=D00D 

D S=3F3D ES=3F3D SS=3F3D CS=3F3D IP-D1DD NV UP El PL NZ NA PO NC 

3F3D:0100 B0FF MOV AL, FF 

-t 

AX=00FF BX=0000 CX=D000 DX=000D SP=FFEE BP = 0000 SI=0D00 DI=0000 

DS=3F3D ES=3F3D SS=3F3D CS = 3F3D IP=0102 NV UP El PL NZ NA P0 NC 

3F3D:0102 EBD3 JMP DID? 

AX=00FF BX^DDOD CX^DDDD DX=0000 SP=FFEE BP=0000 SI=DDDD DI=0000 

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=0107 NV UP El PL NZ NA PO NC 

3F3D:DID? 

-t 

eCEE SUB AL, - EE 

AX=0011 BX=0000 cx=oooo DX=DDDD SP^FFEE BP=0000 SI=0000 DI=0DD0 

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=D1D3 NV UP El PL NZ NA PE NC 

3F3D:D1D3 

-t 

A2DED1 MOV [010E],AL DS:010E=S3 

AX=0011 BX=00DD CX=0D00 DX—00DD SP=FFEE BP=000D SI-0000 DI=000D 

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=010C NV UP El PL NZ NA PE NC 

3F3D:010C CD20 INT 2D 

-d DIDO 010F 
3F3D:010D BO FF EB Q3 3D 3D 3D 2C-EE A2 DE 01 CD 2D 11 3F 

Fig. 22-18 Forward unconditional jump with the 8086/8088 
microprocessor (single-stepping with the Trace command). 
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page ,135 

3 □ □□□ CODE SEGMENT 
A 

ASSUME CS:CODE , 
5 
ta 

0RG IDDh 

7 □ 1D0 B1 □ 3 START: MOV CL,03h 
A □ 105 B5 □ 0 MOV CH,00h 
9 Q1U4 FE C5 REPEAT: INC CH 

ID □ 10b SO NOP 
11 □ ID? FE CS DEC CL 
15 □ IDS 75 FS JNZ REPEAT 
13 

1A 
15 □ 1DB CD 50 INT 50h 
1L 

17 □ 1DD CODE ENDS 
1A 

IS END START 

Fig. 22-19 A backward conditional jump creating a loop 
with the 8086/8088 microprocessor (using an assembler). 

DS:CODE, SS:CODE 

;initialize CL (repeats) 

;initialize CH 

;times loop has repeated 

;misc. instructions 

;decrement CL 

;if CL not equal to □ then 

; branch back to start of 
; loop 

; stop 

Conditional Branches 

Now let’s see an example of conditional branching. Figure 

22-19 shows such an example using an assembler. 

Figure 22-20 shows the same program using DEBUG. 

In this program we are going to do several things 

differently from the way they were done in the last program. 

First, we are using a conditional jump or branch rather than 

an unconditional one. Second, we are branching backward 

rather than forward. Third, we are creating a loop by 

branching backward and repeating a section of the program. 

Finally, we are using a register as a counter to control how 

many times the loop repeats. 

In line 7 of Fig. 22-19 we place the number 316 in CL. 

This register controls how many times we will branch 

backward. In line 8 we clear CH, making it 0016 so that it 

can be used to count how many times the loop repeats. 

-a 100 
77B3:01D0 MOV CL,03 

77B3:0105 MOV CH,00 
77B3:0104 INC CH 
77B3:Q1QL NOP 

77B3:0107 DEC CL 

77B3:0109 JNZ 0104 
77B3:010B 

77B3:010B 

77B3:010B INT 50 

7 7 B3:010D 

Line 9 marks the beginning of the loop, and we have 

named that location REPEAT. In this line we increment 

CH since we are beginning to pass through the loop, in 

this case for the first time. Register CH is keeping track of 

how many times the loop is passed through. Line 10 

represents the fact that there could be many instructions 

inside this loop which are going to be repeated. 

Line 11 decrements (reduced by 1) register CL. Register 

CL keeps track of how many times we have left to go 
through the loop. 

Line 12 is where we meet our conditional branch instruc¬ 

tion. JNZ means Jump if Not Zero. Your first thought 

might be, “If what isn’t zero?” 

All the conditional branch instructions are influenced by 

the most recent instruction that affected the flag they check. 

In this case the zero flag is checked. What was the last 

instruction which sets or clears the zero flag? The DEC CL 

;initialize CL (repeats) 
;initialize CH 
;times loop has repeated 
;misc instructions 
;decrement CL 

;if CL not equal to □ then 

; branch back to start of 
; loop 

; stop 

-u 100 IDc 

77B3:0100 B1D3 MOV CL,03 
77B3:0105 B500 MOV CH, DO 
77B3:DICK FEC5 INC CH 
77B3:010k 3D NOP 
77B3.-0107 FEC3 DEC CL 
77B3:0103 7SF3 JNZ Q1UA 
77B3:010B CD30 INT 50 

Fig. 22-20 A backward conditional jump creating a loop 
with the 8086/8088 microprocessor (using DEBUG). 
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(DECrement CL) instruction. If register CL were reduced 

to 0, the zero flag would be set. Has CL been reduced to 

0? On this first pass through the loop it gets reduced from 

3 to 2. No, CL is not equal to 0. 

The jump instruction says, “Jump if not zero.” Clearly 

this is true: the last result is not 0, so we do jump. Jump 

to where? We jump to the memory location known as 

REPEAT. Notice that the location called REPEAT, in line 

9, is memory location 010416. Now look again at line 12. 

The op code for the JNZ instruction is 75. F9 is a negative- 

signed binary number telling us how many places to move 

backward through memory to reach the place labeled 

REPEAT. 

If you are using DEBUG to enter this program a shown 

in Fig. 22-20, you will actually enter address 0104. DEBUG 

then calculates the relative address (F9) for you as shown 

in the disassembled area at the bottom of Fig. 22-20. 

It will be helpful to enter this program into your computer 

and single-step through it. Pay special attention to register 

CL, register CH, and the zero flag. 

Compare Instructions 

The compare instructions allow us to compare the values 

in two registers and/or memory locations and to set the 

flags accordingly without changing either of the original 

values. The appropriate jump instruction can then cause 

program execution to continue at the desired location. The 

program in Figs. 22-21 and 22-22 allows you to observe 

how the compare instructions work. 

The program simply loads the value 0516 into AL and 

compares the numbers 0416, 0616, and 0516 to it. If you will 

refer to the Expanded Table of 8086/8088 Instructions and 

read the description, you will see what we mean by 

“compare.” 

To “compare” means to subtract the number you are 

“comparing” from the number being “compared to.” For 

example, line 8 of the program in Fig. 22-21 sets the flags 

as though 0416 had been subtracted from 0516, without 

actually changing the value in AL. Lines 9 and 10 likewise 

subtract 06]6 and 0516, respectively, from the value in AL 

without altering AL. 

This program’s only purpose is to allow you to see how 

the flags are affected by each compare instruction. Enter 

the program and single-step through it. Watch the flags 

after each step and make sure that you understand why they 

react the way they do. This has been done in Fig. 22-22. 

An Example Program 

We’ll now look at an example program which uses a 

compare instruction, increment instructions, and a condi¬ 

tional branch instruction. This program looks at two numbers 

in memory, determines which is larger, and then places the 

larger value in a third memory location. It also uses register 

indirect addressing. Refer to Figs. 22-23 and 22-24 at this 

time. 

After entering this program into your computer or trainer 

but before running it, you must place values of your choice 

into the two memory locations indicated in the note at the 

top of Fig. 22-23. 

This program uses BX to help point to the next memory 

location to load a number from or store a number in. The 

first instruction in line 12 of Fig. 22-23 initializes BX with 

a value of 0016. 

Memory location Oil916 (referred to as DATA, line 22) 

is the beginning of a series of memory locations which this 

program uses. A common way to address successive memory 

locations is to use register relative addressing. Location 

0119l6 is the beginning of the list, and the BX register will 

point to each successive number in the list. In line 13 we 

load the accumulator with the first number from the list. 

The memory location of this number is pointed to by adding 

011916 (DATA) to the value in BX. 

In line 14 we increment the BX register to a value of 

0116 so that we can point to the next number. 

In line 15 we compare the value held in memory location 

[DATA + BX] to the value in the accumulator. If the 

value in the accumulator is larger, then no borrow will be 

needed to perform the comparison (which involves sub- 

1 page ,132 

3 □ □□□ CODE SEGMENT 

4 ASSUME CS:CODE 

5 ninn 0RG lOOh 

b 

7 010D BD D5 START: MOV AL,D5h 

A □ IDE 3C □ 4 CMP AL,04 h 

q □ 1D4 3 C 0b CMP AL,Obh 

ID 010b 3 C □ 5 CMP AL,05h 

11 □ IDA CD 2D INT 20h 

12 

13 DID A CODE ENDS 

14 

15 END START 

Fig. 22-21 Using the compare instruction (8086/8088 using 
an assembler). 

DS:CODE, SSrCODE 

initial value 

compare each of 

to AL and set 

each had been 

these numbers 

flags as though 

subtracted from AL 
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ODEBUG 
-r 

AX=0000 BX=0000 

DS=3F3D ES=3F3D 

3F3D:0100 BOOS 

CX=0000 DX=0000 SP=FFEE 

SS=3F3D CS=3F3D IP=0100 

MOV AL,D5 

BP=0000 SI=0DGG DI=0000 

NV OP El PL NZ NA PO NC 

-a 

3F3D:0100 MOV AL,05 

3F3D: 010E CMP AL,04 

3F3D:0104 CMP AL,0t 

3F3D: 0100 CMP AL,D5 

3F3D:OlOfl INT 30 

3F3D:DIDA 

initial value 

compare each of these numbers 

to AL and set flags as though 

each had been subtracted from AL 

-u 1Q0 IDS 

3F3D:0100 BODS 

3F3D:0102 3C04 

3F3D:0104 3C0G 

3F3D:0100 3C0S 

3F3D:OIOS CDEO 

MOV AL, 05 

CMP AL,04 

CMP AL/Ot 

CMP AL,05 

INT 50 

-r 

AX=0000 BX=0000 

DS=3F3D ES=3F3D 
3F3D:0100 BOOS 

-t 

CX=0000 DX=0000 SP=FFEE BP=0000 SI-0D00 DI=0000 
SS=3F3D CS=3F3D IP 010D NV UP El PL NZ NA PO NC 

MOV AL,0 S 

AX=0005 BX=0000 CX=0000 DX=0000 SP=FFEE 

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=01DE 
3F3D:OlOE 3C04 CMP AL,04 
-t 

BP=0000 SI=0000 DI=0000 
NV OP El PL NZ NA PO NC 

AX=0005 BX=0000 CX=0000 DX=0000 SP =FFEE 

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP-0104 
3F3D:0104 3C0t CMP AL,Ot 
-t 

BP-0000 SI=0000 DI=0000 

NV OP El PL NZ NA PO NC 

AX=0005 BX=0000 CX=0000 DX=0000 SP=FFEE 

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=OlOt 
3F3D:OlOt 3C0S CMP AL,05 
- t 

BP=D0DD SI=0G00 DI=0DDD 
NV UP El NG NZ AC PE CY 

AX=0D05 BX=0DDD 

DS=3F3D ES=3F3D 

3F3D:DlDfl CDED 

CX=0000 DX=DD00 SP=FFEE BP-DDOD SI^OOOD DI^DDOQ 

SS=3F3D CS—3F3D IP---DlDfl NV UP El PL ZR NA PE NC 
INT ED 

Fig. 22-22 Using the compare instruction (8086/8088 using 
DEBUG). 

traction), nor will the result of the comparison be 0; there¬ 

fore both the carry flag and the zero flag will be clear. 

We find in line 16 that, if both the carry flag and the 

zero flag are clear, then we branch forward to line 18. This 

will be the case if the value in AL is the larger value. In 

line 18 the BX register is incremented so that it points to 

the last memory location. In line 19 we store the value now 

in AL in that final memory location. 

If during the comparison in line 15 the value in the 

accumulator is smaller, a borrow is required to perform the 

comparison (involving subtraction) and the carry flag is set. 

In line 16 the carry flag is not clear and the jump does not 

occur. Therefore the next instruction in line 17 is executed. 

This instruction loads the second number into AL. Ob¬ 

viously, if the first number is not the larger, the second 

one must be. After loading the accumulator with the second 

number in line 17, we continue in lines 18 and 19 to store 

that value in the third memory location. 

This program will give you an idea how to use some of 

the new instructions in this chapter and how to use register 

relative addressing. 

Compare the program as shown in Figs. 22-23 and 22- 

24. In Fig. 22-24 the program is entered by using DEBUG 

and then single-stepping through (using trace). As in all 

programs shown in this text, you’ll learn the most if you 

enter the program yourself and experiment with it. 
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1 
2 
3 
4 
5 
b 
7 
A □ □□□ 
3 

IQ □ 1QQ 
11 
13 □ BB □ □□□ 
13 □ 103 AA A7 □ 113 R 
14 □ 107 4 3 
15 □ IDA 3 A A7 □ 113 R 
lb □ 1QC 77 U4 
17 □ IDE AA A7 □ 113 R 

1A □ 113 43 
13 □ 113 AA A7 □ 113 R 
3Q □ 117 CD 3Q 
31 
33 □ 113 D5 U4 □ □ 
S3 

34 
ss mile 
3b 

3? 

page ,133 

;place a number in memory location DATA and another in DATA+1; 

; this program will determine which is larger and place 

; the larger in location DATA+3 (Note: Do not use two 

; numbers which are equal.) 

CODE SEGMENT 

ASSUME CS:CODE, DS : CODE, SS:CODE 

ORG □inoh 

START: MOV BX,□□h ;initialize BX register 

MOV AL,[DATA + BX] ;move byte to AL from mem loc DATA 

INC BX ;point to next mem loc (DATA + 1) 
CMP AL,[DATA + BX] ;compare byte in mem DATA + 1 to AL 

JA FOUND ;if AL is larger jump forward to Found 

MOV AL,[DATA + BX] ; otherwise move byte 

DATA + 1 

to AL from mem 

FOUND: INC BX ;point to next mem loc (DATA + 2) 
MOV [DATA + BX] , AL ;move byte in AL to mem DATA + 3 

INT 3Dh ; stop 

DATA DB □5h,D4h, □ □h ;you can use different values for the 

; first two numbers 

CODE ENDS 

END START 

Fig. 22-23 An example 8086/8088 program (using an 
assembler). 

ODEBUG 

— 
AX=DDDD BX=DDDD CX=QQ0D DX= □□□□ SP FFEE BP=DDDD SI=DDDD DI=DDDD 

DS=3F3D ES=3F3D SS=3F3D CS= 3F3D IP=D1DD NV UP El PL NZ NA P0 NC 

3F3D:□!□□ BBDDDD MOV BX,□□□□ 

-a 
3F3D:□!□□ MOV BX , □□□□ ;initialize BX register 

3F3D:D1D3 MOV AL,[BX+D113] ;move byte to AL from mem loc 0113 + □ 

3F3D: D1D7 INC BX ;point to next mem loc D113 + 1 

3F3D:DlDfl CMP AL,[BX+Q113] ;compare byte in mem 0113 + 1 to AL 

3F3D: D1DC JA □ 113 ;if AL is larger jump forward to D113, 

3F3D: D1DE MOV AL,[BX+0113] | ; otherwise move byte to AL from D113 

3F3D:□!13 INC BX ;point to next mem loc D113 + 3 

3F3D:0113 MOV [BX+D113],AL ;move byte in AL to mem D113 + 3 

3F3D:0117 INT 3D ; stop 

3F3D:0113 

-u □!□□ Ollfl 

3F3D:□!□□ BBDQDD MOV BX,□□□□ 
3F3D:0103 flAA713D1 MOV AL,[BX+D113] 

3F3D: 0107 43 INC BX 

3F3D:DlDfl 3 Afi713□! CMP AL,[BX+D113] 
3F3D:D1DC 71U4 JA □ 113 

3F3D:D1DE fiA6713D1 MOV AL,[BX+D113] 

3F3D:D113 43 INC BX 

3F3D:D113 fiflfi713Dl MOV [BX+D113],AL 

3F3D:0117 CD3D INT 3D 

Fig. 22-24 An example 8086/8088 program (using DEBUG). 
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-e 0113 
3F3D : 0113 5E.05 Ft.. DA 6B.00 07.□□ 

-d 0110 Ollf 

3F3D:0110 13 01 A3 66 67 13 01 CD-50 05 UA □□ □□ 63 AL EE ..C 

AX=D000 BX=0000 CX=0000 DX=000D SP=FFEE 
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=0100 
3F3D:DIDO 

-t 
1 BBDD0D MOV BX, 0000 

AX=DDDD BX=0000 CX=0DDD DX=Q0Q0 SP=FFEE 
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=01D3 
3F3D:0103 

-t 

6A6713I □ 1 MOV AL / [BX+0113 

AX=DDD5 BX=0D0D CX=0000 DX-0000 SP=FFEE 
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=0107 
3F3D:DID? 

-t 
A 3 INC BX 

AX^DDDS BX=0D01 CX=0000 DX=QQ00 SP=FFEE 
DS=3F3D E S=3F3D SS=3F3D CS=3F3D IP=0106 
3F3D:0106 

-t 
3A671301 CMP AL, [BX+0113 

AX=DD05 BX=D001 CX=00D0 DX=00 00 SP=FFEE 
DS=3F3D ES=3F3D SS=3 F3D CS=3F3D IP=D10C 
3F3D:D1DC 
-t 

??UA JA □ 113 

AX=0n05 BX=0001 cx=oooo DX=0000 SP FFEE 
DS=3F3D ES-3F3D SS=3F3D CS=3F3D IP=D113 
3F3D : DUE 
-t 

A 3 INC BX 

AX=0005 BX=0003 CX-0000 DX=000D SP=FFEE 
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP—0113 
3F3D:0113 

-t 
mov [ BX+0113]/A] 

AX=DDD5 BX=0003 CX=0000 DX=0000 SP=FFEE 
D S—3F3D ES = 3F3D SS=3F3D CS=3F3D IP=0117 
3F3D:Dll? CD30 INT 30 

-d DUO 011 f 

3 F3D:0110 13 01 A 3 flfl 67 13 01 CD- 30 05 UA 

BP^DOOO SI=DOOD DI=0000 
NV UP El PL NZ NA PO NC 

BP=0000 SI=0000 DI=0000 

NV UP El PL NZ NA PO NC 

DS:0113=05 

BP=DOOO SI=0000 DI=0000 
NV UP El PL NZ NA PO NC 

BP=0000 SI=0000 DI=0000 

NV UP El PL NZ NA PO NC 

DS:DllA=04 

bp=oooo si=oooo di=odod 

NV UP El PL NZ NA PO NC 

bp=oooo si=oooo di=odoo 

NV UP El PL NZ NA PO NC 

BP-oooo si=aaoo di-oooo 
NV UP El PL NZ NA PO NC 

DS:011B=00 

BP=0000 SI=0000 DI=0000 

NV UP El PL NZ NA PO NC 

05 00 63 AL EE ..C F . 

Fig. 22-24 (cont.) 

GLOSSARY 

decrement To decrease. Most microprocessors decrement 

registers or memory locations by 1. 

increment To increase. Most microprocessors increment 
registers or memory locations by 1. 

loop A group of instructions which can be executed more 

than once. The program “falls through” the loop when 

some condition exists or when the loop has been executed 

a predetermined number of times. 
nest To fit one inside another. Loops can be nested by 

having one small loop executing within a larger loop. 
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SELF-TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. Branches or jumps can be made to execute all the 

time or only when certain conditions exist. That is, 

branches and loops can be_or 

2. (conditional, unconditional) When a program 

branches backward and repeats a group of instruc¬ 

tions, it is called a_ 

3. (loop) Compare instructions generally (though not 

always) set and clear the microprocessor’s flags as 

though_had occurred. 

(subtraction) 

PROBLEMS 

Solve the following problems by using the microprocessor 

of your choice. 

You may have some difficulty with the following two 

problems; therefore only two are given. As you begin each 

problem, do not immediately think of which microprocessor 

instructions to use. Instead, think about the problem itself 

and visualize what the memory locations will contain. Think 

of how to move the data between registers and memory 

locations to solve the problem, and then think about what 

instructions can be used to accomplish the moves. 

22-1. Write a program which will use the first number 

in a list of unsigned binary numbers as a refer¬ 

ence, will compare that number to each of the 

following numbers in the list, and will then stop 

when it finds the first number in the list which is 

smaller than or equal to the reference number. 

Finally, the program should store that first number 

which was smaller or equal to the reference num¬ 

ber in a memory location called ANSWER. 

(Important: The numbers in the list must be considered 

unsigned binary numbers. At least one number in the list 

must be smaller than or equal to the reference number. 

All the numbers may be smaller or equal to the reference. 

The program will be most interesting if more than one, 

but not all, the numbers are smaller than or equal to the 

reference.) 

(Note: You will need to enter the list of numbers 

before running the program. The list must have a mini¬ 

mum of two numbers and can have as many additional 

numbers as you wish. We have started the list of numbers 

at memory location $03AO for the 6502, $01 AO for the 

6800/6808, and at 18A0h for the 8080/8085/Z80, and at a 

location labeled LIST for the 8086/8088.) 

22-2. Write a program which will look at a list of 

numbers which you will store in memory. The 

end of this list will be indicated by the number 

00. The number 00 cannot be used anywhere in 

the list except to mark its end. Write the program 

so that it will add each pair of consecutive num¬ 

bers. That is, if the list contained the numbers 

0616, 2E16, 3616, 4216, and 0016, it would perform 

the following additions: 

0616 + 2E16 = 3416 

2E16 + 3616 — 6416 

36j6 + 4216 = 7816 

The program should not add the 0016 to the preceding 

number since 0016 is not one of the numbers in the list 

but indicates the end of the list. 

When the program adds the first two numbers, it 

should place their sum in a memory location called 

LRGST (largest). As it adds each of the following pairs, 

it should compare their sum with the number in LRGST. 

If the new sum is larger than the number in LRGST, then 

the new largest number should be placed in LRGST. 

Thus, after the program has added all the pairs together, 

LRGST will contain the largest sum that was created. All 

numbers should be considered unsigned binary numbers. 

(Note: The list must contain at least one number, with 

the number 00 following it to indicate the end of the list. 

In this case no sum should appear in LRGST because 

there can be no sum with a list of only one number. The 

list can contain any number of numbers beyond one.) 

(Note: We have used the numbers 2E16, 3C16, 1B16, 4616, 

and 0016 to end the list, in that order, in the answer key. 

You should try altering your list to make sure it works 

under various circumstances.) 
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Subroutine and Stack Instructions 
At this point we have covered most of the instruction set 

of each of the microprocessors featured in this text. Two 

final topics, however, the stack and subroutines, may be 

the most important ones. Without subroutines, programs 

written for these microprocessors would be unmanageable. 

Subroutines are used when there are tasks which must be 

executed or used many times. The subroutine provides a 

way to write a program segment which can handle a specific 

task and be reused. 

The stack is important because it supports subroutines 

by storing information the microprocessor needs when it 

tries to return from a subroutine. 

New Concepts 

This chapter deals with subroutines and with the stack, 

especially as the stack relates to subroutines. The use of 

the stack in passing parameters between subroutines or in 

mixed-language programs is beyond the scope of this text 

and is not discussed. 

We discussed the stack in Chap. 15. We’ll review a 

portion of that chapter here. 

Memory 

0000 

A 
0001 

0002 Top-of-stack d 

d 

r 
0003 Data item #6 — Stack pointer— 

0004 Data item #5 0002 e 

s 

s 
0005 Data item #4 

e 0006 Data item #3 

s 
0007 Data item #2 

0008 Data item #1 

Fig. 23-1 Typical stack and stack pointer. 

23-1 STACK AND STACK POINTER 

The stack, in the case of the microprocessors used in this 

text, is located in RAM. Refer to Fig. 23-1. 

The structure of the stack is a first-in-last-out (F1LO) 

type of structure. Unlike main memory, where you can 

access any data item in any order, the stack is designed so 

that you can access only the top of the stack. If you want 

to place data in the stack, it must go on top, and if you 

wish to remove data from the stack, it must be on top 

before it can be removed. 

Let’s see how the situation in Fig. 23-1 has come to be. 

To do that, refer to Fig. 23-2. Data item #1 is the first 

item we wish to place on the stack. 

At this time the stack pointer is '‘pointing” to memory 

location 0008; therefore, data item #1 will be placed in 

the stack at that memory location. Putting a piece of data 

in the stack is called pushing data onto the stack. It is as 

though the data is being pushed in from the top. Now look 

at Fig. 23-3. 

We have pushed data item #1 onto the stack, and the 

stack pointer has been decremented or decreased by 1, 

Memory 

0000 

A 
0001 

d 0002 
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r 
0003 — Stack pointer — 

0004 0008 e 

s 

s 
0005 

e 0006 

s 
0007 

0008 Top-of-stack 
r 

Fig. 23-2 Typical stack and stack pointer. 



Memory 

0000 

A 
0001 

d 0002 

d 

r 
0003 — Stack pointer— 

0004 0007 e 

s 

s 
0005 

e 0006 

s 
0007 Top-of-stack 

0008 Data item #1 

Fig. 23-3 Typical stack and stack pointer. 

which means that it is now pointing to memory location 

0007. Now 0007 is the top-of-the-stack. Now let’s push 

data item #2 onto the stack. The stack will appear as it 

does in Fig. 23-4. 

When data item #2 was pushed onto the stack, it went 

into the location which was being pointed to by the stack 

pointer, which was 0007. The stack pointer was then 

decremented to 0006. This process will be repeated until 

the stack appears as it did in Fig. 23-1. 

At some point we will need this data in the stack, so we 

will remove it from the top-of-the-stack. This is called 

popping or pulling the data from the stack. We simply 

reverse the whole process. As each data item is removed, 

the stack pointer will drop, which in this case means that 

it will increment or point to the next-greater memory address. 

23-2 BRANCHING VERSUS 
SUBROUTINES 

another section of the program. This may be an unconditional 

jump or a conditional jump. In either case the instructions 

immediately following the jump instruction may not be 

executed. If we branch to another section of the program, 

it is because we don’t want to execute the instructions 

immediately following the branch instructions. 

Subroutines also allow us to jump to another section of 

the program to execute instructions there. Subroutines differ 

from jumps or branches, however, in that the instructions 

which immediately follow the subroutine instruction are 

executed later. (The act of starting to execute a subroutine 

is referred to as jumping to a subroutine if you are using a 

6502 or 6800/6808 microprocessor. It is referred to as 

calling a subroutine if you are using an 8080/8085/Z80 or 

8086/8088 microprocessor.) 

After the microprocessor jumps to a subroutine or calls 

a subroutine, the instructions in the subroutine begin to 

execute. At the end of the subroutine is an instruction called 

the return instruction. The return instruction is usually the 

last instruction in the subroutine; it tells the microprocessor 

to go back to the place in the program where it was when 

the subroutine was called and to pick up where it left off. 

This is shown in Fig. 23-5. 

It is also possible for a subroutine to call another 

subroutine. These nested subroutines then sort of “unwind” 

and return in the reverse order relative to that in which they 

were called. This is illustrated in Fig. 23-6. 

23-3 HOW DO SUBROUTINES 
RETURN? 

The ability of a subroutine to return to the exact location 

it came from, especially when nested several layers deep, 

raises the question of how it knows where to return to. 

In Chap. 22, where branching was discussed, we saw that 

branching causes program execution to jump or branch to 
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0003 — Stack pointer — 
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0008 Data item #1 

Fig. 23-4 Typical stack and stack pointer. 
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Main program Subroutine 

Memory Memory 

0000 hh hh 

0001 hh hh 

0002 hh hh 

0003 hh hh 

0004 Call sub hh 

0005 Address hh 

0006 Next inst hh 

0007 hh hh 

0008 hh hh 

0009 hh Return 

Fig. 23-5 “Calling’’ or “jumping” to a subroutine. 
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Second Subroutine 

A 

d 

d 

r 

e 

s 

s 

e 

s 

Main program First Subroutine 

Memory Memory Memory 

0000 hh hh hh 

0001 hh hh hh 

0002 hh Jump sub hh 

0003 hh Address hh 

0004 Jump sub Next inst hh 

0005 Address hh hh 

0006 Next inst hh hh 

0007 hh hh hh 

0008 hh hh hh 

0009 hh Return Return 

Fig. 23-6 Nested subroutines. 

That is, how does it know where it came from? The answer 

lies in what happens just before the microprocessor leaves 

the main program, or current subroutine, to go to the 

subroutine being called. 

The microprocessor must know two things before a 

subroutine can be called or jumped to. First, it must know 

where it’s going, and second, it must know how to get 

back. 

The instruction jump to subroutine or call subroutine 

contains the address of the desired subroutine. This may 

be in the form of an absolute address or an offset of some 
sort. This is the destination. 

The program counter (8086/8088 instruction pointer) 

contains the address of the next instruction to be executed. 

This is the point to which the microprocessor needs to 

return. Refer to Fig. 23-7. 

When the subroutine is called, the contents of the program 

counter are pushed onto the stack. This requires more than 

one push, since in the case of the 8-bit microprocessors the 

stack is only 8 bits wide but the program counter is 16 bits 

wide. (The 8088 stores not only the instruction pointer but 

may also store the code segment, depending on the type of 

call—near or far.) 

After the program counter (instruction pointer) is pushed 

onto the stack, the address of the subroutine which is being 

called or jumped to is placed in the program counter 

(instruction pointer), and program execution begins at this 

new address. 

Execution now continues in the subroutine until a return 

instruction is encountered. Refer to Fig. 23-8. 

At this point, the address of the next instruction which 

was to be executed after the subroutine jump or call, which 
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Main program 

Memory 

0000 hh 

0001 hh 

0002 hh 

0003 hh 

0004 Jump sub 

0005 Addr F000 

0006 Next inst 

0007 hh 

0008 hh 

0009 hh 

Program counter 

Addr next inst 
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Ret addr 

hh 

hh 

hh 

hh 

hh 

Fig. 23-7 Calling a subroutine. 

Subroutine 

Memory 

F000 hh 

F001 hh 

F002 hh 

F003 hh 

F004 hh 

F005 hh 

F006 hh 

F007 hh 

F008 hh 

F009 Return 
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Subroutine Main program 
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Fig. 23-8 Returning from a subroutine. 
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F008 hh 

F009 Return 

has been stored on the stack, is pulled or popped from the 

stack and placed in the program counter (instruction pointer). 

Execution then proceeds from that point forward in the 

main program. 

To summarize: 

1. The call or jump to subroutine instruction is encoun¬ 

tered. 

2. The program counter (instruction pointer) is already 

pointing to the next instruction to be executed (in this 

section of the program code). 

3. The contents of the program counter (instruction pointer) 

are pushed onto the stack. 

4. The address of the subroutine is placed in the program 

counter (instruction pointer). 

5. Program execution now begins in the subroutine. 

6. When a return instruction is encountered, the return 

address, which has been previously stored in the stack, 

is pulled from the stack and placed in the program 

counter (instruction pointer). 

7. Program execution continues from where it left off 

before the subroutine was called or jumped to. 

23-4 PUSHING AND POPPING 
REGISTERS 

When a subroutine is called or jumped to, the use and 

operation of the stack are automatic. You don’t have to tell 

the microprocessor to store the return address on the stack. 

It is done automatically. 

In addition to the automatic use of the stack in subroutine 

calls, the stack can be used directly by the programmer for 

other purposes. Although each microprocessor is different, 

in general, you can push onto the stack, and pull from the 

stack, the contents of some or most of the microprocessor’s 

registers. This is often used to pass values from the main 

program to subroutines and back, or from subroutine to 

subroutine. These values are sometimes referred to as 

parameters. The use of the stack in parameter passing, 

however, is beyond the scope of this text. 

Specific Microprocessor 
Families 

Let’s look at each of our featured microprocessors. We will 

not go into great detail about what each microprocessor 

does automatically before and after a subroutine is called. 

Rather, we will give examples which show how to call a 

subroutine and how to nest subroutines. 

23-5 6502 FAMILY 

The 6502 microprocessor works as described in the New 

Concepts section of this chapter. There is one point worth 

noting, however. 

The stack pointer of the 6502 is a little different from 

that of the other microprocessors featured in this text. The 

changeable portion of the stack pointer is only 8 bits wide 

(all the others are 16 bits wide) and a 9th bit is always set 

to 1. This means that the location of the stack must lie in 

the range from address 0100 to 01FF. This is shown in 

Fig. 23-9. 

Setting the Stack Pointer 

Our first example program illustrates how to set the stack 

pointer to a desired address and then call a subroutine. It 
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Memory 

is important to note that, with the simple programs we have 

used throughout this text, setting the stack pointer is 

normally not required. The microprocessor trainer or com¬ 

puter you are working with will have an operating system 

that will set the stack pointer to a logical address based on 

available memory. 

Figure 23-10 contains our example program. It sets the 

stack pointer to a desired address and then calls a subroutine. 

The subroutine does not actually do anything. It gives you 

a chance to single-step through a program and watch the 

stack pointer and program counter. 

Calling More than One Subroutine (Not Nested) 

Our next example program is shown in Fig. 23-11. 

The two subroutines shown here occur one after the 

other. They are not nested. You should single-step through 

this program and watch the stack pointer and program 

counter. This is important because the next program will 

also contain two subroutines, but they will be nested. We 

want you to see the difference between the two. 

Again, these first programs do not do anything. Just 

observe the behavior of the program counter and the stack 

pointer. 

Nesting Subroutines 

The program shown in Fig. 23-12 also has two subroutines. 

They are nested, however. 

Single-step through this program and watch the stack 

pointer and the program counter carefully. Notice how they 

act differently from the way they did in the last program. 

When you are inside the second subroutine, the stack is 

holding the return addresses for both subroutines. That’s 

why it decrements further. 

Pushing Registers 

The example program shown in Fig. 23-13 shows how to 

use the stack to move information from one register to 
another. 

The program pushes the flags onto the stack and then 

pulls them from off the stack into the accumulator. The 

□ □□1 □ 34D .ORG $0340 
□ □□3 □ 34D y 

□ □□3 □ 340 A3 F3 START: LDX *$F3 
□ □□4 □ 343 3 A TXS 
□ □05 □ 343 EA NOP 
□ □□fa □ 344 ED 4A 03 JSR SUBRTN 
□ □□7 □ 347 □ □ BRK 
□ □□A □ 34 A EA SUBRTN: NOP 
□ □□3 □ 34 3 to RTS 
□ □ID □ 34 A 7 

□ □11 □ 34 A .END 

;load number for stack pointer 

;load stack pointer 

;misc instructions 

;jump to subroutine (watch stack pointer) 
; stop 

;misc instructions 

;return from subroutine 

Fig. 23-10 6502 program 

subroutine. 
loading stack pointer and calling a 

□ □□1 □ 34 □ .ORG $0340 
□ □□3 □ 340 
□ □□3 □ 34 □ EA START: NOP 

□ □□4 □ 341 3D 43 □ 3 JSR RTNE_1 

□ □□5 □ 344 EA NOP 

□ □□fa □ 345 3D 4B □ 3 JSR RTNE_3 
□ □07 □ 34 A □ □ BRK 

□ □□a □ 343 EA RTNE_1: NOP 
□ □□3 □ 34 A faD RTS 
□ □ID □ 34B EA RTNE_3: NOP 

□ □11 □ 34C faD RTS 
□ □13 □ 34D 

□ □13 □ 3 4D .END 

Fig. 23-11 6502 program with two subroutines not nested. 

Watch the stack pointer as 
each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each back to the main 
program. These subroutines 
are not nested. 
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□ □01 □ 34 0 .ORG $034□ 
□□□0 □ 34 □ 
□ □□3 □ 340 EA START: NOP 
□ □□4 □ 341 00 45 □ 3 JSR RTNE_1 
□ □□5 □ 344 □ □ BRK 
□ 00b □ 345 EA RTNE_1: NOP 
□ □□? □ 34b 00 4 A □ 3 JSR RTNE_0 
□ □□A □ 3 4 3 GO RTS 
□ □□3 □ 34 A EA RTNE_0: NOP 
□ □10 □ 34B b0 RTS 
□ □11 □ 34C 
□ 010 □ 34C .END 

Fig. 23-12 6502 program with two nested subroutines. 

Again, watch the stack 
pointer as each subroutine 
is “called" or "jumped to," 
and as execution returns 
from each subroutine. These 
subroutines are nested. 

□ □□1 □ 34 □ 
□ □□0 034 □ 
□ □□3 □ 340 □ A 
□ □□4 0341 bA 
□ □□5 0340 □ 0 
000b 0343 
□ □□? 0343 

.ORG $0340 

START: PHP 

PLA 

BRK 

.END 

:push flags then decrement stack pointer 

;pull then increment stack pointer 
; stop 

Fig. 23-13 6502 program which pushes a register. 

bits of the accumulator, which represent the status of the 

flags, can now be examined by the program or stored in 

memory. 

A Useful Program Containing a Subroutine 

Let’s take a look at the program shown in Fig. 23-14. 

This program’s purpose is as follows: 

it is positive or 0, it will do nothing with the num¬ 

ber. If the number is negative, a subroutine will be 

entered. This subroutine will find the absolute value 

of the number (that is, it will make the negative num¬ 

ber positive). It will then write this positive number 

into memory in place of the original negative number. 

(We used the decimal numbers 3, —4, —2, 0, and 5.) 

(Note: If the microprocessor being used here has a 

negate instruction, that instruction will not be used.) 

This program will read a list of five signed binary 

numbers. As it reads each number, it will determine 

whether that number is positive or 0 or negative. If 

Enter this program into your microprocessor trainer or 

computer and single-step through it. Study the program and 

make sure that you understand its operation. 

□ □□1 034 □ . org $0340 
□ □00 0340 

□ □03 □ 340 A0 □ 0 START: LDX #$□□ 
0004 □ 340 AD □ b LDY $ $ □ b 
□ □□5 □ 344 A A GETNUM : DEY 
□ 00b □ 345 F0 13 BEQ DONE 
□ □□? □ 347 BD bl □ 3 LDA SLIST, X 
□ □□A 034 A C3 □ □ CMP *$□□ 
□ □□3 ’□34 C 10 05 BPL NEXT 
□ □ID 034E F0 □ 3 BEQ NEXT 
□ Oil 0350 00 57 □ 3 JSR NEGNUM 
0010 □ 353 EA NEXT: INX 
□ □13 □ 354 4C 44 □ 3 JMP GETNUM 
□ □14 □ 357 43 FF NEGNUM: EOR * IFF 
□ □15 □ 353 1A CLC 
□ □lb □ 35 A b3 01 ADC #$□1 
0017 035C 3D bl □ 3 STA SLIST, X 

□ D1A □ 35E bO RTS 
□ 013 □ 3 b 0 □ 0 DONE : BRK 
□ □00 □ 3bl 

□ □01 03bl □3FCFEDDD5 LIST: .db 3, 
□ □00 □ 3bb 

□ □03 □ 3bb . end 

Fig. 23-14 A useful 6502 program which contains a 
subroutine. 

;address of beginning of list 

;counter 

;decrement counter 

; if no items left end program 

;load number from list 

;is it positive/zero or negative? 

;if positive get next number now 

;if zero get next number now 

;if negative call subroutine 

;point to next number in list 
;branch back to beginning 

jinvert all bits of negative number 

;prepare for addition 

;add 1 to inverted bits 

;write absolute value over 

old negative value 

; return* 

; stop 

-2, □, 5 ;list of 5 numbers 
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□□□1 0100 .ORG $0100 
□ DDE □ 100 ; 
□ 003 □ 100 flE □ 1 FF START: LDS *$01FF 
□ 0D4 0103 01 NOP 
□ 005 0104 BD 01 □ A JSR SUBRTN 
0000 □ ID? 3E WAI 
0007 OlOfl □ 1 SUBRTN : NOP 
OOOfi □ 103 33 RTS 
0003 □ 10 A 

0010 □ IDA .END 

Fig. 23-15 6800/6808 program loading stack pointer and 
calling a subroutine. 

; load stack pointer 

;misc instructions 

;jump to subroutine (watch stack pointer) 
; stop 

;misc instructions 

; return from subroutine 

23-6 6800/6808 FAMILY 

The 6800/6808 microprocessor works as described in the 

New Concepts section of this chapter. We’ll look at several 

sample programs which you can enter into your micropro¬ 

cessor trainer or computer and examine. 

Setting the Stack Pointer 

Our first example program illustrates how to set the stack 

pointer to a desired address and then call a subroutine. It 

is important to note that, with the simple programs we have 

used throughout this text, setting the stack pointer is 

normally not required. The microprocessor trainer or com¬ 

puter you are working with will have an operating system 

that will set the stack pointer to a logical address based on 

available memory. 

Figure 23-15 contains our example program. It sets the 

stack pointer to a desired address and then calls a subroutine. 

The subroutine does not actually do anything. It gives you 

0001 □ 1D0 .ORG $0100 
0003 □ 100 
0003 010D □ 1 START: NOP 
□ 004 0101 BD 01 03 JSR RTNE_1 
0005 □ 1D4 □ 1 NOP 
□ 000 □ 105 BD 01 DA JSR RTNE_3 
0007 OlOfl 3E WAI 
OOOfi 0103 01 RTNE_1: NOP 
□ ooq □ 10 A 33 RTS 
□ □10 010B □ 1 RTNE_3: NOP 
□ Oil □ 10C 33 RTS 
□ 013 010D 
0013 □ 1DD .END 

Fig. 23-16 6800/6808 program with two subroutines not nested. 

□ 001 0100 .ORG $0100 
0003 0100 
0003 0100 □ 1 START: NOP 
0004 01D1 BD 01 05 JSR RTNE_1 
0005 □ 104 3E WAI 
□ 000 0105 □ 1 RTNE_1: NOP 
0007 0100 BD □ 1 0A JSR RTNE_3 
OOOfi 0103 33 RTS 
0003 010A 01 RTNE_3: NOP 
□ 010 □ 10B 33 RTS 
□ Oil 010C 
0013 □ 1DC .END 

Fig. 23-17 6800/6808 program with two nested subroutines. 

a chance to single-step through a program and watch the 

stack pointer and program counter. 

Calling More than One Subroutine (Not Nested) 

Our next example program is shown in Fig. 23-16. 

The two subroutines shown here occur one after the 

other. They are not nested. You should single-step through 

this program and watch the stack pointer and program 

counter. This is important because the next program will 

also contain two subroutines, but they will be nested. We 

want you to see the difference between the two. 

Again, these first programs do not do anything. Just 

observe the behavior of the program counter and the stack 
pointer. 

Nesting Subroutines 

The program shown in Fig. 23-17 also has two subroutines. 

They are nested, however. 

Watch the stack pointer as 
each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each back to the main 
program. These subroutines 
are not nested. 

3 
3 

Again, watch the stack 
pointer as each subroutine 
is "called" or "jumped to," 
and as execution returns 
from each subroutine. These 
subroutines are nested. 
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□ □□1 □ 1 □ □ .ORG $□!□□ 
□ □□e □ 
□ □□3 □ !□□ at IE START: LD A A #$1E ; load values into 

□ □□4 oide Ct 34 LDAB #$34 ; registers 

□ □□5 U1U4 3t PSHA ; push then decrement stack pointer 
□ □□t □ ids 37 PSHB ; push then decrement stack pointer 
□ □□? □ IDb 3E PULA ; puli then increment stack pointer 

□ □□a □ ID? 33 PULB ; puli then increment stack pointer 
□ □□3 □ IDA 3E WAI ; stop 

□ □ID □ IDS 
□ □11 □ 1D3 .END 

again 

again 

Fig. 23-18 6800/6808 program which pushes a register. 

Single-step through this program and watch the stack 

pointer and the program counter carefully. Notice how they 

act differently from the way they did in the last program. 

When you are inside the second subroutine, the stack is 

holding the return addresses for both subroutines. That's 

why it decrements further. 

Pushing Registers 

The example program shown in Fig. 23-18 shows how to 

use the stack to move information from one register to 

another. 

The program loads accumulators A and B with a value, 

pushes A and B onto the stack, and then pulls them from 

the stack in reverse order. This places the data that was in 

A in B and the data that was in B in A. 

A Useful Program Containing a Subroutine 

Let’s take a look at the program shown in Fig. 23-19. 

This program’s purpose is as follows: 

This program will read a list of five signed binary 

numbers. As it reads each number, it will determine 

whether that number is positive or 0 or negative. If 

it is positive or 0, it will do nothing with the num¬ 

ber. If the number is negative, a subroutine will be 

entered. This subroutine will find the absolute value 

of the number (that is, it will make the negative num¬ 

ber positive). It will then write this positive number 

into memory in place of the original negative number. 

(We used the decimal numbers 3, — 4, —2, 0, and 5.) 

(Note: If the microprocessor being used here has a 

negate instruction, that instruction will not be used.) 

Enter this program into your microprocessor trainer or 

computer and single-step through it. Study the program and 

make sure that you understand its operation. 

23-7 8080/8085/Z80 FAMILY 

The 8080/8085/Z80 microprocessor works as described in 

the New Concepts section of this chapter. We’ll look at 

several sample programs which you can enter into your 

microprocessor trainer or computer and examine. 

The 8080/8085/Z80 microprocessors do have two features 

□ □□1 □ !□□ . org $□!□□ 
□ DDE □ !□□ 
□ □□3 □ !□□ CE □ 1 IB START: LDX *$LIST 
□ □□4 0103 Ct □ t LDAB # $ □ t 

□ □□5 □ IDS 5 A GETNUM: DECB 

□ □□□ □ 1DL E7 IE BEQ DONE 

□ □□? □ IDA At □ □ LD AA $□□, X 

□□□a □ IDA A1 □ □ CMP A #$□□ 
□ □□3 01 DC EC □ 3 BGE NEXT 

□ □ID □ IDE BD □ 1 14 JSR NEGNUM 
□ □11 □ 111 □ a NEXT: I NX 

□ □IE □ HE ED FI BRA GETNUM 

□ □13 □ 114 43 NEGNUM : COMA 

□ □ 14 □ 115 QB □ 1 ADDA #$□1 

□ □IB □ 117 A7 □ □ STAA $□□, X 

□ □It □ 113 33 RTS 

□ □17 □ HA 3E DONE: WAI 

□ □Ifl □ 1 IB 

□ □13 0HB □3FCFEDDD5 LIST: .db 3 , 
□ □ED DIED 

□ □El DIED . end 

;address of beginning of list 

;counter 

; decrement counter 

; if no items left end program 

;load number from list 

;is it positive/zero or negative? 

;if positive get next number now 

;if negative call subroutine 

;point to next number in list 

;branch back to beginning 

;invert all bits of negative number 

;add 1 to inverted bits 

;write absolute value over 

old negative value 

;return 

; stop 

-4/ -E, □, 5 ; list of 5 numbers 

Fig. 23-19 A useful 6800/6808 program which contains a 

subroutine. 
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that the other microprocessors featured in this text don’t 

have: They have the ability to perform conditional subrou¬ 

tine calls and to perform conditional returns from subrou¬ 

tines. All the other microprocessors featured in this text 

have only unconditional calls and unconditional returns. 

Setting the Stack Pointer 

Our first example program illustrates how to set the stack 

pointer to a desired address and then call a subroutine. It 

is important to note that, with the simple programs we have 

used throughout this text, setting the stack pointer is 

normally not required. The microprocessor trainer or com¬ 

puter you are working with will have an operating system 

that will set the stack pointer to a logical address based on 

available memory. 

Figure 23-20 contains our example program. It sets the 

stack pointer to a desired address and then calls a subroutine. 

The subroutine does not actually do anything. It gives you 

a chance to single-step through a program and watch the 

stack pointer and program counter. 

Calling More than One Subroutine (Not Nested) 

Our next example program is shown in Fig. 23-21. 

The two subroutines shown here occur one after the 

other. They are not nested. You should single-step through 

this program and watch the stack pointer and program 

counter. This is important because the next program will 

also contain two subroutines, but they will be nested. We 

want you to see the difference between the two. 

ADAD/ADA5 program 

□ □□1 1AD0 .ORG lADOh 
□ □02 1 ADD 
□ □□3 1 ADD 31 DE IF START: LXI SP, IFDEh 
□ □□4 1AD3 DO NOP 
□ 005 1AD4 CD □ A 1A CALL SUBRTN 
□ □□b 1 AD? 7b HLT 
□ □□7 1 AD A □ □ SUBRTN : NOP 
□ □□A 1 ADD CD RET 
□ □□3 1A DR y 

□ □ID 1ADA .END 

ZAD program 

□ DD1 1 ADO .ORG lADDh 
□ □□2 1 ADD ; 
□ □□3 1 ADD 31 DE IF START: LD SP , IFDEh 
□ □□4 1AD3 □ □ NOP 
□ DD5 1AD4 CD □ A 1A CALL SUBRTN 
□ DDL 1 AD? 7b HALT 
□ DD7 1ADA □ □ SUBRTN: NOP 
□ □□A 1 ADD CD RET 
□ ODD 1A 0 A 
□ DID 1 AD A .END 

Fig. 23-20 8080/8085/Z80 program loading stack pointer and 
calling a subroutine. 

Again, these first programs do not do anything. Just 

observe the behavior of the program counter and the stack 

pointer. 

Nesting Subroutines 

The program shown in Fig. 23-22 also has two subroutines. 
They are nested, however. 

Single-step through this program and watch the stack 

pointer and the program counter carefully. Notice how they 

act differently from the way they did in the last program. 

When you are inside the second subroutine, the stack is 

holding the return addresses for both subroutines. That’s 

why it decrements further. 

Pushing Registers 

The example program shown in Fig. 23-23 shows how to 

use the stack to move information from one register to 

another. 

The program loads register pairs BC and DE with a 

value, pushes BC and DE onto the stack, and then pulls 

them from the stack in reverse order. This places the data 

that was in BC in DE, and the data that was in DE in BC. 

A Useful Program Containing a Subroutine 

Let’s take a look at the program shown in Fig. 23-24. 

This program’s purpose is as follows: 

This program will read a list of five signed binary 

numbers. As it reads each number, it will determine 

;load stack pointer 
;misc instructions 
;call subroutine (watch stack pointer) 
; stop 
;misc instructions 
;return from subroutine 

;load stack pointer 
;misc instructions 
;call subroutine (watch stack pointer) 
; stop 
;misc instructions 
;return from subroutine 
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AD AD/AD A 5 program 

□□□1 1 ADD .ORG 1800h 

odde 1 ADO 

□ □□3 1A DO □ □ START: NOP 

□ DDZ 1AD1 CD DD 1A CALL RTNE_1 

□ DDD 1A DZ □ □ NOP 

□ □□b 1 ADD CD □ B 1A CALL RTNE_5 

□ □□? 1 AD A 7b HLT 

□ □□A 1 ADD □ D RTNE_1: NOP 

□ □□3 1 AD A CD RET 

□ □ID 1A OB □ □ RTNE__E: NOP 

□ Oil 1A DC CD RET 

□ 012 1 ADD 

□ □13 1 ADD .END 

ZAD ] program 

0001 1A □□ .ORG lADDh 

□□□a 1ADD 

□ □□3 1 ADD DD START: NOP 

□ DDZ 1 ADI CD □ D 1A CALL RTNE_1 

□ □□5 1A0Z □ □ NOP 

□ DDL 1 ADD CD DB 1A CALL RTNE_E 
□ □□? 1 ADA 7b HLT 
□ □□A 1A 0 D □ □ RTNE_1: NOP 
□ DDD 1A 0 A CD RET 

□ DID 1A0B 00 RTNE_E: NOP 

□ Dll 1A DC CD RET 

□ DIE 1 ADD 

□ 013 1A DD .END 

Fig. 23-21 8080/8085/Z80 program with two subroutines not 
nested. 

ADAD/ADA5 program 

Watch the stack pointer as 
each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each back to the main 
program. These subroutines 
are not nested. 

Watch the stack pointer as 
each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each back to the main 
program. These subroutines 
are not nested. 

□ □□1 1ADD .ORG lADDh 
DDOE 1 ADD 

□ □□3 1 ADO □ □ START: NOP 
□ DDZ 1A01 CD 05 1A CALL RTNE_1 
□ DDD 1A0Z 7b HLT ^_ 

□ DDb 1AD5 □ □ RTNE_1: NOP 
00D7 1 ADh CD □ A 1A CALL RTNE_E 
DDD A 1 ADD CD RET — 
□ DDD 1 AD A □ D RTNE_E: NOP 
□ DID 1ADB CD RET 
□ Dll 1AOC 

□ DIE 1 ADC .END 

ZAD urogram 

□ Q01 1ADD .ORG lADDh 
□ DDE 1 ADO 

□ □□3 1A0D DD START: NOP 
□ □□4 1AQ1 CD □ D 1A CALL RTNE_1 
□ □□5 1 ADZ 7b HALT 
□ DDb 1 ADD DD RTNE_1: NOP ^— 

□ DD7 1 ADb CD DA 1A CALL RTNE_2 
□ □□A 1ADD CD RET i 
0 0 0 D 1A D A DD RTNE_E: NOP 
DD1D 1ADB CD RET 

DO 11 1A DC 

□ DIE 1 AOC .END 

Fig. 23-22 8080/8085/Z80 program with two nested 
subroutines. 

Again, watch the stack 
pointer as each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each subroutine. These 
subroutines are nested. 

Again, watch the stack 
pointer as each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each subroutine. These 
subroutines are nested. 
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A0A0/A0A5 program 

□ □□1 IflOO .ORG lAOOh 
□ doe iaoo 
0003 IflOO □ 1 34 IE START: LXI B,1E34 h 
□ □□4 1603 11 7 A 50 LXI D/507Ah 
0003 1600 C5 PUSH B 
0000 1A07 D5 PUSH D 
0007 IfiOfl Cl POP B 
0DDA laoq D1 POP D 
0003 1A0A 70 HLT 
0010 1A 0B 

□ 011 1A 0B .END 

ZAO program 

0001 1A 0 0 .ORG lAOOh 
□ 00E 1A 0 0 

0003 1A 00 01 34 15 START: LD BC/lE34h 
0004 1A03 11 ? A 5 b LD DE, 507 Ah 
0005 1A 0 0 C5 PUSH BC 
□ 000 1A07 D5 PUSH DE 
0007 1A 0 A Cl POP BC 
000 A 1603 D1 POP DE 
0 0 03 1A 0 A 70 HALT 
0010 1A 0B 
0011 1A 0B .END 

Fig. 23-23 8080/8085/Z80 program which pushes a register. 

whether that number is positive or 0 or negative. If 

it is positive or 0, it will do nothing with the num¬ 

ber. If the number is negative, a subroutine will be 

entered. This subroutine will find the absolute value 

of the number (that is, it will make the negative num¬ 

ber positive). It will then write this positive number 

into memory in place of the original negative number. 

(We used the decimal numbers 3, —4, —2, 0, and 5.) 

{Note: If the microprocessor being used here has a 

negate instruction, that instruction will not be used.) 

Enter this program into your microprocessor trainer or 

computer and single-step through it. Study the program and 

make sure that you understand its operation. 

23-8 8086/8088 FAMILY 

The 8086/8088 microprocessor works as described in the 

New Concepts section of this chapter. The 8086/8088 can 

have a very large stack, up to 64K (65,536 bytes). The 

location of the top-of-the-stack is calculated by using both 

the stack pointer and the stack segment. 

We’ll look at several sample programs which you can 

enter into your microprocessor trainer or computer and 

examine. 

Setting the Stack Pointer 

Our first example program illustrates how to set the stack 

pointer to a desired address and then call a subroutine. It 

;load values into 

; registers 

;push then decrement stack pointer 

;push then decrement stack pointer again 

;pull then increment stack pointer 

;pull then increment stack pointer again 
; stop 

;load values into 

; registers 

;push then decrement stack pointer 

;push then decrement stack pointer again 

;pull then increment stack pointer 

;pull then increment stack pointer again 
; stop 

is important to note that, with the simple programs we have 

used throughout this text, setting the stack pointer is 

normally not required. The microprocessor trainer or com¬ 

puter you are working with will have an operating system 

that will set the stack pointer to a logical address based on 

available memory. 

Figure 23-25 contains our example program. It sets the 

stack pointer to a desired address and then calls a subroutine. 

The subroutine does not actually do anything. It gives you 

a chance to single-step through a program and watch the 

stack pointer and program counter. 

Calling More than One Subroutine (Not Nested) 

Our next example program is shown in Fig. 23-26. 

The two subroutines shown here occur one after the 

other. They are not nested. You should single-step through 

this program and watch the stack pointer and program 

counter. This is important because the next program will 

also contain two subroutines, but they will be nested. We 

want you to see the difference between the two. 

Again, these first programs do not do anything. Just 

observe the behavior of the program counter and the stack 
pointer. 

Nesting Subroutines 

The program shown in Fig. 23-27 also has two subroutines. 

They are nested, however. 
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A06D/ADA5 program 

□□□1 1 AO □ • or9 lADOh 
□ □□2 1 ADD 
□ □□3 1AQQ 21 1C 1A START: LXI H,LIST 
UUUA 1AQ3 □ b □ b MVI B, Dbh 
□ □□5 1A □ 5 □ 5 GETNUM: DCR B 
□ □□b 1A □ b CA IB 1A JZ DONE 
□ □□? iAoq 7E MOV A , M 
ODD A 1 ADA FE □ □ CPI □ □h 
□ □□3 1 ADC F2 12 1A JP NEXT 
□ □ID 1ADF CD lb 1A CALL NEGNUM 
□ □11 1A12 23 NEXT: INX H 
□ □12 1A13 C3 □ 5 1A JMP GETNUM 
□ □13 1A1 b 2F NEGNUM : CM A 
unit 1A1? Cb □ 1 ADI □ Ih 
□ □15 1A13 77 MOV M, A 
□ □lb 1A1A C3 RET 
□ □1? 1A IB 7b DONE : HLT 
□ □1A 1A 1C 
□ □13 1A 1C □3FCFEDDD5 LIST: . db 3, 
□ □2D 1A21 
□ □21 1A21 .end 

ZAO program 

□ □□1 1 ADD .org lAODh 

□ □□2 1 ADO 

□ □□3 1ADD 21 1C 1A START: LD HL,LIST 

UUUA 1603 □ b □ b LD B/Dbh 

□ □□5 1A □ 5 □ 5 GETNUM: DEC B 

□ □□b 1A Db CA IB 1A JP Z,DONE 

0007 1A 03 7E LD A,(HL) 

□ □□A 1 AD A FE □ □ CP DDh 

□ □□3 1A DC F2 12 1A JP P,NEXT 

□ □ID 1ADF CD lb 1A CALL NEGNUM 

□ □11 1612 23 NEXT: INC HL 

□ □12 1613 C3 □ 5 1A JP GETNUM 

□ □13 1 Alb 2F NEGNUM: CPL 

unit 1A17 Cb 01 ADD A,01h 

□ □15 1613 77 LD (HL),A 

□ □lb 1A1A C3 RET 

□ □17 1A IB 7b DONE : HALT 
□ D1A 1A1C 
□ □13 1A1C □3ECFEDDD5 LIST: .db 3, 

□ □2D 1A21 

□ □21 1A21 . end 

Fig. 23-24 A useful 8080/8085/Z80 program which contains 
a subroutine. 

Single-step through this program and watch the stack 

pointer and the program counter carefully. Notice how they 

act differently from the way they did in the last program. 

When you are inside the second subroutine, the stack is 

holding the return addresses for both subroutines. That’s 

why it decrements further. 

Pushing Registers 

The example program shown in Fig. 23-28 shows how to 

use the stack to move information from one register to 

another. 

address of beginning of list 
counter 
decrement counter 
if no items left end program 
load number from list 
is it positive/zero or negative? 
if positive get next number now 
if negative call subroutine 
point to next number in list 
branch back to beginning 
invert all bits of negative number 
add 1 to inverted bits 
write absolute value over old negative value 
return 
stop 

-2, □, 5 ;list of 5 numbers 

address of beginning of list 
counter 
decrement counter 
if no items left end program 
load number from list 
is it positive/zero or negative? 
if positive get next number now 
if negative call subroutine 
point to next number in list 
branch back to beginning 
invert all bits of negative number 
add 1 to inverted bits 
write absolute value over old negative value 
return 
stop 

-2, □ , 5 ;list of 5 numbers 

The program loads registers AX and BX with a value, 

pushes AX and BX onto the stack, then pulls them from 

the stack in reverse order. This places the data that was in 

AX in BX, and the data that was in BX in AX. 

A Useful Program Containing a Subroutine 

Let’s take a look at the program shown in Fig. 23-29. 

This program’s purpose is as follows: 

This program will read a list of five signed binary 

numbers. As it reads each number, it will determine 
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ADAb/ADAA program (with assembler) 

1 page , 13 E 
E 
3 □ □□□ CODE SEGMENT 
4 ASSUME CS:CODE , D 
5 □ 1DD ORG DlDOh 
b 
7 □ 1DD BC EEF3 START: MOV SP/0FFF3h 
A 0103 3D NOP 
3 0104 EA □ 1D3 R CALL SHORT SUBRTN 

ID □ ID? CD ED INT EOh 
11 □ 103 3D SUBRTN : NOP 
IE □ IDA C3 RET 
13 
14 □ 1QB CODE ENDS 
15 

It END START 

ADAb/ADAA program (with DEBUG) 

MOV SP,FFF3 ; load stack pointer 
NOP ; misc instructions 
CALL D1D3 ; call subroutine (watch 
INT ED ; stop 
NOP ; misc instructions 
RET ;return from subroutine 

Fig. 23-25 8086/8088 program loading stack pointer and 
calling a subroutine. 

S:CODE, SS:CODE 

;load stack pointer 
;misc instructions 
;call subroutine (watch stack pointer) 
;stop 
;misc instructions 
;return from subroutine 

tack pointer) 

ADAb/ADAA program (with assembler) 

1 page , 13 E 
E 
3 □ ODD CODE SEGMENT 
4 ASSUME CS:CODE, 
5 □ 1DD ORG DlDOh 
b 
7 D1DD 3D START: NOP 
A D1D1 EA □ IDA R CALL SHORT RTNE. 
3 01D4 3D NOP 

ID □ 1D5 EA D1DC R CALL SHORT RTNE. 
11 □ IDA CD ED INT EOh 
IE □ IDA 3D RTNE_1 : NOP 
13 D1DB C3 RET 
14 D1DC 3D RTNE_E : NOP 
15 □ 1DD C3 RET 
lb 
17 01DE CODE ENDS 
1A 
13 END START 

DS:CODE, SS:CODE 

Watch the stack pointer as 
each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each back to the main 
program. These subroutines 
are not nested. 

A □ A b./A □ A A program (with DEBUG) 

NOP 
CALL DID A 
NOP 
CALL 01DC 
INT ED 
NOP 
RET 
NOP 
RET 

Watch the stack pointer as 
each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each back to the main 
program. These subroutines 
are not nested. 

Fig. 23-26 8086/8088 program with two subroutines not 

nested. 
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ADAb/ADAA program (with assembler) 

1 page , i3a 
a 

3 □□□□ CODE SEGMENT 
4 ASSUME CS:CODE, 
5 DIDO ORG niODh 
b 

7 0100 qo START: NOP 
A EA □ 10L R CALL SHORT RTNE_ 
3 U1UA CD ao INT aOh 

10 010L 3D RTNE_ .1: NOP 
11 DID? EA 010B R CALL SHORT RTNE_ 
ia DIDA C3 RET 
13 □10B qo RTNE_ .a: NOP 
IA EDI DC C3 RET 
15 

10 010D CODE ENDS 
17 

IA END START 

ADAb/ADAA program (with DEBUG) 

NOP 
CALL 010 L — 

int ao ^_ Again, watch the stack 

NOP pointer as each subroutine is 

CALL DiDB 
"called" or "jumped to," 
and as execution returns 

RET ** from each subroutine. These 
NOP —* subroutines are nested. 
RET — 

SS:CODE 

Again, watch the stack 
pointer as each subroutine is 
"called" or "jumped to," 
and as execution returns 
from each subroutine. These 
subroutines are nested. 

Fig. 23-27 8086/8088 program with two nested subroutines. 

ADAb/ADAA program (with assembler) 

1 page ,132 

a 
3 0000 CODE SEGMENT 

A ASSUME CS:CODE, DS:CODE, SS:CODE 

5 
r 

□ 100 ORG OlODh 

b 

7 0100 BA 133A START: MOV AX,ia34h ;load values into 

A 0103 BB 5L7 A MOV BX,5L7 Ah ; registers 

q OlDta 5D PUSH AX ;push then decrement stack pointer 
10 □ 107 53 PUSH BX ;push then decrement stack pointer aga 
11 □ IDA 5 A POP AX ;pop then increment stack pointer 

ia oioq 5B POP BX ;pop then increment stack pointer agai 

13 □ IDA CD ao INT ODh ; stop 

1A 
15 □ 10C CODE ENDS 

1L 

17 END START 

ADA L/A □ A A program 

MOV AX,ia34 

MOV BX,5L7 A 

PUSH AX 

PUSH BX 

POP AX 

POP BX 

INT ao 

(with DEBUG) 

;load values into 

; registers 

;push then decreme 

;push then decreme 

;pop then incremen 

;pop then incremen 

; stop 

nt stack pointer 

nt stack pointer again 

t stack pointer 

t stack pointer again 

Fig. 23-28 8086/8088 program which pushes a register. 
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AOAk/AOAA program (with assembler) 

1 page ,132 
2 
3 □□□□ CODE SEGMENT 

ASSUME CS:CODE, DS:CODE, SS:CODE 

;address of beginning of list 
;counter 
;decrement counter 
;if no items left end program 
;load number from list 
;is it positive/zero or negative? 
;if positive get next number now 
;if negative call subroutine 
;point to next number in list 
;branch back to beginning 
jinvert all bits of negative number 
;add 1 to inverted bits 
;write absolute value over old 

negative value 
; return 
; stop 

; list of 5 numbers 

A 0 A k/A 0 A A program (with DEBUG) 

jaddress of beginning of list 
;counter 
;decrement counter 
;if no items left end program 
;load number from list 
;is it positive/zero or negative? 
;if positive get next number now 
;if negative call subroutine 
;point to next number in list 
;branch back to beginning 
jinvert all bits of negative number 
;add 1 to inverted bits 
;write absolute value over old negative value 
;return 
; stop 

e 0125 03 FC FE □□ 05 

Fig. 23-29 A useful 8086/8088 program which contains a 
subroutine. 

whether that number is positive or 0 or negative. If 

it is positive or 0, it will do nothing with the num¬ 

ber. If the number is negative, a subroutine will be 

entered. This subroutine will find the absolute value 

of the number (that is, it will make the negative num¬ 

ber positive). It will then write this positive number 

into memory in place of the original negative number 
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(We used the decimal numbers 3, -4, -2, 0, and 5.) 

(Note: If the microprocessor being used here has a 

negate instruction, that instruction will not be used.) 

Enter this program into your microprocessor trainer or 

computer and single-step through it. Study the program and 

make sure that you understand its operation. 

a D100 
MOV BX,□□□□ 
MOV CL,0k 
DEC CL 
JZ 0120 
MOV AL,[BX+0122] 
CMP AL,00 
JGE DllA 
CALL 0117 
INC BX 
JMP 0105 
NOT AL 
ADD AL, 01 
MOV [BX+0122],AL 
RET 
INT 20 



SELF TESTING REVIEW 

Read each of the following and provide the missing words. 

Answers appear at the beginning of the next question. 

1. _are used when there are common tasks 

which must be executed or used many times. 

2. (Subroutines) The structure of the stack is a 

_type of structure. 

3. (FILO) The act of putting a piece of data on the top 

of the stack is called_the data onto the 

stack. 

4. (pushing) The act of removing a piece of data from 

the top of the stack is called-or 

_the data from the stack. 

5. (pulling, popping) The instruction that is usually the 

last instruction in a subroutine, and that tells the 

microprocessor to go back to the place where it was 

before the subroutine was called, is the- 

instruction. 

6. (return) In general, the programmer can push onto 

and pull from the stack one or more of the micropro¬ 

cessor’s _ 

(registers) 

PROBLEMS 

Solve the following problem using the microprocessor of 

your choice. This will be the longest program you have 

written thus far. Therefore, this chapter has only this one 

program for you to write. The program can be considered 

correct only if it causes the correct values to be placed in 

the counter variables and alters the original list correctly. 

23-1. A 1 -byte unsigned number can range from 00 to 

FF. Each number in this range has a correspond¬ 

ing ASCII value. The primary categories within 

the ASCII table are shown below. (The characters 

from 80-FF are not actually official ASCII char¬ 

acters but are used to form the extended IBM 

character set.) 

00-IF various control characters 

20-2F punctuation marks 

30-39 numbers 

o
 I 

<
 

C
O

 punctuation marks 

41 -5A uppercase letters 

5B-60 punctuation marks 

61 -7A lowercase letters 

7B-7F punctuation marks 

80-FF foreign letters, boxes, 

math symbols, miscellaneous 

Write a program in which the main part of the 

program examines consecutive bytes from a list 

which ends with the number FF. This main pro¬ 

gram section then determines which category each 

value in the list is from. Different subroutines will 

then be called, depending on which category a 

value belongs to. 

If the value represents a lowercase letter, a 

subroutine called LOWER will increment a mem¬ 

ory location called NUM_LW, which indicates 

the number of lowercase letters found. 

If the value represents an uppercase letter, a 

subroutine called UPPER will increment a mem¬ 

ory location called NUM_UP, which indicates the 

number of uppercase letters found. 

If the value represents a number, a subroutine 

called NUM will change the number to its corre¬ 

sponding binary value. (The ASCII value for a 

number and the binary value for that number are 

not the same.) The subroutine will then store the 

binary value in the list in place of the original 

ASCII value and then increment a memory loca¬ 

tion called NUM_N, which indicates the number 

of numbers found. 

If the number represents a control character, the 

program will do nothing. 

If the value represents a punctuation mark, a 

subroutine called PUNCT will increment a mem¬ 

ory location called NUM_P, which indicates the 

number of punctuation marks found. 

If the value represents one of the special char¬ 

acters in the range from 80 to FF, a subroutine 

called SPECL will change the uppermost bit of 

the number from a 1 to a 0. This change will 

cause the value to fit into one of the previously 

mentioned categories. The subroutine SPECL will 

then return to the main program, which is to be 

arranged in such a way that this converted value 

will be evaluated a second time to determine its 

new category and have the appropriate subroutine 

called. 

Place the following hexadecimal values in the 

list: 00, IF, 20, 2F, 30, 39, 3A, 40, 41, 5A, SB, 

60, 61, 7A, 7B, 7F, 80, and FF. (FF is not 

actually a value to be evaluated but marks the end 

of the list.) 
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0F 8085,8080 AND 280 (8080subset) instructions listed 

Micro Mnemonic Operation 8085>sz-a-p^ T # Address Op Boolean/Arith. 

Z80 > sz-H-PNC Mode Operation 

CPU Control Instruction.*} 

8085 NOP No Operation xx-x-x-x 

1 Implied 00 nothing 
Can be used to create time 

Z80 NOP No Operation 
4 

xx-x-xxx 
delays or leave extra spaces for 

instructions to be inserted at a 

later time. 

8085 HLT HALT xx-x-x-x 5 

1 Implied 76 stop processing 
(8080 = 7 states) 

Z80 HALT HALT xx-x-xxx 4 

Data Transfer Instructions 

8085 MOV AA MOVe data to A from A xx-x-x-x 

1 Register 
(8080 = 5 T states) 

Z80 LD AyA LoaD data into A 

from A 
xx-x-xxx 

4 7F A A 

8085 MOV A,B MOVe data to A from B xx-x-x-x 

1 Register 
(8080 = 5 T states) 

Z80 LD A,B LoaD data into A 

from B 
xx-x-xxx 

4 78 A<-B 

8085 MOV A.C MOVe data to A from C xx-x-x-x 

1 Register 
(8080 = 5 T states) 

Z80 LD A,C LoaD data into A 

from C 
xx-x-xxx 

4 79 A C 

8085 MOV A,D MOVe data to A from D xx-x-x-x 

1 Register 
(8080 = 5 T states) 

Z80 LD A,D LoaD data into A xx-x-xxx 

4 7A A <- D 

from D 

8085 MOV A,E MOVe data to A from E xx-x-x-x 

Z80 LD A,E 
4 1 Register 7B A <- E 

LoaD data into A xx-x-xxx 

from E 

(8080 = 5 T states) 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085>s2>a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sZtH-pnc Mode Operation 

8085 MOV A,H MOVe data to A from H xx-x-x-x 
4 1 Register 7C A «- H 

Z80 LD A,H LoaD data into A xx-x-xxx 

from H 

(8080 = 5 T states) 

8085 MOV A,L MOVe data to A from L xx-x-x-x 
4 1 Register 7D A «- L 

Z80 LD A,L LoaD data into A xx-x-xxx 

from L 

(8080 = 5 T states) 

8085 MOV A,M MOVe data to A from M xx-x-x-x 
7 1 

Z80 LD A,(HL) LoaD data into A xx-x-xxx 

from (HL) 

The data byte found at the 

Reg Ind 7E A «- MHL memory location pointed to by 

the HL register pair is copied 

into the accumulator. 

8085 MOV B,A MOVe data to B from A xx-x-x-x 
4 1 Register 47 B «- A 

Z80 LD BA LoaD data into B xx-x-xxx 

from A 

(8080 = 5 T states) 

8085 MOV B,B MOVe data to B from B xx-x-x-x 
4 1 Register 40 B «- B 

Z80 LD B,B LoaD data into B xx-x-xxx 

from B 

(8080 = 5 T states) 

8085 MOV B,C MOVe data to B from C xx-x-x-x 
4 1 Register 41 B «- C 

Z80 LD B,C LoaD data into B xx-x-xxx 

from C 

(8080 = 5 T states) 

8085 MOV B,D MOVe data to B from D xx-x-x-x 
4 1 Register 42 B <- D 

Z80 LD B,D LoaD data into B xx-x-xxx 

from D 

8085 MOV B,E MOVe data to B from E xx-x-x-x 
4 1 Register 43 B *■ E 

Z80 LD B,E LoaD data into B xx-x-xxx 

from E 

(8080 = 5 T states) 

(8080 = 5 T states) 

8085 MOV B,H MOVe data to B from H xx-x-x-x 
4 1 Register 44 B «- H 

Z80 LD B,H LoaD data into B xx-x-xxx 

from H 

(8080 = 5 T states) 
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Micro Mnemonic Operation 
Notes 8085>sz-a-P-c T # Address Op Boolean/Arith. 

Z80>sZtH-pnc Mode Operation 

8085 MOV B,L MOVe data to B from L xx-x-x-x 

Z80 LD B,L LoaD data into B xx-x-xxx 

from L 

Register 45 B «- L 
(8080 = 5 T states) 

8085 MOV B,M MOVe data to B from xx-x-x-x 

mhl 
Z80 LD B,(HL) LoaD data into B xx-x-xxx 

from (HL) 

1 Reg Ind 46 B «- M. 
HL 

The data byte found at the 

memory location pointed to by 

the HL register pair is copied 

into register B. 

8085 

Z80 

MOV CA 

LD CA 

MOVe data to C from A xx-x-x-x 

4 1 Register 4F C «- A 
(8080 = 5 T states) 

LoaD data into C 

from A 
xx-x-xxx 

8085 

Z80 

MOV C,B 

LD C,B 

MOVe data to C from B xx-x-x-x 

4 1 Register 48 C <- B 
(8080 = 5 T states) 

LoaD data into C 

from B 
xx-x-xxx 

8085 

Z80 

MOV C,C 

LD C,C 

MOVe data to C from C xx-x-x-x 

4 1 Register 49 C«-C 
(8080 = 5 T states) 

LoaD data into C 

from C 
xx-x-xxx 

8085 MOV C,D MOVe data to C from D xx-x-x-x 

Z80 LD C,D LoaD data into C xx-x-xxx 

from D 

Register 4A C «- D 
(8080 = 5 T states) 

8085 MOV C,E MOVe data to C from E xx-x-x-x 
(8080 = 5 T states) 

Z80 LD C,E 
4 1 Register 4B C«- E 

LoaD data into C xx-x-xxx 

from E 

8085 MOV C,H 

Z80 LD C,H 

8085 MOV C,L MOVe data to C from L xx-x-x-x 
(8080 = 5 T states) 

Z80 LD C,L 
4 1 Register 4D C«- L 

LoaD data into C xx-x-xxx 

from L 

MOVe data to C from H xx-x-x-x 

LoaD data into C xx-x-xxx 

from H 

4 1 Register 4C C«- H 
- 5 T states) 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80 > sz-H-PNC Mode Operation 

8085 MOV C,M MOVe data to C from xx-x-x-x 

M„l 
LoaD data into C xx-x-xxx 

7 1 Reg Ind 4E c-mhl 

The data byte found at the 

memory location pointed to by 

Z80 LD C,(HL) the HL register pair is copied 

from (HL) into register C 

8085 MOV DA MOVe data to D from A xx-x-x-x 

4 1 Register 57 D ♦* A 

(8080 = 5 T states) 

Z80 LD DA LoaD data into D xx-x-xxx 

from A 

8085 MOV D,B MOVe data to D from B xx-x-x-x 

4 1 Register 50 D <- B 

(8080 = 5 T states) 

Z80 LD D,B LoaD data into D xx-x-xxx 

from B 

8085 MOV D,C MOVe data to D from C xx-x-x-x 

4 1 Register 51 D <- C 

(8080 = 5 T states) 

Z80 LD D,C LoaD data into D xx-x-xxx 

from C 

8085 MOV D,D MOVe data to D from D xx-x-x-x 

4 1 Register 52 D <- D 

(8080 = 5 T states) 

Z80 LD D,D LoaD data into D xx-x-xxx 

from D 

8085 MOV D,E MOVe data to D from E xx-x-x-x 

4 1 Register 53 D «- E 

(8080 = 5 T states) 

Z80 LD D,E LoaD data into D xx-x-xxx 

from E 

8085 MOV D,H MOVe data to D from H xx-x-x-x 

4 1 Register 54 D <- H 

(8080 = 5 T states) 

Z80 LD D,H LoaD data into D xx-x-xxx 

from H 

8085 MOV D,L MOVe data to D from L xx-x-x-x 

4 1 Register 55 D <- L 

(8080 = 5 T states) 

Z80 LD D,L LoaD data into D xx-x-xxx 

from L 

8085 MOV D,M MOVe data to D from xx-x-x-x The data byte found at the 

mhl 7 1 Reg Ind 56 d<-mhl memoiy location pointed to by 

Z80 LD D,(HL) LoaD data into D xx-x-xxx the HL register pair is copied 

from (HL) into register D. 
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Micro Mnemonic Operation 
Notes 8085 > S2>A-P-c T # Address Op Boolean/Arith. 

Z80 > sz-H-PNc Mode Operation 

8085 MOV EA MOVe data to E from A xx-x-x-x 

Z80 LD EA 
4 1 Register 5F E «* A 

LoaD data into E xx-x-xxx 

from A 

(8080 = 5 T states) 

8085 MOV E,B MOVe data to E from B xx-x-x-x 

Z80 LD E,B LoaD data into E xx-x-xxx 
from B 

Register 58 E B 
(8080 = 5 T states) 

8085 MOV E,C MOVe data to E from C xx-x-x-x 

Z80 LD E,C 
4 

LoaD data into E xx-x-xxx 
1 Register 59 E «- C 

from C 

8085 MOV E,D MOVe data to E from D xx-x-x-x 

Z80 LD E,D 
4 1 Register 5A E«- D 

LoaD data into E xx-x-xxx 
from D 

8085 MOV E,E MOVe data to E from E xx-x-x-x 

Z80 LD E,E 
4 

LoaD data into E xx-x-xxx 

from E 

1 Register 5B E«- E 

8085 MOV E,H MOVe data to E from H xx-x-x-x 

Z80 LD E,H 
4 

LoaD data into E xx-x-xxx 

from H 

1 Register 5C E«- H 

(8080 = 5 T states) 

(8080 = 5 T states) 

(8080 = 5 T states) 

(8080 = 5 T states) 

8085 MOV E,L MOVe data to E from L xx-x-x-x 

Z80 LD E,L 
4 

LoaD data into E xx-x-xxx 
1 Register 5D E«- L 

from L 

(8080 - 5 T states) 

8085 MOV E,M MOVe data to E from xx-x-x-x 

Mhl 
Z80 LD Et(HL) LoaD data into E 

from (HL) 

1 Reglnd 5E E«- M, 
xx-x-xxx 

HL 

The data byte found at the 

memory location pointed to by 

the HL register pair is copied 

into register E. 

8085 MOV HA MOVe data to H from A xx-x-x-x 

4 
Z80 LD HA LoaD data into H xx-x-xxx 

from A 

Register 67 H * A 
(8080 = 5 T states) 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085>sz-A-p.c T # Address Op Boolean/Arith. Notes 

Z80>sz-h-pnc Mode Operation 

8085 MOV H,B MOVe data to H from B xx-x-x-x 

4 1 Register 60 H «- B 

(8080 = 5 T states) 

Z80 LD H,B LoaD data into H 

from B 

xx-x-xxx 

8085 MOV H,C MOVe data to H from C xx-x-x-x 

4 1 Register 61 H «- C 

(8080 = 5 T states) 

Z80 LD H,C LoaD data into H 

from C 

xx-x-xxx 

8085 MOV H,D MOVe data to H from D xx-x-x-x 

4 1 Register 62 H «• D 

(8080 = 5 T states) 

Z80 LD H,D LoaD data into H 

from D 

xx-x-xxx 

8085 MOV H,E MOVe data to H from E xx-x-x-x 

4 1 Register 63 H <- E 

(8080 = 5 T states) 

Z80 LD H,E LoaD data into H 

from E 

xx-x-xxx 

8085 MOV H,H MOVe data to H from H xx-x-x-x 

4 1 Register 64 H<-H 

(8080 a 5 T states) 

Z80 LD H,H LoaD data into H 

from H 

xx-x-xxx 

8085 MOV H,L MOVe data to H from L xx-x-x-x 

4 1 Register 65 H L 

(8080 = 5 T states) 

Z80 LD H,L LoaD data into H 

from L 

xx-x-xxx 

8085 MOV H,M MOVe data to H from 

mhl 
LoaD data into H 

xx-x-x-x 

7 1 Reg Ind 66 H*Mhl 

The data byte found at the 

memory location pointed to by 

Z80 LD H,(HL) xx-x-xxx the HL register pair is copied 

from (HL) into register H. 

8085 MOV LA MOVe data to L from A xx-x-x-x 

4 1 Register 6F L<- A 

(8080 = 5 T states) 

Z80 LD LA LoaD data into L 

from A 

xx-x-xxx 

8085 MOV L,B MOVe data to L from B xx-x-x-x 

4 1 Register 68 L«~B 

(8080 = 5 T states) 

Z80 LD L,B LoaD data into L 

from B 

xx-x-xxx 

386 Microprocessor Instruction Set Tables 



Micro Mnemonic Operation 
Notes 8085>sZtA-p-c T # Address Op Boolean/Arith. 

Z80>sz-h-pnc Mode Operation 

8085 MOV L,C MOVe data to L from C xx-x-x-x 

Z80 LD L,C LoaD data into L xx-x-xxx 

from C 

Register 69 L <- C 
(8080 = 5 T states) 

8085 MOV L,D MOVe data to L from D xx-x-x-x 

Z80 LD L,D LoaD data into L xx-x-xxx 

from D 

Register 6A L <- D 

8085 MOV L,E MOVe data to L from E xx-x-x-x 

Z80 LD L,E LoaD data into L xx-x-xxx 

from E 

8085 MOV L,H MOVe data to L from H xx-x-x-x 

Z80 LD L,H LoaD data into L 

from H 
xx-x-xxx 

8085 MOV L,L MOVe data to L from L xx-x-x-x 

Z80 LD L,L LoaD data into L 

from L 
xx-x-xxx 

1 Register 6B L «- E 

1 Register 6C L «- H 

1 Register 6D L«- L 

(8080 = 5 T states) 

(8080 = 5T states) 

(8080 * 5 T states) 

(8080 = 5 T states) 

8085 MOV L,M 

Z80 LD L,(HL) 

MOVe data to L from xx-x-x-x 

Mhl 

LoaD data into L xx-x-xxx 

from (HL) 

Reg Ind 6E L «- MHL 
The data byte found at the 

memory location pointed to by 

the HL register pair is copied 

into register L. 

8085 MOV M^A MOVe data to MHL 

from A 

Z80 LD (HL),A LoaD data into (HL) 

from A 

1 Reg Ind 77 MHL «■ A 
The data in the accumulator is 

copied into the memory 

location pointed to by the HL 

register pair. 

8085 MOV M,B MOVe data to MHL xx-x-x-x 
from B 7 1 

Z80 LD (HL),B LoaD data into (HL) xx-x-xxx 
from B 

The data in register B is copied 
Reg Ind 70 MHL«- B into the memory location 

pointed to by the HL register 

pair. 

8085 MOV M,C MOVe data to MHL xx-x-x-x 
from C 7 1 

Z80 LD (HL),C LoaD data into (HL) xx-x-xxx 
from C 

The data in register C is copied 

Reg Ind 71 MHL <- C into the memory location 

pointed to by the HL register 

pair. 

Microprocessor Instruction Set Tables 387 



EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c 

Z80>sm-pnc 

T # Address 

Mode 

Op Boolean/Arith. 

Operation 

Notes 

8085 

Z80 

MOV M,D 

LD (HL),D 

MOVe data to MHL 

from D 

LoaD data into (HL) 

from D 

xx-x-x-x 

xx-x-xxx 

7 1 Reg Ind 72 Mhl*d 

The data in register D is copied 

into the memory location 

pointed to by the HL register 

pair. 

8085 

Z80 

MOV M,E 

LD (HL),E 

MOVe data to MHL 

from E 

LoaD data into (HL) 

from E 

xx-x-x-x 

xx-x-xxx 

7 1 Reg Ind 73 

The data in register E is copied 

into the memory location 

pointed to by the HL register 

pair. 

8085 

Z80 

MOV M,H 

LD (HL),H 

MOVe data to MHL 

from H 

LoaD data into (HL) 

from H 

xx-x-x-x 

xx-x-xxx 

7 1 Reg Ind 74 mhl*h 

The data in register H is copied 

into the memory location 

pointed to by the HL register 

pair. 

8085 

Z80 

MOV M,L 

LD (HL),L 

MOVe data to MHL 

from L 

LoaD data into (HL) 

from L 

xx-x-x-x 

7 

xx-x-xxx 

1 Reg Ind 75 Mhl4- L 

The data in register L is copied 

into the memory location 

pointed to by the HL register 

pair. 

8085 MVI A.dd MoVe Immediate dd xx-x-x-x The data byte immediately 

to A 7 2 Immed 3E A «- dd following the op code is copied 

Z80 LD A,dd LoaD dd into A xx-x-xxx into the accumulator. 

8085 MVI B,dd MoVe Immediate dd 

to B 

xx-x-x-x 

7 2 Immed 06 B <- dd 

The data byte immediately 

following the op code is copied 

Z80 LD B,dd LoaD dd into B xx-x-xxx into register B. 

8085 MVI C,dd MoVe Immediate dd 

to C 

xx-x-x-x 

7 2 Immed 0E C <- dd 

The data byte immediately 

following the op code is copied 

Z80 LD C,dd LoaD dd into C xx-x-xxx into register C. 

8085 MVI D,dd MoVe Immediate dd 

to D 

xx-x-x-x 

7 2 Immed 16 D ♦* dd 

The data byte immediately 

following the op code is copied 

Z80 LD D,dd LoaD dd into D xx-x-xxx into register D. 

8085 MVI E,dd MoVe Immediate dd 

to E 

xx-x-x-x 

7 2 Immed IE E <- dd 

The data byte immediately 

following the op code is copied 

Z80 LD E,dd LoaD dd into E xx-x-xxx into register E. 

8085 MVI H,dd MoVe Immediate dd 

to H 

xx-x-x-x 

7 2 Immed 26 H «- dd 

The data byte immediately 

following the op code is copied 

Z80 LD H,dd LoaD dd into H xx-x-xxx into register H. 
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Micro Mnemonic Operation 
Notes 8085>sz^a-p-c T # Address Op Boolean/Arith. 

Z80 > sz-h-pnc Mode Operation 

8085 MVI L,dd MoVe Immediate dd xx-x-x-x 
to L 7 

Z80 LD L.dd LoaD dd into L xx-x-xxx 

8085 MVI M,dd MoVe Immediate dd xx-x-x-x 
t° mhl 10 

Z80 LD (HL),dd LoaD dd into (HL) xx-x-xxx 

2 Immed 2E 
The data byte immediately 

following the op code is copied 

into register L. 

2 Immed/ 36 MHL <- dd 

Reg Ind 

The data byte immediately 

following the op code is copied 

into the memory location 

pointed to by the HL register 

pair. 

8085 LXI B,dddd Load extended Im¬ 

mediate dddd into 

register pair BC 

Z80 LD BC,dddd LoaD dddd into 

register pair BC 

xx-x-x-x 

10 3 Immed 01 BC«- dddd 
xx-x-xxx 

Copy bytes 3 and 2 of the 

instruction into registers B and 

C respectively. 

8085 LXI D,dddd Load extended Im¬ 

mediate dddd into 

register pair DE 

Z80 LD DE,dddd LoaD dddd into 

register pair DE 

xx-x-x-x 

10 3 Immed II DE *- dddd 
xx-x-xxx 

Copy bytes 3 and 2 of the 

instruction into registers D and 

E respectively. 

8085 LXI H,dddd Load extended Im¬ 

mediate dddd into 

register pair HL 

Z80 LD HL,dddd LoaD dddd into 

register pair HL 

10 3 Immed 21 HL«- dddd 

Copy bytes 3 and 2 of the 

instruction into registers H and 

L respectively. 

8085 LDAX B LoaD Accumulator xx-x-x-x 

extended with data 

from mem loc BC 7 

Z80 LD A,(BC) LoaD Accumulator with xx-x-xxx 

data from mem loc (BC) 

1 Reg Ind 0A A«- 

Copy the data byte found at 

the memory location pointed to 

by the BC register pair into the 

accumulator. 

8085 LDAX D LoaD Accumulator xx-x-x-x 

extended with data 

from mem loc DE 7 

Z80 LD A,(DE) LoaD Accumulator with xx-x-xxx 

data from mem loc (DE) 

Reg Ind 1A A *• MDE 

Copy the data byte found at 

the memory location pointed to 

by the DE register pair into the 

accumulator. 

8085 LHLD aaaa 

Z80 LD HL,(aaaa) 

Load HL Direct with 

data starting at aaaa 

LoaD HL with data 

starting at (aaaa) 

xx-x-x-x 

xx-x-xxx 

Copy the data byte found at 

16 3 Direct 2A L«- memory location aaaa into the 

H * Maaaa+1 L register and the data byte 

found at the next memory 

location (aaaa + 1) into the H 

register. 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sz-h-pnc Mode Operation 

8085 LDA aaaa LoaD Accumulator with xx-x-x-x Copy the contents of memory 

data from mem loc aaaa 13 3 Direct 3A A *• MaaM 
location aaaa into the 

Z80 LD A,(aaaa) LoaD Accumulator with 

data from mem loc 

(aaaa) 

xx-x-xxx Accumulator. 

8085 STA aaaa STore Accumulator in xx-x-x-x Copy the contents of the 

mem loc aaaa 13 3 Direct 32 M^A accumulator into memory 

Z80 LD (aaaa)A LoaD mem loc (aaaa) 

with the contents of 

xx-x-xxx location aaaa. 

the Accumulator 

8085 STAX B STore Accumulator xx-x-x-x Copy the contents of the 

extended at mem accumulator into the memory 

loc BC 7 1 Reg Ind 02 ^BC * A location pointed to by the BC 

Z80 LD (BC)A LoaD mem loc (BC) 

with the contents of 

the Accumulator 

xx-x-xxx register pair. 

8085 STAX D STore Accumulator xx-x-x-x Copy the contents of the 

extended at mem accumulator into the memory 

loc DE 7 1 Reg Ind 12 ^DE * A location pointed to by the DE 

Z80 LD (DE)A LoaD mem loc (DE) 

with the contents of 

the Accumulator 

xx-x-xxx register pair. 

8085 

Z80 

SHLD aaaa 

LD (aaaa),HL 

Store HL Direct at 

mem loc aaaa 

LoaD mem loc starting 

at (aaaa) with con¬ 

tents of HL) 

XX-X-X-X 

xx-x-xxx 

16 3 Direct 22 M^L 

M^, ♦ H 

Copy the contents of register L 

into memory location aaaa and 

the contents of register H into 

the next (aaaa + 1) memory 

location. 

8085 XCHG eXCHanGe DE with HL xx-x-x-x Exchange the contents of the 

4 1 Register EB DE~HL DE and HL register pairs. 

Z80 EX DE,HL Exchange DE with HL xx-x-xxx 

Flag Instructions 

8085 STC SeT Carry flag xx-x-x-1 The carry flag is normally 

4 1 Implied 37 C <* 1 designated as "CY* for the 

Z80 SCF Set Carry Flag xx-x-xxl 8080/8085. 
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Micro Mnemonic Operation 
Notes 8085 > sz-a-p-c T # Address Op Boolean/Arith. 

Z80 > sz-h-pnc Mode Operation 

8085 CMC CoMpIement Carry flag xx-x-x-C 
The carry flag is normally 

Z80 CCF 
4 1 Implied 3F C«- C 

Complement Carry Flag xx-x-xxC 
designated as "CY" for the 

8080/8085. 

Arithmetic Instructions 

8085 ADD A ADD A to A SZ-A-P-C 

Z80 ADD AA ADD A to A 
4 

SZrH-POC 

1 Register 87 A «- A + A 

8085 ADD B ADD B to A SZ-A-P-C 

Z80 ADD A,B ADD B to A 
4 

SZ-H-P0C 

1 Register 80 A <- A + B 

8085 ADD C ADD C to A SZ-A-P-C 

Z80 ADD A,C ADD C to A 
4 

SZ-H-P0C 

1 Register 81 A <- A + C 

8085 ADD D ADD D to A SZ-A-P-C 

Z80 ADD A,D ADD D to A 
4 

SZ-H-P0C 

1 Register 82 A «- A + D 

8085 ADD E ADD E to A SZ-A-P-C 

Z80 ADD A,E ADD E to A 
4 

SZ-H-P0C 

1 Register 83 A «- A + E 

8085 ADD H ADD H to A SZ-A-P-C 

Z80 ADD A,H ADD H to A 
4 

SZ-H-P0C 

1 Register 84 A <- A + H 

8085 ADD L ADD L to A SZ-A-P-C 

Z80 ADD A,L ADD L to A 
4 

SZ-H-P0C 

1 Register 85 A «- A + L 

8085 ADD M ADD Mhl to A SZ-A-P-C Add the data byte whose 

Z80 ADD A,(HL) ADD (HL) to A 
7 

SZ-H-P0C 

1 Reg Ind 86 A «- A + Mhl memory location is pointed to 

by the HL register pair to the 

accumulator and store the 

results in the accumulator. 

8085 

Z80 

ADC A 

ADC A,A 

AdD with Carry A to A 

AdD with Carry A to A 

SZ-A-P-C 

4 

SZH-P0C 

1 Register 8F 
The carry flag is usually 

A <- A + A + C designated by "CY” for the 

8080/8085. 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085>s2^ap-c T # Address Op Boolean/Arith. Notes 

Z80 > SZ-H-PNC Mode Operation 

8085 ADC B AdD with Carry B to A SZ-A-P-C 

4 1 Register 88 A «- A + B + C 

The carry flag is usually 

designated by "CY" for the 

Z80 ADC A,B AdD with Carry B to A SZ-H-P0C 8080/8085. 

8085 ADC C AdD with Carry C to A SZ-A-P-C 

4 1 Register 89 A «- A + C + C 

The carry flag is usually 

designated by "CY* for the 

Z80 ADC A,C AdD with Carry C to A SZ-H-P0C 8080/8085. 

8085 ADC D AdD with Carry D to A SZ-A-P-C 

4 1 Register 8A A <- A + D + C 

The carry flag is usually 

designated by "CY" for the 

Z80 ADC A,D AdD with Carry D to A SZ-H-P0C 8080/8085. 

8085 ADC E AdD with Carry E to A SZ-A-P-C 

4 1 Register 8B A «- A + E + C 

The carry flag is usually 

designated by "CY" for the 

Z80 ADC A,E AdD with Carry E to A SZ-H-P0C 8080/8085. 

8085 ADC H AdD with Carry H to A SZ-A-P-C 

4 1 Register 8C A *■ A + H + C 

The carry flag is usually 

designated by "CY* for the 

Z80 ADC A,H AdD with Carry H to A SZ-H-P0C 8080/8085. 

8085 ADC L AdD with Carry L to A SZ-A-P-C 

4 1 Register 8D A «- A + L + C 

The carry flag is usually 

designated by "CY" for the 

Z80 ADC A,L AdD with Carry L to A SZ-H-P0C 8080/8085. 

8085 ADC M AdD with Carry MHL SZ-A-P-C Add to the accumulator both 

to A 7 1 Reg Ind 8E A «- A + Mhl + C the contents of the memory 

Z80 ADC A,(HL) AdD with Carry (HL) SZ^H-POC location pointed to by the HL 

to A register pair, and the carry flag, 

and then place this result in the 

accumulator. 

8085 SUB A SUBtract A from A SZ-A-P-C 

4 1 Register 97 A«- A - A 

Z80 SUB A SUBtract A from A SZ-H-P1C 

8085 

Z80 

SUB B 

SUB B 

SUBtract B from A 

SUBtract B from A 

SZ-A-P-C 

4 

SZ-H-P1C 

1 Register 90 A* A-B 

8085 SUB C SUBtract C from A SZ-A-P-C 

4 1 Register 91 A <- A - C 

Z80 SUB C SUBtract C from A SZ-H-P1C 

392 Microprocessor Instruction Set Tables 



Micro Mnemonic Operation 
Notes 8085 > sz-a-p-c T # Address Op Boolean/Arith. 

Z80>sz-h-pnc Mode Operation 

8085 SUB D SUBtract D from A SZ-A-P-C 

Z80 SUB D SUBtract D from A 
4 

SZ-H-P1C 

1 Register 92 A <- A - D 

8085 SUB E SUBtract E from A SZ-A-P-C 

Z80 SUB E SUBtract E from A 
4 

SZ-H-P1C 

1 Register 93 A «■ A - E 

8085 SUB H SUBtract H from A SZ-A-P-C 

Z80 SUB H SUBtract H from A 
4 

SZ-H-P1C 

1 Register 94 A «- A - H 

8085 SUB L SUBtract L from A SZ-A-P-C 

Z80 SUB L 
4 1 Register 95 A <- A - L 

SUBtract L from A SZ-H-P1C 

8085 SUB M SUBtract MHL from A SZ-A-P-C 
Subtract the contents of the 

Z80 SUB (HL) SUBtract (HL) from A 
7 

SZ-H-P1C 

1 Reg Ind 96 a*a-mhl memoiy location pointed to by 

the HL register pair from the 

contents of the accumulator. 

8085 SBB A SuBtract with Borrow SZ-A-P-C 

Z80 SBC AA 

A from A 4 1 Register 9F A «- A - A - C 
SuBtract with Carry 

A from A 
SZ-H-P1C 

8085 SBB B SuBtract with Borrow SZ-A-P-C 

Z80 SBC A,B 

B from A 4 1 Register 98 A A - B - C 
SuBtract with Cany 

B from A 
SZ-H-P1C 

8085 SBB C SuBtract with Borrow SZ-A-P-C 

Z80 SBC A,C 

C from A 4 1 Register 99 A «- A - C - C 
SuBtract with Cany 

C from A 
SZ-H-P1C 

8085 SBB D SuBtract with Borrow SZ-A-P-C 

Z80 SBC A,D 

D from A 4 1 Register 9A A «- A - D - C 
SuBtract with Carry 

D from A 
SZ-H-P1C 

8085 SBB E SuBtract with Borrow SZ-A-P-C 

Z80 SBC A,E 

E from A 4 1 Register 9B A«- A-E-C 
SuBtract with Carry 

E from A 
SZ-H-P1C 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-C T # Address Op Boolean/Arith. Notes 

Z80 > SZ-H-PNC Mode Operation 

8085 SBB H SuBtract with Borrow 

H from A 

SZ-A-P-C 

4 1 Register 9C A A - H - C 

Z80 SBC A,H SuBtract with Carry 

H from A 

SZ-H-P1C 

8085 SBB L SuBtract with Borrow 

L from A 

SZ-A-P-C 

4 1 Register 9D A «- A - L- C 

Z80 SBC A,L SuBtract with Carry 

L from A 

SM-PIC 

8085 SBB M SuBtract with Borrow SZrA-P-C Subtract from the contents of 

Mut from A 7 1 Reg Ind 9E A «■ A - Mhl - C the accumulator both the carry 

Z80 SBC A,(HL) 
nt 

SuBtract with Carry 

(HL) from A 

SM-P1C flag and the contents of the 

memory location pointed to by 

the HL register pair. 

8085 DAD B Double AdD BC to HL xx-x-x-C 10 

1 Register 09 HL <- HL + BC 

Z80 ADD HL,BC ADD BC to HL xx-x-xOC 11 

8085 DAD D Double AdD DE to HL xx-x-x-C 10 

1 Register 19 HL <- HL + DE 

Z80 ADD HL,DE ADD DE to HL xx-x-xOC 11 

8085 DAD H Double AdD HL to HL xx-x-x-C 10 

1 Register 29 HL <- HL + HL 

Z80 ADD HL,HL ADD HL to HL xx-x-xOC 11 

8085 ADI dd AdD Immediate dd to A SZ-A-P-C 

7 2 Immed C6 A «- A + dd 

Z80 ADD A,dd ADD dd to A SZ-H-P0C 

8085 ACI dd AdD with Carry Im¬ 

mediate dd to A 

SZ-A-P-C 

7 2 Immed CE A «• A + dd + C 

Z80 ADC A,dd AdD with Carry dd 

to A 

SZ-H-P0C 

8085 SUI dd Subtract Immediate 

dd from A 

SZ-A-P-C 

7 2 Immed D6 A «- A - dd 

Z80 SUB dd SUBtract dd from A SZ-H-P1C 
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Micro Mnemonic Operation 8085 > sz^A-P-c T # Address Op Boolean/Arith. 

Z80 > sZrH-PNC Mode Operation 
Notes 

8085 

Z80 

SBI dd 

SBC A.dd 

Subtract with Borrow 

Immediate dd from A 

SuBtract with Carry 

dd from A 

SZrA-P-C 
7 

SZ-H-P1C 

2 Immed DE A «- A - dd - C 

8085 DAA Decimal Adjust A SZ-A-P-C The 8-bit contents of the 
4 1 Implied 27 A «- BCD (A) accumulator are adjusted to 

Z80 DAA Decimal Adjust A SZ-H-PxC form two 4-bit binary-coded- 

decimal (BCD) digits. 

Logical Instructions 

8085 ANA A ANd A with A SZ-A-P-0 (8085) A flag = l 

Z80 AND A AND A with A SZ-1-P00 

4 1 Register A7 A «- A AND A (8080) A = ORing of bit 3 

of the operands 

8085 ANA B ANd A with B SZ-A-P-0 (8085) A flag = l 

Z80 AND B AND B with A SZ-1-P00 

4 1 Register A0 A «- A AND B (8080) A flag-ORing of bit 3 

of the operands 

8085 ANA C ANd A with C SZ-A-P-0 (8085) A flag =1 

Z80 AND C AND C with A SZ.1-P00 

4 1 Register A1 A <- A AND C (8080) A flag-ORing of bit 3 

of the operands 

8085 ANA D ANd A with D SZ-A-P-0 (8085) A flag =1 

Z80 AND D AND D with A SZ-1-P00 

4 1 Register A2 A «- A AND D (8080) A flag = ORing of bit 3 

of the operands 

8085 ANA E ANd A with E SZ-A-P-0 (8085) A flag=1 

Z80 AND E AND E with A SZ-1-P00 

4 1 Register A3 A «- A AND E (8080) A flag-ORing of bit 3 

of the operands 

8085 ANA H ANd A with H SZ-A-P-0 (8085) A flag=1 

Z80 AND H AND H with A SZ-1-P00 

4 1 Register A4 A <- A AND H (8080) A flag-ORing of bit 3 

of the operands 

8085 ANA L ANd A with L SZ-A-P-0 (8085) A flag=1 

Z80 AND L AND L with A SZ-1-P0O 

4 1 Register A5 A «* A AND L (8080) A flag-ORing of bit 3 

of the operands 

8085 ANA M ANd A with MHL SZ-A-P-0 (8085) A flag-1 

Z80 AND (HL) AND (HL) with A SZ-1-P00 

7 1 Reg Ind A6 A * A AND Mhl (8080) A flag-ORing of bit 3 

of the operands 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sz>h-pnc Mode Operation 

8085 XRA A exclusively OR A 

with A 

SZ-O-P-O 

4 1 Register AF A «- A XOR A 

Z80 XOR A exclusively OR A 

with A 

SZ-O-POO 

8085 XRA B exclusively OR A 

with B 

SZ-O-P-O 

4 1 Register A8 A <- A XOR B 

Z80 XOR B exclusively ORA 

with B 

SZ-0-P00 

8085 XRA C exclusively OR A 

with C 

SZ-O-P-O 

4 1 Register A9 A <- A XOR C 

Z80 XOR C exclusively OR A 

with C 

SZ-0-P00 

8085 XRA D exclusively ORA 

with D 

SZ-O-P-O 

4 1 Register AA A «- A XOR D 

Z80 XOR D exclusively OR A 

with D 

SZ4J-P00 

8085 XRA E exclusively OR A 

with E 

SZ-O-P-O 

4 1 Register AB A «- A XOR E 

Z80 XOR E exclusively ORA 

with E 

SZ-O-POO 

8085 XRA H exclusively OR A 

with H 

SZ-O-P-O 

4 1 Register AC A <- A XOR H 

Z80 XOR H exclusively OR A 

with H 

SZ-0-P00 

8085 XRA L exclusively OR A 

with L 

SZ-O-P-O 

4 1 Register AD A <- A XOR L 

Z80 XOR L exclusively OR A 

with L 

SZ4-P00 

8085 XRA M exclusively OR A SZ-O-P-O Exclusively or the contents of 

with Mhl 7 1 Reg Ind AE A «- A XOR MHL the accumulator with the 

Z80 XOR (HL) exclusively OR A SZ4)-P00 contents of the memory 

with (HL) location pointed to by the HL 

register pair. 

8085 ORA A OR A with A SZ-O-P-O 

4 1 Register B7 A «- A OR A 

Z80 ORA OR A with A SZ-O-POO 
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Micro Mnemonic Operation 8085 > sz-a-p-c 

Z80>sz-h-pnc 

T # Address 

Mode 

Op Boolean/Arith. 

Operation 

Notes 

8085 ORA B OR A with B SZ-O-P-O 

Z80 ORB OR A with B SZ-0-P00 

4 1 Register B0 A*A ORB 

8085 ORA C OR A with C SZ-O-P-O 

Z80 OR C OR A with C SZ-0-P00 

4 1 Register B1 A <- A OR C 

8085 ORAD OR A with D SZ-O-P-O 

Z80 OR D OR A with D SZ-0-P00 

4 1 Register B2 A <- A OR D 

8085 ORA E OR A with E SZ-O-P-O 

Z80 OR E OR A with E SZ-0-P00 

4 1 Register B3 A «- A OR E 

8085 ORA H OR A with H SZO-P-O 

Z80 OR H OR A with H SZ-0-P00 

4 1 Register B4 A A OR H 

8085 ORA L OR A with L SZ-O-P-O 

Z80 OR L OR A with L SZ-0-P00 

4 1 Register B5 A «- A OR L 

8085 

Z80 

ORA M 

OR (HL) 

OR A with Mhl 

OR A with (HL) 

SZ-O-P-O 

SZ-0-P00 

7 1 Reg Ind B6 A <- A OR Mhl 

or the contents of the 

accumulator with the contents 

of the memory location pointed 

to by the HL register pair. 

8085 

Z80 

ANI dd 

AND dd 

ANd Immediate dd 

with A 

AND dd with A 

SZA-P-0 

SZ1-P00 

7 2 Immed E6 A <- A AND dd 

(8085) A flag = 1 

(8080) A flag = ORing of bit 

3 of operands 

8085 XR] dd exclusively OR Im- SZ-O-P-O 

mediate dd with A 7 2 Immed EE A «- A XOR dd 
Z80 XOR dd exclusively OR dd SZ-O-P00 

with A 

8085 ORJ dd OR Immediate dd SZO-P-O 

with A 7 2 Immed F6 A «- A OR dd 
Z80 OR dd OR dd with A SZ0-P00 

8085 CMA CoMplement A xx-x-x-x Invert every bit in the 
4 1 Implied 2F A «- A accumulator. Form the Vs 

Z80 CPL ComPLement A xx-l-xlx complement. 

Microprocessor Instruction Set Tables 397 



EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 
BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sz-h-pnc Mode Operation 

Rotate and Shift Instructions 

8085 RLC Rotate Left with xx-x-x-C 

Carry 4 1 Implied 07 C^-i-A7.. 

xx-0-x0C 1 

• • A0-*—| 

Z80 RLCA Rotate Left with 

Carry A 

8085 

Z80 

RRC 

RRCA 

Rotate Right with 

with Carry 

Rotate Right with 

Carry A 

xx-x-x-C 

4 

xx-0-x0C 

1 Implied OF |—... Aq—p* C 

8085 RAL Rotate A Left xx-x-x-C 

4 1 Implied 17 r— C^—A7 ... Ao^i 

Z80 RLA Rotate Left A xx-0-xOC L . _ I 

8085 RAR Rotate A Right xx-x-x-C 

4 1 Implied IF 1 >
 

>
 

0
 1 O
 

J
 

Z80 RRA Rotate Right A xx-O-xOC ___1 

Increment and Decrement Instructions 

8085 INR A INcRement A SZ-A-P-x 

4 1 Register 3C A <- A + 1 

(8080 = 5 states) 

Z80 INC A INCrement A SZ-H-POx 

8085 INR B INcRement B SZ-A-P-x 

4 1 Register 04 B «- B + 1 

(8080 = 5 states) 

Z80 INC B INCrement B SZ-H-POx 

8085 INR C INcRement C SZ-A-P-x 

4 1 Register oc C<- C + 1 

(8080 = 5 states) 

Z80 INC C INCrement C SZ-H-POx 

8085 INR D INcRement D SZ-A-P-x 

4 1 Register 14 D «-D + 1 

(8080 = 5 states) 

Z80 INC D INCrement D SZrH-P0x 

8085 INR E INcRement E SZ-A-P-x 

4 1 Register 1C E «* E + 1 

(8080 = 5 states) 

Z80 INC E INCrement E SZ-H-POx 
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Micro Mnemonic Operation 8085 > sz-a-p-c 

Z80>sz-h-pnc 

T # Address 

Mode 

Op Boolean/Arith. 

Operation 

Notes 

8085 INR H INcRement H SZ-A-P-x (8080 = 5 states) 
4 1 Register 24 H «- H + 1 

Z80 INC H INCrement H SZ-H-POx 

8085 INR L INcRement L SZ-A-P-x (8080 » 5 states) 
4 1 Register 2C L «* L + 1 

Z80 INC L INCrement L SZ-H-PGx 

8085 INR M INcRement MHL SZ-A-P-x 10 

Z80 INC (HL) INCrement (HL) SZ-H-POx 11 

1 Reg Ind 34 
mhl mhl + 1 

8085 I NX B INcrement extended B xx-x-x-x (8080 = 5 states) 
6 1 Register 03 BC «- BC + 1 

Z80 INC BC INCrement reg pair BC xx-x-xxx 

8085 I NX D INcrement extended D xx-x-x-x (8080 = 5 states) 
6 1 Register 13 DE «• DE + 1 

Z80 INC DE INCrement reg pair DE xx-x-xxx 

8085 I NX H INcrement extended H xx-x-x-x (8080 = 5 states) 
6 1 Register 23 HL «* HL + 1 

Z80 INC HL INCrement reg pair HL xx-x-xxx 

8085 DCR A DeCRement register A SZ-A-P-x 

Z80 DEC A DECrement register A SZ-H-Plx 
4 1 Register 3D A «- A - 1 

(8080 = 5 states) 

8085 

Z80 

DCR B DeCRement register B SZ-A-P-x 

4 1 Register 05 B B - 1 

(8080 as 5 states) 

DEC B DECrement register B SZ-H-Plx 

8085 DCR C DeCRement register C SZ-A-P-x 

4 1 Register 0D C«- C- 1 

(8080 = 5 states) 

Z80 DEC C DECrement register C SZ-H-Plx 

8085 

Z80 

DCR D DeCRement register D SZ-A-P-x 

4 1 Register 15 D «- D - 1 

(8080 = 5 states) 

DEC D DECrement register D SZ-H-Plx 

8085 DCR E DeCRement register E SZ-A-P-x 

4 1 Register ID E E - 1 

(8080 = 5 states) 

Z80 DEC E DECrement register E SZ-H-Plx 

Microprocessor Instruction Set Tables 399 



EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sZtH-pnc Mode Operation 

8085 DCRH DeCRement register H SZ-A-P-x 

4 1 Register 25 H<~H-1 

(8080 = 5 states) 

Z80 DECH DECrement register H SZ-H-Plx 

8085 DCRL DeCRement register L SZ-A-P-x 

4 1 Register 2D L «- L - 1 

(8080 = 5 states) 

Z80 DEC L DECrement register L SZ-H-Plx 

8085 DCRM DeCRement MHL SZ-A-P-x 

10 1 Reg Ind 35 mhl * mhl ' 1 
Z80 DEC (HL) DECrement (HL) SZ-H-Plx 

8085 DCX B Decrement extended 

register pair BC 

xx-x-x-x 

6 1 Register 0B BC «- BC - 1 

(8080 = 5 states) 

Z80 DEC BC DECrement register 

pair BC 

xx-x-xxx 

8085 DCX D Decrement extended 

register pair DE 

xx-x-x-x 

6 1 Register IB DE «- DE - 1 

(8080 = 5 states) 

Z80 DEC DE DECrement register 

pair DE 

xx-x-xxx 

8085 DCX H Decrement extended 

register pair HL 

xx-x-x-x 

6 1 Register 2B HL ^ HL - 1 

(8080 = 5 states) 

Z80 DEC HL DECrement register 

pair HL 

xx-x-xxx 

Unconditional Jump Instructions 

8085 JMP aaaa JuMP to mem loc aaaa xx-x-x-x 

10 3 Direct C3 PC «- aaaa 

Z80 JP aaaa JumP to mem loc aaaa xx-x-xxx 

8085 PCHL transfer to the Pro- xx-x-x-x 6 (8080 = 5 states) 

gram Counter HL 1 Register E9 PC«^H Transfer the contents of 

Z80 JP (HL) JumP to (HL) xx-x-xxx 4 PCx.<-L register H to the high-order 

byte of the program counter 

and the contents of register L 

to the low-order byte of the 

program counter. 
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Micro Mnemonic Operation 8085 > sz^a-p-c T # Address Op Boolean/Arith. 

Z80 > sz-H-PNc Mode Operation 
Notes 

Test ('Compare') Instructions 

8085 CMP A CoMPare A to A SZ-A-P-C If A = A then the Z flag = 1. 

Z80 
4 1 Register BF A - A If A < A then the C flag = 1. 

CPA ComPare A to A SZ-H-P1C 

8085 CMP B CoMPare B to A SZ-A-P-C If A = B then the Z flag = 1. 

Z80 
4 1 Register B8 A - B If A < B then the C flag = 1. 

CP B ComPare B to A SZ-H-P1C 

8085 CMP C CoMPare C to A SZ-A-P-C If A = C then the Z flag = 1. 

Z80 
4 1 Register B9 A- C If A < C then the C flag = 1. 

CP C ComPare C to A SZ-H-P1C 

8085 CMP D CoMPare D to A SZ-A-P-C If A = D then the Z flag = 1. 

Z80 
4 1 Register BA A - D If A < D then the C flag = 1. 

CP D ComPare D to A SZ-H-P1C 

8085 CMP E CoMPare E to A SZ-A-P-C If A = E then the Z flag = 1. 

Z80 
4 1 Register BB A-E If A < E then the C flag = 1. 

CP E ComPare E to A SZ-H-P1C 

8085 CMP H CoMPare H to A SZ-A-P-C If A = H then the Z flag = 1. 

Z80 
4 1 Register BC A-H If A < H then the C flag = 1. 

CP H ComPare H to A SZ-H-P1C 

8085 CMP L CoMPare L to A SZ-A-P-C If A = L then the Z flag = 1. 

Z80 
4 1 Register BD A - L If A < L then the C flag = 1. 

CP L Compare L to A SZ-H-P1C 

8085 CMP M CoMPare MHL to A SZ-A-P-C If A = Mhl then the Z flag » 
7 1 Reg Ind BE a-mhl 1. 

Z80 CP (HL) Compare (HL) to A SZ-H-P1C If A < Mhl then the C flag = 

1. 

8085 CPI dd ComPare Immediate SZ-A-P-C If A = dd then the Z flag * 1. 
dd to A 7 2 Immed FE A-dd If A < dd then the C flag = 1. 

Z80 CP dd ComPare dd to A SZ-H-P1C 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-C T # Address Op Boolean/Arith. Notes 

Z80>sZtH-pnc Mode Operation 

Conditional Jumo (Branch"! Instructions 

8085 JNZ aaaa Jump if Not Zero xx-x-x-x 7/10 (8080 = 10 states) 

to aaaa 3 Direct C2 PC «- aaaa PCl <- byte 2 

Z80 JP NZ,aaaa Jump if Not Zero xx-x-xxx 10 if Z = 0 PCjj <- byte 3 

to aaaa 

8085 JZ aaaa Jump if Zero to aaaa xx-x-x-x 7/10 

3 Direct CA PC «• aaaa 

(8080 = 10 states) 

PC^ <* byte 2 

Z80 JP Z,aaaa JumP if Zero to aaaa xx-x-xxx 10 if Z = 1 PCjj «* byte 3 

8085 

Z80 

JNC aaaa 

JP NC,aaaa 

Jump if No Carry 

to aaaa 

JumP if No Carry 

to aaaa 

xx-x-x-x 

xx-x-xxx 

7/10 

3 

10 

Direct D2 PC «- aaaa 

if C = 0 

(8080 * 10 states) 

PCl *■ byte 2 

PCj^ *- byte 3 

8085 JC aaaa Jump if Carry to aaaa xx-x-x-x 7/10 (8080 = 10 states) 

3 Direct DA PC «- aaaa PCl «- byte 2 

Z80 JP C.aaaa JumP if Carry to aaaa xx-x-xxx 10 if C = 1 PCjj «■ byte 3 

8085 

Z80 

JPO aaaa 

JP PO.aaaa 

Jump if Parity Odd 

to aaaa 

JumP if Parity Odd 

to aaaa 

xx-x-x-x 

xx-x-xxx 

7/10 

3 

10 

Direct E2 PC «- aaaa 

if P * 0 

(8080 = 10 states) 

PC^ <- byte 2 

PCh «- byte 3 

8085 JPE aaaa Jump if Parity Even xx-x-x-x 7/10 (8080 = 10 states) 

to aaaa 3 Direct EA PC «* aaaa PCl <- byte 2 

Z80 JP PE,aaaa JumP if Parity Even xx-x-xxx 10 if P = 1 PC^ «- byte 3 

to aaaa 

8085 JP aaaa Jump if Plus to aaaa xx-x-x-x 7/10 (8080 = 10 states) 

3 Direct F2 PC «- aaaa PCl «- byte 2 
Z80 JP P,aaaa JumP if Plus to aaaa xx-x-xxx 10 if S = 0 PC^ «- byte 3 

8085 JM aaaa Jump if Minus to aaaa xx-x-x-x 7/10 

3 Direct FA PC «* aaaa 

(8080 = 10 states) 

PCl «■ byte 2 
Z80 JP M,aaaa JumP if Minus to aaaa xx-x-xxx 10 if S = 1 PCj^ *■ byte 3 

Subroutine Instructions 

8085 CALL aaaa CALL subroutine 

at aaaa 

xx-x-x-x 18 

3 Direct/ CD S «- PC^ 

(8080 = 17 states) 

The stack pointer is 

Z80 CALL aaaa CALL subroutine 

at aaaa 

xx-x-xxx 17 Reg Ind S^Pq 

PC «- aaaa 

decremented as each new byte 

is pushed onto the stack. 

PCjj <- byte 3 

PCl «* byte 2 
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Micro Mnemonic Operation 
Notes 8085>S2tA*p-c T # Address Op Boolean/Arith. 

Z80>sz-h-pnc Mode Operation 

8085 CNZ aaaa Call if Not Zero 

subroutine at aaaa 

Z80 CALL NZ,aaaa CALL if Not Zero 

subroutine at aaaa 

xx-x-x-x 9/18 if Z = 0 
3 Direct/ C4 S-PCH 

xx-x-xxx 10/17 Reg Ind S *■ PCl 
PC *■ aaaa 

(8080 = 11/17 states) 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

PCn «* byte 3 

PCl <- byte 2 

8085 CZ aaaa Call if Zero 

subroutine at aaaa 

Z80 CALL Z,aaaa CALL if Zero 

subroutine at aaaa 

xx-x-x-x 9/18 if Z = 1 (8080 = 11/17 states) 
3 Direct/ CC S-PCh The stack pointer is 

xx-x-xxx 10/17 Reg Ind 
S<-PCL decremented as each new byte 
PC «- aaaa is pushed onto the stack. 

PCH * byte 3 
PCl «- byte 2 

8085 CNC aaaa Call if No Carry xx-x-x-x 9/18 if C = 0 

Z80 
subroutine at aaaa 3 Direct/ D4 S*PCh 

s <- PC,^ 

PC «- aaaa 

CALL NC.aaaa CALL if No Cany 

subroutine at aaaa 
xx-x-xxx 10/17 Reg Ind 

(8080 = 11/17 states) 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

PCjj «- byte 3 

PCl <- byte 2 

8085 CC aaaa 

Z80 CALL C,aaaa 

Call if Carry 

subroutine at aaaa 

CALL if Cany 

subroutine at aaaa 

9/18 if C = 1 

3 Direct/ DC S <- PC„ 

10/17 Reg Ind S «- PC^ 

PC «- aaaa 

(8080 = 11/17 states) 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

PC^ ♦- byte 3 

PCl <- byte 2 

8085 CPO aaaa Call if Parity Odd 

subroutine at aaaa 

Z80 CALL PO,aaaa CALL if Parity Odd 

subroutine at aaaa 

xx-x-x-x 9/18 if P = 0 
3 Direct/ E4 S^PCh 

xx-x-xxx 10/17 Reg Ind S^PCl 
PC <- aaaa 

(8080 = 11/17 states) 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

PCjj «• byte 3 

PCl *■ byte 2 

8085 CPE aaaa 

Z80 CALL PE,aaaa 

Call if Parity Even 

subroutine at aaaa 

CALL if Parity Even 

subroutine at aaaa 

xx-x-x-x 9/18 if P = 1 (8080 = 11/17 states) 
3 Direct/ EC S*PC„ The stack pointer is 

xx-x-xxx 10/17 Reg Ind s-r^ decremented as each new byte 
PC «- aaaa is pushed onto the stack. 

PCjj «• byte 3 

PCl <- byte 2 

8085 CP aaaa 

Z80 CALL P,aaaa 

Call if Plus 

subroutine at aaaa 

CALL if Plus 

subroutine at aaaa 

9/18 

3 Direct/ F4 

10/17 Reg Ind 

if S = 0 (8080 = 11/17 states) 

s * pCn The stack pointer is 

S PCl decremented as each new byte 

PC ♦* aaaa is pushed onto the stack. 

PCn «- byte 3 

PC^ «- byte 2 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085>sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sz^h-pnc Mode Operation 

8085 CM aaaa 

Z80 CALL M,aaaa 

Call if Minus 

subroutine at aaaa 

CALL if Minus 

subroutine at aaaa 

xx-x-x-x 

xx-x-xxx 

9/18 

3 

10/17 

Direct/ FC 

Reg Ind 

if S = 1 

s «- PCh 

S<-PCl 

PC <- aaaa 

(8080 = 11/17 states) 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

PCjj <- byte 3 

PCY <- byte 2 

8085 RET RET urn xx-x-x-x The stack pointer is 

10 1 Reg Ind C9 PCj, *■ s incremented as each byte is 

Z80 RET RETum xx-x-xxx PCh^S popped from the stack. 

8085 RNZ Return if Not Zero xx-x-x-x 6/12 if Z = 0 (8080 = 5/11 states) 

1 Reg Ind CO PCl + S The stack pointer is 

Z80 RET NZ RETum if Not Zero xx-x-xxx 5/10 PCh^-S incremented as each byte 

popped from the stack. 

is 

8085 RZ Return if Zero xx-x-x-x 6/12 if Z = 1 (8080 = 5/11 states) 

1 Reg Ind C8 PCl<-S The stack pointer is 

Z80 RET Z RETum if Zero xx-x-xxx 5/10 PCh-S incremented as each byte is 

popped from the stack. 

8085 RNC Return if No Carry xx-x-x-x 6/12 if C = 0 (8080 = 5/11 states) 

1 Reg Ind DO PC^ «- S The stack pointer is 

Z80 RET NC RETum if No Carry xx-x-xxx 5/10 PC^VS incremented as each byte 

popped from the stack. 

is 

8085 RC Return if Carry xx-x-x-x 6/12 

1 

if C = 1 

Reg Ind D8 PC^ *■ S 

(8080 = 5/11 states) 

The stack pointer is 

Z80 RET C RETum if Carry xx-x-xxx 5/10 PCh * S incremented as each byte is 

popped from the stack. 

8085 RPO Return if Parity Odd xx-x-x-x 6/12 

1 Reg Ind E0 

if P = 0 

PC^ *■ S 

(8080 - 5/11 states) 

The stack pointer is 

Z80 RET PO RETum if Parity Odd xx-x-xxx 5/10 PC^S incremented as each byte is 

popped from the stack. 

8085 RPE Return if Parity Even xx-x-x-x 6/12 if P = 1 (8080 = 5/11 states) 

1 Reg Ind E8 PCl *" S The stack pointer is 

Z80 RET PE RETum if Parity Even xx-x-xxx 5/10 PCh^S incremented as each byte is 

popped from the stack. 
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Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 
Z80>sz-h-pnc Mode Operation 

8085 RP Return if Plus xx-x-x-x 6/12 if S = 0 (8080 = 5/11 states) 

Z80 RET P RETurn if Plus xx-x-xxx 

1 

5/10 

Reg Ind F0 PC^S 

PC„ * S 

The stack pointer is 

incremented as each byte is 

popped from the stack. 

8085 RM Return if Minus xx-x-x-x 6/12 if S = 1 (8080 = 5/11 states) 

Z80 RET M RETurn if Minus xx-x-xxx 

1 

5/10 

Reg Ind F8 PC^S 

PCh*S 
The stack pointer is 

incremented as each byte is 

popped from the stack. 

8085 RSTO ReStarT 0 xx-x-x-x 12 S * PC„ (8080 = 11 states) 

Z80 RST00H ReStarT 00H xx-x-xxx 
1 

11 

Reg Ind C7 S *" PCl 
PC *• OOOOH 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

8085 RST 1 ReStaiT 1 xx-x-x-x 12 S.PCh (8080 = 11 states) 

Z80 RST08H ReStaiT 08H xx-x-xxx 
1 

11 

Reg Ind CF S^PCl 
PC «- 0008H 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

8085 RST 2 ReStaiT 2 xx-x-x-x 12 s^PCh (8080 = 11 states) 

Z80 RST 10H 
1 Reg Ind D7 S«-PCl The stack pointer is 

decremented as each new byte 
ReStarT 10H xx-x-xxx 11 PC <- 0010H 

is pushed onto the stack. 

8085 RST 3 ReStarT 3 xx-x-x-x 12 S-PCn (8080 = 11 states) 

Z80 RST 18H ReStarT 18H xx-x-xxx 

1 

11 

Reg Ind DF s PCl 
PC «■ 0018H 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

8085 RST 4 ReStaiT 4 xx-x-x-x 12 s-P^ (8080 = 11 states) 

Z80 RST20H ReStaiT 20H xx-x-xxx 
1 

11 

Reg Ind E7 S <- PCl 
PC <- 0020H 

The stack pointer is 

decremented as each new byte 

is pushed onto the stack. 

8085 RST 5 ReStaiT 5 xx-x-x-x 12 s^PC„ (8080 = 11 states) 

Z80 RST28H 
1 Reg Ind EF S *■ PCl The stack pointer is 

ReStaiT 28H xx-x-xxx 11 PC «■ 0028H decremented as each new byte 

is pushed onto the stack. 

8085 RST 6 ReStaiT 6 xx-x-x-x 12 S«-PCh (8080 = 11 states) 

Z80 RST30H 
1 Reg Ind F7 PCl The stack pointer is 

ReStaiT 30H xx-x-xxx 11 PC «- 0030H decremented as each new byte 

is pushed onto the stack. 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sZtH-pnc Mode Operation 

8085 RST 7 ReStarT 7 xx-x-x-x 12 S'PCh (8080 = 11 states) 

1 Reg Ind FF S«-PCl The stack pointer is 

Z80 RST 38H ReStaiT 38H xx-x-xxx 11 PC <- 0038H decremented as each new byte 

is pushed onto the stack- 

Stack Instructions 

8085 LXI SP,dddd Load extended Im- xx-x-x-x Copy bytes 3 and 2 of the 

mediate dddd into instruction into the stack 

the Stack Pointer 10 3 Immed 31 SP <- dddd pointer. 

Z80 LD SP,dddd LoaD dddd into 

the Stack Pointer 

xx-x-xxx 

8085 DAD SP Double AdD SP to HL xx-x-x-C 10 

1 Register 39 HL «- HL + SP 

Z80 ADD HL,SP ADD SP to HL xx-x-xOC 11 

8085 INX SP INcrement extended 

Stack Pointer 

xx-x-x-x 

6 1 Register 33 SP «• SP + 1 

(8080 = 5 states) 

Z80 INC SP INCrement Stack 

Pointer 

xx-x-xxx 

8085 DCX SP Decrement extended 

Stack Pointer 

xx-x-x-x 

6 1 Register 3B SP «- SP - 1 

(8080 = 5 states) 

Z80 DEC SP DECrement Stack 

Pointer 

xx-x-xxx 

8085 PUSH B PUSH reg pair BC xx-x-x-x 12 

1 Reg Ind C5 S «- B 

(8080 = 11 states) 

The stack pointer is 

Z80 PUSH BC PUSH reg pair BC xx-x-xxx 11 s«-c decremented as each new byte 

is pushed onto the stack. 

8085 PUSH D PUSH reg pair DE xx-x-x-x 12 

1 Reg Ind D5 S «- D 

(8080 = 11 states) 

The stack pointer is 

Z80 PUSH DE PUSH reg pair DE xx-x-xxx 11 S<-E decremented as each new byte 

is pushed onto the stack. 

8085 PUSH H PUSH reg pair HL xx-x-x-x 12 

1 Reg Ind E5 S ♦* H 

(8080 = 11 states) 

The stack pointer is 

Z80 PUSH HL PUSH reg pair HL xx-x-xxx 11 S <- L decremented as each new byte 

is pushed onto the stack. 
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Micro Mnemonic Operation 
Notes 8085 > sz-A-P-c T # Address Op Boolean/Arith. 

Z80>sz>h-pnc Mode Operation 

8085 PUSH PSW PUSH Processor 

Status Word 
XX-X-X-X 12 

Z80 PUSH AF PUSH Accumulator 

and Flags 
XX-X-XXX 11 

(8080 = 11 states) 

Reg Ind F5 S <- A The stack pointer is 

S «- flags decremented as each new byte 

is pushed onto the stack. The 

"flags" byte is assembled in the 

normal order of the flags 

(8080/8085 = SZ-A-P-C and 

Z80 = SZ-H-PNC) for that 

microprocessor. 

8085 POP B POP reg pair BC 

Z80 POP BC POP reg pair BC 

xx-x-x-x 

10 1 Reg Ind Cl C <-S 

xx-x-xxx B «- S 

The stack pointer is 

incremented as each byte is 

popped from the stack. 

8085 POP D POP reg pair DE 

Z80 POP DE POP reg pair DE 

xx-x-x-x 

10 1 Reg Ind D1 E <- S 

xx-x-xxx D <- S 

The stack pointer is 

incremented as each byte is 

popped from the stack. 

8085 POP H POP reg pair HL 

Z80 POP HL POP reg pair HL 

xx-x-x-x 

10 1 Reg Ind El L «■ S 

xx-x-xxx H «* S 

The stack pointer is 

incremented as each byte is 

popped from the stack. 

8085 POP PSW POP Processor SZ-A-P-C 
Status Word 10 1 

Z80 POP AF POP Accumulator SZ-H-PNC 
and Flag 

The stack pointer is 

Reg Ind FI flags «- S incremented as each byte is 

A + S popped from the stack. 

8085 XTHL eXchange top of xx-x-x-x 16 

sTack with reg pair HL 

Z80 EX (SP),HL Exchange M(Sp) with xx-x-xxx 19 

reg pair HL 

Reg Ind E3 L *♦ S 

HwSo~o 

(8080 = 18 states) 

Stack pointer does not change 

8085 SPHL move into SP the con¬ 

tents of reg pair HL 

Z80 LD SP,HL LoaD into SP the con¬ 

tents of reg pair HL 

6 1 Register F9 SP «- HL 
(8080 = 5 states) 

Interrupt Instructions 

8085 DI Disable Interrupts 

Z80 DI Disable Interrupts 

XX-X-X-X 

4 1 Implied F3 IFF «* 0 
XX-X-XXX 
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EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

Micro Mnemonic Operation 8085 > sz^a-p-c T # Address Op Boolean/Arith. Notes 

Z80>sz-h-pnc Mode Operation 

8085 El Enable Interrupts xx-x-x-x 

4 1 Implied FB IFF *■ 1 

Z80 El Enable Interrupts xx-x-xxx 

8085 RIM (not covered here - see note at end of table) 

8085 SIM (not covered here - see note at end of table) 

Input-Output Instructions 

8085 OUT dd OUTput to port dd xx-x-x-x 10 The contents of the 

contents of A 2 Direct D3 dd port «■ A accumulator are sent to a 

Z80 OUT ddA OUTput to port dd 

contents of A 

xx-x-xxx 11 specified output port. 

8085 IN dd INput into A one byte xx-x-x-x 10 One byte from the specified 

from port dd 2 Direct DB A «- dd port port is copied into the 

Z80 IN A,dd INput into A one byte 

from port dd 

xx-x-xxx 11 (byte) accumulator. 

Address Modes 

Implied 

Register 

Immediate 

Direct 

Register Indirect (Reg Ind) 

Abbreviations and Explanations 

a = address (a single hex digit) 

aa = address (two hex digits - 1 byte) 

aaaa = address (four hex digits - 2 bytes) 

Flags_ 

If one of the flag letter designations is in the column for that 

particular flag it indicates that the flag is affected by this operation 

and could be set or cleared depending on the result of the operation. 

One of the following could also appear in a flag column: 

PSW = program status word (flags) 

S = stack 

SP = stack pointer 

PC = program counter 

IFF = interrupt enable flip-flop 

A = accumulator 

B,C,D,E,H,L = registers 

L = low-order byte 

H = high-order byte 

A?..A0 = accumulator bits 0 through 7 

d = data (a single hex digit) 

dd = data (two hex digits - 1 byte) 

dddd = data (four hex digits - 2 bytes) 

- = no flag is represented by this column, a blank bit in the 

status register 

x = flag not affected by this operation 

1 = flag always set by this operation 

0 = flag always cleared by this operation 

8085 

S - sign flag 

Z = zero flag 

A = auxiliary carry flag (usually labeled "AC") 

P = parity flag 

C = carry flag (usually labeled "CY") 
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Z80 

S = sign 

Z = zero flag 

H = half carry flag 

P = parity/overflow flag (usually labeled "P/V") 

N * negative flag 

C = carry flag 

RIM & SIM- These two instructions related to interrupts are not 

covered in this table. They apply only to the 8085 

(neither is available in either the 8080 or Z80). 

Addressing Modes - A Summary 

Implied: These instructions contain the source and destination of 
the data by implication. 

Symbols in the Page Heading 

T = T states 

# = number of bytes 

Special Notes 

Register: In this mode the operand and its source are specified and 

data is operated on in the registers only. 

Immediate: The data to be operated on follows the instruction op 

code in memory; that is, it is the next byte in memory after the 
instruction. 

States = When two numbers appear in the "States*’ column 

separated by a slash, the lower number indicates the 

number of states if the condition is false and the 

operation does not occur, and the larger number indicates 

the number of states if the condition is true and the 

operation does occur. 

8080 = The 8080 behaves the same as the 8085 unless special 

information is provided in the "Notes" column for the 
8080. 

Direct: The full address of the location of the operand in contained 

in bytes 2 and 3, that is, the next two bytes in memory after the 

instruction. The low-order byte comes first, and the high-order 
second. 

Register Indirect (Reg Ind): In this addressing mode several steps 

are involved. Included in the instruction is a register pair, the 

contents of that register pair contains the address where that 

operand may be found, not the operand itself. 
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MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY 

8085 Z80 Op Operation 8085 Z80 Op Operation 

CPU Control Instructions MOV C,M LD C,(HL) 4E c*mhl 

NOP NOP 00 Nothing happens 
MOV DA LD DA 57 D «- A 

HLT HALT 76 Stop processing 
MOV D3 LD D3 50 D «* B 

MOV D,C LD D,C 51 D «- C 

Data Transfer Instructions MOV D,D LD D,D 52 D <- D 

MOV AA LD AA 7F A <- A MOV D,E LD D,E 53 D <- E 

MOV A,B LD A,B 78 A <- B MOV D,H LD D,H 54 D <- H 

MOV A,C LD A,C 79 A <- C MOV D,L LD D,L 55 D <- L 

MOV A,D LD A,D 7A A <- D MOV DtM LD D,(HL) 56 D * mhl 

MOV A,E LD A,E 7B A «- E MOV EA LD EA 5F E <- A 

MOV A,H LD A,H 1C A<-H MOV E3 LD E,B 58 E <- B 

MOV A,L LD A,L ID A<-L MOV E,C LD E,C 59 E <-C 

MOV A,M LD A,(HL) 7E A <* Mhl MOV E,D LD E,D 5A E<-D 

MOV BA LD BA 47 B «- A MOV E,E LD E,E 5B E «* E 

MOV B,B LD B3 40 B «- B MOV E,H LD E,H 5C E <- H 

MOV B,C LD B,C 41 B <- C MOV E,L LD E,L 5D E<-L 

MOV B,D LD B,D 42 B <* D MOV E,M LD E,(HL) 5E e-mhl 

MOV B,E LD B,E 43 B <- E MOV HA LD HA 67 H <- A 

MOV B,H LD B,H 44 B<-H MOV H3 LD H3 60 H<-B 

MOV B,L LD B,L 45 B L MOV H,C LD H,C 61 H «- C 

MOV B,M LD B,(HL) 46 b"mhl 
MOV H,D LD H,D 62 H <- D 

MOV CA LD CA 4F C <- A MOV H,E LD H,E 63 H <- E 

MOV C,B LD C3 48 C<r B MOV H,H LD H,H 64 H H 

MOV C,C LD C,C 49 c*-c MOV H,L LD H,L 65 H «■ L 

MOV C,D LD C,D 4A C<-D MOV H,M LD H,(HL) 66 h-mhl 

MOV C,E LD C,E 4B C<-E MOV LA LD LA 6F L <- A 

MOV C,H LD C,H 4C C<-H MOV L3 LD L,B 68 L+ B 

MOV C,L LD C,L 4D C «- L MOV L,C LD L,C 69 L <- C 
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8085 Z80 Op Operation 8085 Z80 Op Operation 

MOV L,D LD L,D 6A L«- D STAX D LD (DE)A 12 ^DE A 

MOV L,E LD L,E 6B L <- E SHLD aaaa LD (aaaa),HL 22 

MOV L,H LD L,H 6C L<-H Maaaa+1 ” H 

MOV L,L LD L,L 6D L «- L 
XCHG EX DE,HL EB DE » HL 

MOV L,M LD L,(HL) 6E l-mhl 

MOV MA LD (HL)A 77 Mhl ** A 
Flag Instructions 

MOV M,B LD (HL),B 70 Mhl «- B STC SCF 37 C+ 1 

MOV M,C LD (HL),C 71 
mhl ** c CMC CCF 3F c<- C 

MOV M,D LD (HL),D 72 
mhl * D 

MOV M,E LD (HL),E 73 Mhl E Arithmetic Instructions 

MOV M,H LD (HL),H 74 MHl H 

MOV M,L LD (HL),L 75 Mhl L 

ADDA ADD AA 87 A *■ A + A 

MVI A,dd LD A,dd 3E A <- dd 

ADD B ADD A.B 80 A <- A + B 

MVI B,dd LD B,dd 06 B <- dd 

ADD C ADD A,C 81 A <- A + C 

MVI C,dd LD C,dd 0E C <- dd 

ADD D ADD A,D 82 A «-A + D 

MVI D,dd LD D,dd 16 D <- dd 

ADD E ADD A.E 83 A «- A + E 

MVI E,dd LD E,dd IE E <- dd 

ADD H ADD A,H 84 A <■ A + H 

MVI H,dd LD H,dd 26 H <- dd 

ADD L ADD A,L 85 A «■ A + L 

MVI L,dd LD L,dd 2E L «- dd 

ADD M ADD A,(HL) 86 A <- A + Mhl 

MVI M,dd LD (HL),dd 36 
mhl *■ dd 

ADC A ADC AA 8F A <■ A + A + C 

LXI B,dddd LD BC.dddd 01 BC «- dddd 

ADC B ADC A,B 88 A «• A + B + C 

LXI D,dddd LD DE.dddd 11 DE *■ dddd 

ADC C ADC A,C 89 A *■ A + C + C 

LXI H,dddd LD HL.dddd 21 HL <- dddd 

ADC D ADC A,D 8A A «■ A + D + C 

LDAX B LD A,(BC) 0A a^mbc 

ADC E ADC A,E 8B A «- A + E + C 

LDAX D LD A,(DE) 1A A *■ Mde 

ADC H ADC A,H 8C A «- A + H + C 

LHLD aaaa LD HL,(aaaa) 2A 
ADC L ADC A,L 8D A «- A + L + C 

H - M_m ADC M ADC A,(HL) 8E A <- A + Mhl + C 

LDA aaaa LD A,(aaaa) 3A SUB A SUB A 97 A <- A - A 

STA aaaa LD (aaaa)^A 32 A SUB B SUB B 90 A <- A - B 

STAX B LD (BC)A 02 
MBC *" A SUB C SUB C 91 A «■ A - C 
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MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued) 

8085 Z80 Op Operation 8085 Z80 Op Operation 

SUB D SUB D 92 A «• A - D ANA H AND H A4 A <- A AND H 

SUB E SUB E 93 A <- A - E ANAL AND L A5 A «- A AND L 

SUB H SUB H 94 A *■ A - H ANA M AND (HL) A6 A «- A AND Mhl 

SUB L SUB L 95 A «- A - L XRA A XOR A AF A «- A XOR A 

SUB M SUB (HL) 96 A <• A - XRA B XORB A8 A «- A XOR B 

SBB A SBC AA 9F A <-A - A - C XRA C XOR C A9 A «- A XOR C 

SBB B SBC A,B 98 A «-A - B - C XRA D XOR D AA A «- A XOR D 

SBB C SBC A,C 99 A *■ A - C - C XRA E XOR E AB A «- A XOR E 

SBB D SBC A,D 9A A <- A - D - C XRA H XOR H AC A <- A XOR H 

SBB E SBC A,E 9B A <- A - E - C XRA L XOR L AD A «- A XOR L 

SBB H SBC A,H 9C A*- A-H-C XRA M XOR (HL) AE A +■ A XOR Mhl 

SBB L SBC A,L 9D A «- A - L - C ORA A ORA B7 A <- A OR A 

SBB M SBC A,(HL) 9E A *■ A - Mhl - C ORAB ORB B0 A «- A OR B 

DAD B ADD HLJBC 09 HL «- HL + BC ORA C OR C B1 A «- A OR C 

DAD D ADD HL,DE 19 HL <- HL + DE ORAD ORD B2 A^-AORD 

DAD H ADD HL,HL 29 HL «- HL + HL ORAE ORE B3 A «■ A OR E 

ADI dd ADD A,dd C6 A <- A + dd ORAH OR H B4 A A OR H 

A Cl dd ADC A,dd CE A <- A + dd + C ORAL ORL B5 A<*AORL 

SUI dd SUB dd D6 A <■ A - dd ORA M OR (HL) B6 A *- A OR Mhl 

SBI dd SBC A,dd DE A <- A - dd - C ANI dd AND dd E6 A *■ A AND dd 

DAA DAA 27 A «- BCD (A) XRI dd XOR dd EE A A XOR dd 

ORI dd OR dd F6 A A OR dd 

Logical Instructions — 

CMA CPL 2F A «- A 

ANA A AND A A7 A <- A AND A 

ANA B AND B A0 A ♦- A AND B Rotate and Shift Instructions 

ANA C AND C A1 A <- A AND C 

RLC RLCA 07 n
 

-
t

 
>

 

>
 

o
 J 

ANA D AND D A2 A «- A AND D 1...J 

ANA E AND E A3 A *■ A AND E RRC RRCA OF |—*-a7 ... Aq p^c 
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8085 Z80 Op Operation 8085 Z80 Op Operation 

RAL RLA 17 |“c*-A7 .. . A0-*~ Unconditional Jump Instructions 

RAR RRA IF p^A7 .. . A0—►C—| JMP aaaa JP aaaa C3 PC *■ aaaa 

PCHL JP (HL) E9 PCh-H 

PCl *■ L 

Increment and Decrement Instruction* 

INR A INCA 3C A «- A + 1 
Test (Compare) Instructions 

INRB INC B 04 B <- B + 1 CMP A CPA BF A - A 

INR C INC C OC C «- C + 1 CMP B CP B B8 A - B 

INR D INC D 14 D «• D + 1 CMP C CP c B9 A-C 

INR E INC E 1C E «- E + 1 CMP D CP D BA A-D 

INR H INCH 24 H <- H + 1 CMP E CPE BB A - E 

INR L INC L 2C L «- L + 1 CMP H CP H BC A- H 

INR M INC (HL) 34 
^HL *■ ^HL + 1 CMP L CP L BD A-L 

INXB INC BC 03 BC *■ BC + 1 CMPM CP (HL) BE a-mhl 

INXD INC DE 13 DE «- DE + 1 CPI dd CP dd FE A - dd 

INX H INC HL 23 HL *■ HL + 1 

DCR A DEC A 3D A «- A - 1 
Conditional Jumo (Branch) Instructions 

DCR B DEC B 05 B <- B - 1 

DCR C DEC C 0D C<- C- 1 
JNZ aaaa JP NZ,aaaa C2 PC <* aaaa 

If Z = 0 

DCR D DEC D 15 D «- D - 1 
JZ aaaa JP Z,aaaa CA PC «- aaaa 

DCR E DEC E ID E «- E - 1 If Z = 1 

DCR H DECH 25 H «• H - 1 JNC aaaa JP NC,aaaa D2 PC <- aaaa 

If C = 0 
DCR L DEC L 2D L «- L - 1 

JC aaaa JP C,aaaa DA PC *- aaaa 
DCR M DEC (HL) 35 

mhl *■ mhl ■1 If C - 1 

DCX B DEC BC OB BC «- BC - 1 JPO aaaa JP PO.aaaa E2 PC <- aaaa 

If P = 0 
DCXD DEC Dk IB DE «- DE - 1 

JPE aaaa JP PE,aaaa EA PC <- aaaa 
DCX H DEC HL 2B HL «- HL - 1 If P = 1 

JP aaaa JP P,aaaa F2 PC aaaa 

If S = 0 
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MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued) 

g085 Z80 Op Operation 8085_Z80_Op_Operation_ 

JM aaaa JP M,aaaa FA PC «- aaaa RNZ RET NZ CO If Z = 0 

If S = 1 PCL<-S 

PCh * S 

RZ RETZ C8 If Z = 1 

Subroutine Instructions PCl *■ S 
PCh-S 

CALL aaaa CALL aaaa CD S PCjr 
S^PCl 

PC «- aaaa 

RNC RET NC DO If C = 0 

PCl *■ S 

PCh-S 

CNZ aaaa CALL NZ,aaaa C4 If Z = 0 RC RET C D8 If C = 1 

S-PCn 

S *■ PCl 

PCl *■ S 
PCh-S 

PC <- aaaa 
RPO RET PO E0 If P = 0 

CZ aaaa CALL Z,aaaa CC If Z = 1 

S^PC„ 

S *■ PCx 
PC <- aaaa RPE RET PE E8 

PCl^S 

PCh^S 

If P = 1 

pcl *■ s 

CNC aaaa CALL NC,aaaa D4 If C - 0 

S^PCH 

S<-PCl 

PCh-S 

RP RET P F0 If S = 0 

PC «- aaaa PCl *" S 
PCh-S 

CC aaaa CALL C,aaaa DC If C = 1 
F8 If S = 1 

PCl *■ S 

PC„^S 

s «- PCH 

S-PCl 

PC «- aaaa 

RM RET M 

CPO aaaa CALL PO,aaaa E4 If P = 0 

s <- PCh 

S^PCL 

PC <- aaaa 

RST0 RST00H C7 S *" PCh 
S «■ PCl 

PC «- OOOOH 

S-PCn RST 1 RST08H CF 

CPE aaaa CALL PE,aaaa EC If P = 1 

s<-PCh 

S *■ PCl 
PC «- 0008H 

S * PCl 

PC«- aaaa 
RST 2 RST 10H D7 S *" PCh 

S «• PCl 

PC «- 0010H 
If S = 0 CP aaaa CALL P,aaaa F4 

S-PCh 

PC «■ aaaa 

RST 3 RST 18H DF s *■ PCh 

S «• PCl 

PC «■ 0018H 

CM aaaa CALL M,aaaa FC If S = 1 

S<-PCh 

S * PCl 
PC «- aaaa 

RST 4 RST 20H E7 s «- PCh 

S «• PCl 

PC «- 0020H 

C9 PCl«-S 

PCh^S 

RST 5 RST 28H EF S<- PCh 
RET RET 

S *■ PCl 

PC «- 0028H 
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8085 Z80 Op Operation 8085 Z80 Op Operation 

RST6 RST30H F7 S-PCh POP D POP DE DI E «- S 
S PCL D <- S 
PC <- 0030H 

RST 7 RST38H FF S-PCh 
POPH POP HL El L<-S 

H «- S 
S * PCl 
PC «- 0038H POP PSW POP AF FI flags <- S 

A<-S 

Stack Instructions XTHL EX (SP),HL E3 h ** S 

LXI SP,dddd LD SP,dddd 31 SP <- dddd 
H"s<n~o 

SPHL LD SP.HL F9 SP *• HL 
DAD SP ADD HL,SP 39 HL <- HL + SP 

I NX SP INC SP 33 SP <- SP + 1 

DCX SP DEC SP 3B SP <- SP - 1 Interrupt Instructions 

PUSH B PUSH BC C5 S <- B 

S <- C DI DI F3 IFF 0 

PUSH D PUSH DE D5 S<-D El El FB IFF «• 1 

S <- E 

PUSH H PUSH HL E5 S <- H 

S <- L 

Input-Outout InstrnrtioTiQ 
PUSH PSW PUSH AF F5 S «- A 

S «- flags 

POP B POP BC Cl C 4- S 

OUT dd OUT ddA D3 dd port A 

B «- S IN dd IN A,dd DB A <- dd port (byte) 

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY 

8085 Z80 Op 

CPU Control Instructions 

NOP NOP 00 
HLT HALT 76 

Data Transfer Instructions 

MOV AA LD AA 7F 

MOV A,B LD A,B 78 

MOV A,C LD A,C 79 

MOV A,D LD A,D 7A 

MOV A,E LD A,E 7B 

8085 Z80 Op 

MOV A,H LD A,H 1C 
MOV A,L LD A,L 7D 
MOV A,M LD A,(HL) 7E 
MOV BA LD BA 47 
MOV B,B LD B,B 40 
MOV B,C LD B,C 41 
MOV B,D LD B,D 42 
MOV B,E LD B,E 43 
MOV B,H LD B,H 44 
MOV B,L LD B,L 45 
MOV B,M LD B,(HL) 46 
MOV CA LD CA 4F 
MOV C,B LD C,B 48 
MOV C,C LD C,C 49 
MOV C,D LD C,D 4A 
MOV C,E LD C,E 4B 

8085 Z80 Op 

MOV C,H LD C,H 4C 
MOV C,L LD C,L 4D 
MOV C,M LD C,(HL) 4E 
MOV DA LD DA 57 
MOV D,B LD D,B 50 
MOV D,C LD D,C 51 
MOV D,D LD D,D 52 
MOV D,E LD D,E 53 
MOV D,H LD D,H 54 
MOV D,L LD D,L 55 
MOV D,M LD D,(HL) 56 
MOV EA LD EA 5F 
MOV E,B LD E,B 58 
MOV E,C LD E,C 59 
MOV E,D LD E,D 5A 
MOV E,E LD E,E 5B 
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CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY CATEGORY (Continued) 

8085 Z80 Op 8085 Z80 Op 8085 Z80 Op 

MOV E,H LD E,H 5C Arithmetic Instructions ANAL AND L A5 

MOV E,L LD E,L 5D ANA M AND (HL) A6 

MOV E,M LD E,(HL) 5E XRA A XOR A AF 

MOV HA LD HA 67 ADDA ADD AA 87 XRA B XORB A8 

MOV H,B LD H,B 60 ADD B ADD A,B 80 XRA C XOR C A9 

MOV H,C LD H,C 61 ADD C ADD A,C 81 XRA D XOR D AA 

MOV H,D LD H,D 62 ADD D ADD A,D 82 XRA E XOR E AB 

MOV H,E LD H,E 63 ADD E ADD A,E 83 XRA H XOR H AC 

MOV H,H LD H,H 64 ADD H ADD A,H 84 XRA L XOR L AD 

MOV H,L LD H,L 65 ADD L ADD A,L 85 XRA M XOR (HL) AE 

MOV H,M LD H,(HL) 66 ADD M ADD A,(HL) 86 ORA A ORA B7 

MOV LA LD LA 6F ADC A ADC AA 8F ORAB ORB B0 

MOV L,B LD L,B 68 ADC B ADC A,B 88 ORA C ORC B1 

MOV L,C LD L,C 69 ADC C ADC A,C 89 ORA D ORD B2 

MOV L,D LD L,D 6A ADC D ADC A,D 8A ORAE ORE B3 

MOV L,E LD L,E 6B ADC E ADC A,E 8B ORA H OR H B4 

MOV L,H LD L,H 6C ADC H ADC A,H 8C ORA L ORL B5 

MOV L,L LD L,L 6D ADC L ADC A,L 8D ORA M OR (HL) B6 

MOV L,M LD L,(HL) 6E ADC M ADC A,(HL) 8E ANI dd AND dd E6 

MOV MA LD (HL)A 77 SUB A SUB A 97 XRI dd XOR dd EE 

MOV M,B LD (HL),B 70 SUB B SUB B 90 ORI dd OR dd F6 

MOV M,C LD (HL),C 71 SUB C SUB C 91 CMA CPL 2F 

MOV M,D LD (HL),D 72 SUB D SUB D 92 

MOV M,E LD (HL),E 73 SUB E SUB E 93 

MOV M,H LD (HL),H 74 SUB H SUB H 94 

MOV M,L LD (HL),L 75 SUB L SUB L 95 Rotate and Shift Instructions 

MVI A,dd LD A,dd 3E SUB M SUB (HL) 96 

MVI B,dd LD B,dd 06 SBB A SBC AA 9F 

MVI Qdd LD C,dd OE SBBB SBC A,B 98 RLC RLCA 07 

MVI D,dd LD D,dd 16 SBB C SBC A,C 99 RRC RRCA OF 

MVI E,dd LD E,dd IE SBB D SBC A,D 9A RAL RLA 17 

MVI H,dd LD H,dd 26 SBB E SBC A,E 9B RAR RRA IF 

MVI L,dd LD L,dd 2E SBB H SBC A,H 9C 

MVI M,dd LD (HL),dd 36 SBB L SBC A,L 9D 

LXI B,dddd LD BC,dddd 01 SBB M SBC A,(HL) 9E 

LXI D,dddd LD DE,dddd 11 DAD B ADD HL,BC 09 Increment and Decrement Instructions 

LXI H,dddd LD HL,dddd 21 DAD D ADD HL,DE 19 

LDAXB LD A,(BC) 0A DAD H ADD HL,HL 29 

LDAXD LD A,(DE) 1A ADI dd ADD A,dd C6 INR A INCA 3C 

LHLD aaaa LD HL,(aaaa) 2A ACI dd ADC A,dd CE INR B INC B 04 

LDA aaaa LD A,(aaaa) 3A SUI dd SUB dd D6 INR C INC C OC 

STA aaaa LD (aaaa)A 32 SBI dd SBC A,dd DE INR D INC D 14 

STAX B LD (BC)A 02 DAA DAA 27 INR E INC E 1C 

STAX D LD (DE)A 12 INR H INCH 24 

SHLD aaaa LD (aaaa),HL 22 INR L INC L 2C 

XCHG EX DE,HL EB INR M INC (HL) 34 

Logical Instructions INX B INC BC 03 

I NX D INC DE 13 

INX H INC HL 23 

Flag Instructions ANA A AND A A7 DCR A DEC A 3D 

ANA B AND B A0 DCR B DEC B 05 

ANA C AND C A1 DCR C DEC C 0D 

STC SCF 37 ANA D AND D A2 DCR D DEC D 15 

CMC CCF 3F ANA E AND E A3 DCR E DEC E ID 

ANA H AND H A4 DCR H DEC H 25 
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Z80 Op 
8085 Z80 Op 

DCRL DEC L 2D 
DCRM DEC (HL) 35 
DCXB DEC BC 0B 
DCX D DEC DE IB 
DCX H DEC HL 2B 

Unconditional Jump Instructions 

JMP aaaa JP aaaa C3 
PCHL JP (HL) E9 

Test (Compare) Instructions 

CMP A CPA BF 
CMP B CP B B8 
CMP C CP C B9 
CMP D CP D BA 
CMP E CPE BB 
CMP H CP H BC 
CMP L CP L BD 
CMP M CP (HL) BE 
CPI dd CP dd FE 

Conditional Jump (Branch) Instructions 

JNZ aaaa JP NZ,aaaa C2 
JZ aaaa JP Z,aaaa CA 
JNC aaaa JP NC,aaaa D2 

8085 Z80 Op 

JC aaaa JP C,aaaa DA 
JPO aaaa JP PO,aaaa E2 
JPE aaaa JP PE,aaaa EA 
JP aaaa JP P,aaaa F2 
JM aaaa JP M,aaaa FA 

Subroutine Instructions 

CALL aaaa CALL aaaa CD 
CNZ aaaa CALL NZ,aaaa C4 
CZ aaaa CALL Z,aaaa CC 
CNC aaaa CALL NC,aaaa D4 
CC aaaa CALL C,aaaa DC 
CPO aaaa CALL PO,aaaa E4 
CPE aaaa CALL PE,aaaa EC 
CP aaaa CALL P,aaaa F4 
CM aaaa CALL M,aaaa FC 
RET RET C9 
RNZ RET NZ CO 
RZ RETZ C8 
RNC RET NC DO 
RC RETC D8 
RPO RET PO E0 
RPE RET PE E8 
RP RET P FO 
RM RET M F8 
RST 0 RST00H C7 
RST 1 RST08H CF 
RST 2 RST 10H D7 
RST 3 RST18H DF 
RST 4 RST20H E7 
RST 5 RST28H EF 
RST 6 RST30H F7 
RST 7 RST38H FF 

8085 

Stack Instructions 

LXI SP,dddd LD SP,dddd 31 
DAD SP ADD HL,SP 39 
INX SP INC SP 33 
DCX SP DEC SP 3B 
PUSH B PUSH BC C5 
PUSH D PUSH DE D5 
PUSH H PUSH HL E5 
PUSH PSW PUSH AF F5 
POP B POP BC Cl 
POP D POP DE DI 
POP H POP HL El 
POP PSW POP AF FI 
XTHL EX (SP),HL E3 
SPHL LD SP,HL F9 

Interrupt Instructions 

DI DI F3 
El El FB 

Input-Output Instructions 

OUT dd OUT ddA D3 
IN dd IN A,dd DB 

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY OP CODE 

Op 8080/8085 Z80_ Op 8080/8085 Z80_ Op 8080/8085 Z80 

00 NOP NOP 
01 LXI B,dddd LD BC,dddd 
02 STAX B LD (BC)A 
03 INX B INC BC 
04 INR B INC B 
05 DCR B DEC B 
06 MVI B,dd LD B,dd 
07 RLC RLCA 
09 DAD B ADD HL,BC 
0A LDAX B LD A,(BC) 
0B DCX B DEC BC 

0C INR C INC C 
0D DCR C DEC C 
0E MVI C,dd LD C,dd 
OF RRC RRCA 
11 LXI D,dddd LD DE.dddd 
12 STAX D LD (DE)A 
13 INX D INC DE 
14 INR D INC D 
15 DCR D DEC D 
16 MVI D,dd LD D,dd 
17 RAL RLA 

19 DAD D ADD HL,DE 
1A LDAX D LD A,(DE) 
IB DCX D DEC DE 
1C INRE INCE 
ID DCR E DEC E 
IE MVI E,dd LD E,dd 
IF RAR RRA 
21 LXI H,dddd LD HL,dddd 
22 SHLD aaaa LD (aaaa),HL 
23 INX H INC HL 
24 INR H INC H 
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CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED 

BY OP CODE (Continued) 

Op 8080/8085 zso Qp 8080/8085 

25 DCRH DECH 5F MOV EA 

26 MVI H,dd LD H,dd 60 MOV H,B 

27 DAA DAA 61 MOV H,C 

29 DAD H ADD HL,HL 62 MOV H,D 

2A LHLD aaaa LD HL,(aaaa) 63 MOV H,E 

2B DCX H DEC HL 64 MOV H,H 

2C INR L INC L 65 MOV H,L 

2D DCRL DEC L 66 MOV H,M 

2E MVI L,dd LD L,dd 67 MOV HA 

2F CMA CPL 68 MOV L,B 

31 LXI SP,dddd LD SP,dddd 69 MOV L,C 

32 STA aaaa LD (aaaa)A 6A MOV L,D 

33 INX SP INC SP 6B MOV L,E 

34 INR M INC (HL) 6C MOV L,H 

35 DCR M DEC (HL) 6D MOV L,L 

36 MVI M,dd LD (HL),dd 6E MOV L,M 

37 STC SCF 6F MOV LA 

39 DAD SP ADD HL,SP 70 MOV M,B 

3A LDA aaaa LD A,(aaaa) 71 MOV M,C 

3B DCX SP DEC SP 72 MOV M,D 

3C INR A INCA 73 MOV M,E 

3D DCR A DEC A 74 MOV M,H 

3E MVI A,dd LD A,dd 75 MOV M,L 

3F CMC CCF 76 HLT 

40 MOV B,B LD B,B 77 MOV MA 

41 MOV B,C LD B,C 78 MOV A,B 

42 MOV B,D LD B,D 79 MOV A,C 

43 MOV B,E LD B,E 7A MOV A,D 

44 MOV B,H LD B,H 7B MOV A,E 

45 MOV B,L LD B,L 7C MOV A,H 

46 MOV B,M LD B,(HL) 7D MOV A,L 

47 MOV BA LD BA 7E MOV A,M 

48 MOV C,B LD C,B 7F MOV AA 

49 MOV C,C LD C,C 80 ADD B 

4A MOV C,D LD C,D 81 ADD C 

4B MOV C,E LD C,E 82 ADD D 

4C MOV C,H LD C,H 83 ADD E 

4D MOV C,L LD C,L 84 ADD H 

4E MOV C,M LD C,(HL) 85 ADD L 

4F MOV CA LD CA 86 ADD M 

50 MOV D,B LD D,B 87 ADDA 

51 MOV D,C LD D,C 88 ADC B 

52 MOV D,D LD D,D 89 ADC C 

53 MOV D,E LD D,E 8A ADC D 

54 MOV D,H LD D,H 8B ADC E 

55 MOV D,L LD D,L 8C ADC H 

56 MOV D,M LD D,(HL) 8D ADC L 

57 MOV DA LD DA 8E ADC M 

58 MOV E,B LD E,B 8F ADC A 

59 MOV E,C LD E,C 90 SUB B 

5A MOV E,D LD E,D 91 SUB C 

5B MOV E,E LD E,E 92 SUB D 

5C MOV E,H LD E,H 93 SUB E 

5D MOV E,L LD E,L 94 SUB H 

5E MOV E,M LD E,(HL) 95 SUB L 

Z80 Qp 8080/8085 Z80 

LD EA 96 SUB M SUB (HL) 

LD H,B 97 SUB A SUB A 

LD H,C 98 SBB B SBC A,B 

LD H,D 99 SBB C SBC A,C 

LD H,E 9A SBB D SBC A,D 

LD H,H 9B SBB E SBC A,E 

LD H,L 9C SBB H SBC A,H 

LD H,(HL) 9D SBB L SBC A,L 

LD HA 9E SBB M SBC A,(HL) 

LD L,B 9F SBB A SBC AA 

LD L,C A0 ANAB AND B 

LD L,D A1 ANA C AND C 

LD L,E A2 ANA D AND D 

LD L,H A3 ANA E AND E 

LD L,L A4 ANA H AND H 

LD L,(HL) A5 ANA L AND L 

LD LA A6 ANA M AND (HL) 

LD (HL),B A7 ANA A AND A 

LD (HL),C A8 XRA B XORB 

LD (HL),D A9 XRA C XOR C 

LD (HL),E AA XRA D XORD 

LD (HL),H AB XRA E XOR E 

LD (HL),L AC XRA H XOR H 

HALT AD XRA L XOR L 

LD (HL)A AE XRA M XOR (HL) 

LD A,B AF XRA A XOR A 

LD A,C B0 ORA B OR B 

LD A,D B1 ORA C OR C 

LD A,E B2 ORA D OR D 

LD A,H B3 ORA E ORE 

LD A,L B4 ORA H OR H 

LD A,(HL) B5 ORAL ORL 

LD A A B6 ORA M OR (HL) 

ADD A,B B7 ORA A ORA 

ADD A,C B8 CMP B CP B 

ADD AD B9 CMP C CP C 

ADD A,E BA CMP D CP D 

ADD A,H BB CMP E CP E 

ADD A,L BC CMP H CP H 

ADD A,(HL) BD CMP L CP L 

ADD A A BE CMP M CP (HL) 

ADC A,B BF CMP A CPA 

ADC A,C CO RNZ RET NZ 

ADC A,D Cl POP B POP BC 

ADC A,E C2 JNZ aaaa JP NZ,aaaa 

ADC A,H C3 JMP aaaa JP aaaa 

ADC A,L C4 CNZ aaaa CALL NZ,aaaa 

ADC A,(HL) C5 PUSH B PUSH BC 

ADC AA C6 ADI dd ADD A,dd 

SUB B C7 RST0 RST00H 

SUB C C8 RZ RET Z 

SUB D C9 RET RET 

SUBE CA JZ aaaa JP Z,aaaa 

SUB H CC CZ aaaa CALL Z,aaaa 

SUB L CD CALL aaaa CALL aaaa 
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Z80 Op 8080/8085 Z80 Op 8080/8085 Z80 

CE ACI dd ADC A,dd 
CF RST1 RST08H 
DO RNC RET NC 
D1 POP D POP DE 
D2 JNC aaaa JP NC.aaaa 
D3 OUT dd OUT ddA 
D4 CNC aaaa CALL NC,aaaa 
D5 PUSH D PUSH DE 
D6 SUI dd SUB dd 
D7 RST 2 RST 10H 
D8 RC RET C 
DA JC aaaa JP C,aaaa 
DB IN dd IN A,dd 
DC CC aaaa CALL C,aaaa 
DE SBI dd SBC A,dd 
DF RST 3 RST18H 

E0 RPO RET PO 
El POP H POP HL 
E2 JPO aaaa JP PO,aaaa 
E3 XTHL EX (SP),HL 
E4 CPO aaaa CALL PO,aaaa 
E5 PUSH H PUSH HL 
E6 ANI dd AND dd 
E7 RST 4 RST20H 
E8 RPE RET PE 
E9 PCHL JP (HL) 
EA JPE aaaa JP PE,aaaa 
EB XCHG EX DE,HL 
EC CPE aaaa CALL PE,aaaa 
EE XRI dd XOR dd 
EF RST 5 RST28H 

F0 RP RET P 
FI POP PSW POP AF 
F2 JP aaaa JP P,aaaa 
F3 DI DI 
F4 CP aaaa CALL P,aaaa 
F5 PUSH PSW PUSH AF 
F6 ORI dd OR dd 
F7 RST 6 RST30H 
F8 RM RET M 
F9 SPHL LD SP,HL 
FA JM aaaa JP M,aaaa 
FB El El 
FC CM aaaa CALL M,aaaa 
FE CPI dd CP dd 
FF RST 7 RST38H 

BY 8085^8080 MNEMONIC8085 8080 ^ Z8° (8°8° SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY 

8085 Z80 Op 

ACI dd ADC A,dd CE 
ADC A ADC A A 8F 
ADC B ADC A,B 88 
ADC C ADC A,C 89 
ADC D ADC A,D 8A 
ADC E ADC A,E 8B 
ADC H ADC A,H 8C 
ADC L ADC A,L 8D 
ADC M ADC A,(HL) 8E 
ADD A ADD AA 87 
ADD B ADD A,B 80 
ADD C ADD A,C 81 
ADD D ADD A,D 82 
ADD E ADD A,E 83 
ADD H ADD A,H 84 
ADD L ADD A,L 85 
ADD M ADD A,(HL) 86 
ADI dd ADD A,dd C6 
ANA A AND A A7 
ANA B AND B A0 
ANA C AND C A1 
ANA D AND D A2 
ANA E AND E A3 
ANA H AND H A4 
ANA L AND L A5 
ANA M AND (HL) A6 
ANI dd AND dd E6 
CALL aaaa CALL aaaa CD 
CC aaaa CALL C,aaaa DC 
CM aaaa CALL M,aaaa FC 
CMA CPL 2F 
CMC CCF 3F 
CMP A CP A BF 
CMP B CP B B8 

8085 Z80 Op 

CMP C CP c B9 
CMP D CP D BA 
CMP E CP E BB 
CMP H CP H BC 
CMP L CP L BD 
CMP M CP (HL) BE 
CNC aaaa CALL NC,aaaa D4 
CNZ aaaa CALL NZ,aaaa C4 
CP aaaa CALL P,aaaa F4 
CPE aaaa CALL PE,aaaa EC 
CPI dd CP dd FE 
CPO aaaa CALL PO,aaaa E4 
CZ aaaa CALL Z,aaaa CC 
DAA DAA 27 
DAD B ADD HL,BC 09 
DAD D ADD HL,DE 19 
DAD H ADD HL,HL 29 
DAD SP ADD HL,SP 39 
DCR A DEC A 3D 
DCRB DEC B 05 
DCR C DEC C 0D 
DCR D DEC D 15 
DCR E DECE ID 
DCR H DECH 25 
DCR L DEC L 2D 
DCR M DEC (HL) 35 
DCXB DEC BC 0B 
DCXD DEC DE IB 
DCX H DEC HL 2B 
DCX SP DEC SP 3B 
DI DI F3 
El El FB 
HLT HALT 76 
IN dd IN A,dd DB 

8085 Z80 Op 

INR A INCA 3C 
INRB INC B 04 
INR C INC C OC 
INR D INC D 14 
INRE INC E 1C 
INR H INCH 24 
INR L INC L 2C 
INR M INC (HL) 34 
I NX B INC BC 03 
INX D INC DE 13 
I NX H INC HL 23 
INX SP INC SP 33 
JC aaaa JP C,aaaa DA 
JM aaaa JP M,aaaa FA 
JMP aaaa JP aaaa C3 
JNC aaaa JP NC,aaaa D2 
JNZ aaaa JP NZ,aaaa C2 
JP aaaa JP P,aaaa F2 
JPE aaaa JP PE,aaaa EA 
JPO aaaa JP PO,aaaa E2 
JZ aaaa JP Z,aaaa CA 
LDA aaaa LD A,(aaaa) 3A 
LDAX B LD A,(BC) 0A 
LDAXD LD A,(DE) 1A 
LHLD aaaa LD HL,(aaaa) 2A 
LXI B,dddd LD BC,dddd 01 
LXI D,dddd LD DE,dddd 11 
LXI H,dddd LD HL,dddd 21 
LXI SP,dddd LD SP,dddd 31 
MOV AA LD AA 7F 
MOV A,B LD A,B 78 
MOV A,C LD A,C 79 
MOV A,D LD A,D 7A 
MOV A,E LD A,E 7B 
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CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY 

BY 8085/8080 MNEMONIC (Continued) 

8085 Z80 Op 

MOV A,H LD A,H 7C 

MOV A,L LD A,L 7D 

MOV A,M LD A,(HL) 7E 

MOV BA LD BA 47 

MOV B,B LD B,B 40 

MOV B,C LD B,C 41 

MOV B,D LD B,D 42 

MOV B,E LD B,E 43 

MOV B,H LD B,H 44 

MOV B,L LD B,L 45 

MOV B,M LD B,(HL) 46 

MOV CA LD CA 4F 

MOV C,B LD C,B 48 

MOV C,C LD C,C 49 

MOV C,D LD C,D 4A 

MOV C,E LD C,E 4B 

MOV C,H LD C,H 4C 

MOV C,L LD C,L 4D 

MOV C,M LD C,(HL) 4E 

MOV DA LD DA 57 

MOV D,B LD D,B 50 

MOV D,C LD D,C 51 

MOV D,D LD D,D 52 

MOV D,E LD D,E 53 

MOV D,H LD D,H 54 

MOV D,L LD D,L 55 

MOV D,M LD D,(HL) 56 

MOV EA LD EA 5F 

MOV E,B LD E,B 58 

MOV E,C LD E,C 59 

MOV E,D LD E,D 5A 

MOV E,E LD E,E 5B 

MOV E,H LD E,H 5C 

MOV E,L LD E,L 5D 

MOV E,M LD E,(HL) 5E 

MOV HA LD HA 67 

MOV H,B LD H,B 60 

MOV H,C LD H,C 61 

MOV H,D LD H,D 62 

MOV H,E LD H,E 63 

MOV H,H LD H,H 64 

MOV H,L LD H,L 65 

MOV H,M LD H,(HL) 66 

MOV LA LD LA 6F 

MOV L,B LD L,B 68 

MOV L,C LD L,C 69 

MOV L,D LD L,D 6A 

MOV L,E LD L,E 6B 

8085 Z80 Op 

MOV L,H LD L,H 6C 

MOV L,L LD L,L 6D 

MOV L,M LD L,(HL) 6E 

MOV MA LD (HL)A 77 

MOV M,B LD (HL),B 70 

MOV M,C LD (HL),C 71 

MOV M,D LD (HL),D 72 

MOV M,E LD (HL),E 73 

MOV M,H LD (HL),H 74 

MOV M,L LD (HL),L 75 

MVI A,dd LD A,dd 3E 

MVI B,dd LD B,dd 06 

MVI C,dd LD C,dd OE 

MVI D.dd LD D,dd 16 

MVI E,dd LD E,dd IE 

MVI H,dd LD H,dd 26 

MVI L,dd LD L,dd 2E 

MVI M,dd LD (HL),dd 36 

NOP NOP 00 

ORA A ORA B7 

ORA B ORB B0 

ORA C ORC B1 

ORA D ORD B2 

ORA E ORE B3 

ORA H OR H B4 

ORAL ORL B5 

ORAM OR (HL) B6 

ORI dd OR dd F6 

OUT dd OUT ddA D3 

PCHL JP (HL) E9 

POP B POP BC Cl 

POP D POP DE D1 

POPH POP HL El 

POP PSW POP AF FI 

PUSH B PUSH BC C5 

PUSH D PUSH DE D5 

PUSH H PUSH HL E5 

PUSH PSW PUSH AF F5 

RAL RLA 17 

RAR RRA IF 

RC RET C D8 

RET RET C9 

RLC RLCA 07 

RM RET M F8 

RNC RET NC DO 

RNZ RET NZ CO 

RP RET P F0 

8085 Z80_Op_ 

RPE RET PE E8 

RPO RET PO E0 

RRC RRCA OF 

RST 0 RST 00H C7 

RST1 RST 08H CF 

RST 2 RST 10H D7 

RST 3 RST 18H DF 

RST 4 RST 20H E7 

RST 5 RST 28H EF 

RST 6 RST 30H F7 

RST 7 RST 38H FF 

RZ RET Z C8 

SBB A SBC AA 9F 

SBB B SBC A,B 98 

SBB C SBC AC 99 

SBB D SBC A,D 9A 

SBB E SBC A,E 9B 

SBB H SBC A,H 9C 

SBB L SBC A,L 9D 

SBB M SBC A,(HL) 9E 

SBI dd SBC A,dd DE 

SHLD aaaa LD (aaaa),HL 22 

SPHL LD SP,HL F9 

STA aaaa LD (aaaa)A 32 

STAX B LD (BQA 02 

STAX D LD (DE)A 12 

STC SCF 37 

SUB A SUB A 

SUB B SUB B 

SUB C SUB C 

SUB D SUB D 

SUB E SUB E 

SUB H SUB H 

SUB L SUB L 

SUB M SUB (HL) 

SUI dd SUB dd 

XCHG EX DE,HL 

XRA A XOR A 

XRA B XOR B 

XRA C XOR C 

XRA D XOR D 

XRA E XOR E 

XRA H XOR H 

XRA L XOR L 

XRA M XOR (HL) 

XRI dd XOR dd 

XTHL EX (SP),HL 
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CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) 
BY Z80 MNEMONIC 

INSTRUCTIONS LISTED ALPHABETICALLY 

Z80 8080/8085 Op 

ADC A,(HL) ADC M 8E 
ADC AA ADC A 8F 
ADC A,B ADC B 88 
ADC A,C ADC C 89 
ADC A,D ADC D 8A 
ADC A,dd ACI dd CE 
ADC A,E ADC E 8B 
ADC A,H ADC H 8C 
ADC A,L ADC L 8D 
ADD A,(HL) ADD M 86 
ADD AyA ADDA 87 
ADD A,B ADD B 80 
ADD A,C ADD C 81 
ADD A,D ADD D 82 
ADD A,dd ADI dd C6 
ADD A F Ann p? Q-> o3 
ADD A,H ADD H 84 
ADD A,L ADD L 85 
ADD HL,BC DAD B 09 
ADD HL,DE DAD D 19 
ADD HL,HL DAD H 29 
ADD HL,SP DAD SP 39 
AND (HL) ANA M A6 
AND A ANA A A7 
AND B ANA B A0 
AND C ANA C A1 
AND D ANA D A2 
AND dd ANI dd E6 
AND E ANA E A3 
AND H ANA H A4 
AND L ANA L A5 
CALL aaaa CALL aaaa CD 
CALL C,aaaa CC aaaa DC 
CALL M,aaaa CM aaaa FC 
CALL NC,aaaa CNC aaaa D4 
CALL NZ,aaaa CNZ aaaa C4 
CALL P,aaaa CP aaaa F4 
CALL PE,aaaa CPE aaaa EC 
CALL PO,aaaa CPO aaaa E4 
CALL Z,aaaa CZ aaaa CC 
CCF CMC 3F 
CP (HL) CMP M BE 
CPA CMP A BF 
CP B CMP B B8 
CP C CMP C B9 
CP D CMP D BA 
CP dd CPI dd FE 
CP E CMP E BB 
CP H CMP H BC 
CP L CMP L BD 
CPL CMA 2F 
DAA DAA 27 
DEC (HL) DCR M 35 
DEC A DCR A 3D 
DEC B DCR B 05 

Z80 8080/8085 Op 

DEC BC DCX B 0B 
DEC C DCR C 0D 
DEC D DCR D 15 
DEC DE DCX D IB 
DECE DCR E ID 
DECH DCR H 25 
DEC HL DCX H 2B 
DEC L DCR L 2D 
DEC SP DCX SP 3B 
DI DI F3 
El El FB 
EX (SP),HL XTHL E3 
EX DE,HL XCHG EB 
HALT HLT 76 
IN A,dd IN dd DB 
INC (HL) INRM 34 
INCA INR A 3C 
INC B INRB 04 
INC BC INX B 03 
INC C INR C OC 
INC D INR D 14 
INC DE INX D 13 
INC E INRE 1C 
INC H INR H 24 
INC HL INX H 23 
INC L INR L 2C 
INC SP INX SP 33 
JP (HL) PCHL E9 
JP aaaa JMP aaaa C3 
JP C,aaaa JC aaaa DA 
JP M,aaaa JM aaaa FA 
JP NC,aaaa JNC aaaa D2 
JP NZ,aaaa JNZ aaaa C2 
JP P,aaaa JP aaaa F2 
JP PE,aaaa JPE aaaa EA 
JP PO.aaaa JPO aaaa E2 
JP Z,aaaa JZ aaaa CA 
LD (aaaa)A STA aaaa 32 
LD (aaaa),HL SHLD aaaa 22 
LD (BC)A STAX B 02 
LD (DE)A STAX D 12 
LD (HL)A MOV MA 77 
LD (HL),B MOV M,B 70 
LD (HL),C MOV M,C 71 
LD (HL),D MOV M,D 72 
LD (HL),dd MVT M,dd 36 
LD (HL),E MOV M,E 73 
LD (HL),H MOV M,H 74 
LD (HL),L MOV M,L 75 
LD A,(aaaa) LDA aaaa 3A 
LD A,(BC) LDAX B 0A 
LD A,(DE) LDAX D 1A 
LD A,(HL) MOV A,M 7E 
LD AA MOV AA 7F 
LD A,B MOV A,B 78 

Z80 8080/8085 Op 

LD A,C MOV A,C 79 
LD A,D MOV A,D 7A 
LD A,dd MVI A,dd 3E 
LD A,E MOV A,E 7B 
LD A,H MOV A,H 7C 
LD A,L MOV A,L 7D 
LD B,(HL) MOV B,M 46 
LD BA MOV BA 47 
LD B,B MOV B,B 40 
LD B,C MOV B,C 41 
LD BC,dddd LXI B,dddd 01 
LD B,D MOV B,D 42 
LD B,dd MVI B,dd 06 
LD B,E MOV B,E 43 
LD B,H MOV B,H 44 
LD B,L MOV B,L 45 
LD C,(HL) MOV C,M 4E 
LD CA MOV CA 4F 
LD C,B MOV C,B 48 
LD C,C MOV C,C 49 
LD C,D MOV C,D 4A 
LD C,dd MVI C,dd 0E 
LD C,E MOV C,E 4B 
LD C,H MOV C,H 4C 
LD C,L MOV C,L 4D 
LD D,(HL) MOV D,M 56 
LD DA MOV DA 57 
LD D,B MOV D,B 50 
LD D,C MOV D,C 51 
LD D,D MOV D,D 52 
LD D,dd MVI D,dd 16 
LD D,E MOV D,E 53 
LD DE,dddd LXI D,dddd 11 
LD D,H MOV D,H 54 
LD D,L MOV D,L 55 
LD E,(HL) MOV E,M 5E 
LD EA MOV EA 5F 
LD E,B MOV E,B 58 
LD E,C MOV E,C 59 
LD E,D MOV E,D 5A 
LD E,dd MVI E,dd IE 
LD E,E MOV E,E 5B 
LD E,H MOV E,H 5C 
LD E,L MOV E,L 5D 
LD H,(HL) MOV H,M 66 
LD HA MOV HA 67 
LD H,B MOV H,B 60 
LD H,C MOV H,C 61 
LD H,D MOV H,D 62 
LD H,dd MVI H,dd 26 
LD H,E MOV H,E 63 
LD H,H MOV H,H 64 
LD H,L MOV H,L 65 
LD HL,(aaaa) LHLD aaaa 2A 
LD HL,dddd LXI H.dddd 21 
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CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY 

BY Z80 MNEMONIC (Continued) 

Z80 8080/8085 Op Z80 8080/8085 Op Z80 8080/8085 Op 

LD L,(HL) MOV L,M 6E PUSH BC PUSH B C5 SBC A,B SBB B 98 

LD LA MOV LA 6F PUSH DE PUSH D D5 SBC A,C SBB C 99 

LD L,B MOV L,B 68 PUSH HL PUSH H E5 SBC A,D SBB D 9A 

LD L,C MOV L,C 69 RET RET C9 SBC A,dd SBI dd DE 

LD L,D MOV L,D 6A RET C RC D8 SBC A,E SBB E 9B 

LD L,dd MVI L,dd 2E RET M RM F8 SBC AH SBB H 9C 

LD L,E MOV L,E 6B RET NC RNC DO SBC AL SBB L 9D 

LD L,H MOV L,H 6C RET NZ RNZ CO SCF STC 37 

LD L,L MOV L,L 6D RET P RP F0 SUB (HL) SUB M 96 

LD SP,dddd LXI SP,dddd 31 RET PE RPE E8 SUB A SUB A 97 

LD SP,HL SPHL F9 RET PO RPO E0 SUB dd SUI dd D6 

NOP NOP 00 RET Z RZ C8 SUB B SUB B 90 

OR (HL) ORA M B6 RLA RAL 17 SUB C SUB C 91 

ORA ORA A B7 RLCA RLC 07 SUB D SUB D 92 

ORB ORAB B0 RRA RAR IF SUB E SUB E 93 

OR C ORA C B1 RRCA RRC OF SUB H SUB H 94 

OR D ORA D B2 RST00H RST 0 C7 SUB L SUB L 95 

OR dd ORI dd F6 RST08H RST 1 CF XOR (HL) XRA M AE 

OR E ORA E B3 RST10H RST 2 D7 XOR A XRA A AF 

OR H ORA H B4 RST18H RST 3 DF XOR B XRA B A8 

OR L ORA L B5 RST20H RST 4 E7 XOR C XRA C A9 

OLTr ddA OUT dd D3 RST 28H RST 5 EF XOR D XRA D AA 

POP AF POP PSW FI RST30H RST 6 F7 XOR dd XRI dd EE 

POP BC POP B Cl RST38H RST 7 FF XOR E XRA E AB 

POP DE POP D D1 SBC A,(HL) SBBM 9E XOR H XRA H AC 

POP HL POPH El SBC AA SBB A 9F XOR L XRA L AD 

PUSH AF PUSH PSW F5 

EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY 

Mne- Operation Boolean/Arith. Flags Address Assembler Op - # 

monic Operation HINZVC Mode_Notation_ 

NOP No Operation 

WAI WAIt for 

interrupt 

CPU Control Instructions 

Nothing xxxxxx Implied NOP 

PC + 1 -> PC xlxxxx Implied WAI 

pcl">S 

PCh + S 

XL + S 

x„ + s 
A + S 

B + S 

CCR S 

01 2 1 Only the program counter is 

incremented. No operation 

occurs. 

3E 9 1 After those actions shown in 

the "Boolean/Arithmetic 

Operation" column take place, 

the current program is 

suspended. If 1 = 0 and the 

Interrupt Request line is taken 

low then 1 = 1 and the 

microprocessor will begin to 

execute a program whose 

address is found in memory 

locations FFF8 and FFF9. 
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Mne- Operation 
monic 

Boolean/Arith. Flags Address Assembler 
Operation_HINZVC Mode Notation 

Op # Notes 

Data Transfer Instructions 

LDAA LoaD Accumulator A M -> A xxNZOx Immediate LDAA #$dd 86 2 2 
Direct LDAA Saa 96 3 2 
Indexed LDAA Sff,X A6 5 2 
Extended LDAA $aaaa B6 4 3 

LDAB LoaD Accumulator B M -> B xxNZOx Immediate LDAB #$dd C6 2 2 
Direct LDAB $aa D6 2 2 
Indexed LDAB Sff,X E6 5 2 
Extended LDAB $aaaa F6 4 3 

STAA STore Accumulator A A -* M xxNZOx Direct STAA Saa 97 4 2 
Indexed STAA $ff,X A7 6 2 
Extended STAA Saaaa B7 5 3 

STAB STore Accumulator B B -» M xxNZOx Direct STAB Saa D7 4 2 
Indexed STAB $ff,X E7 6 2 
Extended STAB Saaaa F7 5 3 

TAB Transfer A to B A -* B xxNZOx Implied TAB 16 2 1 

TBA Transfer B to A B -> A xxNZOx Implied TBA 17 2 1 

LDX LoaD X register M -> XH xxNZOx Immediate LDX #$dddd CE 3 3 
(M + 1) -> XL Direct LDX Saa DE 4 2 

Indexed LDX Sff.X EE 6 2 
Extended LDX Saaaa FE 5 3 

STX STore X register XH ■+ M xxNZOx Direct STX Saa DF 5 2 
XL *» (M + 1) Indexed STX Sff.X EF 7 2 

Extended STX Saaaa FF 6 3 

CLR CLeaR memory 00 ■+ M xxOlOO Indexed CLR $ff,X 6F 7 2 
location Extended CLR Saaaa 7F 6 3 

CLRA CLeaR accumulator A 00 ■+ A xxOlOO Implied CLRA 4F 2 1 

CLRB CLeaR accumulator B 00 •+ B xxOlOO Implied CLRB 5F 2 1 

Flag Instructions 

CLC CLear Cany flag 0 - C xxxxxO Implied CLC 
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Mne¬ 
monic 

EXPANDED 

Operation 

TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Boolean/Arith. Flags Address Assembler Op ~ # Notes 
Operation HINZVC Mode Notation 

CLI CLear Interrupt flag 0 -► I xOxxxx Implied CLI OE 2 1 

CLV CLear overflow flag 0 ■+ V xxxxVx Implied CLV QA 2 1 

SEC SEt Carry flag 1 -> C xxxxxl Implied SEC OD 2 1 

SEI SEt Interrupt flag 1 -► I xlxxxx Implied SEI OF 2 1 

SEV SEt overflow flag 1 -► V xxxxlx Implied SEV OB 2 1 

TAP Transfer Accumulator 
A to Processor con¬ 

dition code register 

A + CCR HINZVC Implied TAP 06 2 1 

TPA Transfer Processor 
condition code reg¬ 
ister to accumulator 
A 

CCR ■* A xxxxxx Implied TPA 07 2 1 

Arithmetic Instructions 

ADDA ADO accumulator A A + M -> A HxNZVC Immediate ADDA #$dd 8B 2 2 

to memory location Direct ADDA $aa 9B 3 2 

Indexed ADDA $ff,X AB 5 2 

Extended ADDA Saaaa BB 4 3 

ADDB ADD accumulator B B + M -» B HxNZVC Immediate ADDB #$dd CB 2 2 

to memory location Direct ADDB $aa DB 3 2 
Indexed ADDB $ff,X EB 5 2 

Extended ADDB Saaaa FB 4 3 

ABA Add accumulator B 
to accumulator A 

A + B -» A HxNZVC Implied ABA IB 2 1 

ADCA AdD with Carry A + M + C -» A HxNZVC Immediate ADCA #$dd 89 2 2 

accumulator A to Direct ADCA Saa 99 3 2 

memory location Indexed ADCA $ff,X A9 5 2 

Extended ADCA Saaaa B9 4 3 

ADCB AdD with Carry B + M + C -» B HxNZVC Immediate ADCB #$dd C9 2 2 

accumulator B to Direct ADCB Saa D9 3 2 

memory location Indexed ADCB $ff,X E9 5 2 

Extended ADCB Saaaa F9 4 3 
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Mne¬ 

monic 

SUBA 

SUBB 

SB A 

SBCA 

SBCB 

DAA 

ANDA 

ANDB 

ORAA 

ORAB 

Operation Boolean/Arith. 

___Operation 

SUBtract memory A - M -> A 

location from 

accumulator A 

SUBtract memory B - M -> B 

location from 

accumulator B 

Subtract accumulator A - B -> A 

B from accumulator A 

SuBtract with 

Carry memory 

location from 

accumulator A 

A - M - C A 

SuBtract with 

Carry memory 

location from 

accumulator B 

B - M - C -► B 

Decimal Adjust (converts bin¬ 
accumulator A ary number into 

BCD number) 

Flags Address Assembler Op ~ # Notes 

HINZVC Mode Notation 

xxNZVC Immediate SUBA #$dd 80 
Direct SUBA $aa 90 
Indexed SUBA $ff,X AO 
Extended SUBA Saaaa BO 

xxNZVC Immediate SUBB #$dd CO 
Direct SUBB $aa DO 
Indexed SUBB $ff,X E0 
Extended SUBB Saaaa F0 

xxNZVC Implied SBA 10 

xxNZVC Immediate SBCA #$dd 82 
Direct SBCA Saa 92 
Indexed SBCA $ff,X A2 
Extended SBCA Saaaa B2 

xxNZVC Immediate SBCB #Sdd C2 
Direct SBCB Saa D2 
Indexed SBCB $ff,X E2 
Extended SBCB Saaaa F2 

xxNZVC Implied DAA 19 

2 2 

3 2 

5 2 

4 3 

2 2 

3 2 

5 2 

4 3 

2 1 

2 2 

3 _2_ 

5 2 

4 3 

2 2 

3 2 

5 2 

4 3 

2 1 Converts the number in A to 

the BCD number it would be if 

the last two operands had been 

BCD numbers. 

Logical Instructions 

AND accumulator A A AND M -» A 

with memory loc¬ 

ation 

AND accumulator B B AND M -> B 

with memory loc¬ 

ation 

OR Accumulator A A OR M -» A 

with memory loc¬ 

ation 

OR Accumulator B B OR M ■» B 

with memory loc¬ 

ation 

xxNZOx Immediate ANDA #$dd 84 2 2 
Direct ANDA Saa 94 3 2 
Indexed ANDA $ff,X A4 5 2 
Extended ANDA Saaaa B4 4 3 

xxNZOx Immediate ANDB #$dd C4 2 2 
Direct ANDB Saa D4 3 2 
Indexed ANDB Sff,X E4 5 2 
Extended ANDB Saaaa F4 4 3 

xxNZOx Immediate ORAA #Sdd 8A 2 2 
Direct ORAA Saa 9A 3 2 
Indexed ORAA Sff,X AA 5 2 
Extended ORAA Saaaa BA 4 3 

xxNZOx Immediate ORAB #$dd CA 2 2 
Direct ORAB $aa DA 3 2 
Indexed ORAB $ff,X EA 5 2 
Extended ORAB Saaaa FA 4 3 
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EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne¬ 

monic 

Operation Boolean/Arith. 

Operation 

Flags Address 

HINZVC Mode 

Assembler 

Notation 

Op # Notes 

EORA Exclusively OR A EOR M * A xxNZOx Immediate EORA #ttd 88 2 2 

accumulator A Direct EORA Saa 98 3 2 

with memory Indexed EORA $ff,X A8 5 2 

location Extended EORA Saaaa B8 4 3 

EORB Exclusively OR B EOR M *B xxNZOx Immediate EORB #$dd C8 2 2 

accumulator A Direct EORB Saa D8 3 2 

with memory Indexed EORB $ff,X E8 5 2 

location Extended EORB Saaaa F8 4 3 

BIT A BIT test A AND M xxNZOx Immediate BITA #$dd 85 2 2 Accumulator A and a memory 

accumulator A Direct BITA Saa 95 3 2 location are ANDed but neither 

Indexed BITA $ff,X A5 5 2 is changed. However, flags N 

Extended BITA Saaaa B5 4 3 and Z are affected accordingly. 

BITB BIT test BAND M xxNZOx Immediate BITB #$dd C5 2 2 Accumulator B and a memory 

accumulator B Direct BITB Saa D5 3 2 location are ANDed but neither 

Indexed BITB $ff,X E5 5 2 is changed. However, flags N 

Extended BITB Saaaa F5 4 3 and Z are affected accordingly. 

COM COMpIement memory _ 

location (l’s com- M -* M 

plement) 

xxNZOl Indexed 

Extended 

COM $ff,X 

COM Saaaa 

63 

73 

7 2 

6 2 

COMA COMpIement ac¬ 

cumulator A A -» A 

(l’s complement) 

xxNZOl Implied COMA 43 2 1 

COMB COMpIement ac¬ 

cumulator B B -* B 

(l’s complement) 

xxNZOl Implied COMB 53 2 1 

NEG NEGate memory loc- 00 - M -» M 

ation (2’s comple¬ 

ment) 

xxNZVC Indexed 

Extended 

NEG $ff,X 

NEG Saaaa 

60 

70 

7 2 

6 3 

Affects the carry flag as if the 

memory location had been 

subtracted from zero. 

NEGA NEGate accumu- 00 - A -> A 

lator A (2’s com¬ 

plement) 

xxNZVC Implied NEGA 40 2 1 Affects the carry flag as if 

accumulator A had been 

subtracted from zero. 

NEGB NEGate accumu- 00 - B + B 

lator B (2’s com¬ 

plement) 

xxNZVC Implied NEGB 50 2 1 Affects the carry flag as if 

accumulator B had been 

subtracted from zero. 

Rotate and Shift Instructions 

ROL ROtate memory loc- j— M7 ... Mo 

ation Left | r c I 

xxNZVC Indexed 

Extended 

ROL $ff,X 

ROL Saaaa 

69 

79 

7 2 

6 3 
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Mne- Operation Boolean/Arith. Flags Address Assembler Op - # 

Operation HINZVC Mode Notation 

ROLA ROtate to the Left 

accumulator A 
A7 ••• A0 ^-1 xxNZVC Implied ROLA 49 2 1 

ROtate to the Left I B7... B0 xxNZVC Implied ROLB 

accumulator B |__| 

ROR ROtate memory loc- r*~ M7... M0 i xxNZVC Indexed ROR $ff,X 

ation Right I-C„-1 Extended ROR Saaaa 

RORA ROtate to the Right 

accumulator A 

A? • ■ • A0 I xxNZVC Implied RORA r .-l 
RORB ROtate to the Right 

accumulator B 

B7.. . Bp | xxNZVC Implied RORB 

ASL Arithmetic Shift C -«-M7 ... M0*- 0 xxNZVC Indexed ASL $ff,X 68 7 2 

Left memory Extended ASL Saaaa 78 6 3 
location 

ASLA Arithmetic Shift C A7 .. . A0^- 0 xxNZVC Implied ASIA 

Left accumulator A 
48 2 1 

ASLB Arithmetic Shift C B? ... B0 ^ 0 xxNZVC Implied ASLB 

Left accumulator B 
58 2 1 

ASR Arithmetic Shift j~^M7 . • • M0~^ C xxNZVC Indexed ASR $ff,X 67 7 2 

Right memory loc- Extended ASR Saaaa 77 6 3 

ASRA Arithmetic Shift p-A7...A0-^C xxNZVC Implied ASRA 

Right accumulator A j [ 
47 2 1 

ASRB Arithmetic Shift i-^ B7 . . . B0 -► C xxNZVC Implied ASRB 
Right accumulator B I 

57 2 1 

LSR Logical Shift Right 0 -HV17... M<f^C xxOZVC Indexed LSR $ff,X 64 7 2 

memory location Extended LSR Saaaa 74 6 3 

LSRA Logical Shift Right 0-> A?..A0^ C xxOZVC Implied LSRA 

accumulator A 
44 2 1 

LSRB Logical Shift Right 0-> Br..B0-> C xxOZVC Implied LSRB 

accumulator B 
54 2 1 
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EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne¬ Operation Boolean/Arith. Flags Address Assembler Op ~ # 

monic Operation HINZVC Mode Notation 

Increment and Decrement Instructions 

INC INCrement memory M + 1 -» M xxNZVx Indexed INC $ff,X 6C 7 2 

location Extended INC Saaaa 7C 6 3 

INCA INCrement accum¬ 

ulator A 

A + 1 A xxNZVx Implied INCA 4C 2 1 

INCB INCrement accum¬ 

ulator B 

B + 1 -> B xxNZVx Implied INCB 5C 2 1 

DEC DECrement memory M - 1 M xxNZVx Indexed DEC $ff,X 6A 7 2 

location Extended DEC Saaaa 7A 6 3 

DECA DECrement accum¬ 

ulator A 

A - 1 -> A xxNZVx Implied DECA 4A 2 1 

DECB DECrement accum¬ 

ulator B 

B- 1 B xxNZVx Implied DECB 5A 2 1 

I NX INcrement X 

(index) register 

X + 1 ->X xxxZxx Implied INX 08 4 1 

DEX DEcrement X X-l + X XXXzXX Implied DEX 09 4 1 

(index) register 

Unconditional Jump Instructions 

JMP JuMP to memory X + ff 4 PC xxxxxx Indexed JMP Sff,X 6E 4 2 

location (indexed) 

aaaa -> PC 

Extended JMP Saaaa 7E 3 3 

(extended) 

BRA BRanch Always PC + 2 xxxxxx Relative BRA Srr 20 4 2 

to memory loc¬ 

ation 

+ rr -» PC 

Test ('Compare') Instructions 

CM PA CoMPare memory A-M xxNZVC Immediate CM PA #$dd 81 2 2 

location to Direct CMPA Saa 91 3 2 

accumulator A Indexed CMPA $ff,X A1 5 2 

Extended CMPA Saaaa B1 4 3 

CMPB CoMPare memory B - M xxNZVC Immediate CMPB #$dd Cl 2 2 

location to Direct CMPB $aa D1 3 2 

accumulator B Indexed CMPB Sff,X El 5 2 

Extended CMPB Saaaa FI 4 3 

Notes 
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Mne¬ 

monic 

CBA 

CPX 

TST 

TSTA 

TSTB 

BCC 

BCS 

BEQ 

BGE 

BGT 

Operation Boolean/Arith. 

Operation 

Flags 

HINZVC 

Address 

Mode 

Assembler 

Notation 

Op # 

Compare accum¬ A - B xxNZVC Implied CBA 11 2 1 
ulator B to 

accumulator A 

Compare memory XH - M xxNZVx Immediate CPX #$dddd 8C 3 3 
location to X Xl-(M + 1) Direct CPX $aa 9C 4 2 
(index) register Indexed CPX $ff,X AC 6 2 

Extended CPX Saaaa BC 5 3 

TEsT memory loc¬ M - 00 xxNZOO Indexed TST $ff,X 6D 7 2 
ation for zero or Extended TST Saaaa 7D 6 3 
minus 

TEsT accumulator A 

for zero or minus 

A - 00 xxNZOO Implied TSTA 4D 2 1 

TEsT accumulator B 

for zero or minus 

B -00 xxNZOO Implied TSTB 5D 2 1 

Conditional Jump fBranch") Instructions 

Branch if Cany PC + 2 + rr xxxxxx Relative BCC $rr 24 4 2 
Clear PC 

if C=0 

Branch if Carry PC + 2 + rr xxxxxx Relative BCS $rr 25 4 2 
Set -► pc 

if C=1 

Branch if result of PC + 2 + rr 

last operation was -» PC 

EQual to zero ifZ=l 

xxxxxx Relative BEQ $rr 27 4 2 

Branch if Greater 

than or Equal to 

zero 

PC + 2 + rr xxxxxx Relative BGE $rr 

* PC 

if N EOR V = 0 

Branch if Greater PC + 2 + rr xxxxxx Relative BGT $rr 

Than zero ■+ PC 

if Z AND (N 

EOR V) = 0 

2C 4 2 This branch occurs after the 

instructions CBA, CMP, SBA, 

or SUB if the 2’s-complement 

minuend is greater than or 

equal to the 2’s-complement 

subtrahend creating an answer 

which is greater than or equal 

to zero. 

2E 4 2 This branch occurs after the 

instructions CBA, CMP, SBA, 

or SUB if the 2’s-complement 

minuend is greater than the 2’s- 

complement subtrahend, 

creating an answer which is 

greater than zero. 
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EXPANDED TABLE OE 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne¬ 

monic 

BHI 

BLE 

BLS 

BLT 

BMI 

BNE 

BVC 

BVS 

BPL 

Operation Boolean/Arith. Flags Address Assembler Op ~ # Notes 

Operation _HINZVC Mode_Notation_ 

Branch if Higher PC + 2 + rr 

■+ PC 

if C AND Z = 0 

xxxxxx Relative BHI Srr 22 4 2 This branch occurs after the 

instructions CBA, CMP, SBA, 

or SUB if the unsigned binary 

minuend is greater than the 

unsigned binary subtrahend. 

Branch if Less 

than or Equal to 

zero 

PC + 2 + rr 

+ PC 

if Z AND (N EOR 

V) = 1 

xxxxxx Relative BLE Srr 2F 4 2 This branch occurs after the 

instructions CBA, CMP, SBA, 

or SUB if the 2’s-complement 

minuend is less than or equal 

to the 2,s-complement 

subtrahend, creating an answer 

which is less than or equal to 

zero. 

Branch if Lower 

or the Same 

PC + 2 + rr 

-> PC 

if C OR Z = 1 

xxxxxx Relative BLS Srr 23 4 2 This branch occurs after the 

instructions CBA, CMP, SBA, 

or SUB if the unsigned binary 

minuend is less than or equal 

to the unsigned binary 

subtrahend. 

Branch if Less 

Than zero 

PC + 2 + rr 

-> PC 

if N EOR V = 1 

xxxxxx Relative BLT Srr 2D 4 2 This branch occurs after the 

instructions CBA, CMP, SBA, 

or SUB if the 2’s-complement 

minuend is less than the 2’s- 

complement subtrahend, 

creating an answer which is less 

than zero. 

Branch is Minus PC + 2 + rr 

-> PC 

if N=1 

xxxxxx Relative BMI Srr 2B 4 2 

Branch if Not Equal 

to zero 

PC + 2 + rr 

PC 

if Z = 1 

xxxxxx Relative BNE Srr 26 4 2 

Branch if overflow 

Clear 

PC + 2 + rr 

* PC 

if V=0 

xxxxxx Relative BVC Srr 28 4 2 

Branch if overflow 

Set 

PC + 2 + rr 

+ PC 

if V=1 

xxxxxx Relative BVS Srr 29 4 2 

Branch if PLus PC + 2 + rr 

•* PC 

if N-0 

xxxxxx Relative BPL Srr 2A 4 2 
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Mne- Operation 

monic 
Boolean/Arith. 

Operation 

Flags Address 

HINZVC Mode 

Assembler 

Notation 

Op - # Notes 

JSR Jump SubRoutine PC + 2 -» PC 

PCL S 

PCH-S 

SP - 2 -> SP 

(ff+X) -> PC 

PC + 3 -> PC 

PCl + S 

PCh-S 

SP - 2 ^ SP 

(aaaa) *♦ PC 

Subroutine Instructions 

ocx Indexed JSR $ff,X 

Extended JSR $aaaa 

AD 8 2 

BD 9 3 

The program counter is 

incremented by 2 (Indexed) or 

3 (Extended) and the program 

counter is pushed onto the 

stack 1 byte at a time. At the 

memory location indicated by 

the addressing mode will be 

found the address of the first 

instruction of the subroutine. 

This address is placed in the 

program counter. 

RTS ReTum from 

Subroutine 

BSR Branch to 

SubRoutine 

S + PC„ 

S^PCl 
SP + 2 -> SP 

PC + 2 -> PC 

PC^S 

PCh + S 
SP - 2 -» SP 

PC + rr ** PC 

Implied RTS 

xxxxxx Relative BSR $rr 

39 5 1 The address of the next 

instruction in the main program 

after the last JSR is loaded 

from the stack into the 

program counter 1 byte at a 

time. 

8D 8 2 The program counter is 

incremented by 2 and pushed 

onto the stack 1 byte at a time. 

The memory location of the 

next instruction is then 

calculate by adding the 2’s- 

complement binary number rr 

to the program counter. This 

instruction differs from JSR in 

the form of addressing it uses. 

Stack Instructions 

LDS LoaD Stack pointer M -* SPH xxNZOx Immediate LDS #$dddd 8E 3 3 
(M + 1) -» SPL Direct LDS $aa 9E 4 2 

Indexed LDS $ff,X AE 6 2 
Extended LDS $aaaa BE 5 3 

STS STore Stack pointer SPH -> M xxNZOx Direct STS Saa 9F 5 2 
SPL -> (M + 1) Indexed STS $ff,X AF 7 2 

Extended STS $aaaa BF 6 3 

PSHA PuSH accumulator A 

onto the stack 

A •* S 

SP - 1 -* SP 

xxxxxx Implied PSHA 36 4 1 Whenever A or B is pushed 

onto the stack the stack pointer 

PSHB PuSH accumulator B 

onto the stack 
B -> S 

SP - 1 -* SP 

xxxxxx Implied PSHB 37 4 1 

is decremented by 1. When the 

contents of the stack are placed 

in A or B the stack pointer is 

PULA PUIL accumulator A 

from the stack 

S ■* A 

SP + 1 -» SP 

xxxxxx Implied PULA 32 4 1 

incremented by 1. 

PULB PUIL accumulator B 

from the stack 

S -> B 

SP + 1 -» SP 

xxxxxx Implied PULB 33 4 1 
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EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne¬ 

monic 

DBS 

INS 

TXS 

TSX 

RTI 

SWI 

none 

Operation Boolean/Arith. Flags Address Assembler Op ~ # Notes 

Operation HINZVC Mode Notation 

DEcrement Stack 

pointer 

SP - 1 -» SP xxxxxx Implied DES 34 4 1 

INcrement Stack 

pointer 

SP + 1 -> SP xxxxxx Implied INS 31 4 1 

Transfer X (index) 

register to Stack 

pointer 

X - 1 + SP xxxxxx Implied TXS 35 4 1 

Transfer Stack 

pointer to the X 

(index) register 

SP + 1 -> X xxxxxx Implied TSX 30 4 1 

Interrupt Instructions 

ReTum from 

Interrupt 

S + CCR 

S 4 B 

S -> A 

s + xH 
s->xL 
S->PCH 

S *♦ PCl 

HINZVC Implied RTI 3B 10 1 

Software Interrupt PC + 1 + PC 

PCL *+ s 

PC^-S 

xL ■* s 

xH-s 

A * S 

B + S 

CCR *♦ S 

xlxxxx Implied SWI 3F 12 1 After the actions shown in the 

"Boolean/Arithmetic 

Operation" column take place, 

the microprocessor will begin to 

execute a program whose 

address is found in memory 

locations FFFA and FFFB. 

Input-Output Instructions 

The 6800/6808 has no special 

input and output instructions 

but rather memory-maps these 

operations. 
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Notes 

Addressing Modes 

Immediate 

Direct 

Indexed 

Extended 

Implied 

Relative 

Assembler Notation 

Mnemonic #$dd 

Mnemonic $aa 

Mnemonic $ff,X 

Mnemonic $aaaa 

Mnemonic 

Mnemonic $rr 

Abbreviations and Explanations 

a = address (one hex digit) 

d = data (one hex digit) 

f = offset (one hex digit) to be added to the X register (ff is 

positive - $00-$ff which is decimal 0-255) 

r = relative displacement (one hex digit) to be added to the 

program counter (rr is 2,s-complement number and thus 

can be positive or negative, -128 to +127) 

$ = indicates a hexadecimal number 

# = indicates the data follows immediately after the instruction 

L = low byte (lower byte of a two byte number) 

H = high byte (upper byte of a two byte number) 

Flags 

H = instruction affects the half carry-flag 

I = instruction affects the interrupt flag 

N = instruction affects the negative flag 

Z = instruction affects the zero flag 

V = instruction affects the overflow flag 

C = instruction affects the carry flag 

0 = instruction always clears affected flag 

1 = instruction always sets affected flag 

x = flag not affected by instruction 

CCR = condition code register (flags) 
S = stack 

SP = stack pointer 

PC = program counter 

0 = contents of the memory location in the parenthesis 

M7,..M0 = memory bits 0-7 of a particular memory location 

A7..j\q = bits 0-7 of accumulator a 

Br..B0 - bits 0-7 of accumulator b 

X = Index register 

0 = One zero bit. 

00 = One zero byte. 

Symbols in the Page Heading 

~ = clock cycles 

# ” # °f bytes used by instruction (and following address or data 
if used) 

Addressing Modes - Summary 

Immediate (Mnemonic #$dd): In this addressing mode, the operand 

(data or number that something is being done to) is contained in the 

memory location(s) immediately following the instruction. 

Direct (Mnemonic $aa): Direct addressing places the address of the 

operand in the byte following the instruction. 

Indexed (Mnemonic $ff,X): This mode involves a couple of steps. 

First, the number ff (which is the byte after the instruction) is added 

to the value in the X register. The number ff is an 8-bit number 

which can only be positive (0-255 decimal). Then the operand is 
fetched from this newly formed address. 

Extended (Mnemonic $aaaa): Extended addressing is the same as 

Direct except that a wider range is possible. The first byte is the 

instruction as in Direct addressing. The second and third bytes then 

form a 16-bit address where the operand can be found. 

Implied (Mnemonic): When the operand is within the 

microprocessor itself implied addressing is used. In these cases the 

location of the operand is contained within the instruction itself. 

CLRA (CLeaR accumulator A) is an example of implied addressing. 

Relative (Mnemonic $rr): Relative addressing is used exclusively 

with the branch and jump instructions. The byte following the 

instruction is an 8-bit 2’s-complement number ( + 127 to -128) which 

is added to the contents of the program counter. This then is the 

address of the next instruction. The location of the next instruction 

is being indicated relative to the current location in memoiy (the 

current contents of the program counter). 
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SHORT TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY 

Mne¬ 

monic 

Operation Assembler 

Notation 

Op Mne¬ 

monic 

Operation Assembler 

Notation 

Op 

ABA Add accumulator B ABA IB BCS Branch if Carry BCS Srr 25 

to accumulator A Set 

ADCA AdD with Carry ADCA #$dd 89 BEQ Branch if result of BEQ Srr 27 

accumulator A to ADCA $aa 99 last operation was 

memory location ADCA $ff,X A9 EQual to zero 

ADCA Saaaa B9 

BGE Branch if Greater BGE Srr 2C 

ADCB AdD with Carry ADCB #$dd C9 than or Equal to 

accumulator B to ADCB Saa D9 zero 

memory location ADCB $ff,X E9 

ADCB $aaaa F9 BGT Branch if Greater BGT Srr 2E 

Than zero 

ADDA ADD accumulator A ADDA #$dd 8B 

to memory location ADDA Saa 9B BHI Branch if Higher BHI Srr 22 

ADDA $ff,X AB 

ADDA Saaaa BB BITA BIT test BITA #$dd 85 

accumulator A BITA Saa 95 

ADDB ADD accumulator B ADDB #Sdd CB BITA $ff,X A5 

to memory location ADDB $aa DB BITA Saaaa B5 

ADDB $ff,X EB 

ADDB Saaaa FB BITB BIT test BITB #$dd C5 

accumulator B BITB Saa D5 

ANDA AND accumulator A ANDA #$dd 84 BITB $ff,X E5 

with memory loc¬ ANDA Saa 94 BITB Saaaa F5 

ation ANDA $ff,X A4 

ANDA Saaaa B4 BLE Branch if Less BLE Srr 2F 

then or Equal to 

ANDB AND accumulator B ANDB #$dd C4 zero 

with memory loc¬ ANDB Saa D4 

ation ANDB $ff,X E4 BLS Branch if Lower BLS Srr 23 

ANDB Saaaa F4 or the Same 

ASL Arithmetic Shift ASL $ff,X 68 BLT Branch if Less BLT Srr 2D 

Left memory ASL Saaaa 78 Than zero 

location 

BMI Branch is Minus BMI Srr 2B 

ASLA Arithmetic Shift ASLA 48 

Left accumulator A BNE Branch if Not Equal BNE Srr 26 

to zero 

ASLB Arithmetic Shift ASLB 58 

Left accumulator B BPL Branch if PLus BPL Srr 2A 

ASR Arithmetic Shift ASR $ff,X 67 BRA BRanch Always BRA Srr 20 

Right memory loc¬ ASR Saaaa 77 to memory loc¬ 
ation ation 

ASRA Arithmetic Shift ASRA 47 BSR Branch to BSR Srr 8D 

Right accumulator A SubRoutine 

ASRB Arithmetic Shift ASRB 57 BVC Branch if oVerflow BVC Srr 28 

Right accumulator B Clear 

BCC Branch if Carry BCC Srr 24 BVS Branch if oVerflow BVS Srr 29 

Clear Set 
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Mne¬ Operation Assembler Op 
monic Notation 

CBA Compare accum¬ 

ulator B to 
CBA 11 

accumulator A 

CLC CLear Carry flag CLC oc 

CLI CLear Interrupt flag CLI OE 

CLR CLeaR memory CLR $ff,X 6F 
location CLR $aaaa 7F 

CLRA CLeaR accumulator A CLRA 4F 

CLRB CLeaR accumulator B CLRB 5F 

CLV CLear overflow flag CLV OA 

CMPA CoMPare memory CMPA #$dd 81 
location to CMPA $aa 91 
accumulator A CMPA $ff,X A1 

CMPA $aaaa B1 

CMPB CoMPare memory CMPB #$dd Cl 
location to CMPB $aa D1 
accumulator B CMPB $ff,X El 

CMPB $aaaa FI 

COM COMplement memory COM $ff,X 63 
location (l’s com¬ 

plement) 
COM $aaaa 73 

COMA COMplement ac¬ 

cumulator A 

(l’s complement) 

COMA 43 

COMB COMplement ac¬ 

cumulator B 

(l’s complement) 

COMB 53 

CPX ComPare memory CPX #$dd 8C 
location to X CPX $aa 9C 
(index) register CPX $ff,X AC 

CPX $aaaa BC 

DAA Decimal Adjust 

accumulator A 

DAA 19 

DEC DECrement memory DEC $ff,X 6A 
location DEC $aaaa 7A 

DECA DECrement accum¬ 

ulator A 
DECA 4A 

DECB DECrement accum¬ 

ulator B 
DECB 5A 

DES DEcrement Stack 

pointer 
DES 34 

Mne¬ Operation Assembler Op 
monic Notation 

DEX DEcrement X 

(index) register 
DEX 09 

EORA Exclusively OR EORA #$dd 88 
accumulator A EORA $aa 98 
with memory EORA $ff,X A8 
location EORA Saaaa B8 

EORB Exclusively OR EORB #$dd C8 
accumulator A EORB $aa D8 
with memory EORB Sff,X E8 
location EORB Saaaa F8 

INC INCrement memory INC $ff,X 6C 
location INC Saaaa 7C 

INCA INCrement accum¬ 

ulator A 
INCA 4C 

INCB INCrement accum¬ 

ulator B 

INCB 5C 

INS INcrement Stack 

pointer 

INS 31 

INX INcrement X 

(index) register 

INX 08 

JMP JuMP to memory JMP $ff,X 6E 
location JMP Saaaa 7E 

JSR Jump SubRoutine JSR $ff,X AD 

JSR Saaaa BD 

LDAA LoaD Accumulator A LDAA #$dd 86 

LDAA Saa 96 

LDAA $ff,X A6 

LDAA Saaaa B6 

LDAB LoaD Accumulator B LDAB #Sdd C6 
LDAB Saa D6 

LDAB $ff,X E6 

LDAB Saaaa F6 

LDS LoaD Stack pointer LDS #$dddd 8E 

LDS Saa 9E 

LDS $fftX AE 
LDS Saaaa BE 

LDX LoaD X register LDX #$dd CE 

LDX Saa DE 

LDX $ff,X EE 

LDX Saaaa FE 

LSR Logical Shift Right LSR $ff,X 64 
memory location LSR Saaaa 74 

Microprocessor Instruction Set Tables 435 



SHORT TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY (Continued) 

Mne¬ Operation Assembler Op Mne¬ Operation Assembler Op 

monic Notation monic Notation 

LSRA Logical Shift Right LSRA 44 RORB ROtate to the Right RORB 56 

accumulator A accumulator B 

LSRB Logical Shift Right LSRB 54 RTI ReTum from RTI 3B 

accumulator B Interrupt 

NEG NEGate memory loc¬ NEG $ff,X 60 RTS ReTum from RTS 39 

ation (2’s comple¬ NEG $aaaa 70 Subroutine 

ment) 

SBA Subtract accumulator SBA 10 

NEGA NEGate accumu¬ 

lator A (2’s com¬ 

NEGA 40 B from accumulator A 

plement) SBCA SuBtract with SBCA #$dd 82 

Carry memory SBCA Saa 92 

NEGB NEGate accumu¬ NEGB 50 location from SBCA $ff,X A2 

lator B (2’s com¬ 

plement) 

accumulator A SBCA Saaaa B2 

SBCB SuBtract with SBCB #$dd C2 

NOP No OPeration NOP 01 Carry memory SBCB Saa D2 

location from SBCB $ff,X E2 

ORAA OR Accumulator A ORAA #$dd 8A accumulator B SBCB Saaaa F2 

with memory loc¬ ORAA $aa 9A 

ation ORAA $ff,X AA SEC SEt Carry flag SEC 0D 

ORAA Saaaa BA 

SEI SEt Interrupt flag SEI OF 

ORAB OR Accumulator B ORAB #$dd CA 

with memory loc¬ ORAB $aa DA SEV SEt oVerflow flag SEV OB 

ation ORAB $ff,X EA 

ORAB $aaaa FA STAA STore Accumulator A STAA Saa 97 

STAA Sff,X A7 

PSHA PuSH accumulator A PSHA 36 STAA Saaaa B7 

onto the stack 

STAB STore Accumulator B STAB Saa D7 

PSHB PuSH accumulator B PSHB 37 STAB $ff,X E7 

onto the stack STAB Saaaa F7 

PULA PU1L accumulator A PULA 32 STS STore Stack pointer STS Saa 9F 

from the stack STS $ff,X AF 

STS Saaaa BF 
PULB PU1L accumulator B 

from the stack 

PULB 33 

STX STore X register STX Saa DF 

STX $ff,X EF 

ROL ROtate memory loc¬ ROL $ff,X 69 STX Saaaa FF 
ation Left ROL Saaaa 79 

SUBA SUBtract memory SUBA #$dd 80 

ROLA ROtate to the Left ROLA 49 location from SUBA Saa 90 

accumulator A accumulator A SUBA $ff,X A0 

SUBA Saaaa B0 

ROLB ROtate to the Left 

accumulator B 

ROLB 59 

SUBB SUBtract memory SUBB #$dd CO 

location from SUBB Saa DO 
ROR ROtate memory loc¬ ROR $ff,X 66 accumulator B SUBB $ff,X E0 

ation Right ROR Saaaa 76 SUBB Saaaa F0 

RORA ROtate to the Right 

accumulator A 

RORA 46 SWI Software Interrupt SWI 3F 
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Mne- Operation 

monic 
Assembler Op 

Notation 
Mne- Operation 

monic 
Assembler Op 

Notation 

TAB Transfer A to B TAB 16 TSTA TEsT accumulator A TSTA 4D 

TAP Transfer Accumulator TAP 06 
for zero or minus 

A to Processor con¬ 

dition code register 
TSTB TEsT accumulator B 

for zero or minus 

TSTB 5D 

TBA Transfer B to A TBA 17 TSX Transfer Stack TSX 30 

TPA Transfer Processor 

condition code reg¬ 
TPA 07 

pointer to the X 

(index) register 

ister to accumulator TXS Transfer X (index) TXS 35 
A register to Stack 

TST TEsT memory loc¬ TST $ff,X 6D 

pointer 

ation for zero or TST Saaaa 7D WAI WAit for WAI 3E 
Interrupt 

SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY 

Assembler Op Booiean/Arith Flags 

Notation_Operation HINZVC 

CPU Control Instructions 

NOP 01 nothing xxxxxx 

WAI 3E PC + 1 -» PC 

PCl -* S 

PCh-S 

xL + s 
xH ■* s 
A -» S 

B ■» S 

CCR -* S 

xlxxxx 

Data Transfer Instructions 

LDAA #$dd 

LDAA $aa 

LDAA $ff,X 

LDAA Saaaa 

86 M -> A 

96 

A6 

B6 

xxNZOx 

LDAB #$dd 

LDAB $aa 

LDAB $ff,X 

LDAB Saaaa 

C6 M -> B 

D6 

E6 

F6 

xxNZOx 

STAA $aa 

STAA $ff,X 

STAA Saaaa 

97 A *♦ M 

A7 

B7 

xxNZOx 

STAB $aa 

STAB $ff,X 

STAB Saaaa 

D7 B -► M 

E7 

F7 

xxNZOx 

Assembler 

Notation 

Op Booiean/Arith 

Operation 

Flags 

HINZVC 

TAB 16 A->B xxNZOx 

TBA 17 B *+ A xxNZOx 

LDX #$dddd CE M -> xH xxNZOx 
LDX Saa DE (M + 1) -> XL 
LDX $ff,X EE 

LDX Saaaa FE 

STX Saa DF XH ** M xxNZOx 
STX $ff,X EF XL -> (M + 1) 
STX Saaaa FF 

CLR $ff,X 6F 00 -> M xxOlOO 
CLR Saaaa 7F 

CLRA 4F 00 -» A xxOlOO 

CLRB 5F 00 *♦ B xxOlOO 

Flag Instructions 

CLC oc 0->C xxxxxO 

LI 0E 0 -> I xOxxxx 

CLV 0A 0 4 V xxxxVx 

SEC 0D 1 *» c xxxxxl 

SEI OF 1 -> I xlxxxx 
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SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

HINZVC 

SEV OB 1 -> V xxxxlx 

TAP 06 A 4 CCR HINZVC 

TPA 07 CCR -» A xxxxxx 

Arithmetic Instructions 

ADDA #$dd 8B A + M -> A HxNZVC 

ADDA Saa 9B 

ADDA $ff,X AB 

ADDA $aaaa BB 

ADDB #$dd CB B + M 4 B HxNZVC 

ADDB $aa DB 

ADDB $ff,X EB 

ADDB Saaaa FB 

ABA IB A + B 4 A HxNZVC 

ADCA #$dd 89 A + M + C + A HxNZVC 

ADCA $aa 99 

ADCA $ff,X A9 

ADCA Saaaa B9 

ADCB #Sdd C9 B + M + C-> B HxNZVC 

ADCB $aa D9 

ADCB $ff,X E9 

ADCB Saaaa F9 

SUBA #$dd 80 A - M •+ A xxNZVC 

SUBA Saa 90 

SUBA $ff,X A0 

SUBA Saaaa B0 

SUBB #$dd CO B - M -► B xxNZVC 

SUBB Saa DO 

SUBB $ff,X E0 

SUBB Saaaa F0 

SBA 10 A - B -> A xxNZVC 

SBCA #$dd 82 A - M - C -> A xxNZVC 

SBCA Saa 92 

SBCA $ff,X A2 

SBCA Saaaa B2 

SBCB #$dd C2 B - M - C B xxNZVC 

SBCB Saa D2 

SBCB $ff,X E2 

SBCB Saaaa F2 

Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

HINZVC 

DAA 19 (converts bin¬ 

ary add. of BCD 

characters into 

BCD format) 

xxNZVC 

Logical Instructions 

ANDA #$dd 84 A AND M A xxNZOx 

ANDA Saa 94 

ANDA $ff,X A4 

ANDA Saaaa B4 

ANDB #$dd C4 B AND M -► B xxNZOx 

ANDB Saa D4 

ANDB $ff,X E4 

ANDB Saaaa F4 

ORAA #$dd 8A A OR M -> A xxNZOx 

ORAA Saa 9A 

ORAA Sff,X AA 

ORAA Saaaa BA 

ORAB #$dd CA B OR M 4 B xxNZOx 

ORAB Saa DA 

ORAB $ff,X EA 

ORAB Saaaa FA 

EORA #$dd 88 A EOR M -> A xxNZOx 

EORA $aa 98 

EORA $ff,X A8 

EORA Saaaa B8 

EORB #$dd C8 B EOR M + B xxNZOx 

EORB Saa D8 

EORB Sff.X E8 

EORB Saaaa F8 

BITA #$dd 85 A AND M xxNZOx 

BITA Saa 95 

BITA $ff,X A5 

BITA Saaaa B5 

BITB #Sdd C5 B AND M xxNZOx 

BITB Saa D5 

BITB $ff,X E5 

BITB Saaaa F5 

COM $ff,X 63 M -> M xxNZOl 

COM Saaaa 73 

COMA 43 A -> A xxNZOl 

COMB 53 B * B xxNZOl 
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Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

HINZVC 

NEG $ff,X 60 00 - M -» M xxNZVC 
NEG $aaaa 70 

NEGA 40 00 - A ■» A xxNZVC 

NEGB 50 00 - B -» B xxNZVC 

Rotate and Shift Instructions 

ROL $ff,X 69 |—M7 ... Mo 1 xxNZVC 
ROL $aaaa 79 1 .c_ I 

ROLA 49 1— A7 ... A0 

‘-i-C- 

j xxNZVC 

ROLB 59 1— B7 ... B0 | xxNZVC 

ROR $ff,X 66 (-► M7 ... Mq —I 
ROR Saaaa 76 LI c, 1 

| xxNZVC 

RORA 46 a7 ... a0 —| xxNZVC 

1-c-^—1 

RORB 56 !-► B7 ... B0 —I xxNZVC 

*-c+-—1 

ASL $ff,X 68 C^M7...Mo^0 1 xxNZVC 
ASL Saaaa 78 

ASLA 48 C *+- A7 ... A0 o i xxNZVC 

ASLB 58 C-*-B7 ... Bo^0 1 xxNZVC 

ASR $ff,X 67 P^M7 ... M0“^ C xxNZVC 
ASR Saaaa 77 u 
ASRA 47 p>A7... a0-»-c : xxNZVC 

ASRB 57 B7... B0 —»-C xxNZVC 

LSR $ff,X 64 0+ c xxOZVC 
LSR Saaaa 74 

LSRA 44 0-* AC xxOZVC 

LSRB 54 0* Bj.-Bq-* c xxOZVC 

Increment and Decrement Instructions 

INC $ff,X 6C M + 1 -> M xxNZVx 
INC Saaaa 7C 

Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

HINZVC 

INCA 4C A + 1 -* A xxNZVx 

INCB 5C B + 1 -* B xxNZVx 

DEC $ff,X 6A M - 1 -» M xxNZVx 
DEC Saaaa 7A 

DECA 4A A - 1 ■* A xxNZVx 

DECB 5A B - 1 -> B xxNZVx 

INX 08 X + 1 X xxxZxx 

DEX 09 X - 1 -* X xxxZxx 

Unconditional Jump Instructions 

JMP $ff,X 

JMP Saaaa 

6E 

7E 

X + ff -» PC 

(indexed) 

aaaa -> PC 

(extended) 

xxxxxx 

BRA Srr 20 PC + 2 xxxxxx 

+ rr -> PC 

Test (Compare) Instructions 

CM PA #$dd 81 A - M xxNZVC 
CMPA Saa 91 

CMPA $ff,X A1 

CMPA Saaaa B1 

CMPB #$dd Cl B-M xxNZVC 
CMPB Saa D1 

CMPB $ff,X El 

CMPB Saaaa FI 

CBA 11 A - B xxNZVC 

CPX #$dddd 8C xh-m xxNZVx 
CPX Saa 9C XL - (M +1) 
CPX Sff,X AC 

CPX Saaaa BC 

TST Sff,X 6D M - 00 xxNZOO 
TST Saaaa 7D 

TSTA 4D >
 

i o
 

o
 

xxNZOO 

TSTB 5D B - 00 xxNZOO 
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SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Assembler Op Boolean/Arith Flags Assembler Op Boolean/Arith 

Notation Operation_HINZVC Notation_°Peration 

Conditional .lump (Branch) Instructions 

BCC $rr 24 PC + 2 + rr xxxxxx 

-> PC 

If C=0 

BPL $rr 2A PC + 2 + rr 

-» PC 

If N = 0 

Subroutine Instructions 

BCS Srr 25 PC + 2 + rr xxxxxx JSR $ff,X AD PC + 2 -* PC 

-> PC PCl ■* S 

If C-l PCh-s 

SP - 2 -> SP 

BEQ Srr 27 PC + 2 + rr xxxxxx (ff+X) ■» PC 

-> PC 

If Z=1 JSR Saaaa BD PC + 3 ■» PC 

PCl ■* S 

BGE $rr 2C PC + 2 + rr xxxxxx PC„-S 

-> PC SP - 2 -» SP 

If N EOR V = 0 (aaaa) ■» PC 

BGTSrr 2E PC + 2 + rr xxxxxx RTS 39 S -> PCH 

-» PC S -» PCl 

If Z AND (N SP + 2 -> SP 

EOR V) = 0 

BSR Srr 8D PC + 2 PC 

BHI Srr 22 PC + 2 + rr xxxxxx pcl + s 

-> PC PCh-S 

If C AND Z - 0 SP - 2 -* SP 

PC + rr -* PC 

BLE Srr 2F PC + 2 + rr xxxxxx 

* PC 

If Z AND (N EOR Stack Instructions 

V) = 1 
LDS #$dddd 8E M -> SPH 

BLS Srr 23 PC + 2 + rr xxxxxx LDS Saa 9E (M + 1) -> SPL 

-> PC LDS $ff,X AE 

If C OR Z = 1 LDS Saaaa BE 

BLTSrr 2D PC + 2 + rr xxxxxx STS Saa 9F SPH ■» M 

->PC STS $ff,X AF SPL -> (M + 1) 

If N EOR V = 1 STS Saaaa BF 

BMI Srr 2B PC + 2 + rr xxxxxx PSHA 36 A -* S 

->PC SP - 1 -» SP 

II 

U
-4 

PSHB 37 B S 

BNE Srr 26 PC + 2 + rr xxxxxx SP - 1 -> SP 

-> PC 

If Z=1 PULA 32 S ■» A 

SP + 1 -> SP 

BVC Srr 28 PC + 2 + rr xxxxxx 

^ PC PULB 33 S -> B 

o
 ii 

>
 SP + 1 SP 

BVS Srr 29 PC + 2 + rr xxxxxx DES 34 SP - 1 -> SP 

PC 

If V = 1 INS 31 SP + 1 -» SP 

Flags 

HINZVC 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxNZGx 

xxNZGx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 
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Assembler 

Notation 
Op Boolean/Arith Flags 

_Operation HINZVC 
Assembler Op Boolean/Arith Flags 

Notation___Operation HINZVC 

TXS 35 X - 1 -► SP XXXXXX 

TSX 30 SP + 1 •* X xxxxxx 

IntemiDt Instructions 

RTI 3B S -» CCR 

S ■* B 

S ■* A 

s^xH 

S + XL 

s -»PCH 

s-pq 

HINZVC 

3F PC + 1 -> PC xlxxxx 

PCL->S 

PCh + S 

xL->s 
xH^s 
A -* S 

B->S 

CCR -> S 

Input-Output Instructions 

none 

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY 

°P Assembler_Op Assembler _Op Assembler 

CPU Control 

Instructions 

NOP 01 

WAI 3E 

Data Transfer 

Instructions 

LDAA #$dd 86 
LDAA $aa 96 

LDAA Sff.X A6 

LDAA Saaaa B6 

LDAB #$dd C6 

LDAB $aa D6 

LDAB Sff.X E6 
LDAB Saaaa F6 

STAA Saa 97 

STAA Sff.X A7 

STAA Saaaa B7 

STAB Saa D7 

STAB $ff,X E7 
STAB Saaaa F7 

TAB 16 
TBA 17 

LDX #$dddd CE 
LDX Saa DE 
LDX Sff.X EE 
LDX Saaaa FE 

STX Saa DF 
STX $ff,X EF 
STX Saaaa FF 

CLR $ff,X 6F 
CLR Saaaa 7F 

CLRA 4F 
CLRB 5F 

Flag Instructions 

CLC OC 
LI 0E 
CLV 0A 
SEC 0D 
SEI OF 
SEV OB 
TAP 06 
TPA 07 

Arithmetic 

Instructions 

ADDA #$dd 8B 
ADDA Saa 9B 
ADDA $ff,X AB 
ADDA Saaaa BB 

ADDB #$dd CB 

ADDB Saa DB 

ADDB $ff,X EB 
ADDB Saaaa FB 

ABA IB 

ADCA #$dd 89 

ADCA Saa 99 

ADCA Sff.X A9 

ADCA Saaaa B9 

ADCB #$dd C9 

ADCB Saa D9 

ADCB Sff.X E9 

ADCB Saaaa F9 

SUBA #$dd 80 

SUBA Saa 90 

SUBA Sff.X A0 

SUBA Saaaa B0 

SUBB #$dd CO 
SUBB Saa DO 
SUBB $ff,X E0 

SUBB Saaaa F0 

SBA 10 

SBCA #$dd 82 

SBCA Saa 92 
SBCA Sff.X A2 

SBCA Saaaa B2 

SBCB #$dd C2 
SBCB Saa D2 

SBCB Sff.X E2 
SBCB Saaaa F2 

DAA 19 

Logical 

Instructions 

ANDA #Sdd 84 

ANDA $aa 94 

ANDA $ff,X A4 
ANDA Saaaa B4 

ANDB #$dd C4 

ANDB Saa D4 

ANDB Sff,X E4 

ANDB Saaaa F4 

ORAA #$dd 8A 
ORAA Saa 9A 

ORAA $ff,X AA 
ORAA Saaaa BA 

ORAB #$dd CA 

ORAB Saa DA 

ORAB $ff,X EA 

ORAB Saaaa FA 

EORA #$dd 88 

EORA Saa 98 

EORA $ff,X A8 

EORA Saaaa B8 

EORB #$dd C8 

EORB $aa D8 
EORB $ff,X E8 

EORB Saaaa F8 
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Assembler 

BITA #$dd 

BITA Saa 

BITA $ff,X 

BITA Saaaa 

BITB #$dd 

BITB Saa 

BITB $ff,X 

BITB Saaaa 

COM $ff,X 

COM Saaaa 

COMA 

COMB 

NEG $ff,X 

NEG Saaaa 

NEGA 

NEGB 

Rotate and i 

Instructions 

ROL $ff,X 

ROL Saaaa 

ROLA 

ROLB 

ROR $ff,X 

ROR Saaaa 

RORA 

RORB 

ASL $ff,X 

ASL Saaaa 

ASLA 

ASLB 

ASR $ff,X 

ASR Saaaa 

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Op 

85 

95 

A5 

B5 

C5 

D5 

E5 

F5 

63 

73 

43 

53 

60 

70 

40 

50 

69 

79 

49 

59 

66 

76 

46 

56 

68 

78 

48 

58 

67 

77 

Assembler Op Assembler Op Assembler Op 

ASRA 47 CMPB #$dd Cl RTS 39 

ASRB 57 CMPB Saa D1 BSR Srr 8D 

CMPB $ff,X El 

LSR $ff,X 64 CMPB Saaaa FI Stack 

LSR Saaaa 74 CBA 11 Instructions 

LSRA 44 CPX #$dddd 8C LDS #$dddd 8E 

LSRB 54 CPX Saa 9C LDS Saa 9E 

cpx $ff,x AC LDS Sff,X AE 

Increment and CPX Saaaa BC LDS Saaaa BE 

Decrement 

Instructions TST Sff,X 6D STS Saa 9F 

TST Saaaa 7D STS $ff,X AF 

INC $ff,X 6C STS Saaaa BF 

INC Saaaa 1C TSTA 4D 

TSTB 5D PSHA 36 

INCA 4C PSHB 37 

INCB 5C Conditional Jump 

(Branch) PULA 32 

DEC $ff,X 6A Instructions PULB 33 

DEC Saaaa 7A 

BCC Srr 24 DES 34 

DECA 4A BCS Srr 25 INS 31 

DECB 5A BEQ Srr 27 

BGE Srr 2C TXS 35 

INX 08 BGT Srr 2E TSX 30 

DEX 09 BHI Srr 22 

BLE Srr 2F Interrupt 

Unconditional BLS Srr 23 Instructions 

Jump Instructions BLTSrr 2D 

BMI Srr 2B RTI 3B 

JMP $ff,X 6E BNE Srr 26 SWI 3F 

JMP Saaaa 7E BVC Srr 28 

BVS Srr 29 Input-Output 

BRA Srr 20 BPL Srr 2A Instructions 

Test (Compare) Subroutine none 

Instructions Instructions 

CMPA #$dd 81 JSR Sff.X AD 

CMPA Saa 91 JSR Saaaa BD 

CMPA $ff,X A1 

CMPA Saaaa B1 
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CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY 

Assembler Op 

ABA IB 
ADCA $aa 99 
ADCA Saaaa B9 
ADCA $ff,X A9 
ADCA #$dd 89 
ADCB $aa D9 
ADCB Saaaa F9 
ADCB $ff,X E9 
ADCB #$dd C9 
ADDA $aa 9B 
ADDA Saaaa BB 
ADDA $ff,X AB 
ADDA #$dd 8B 
ADDB $aa DB 
ADDB Saaaa FB 
ADDB $ff,X EB 
ADDB #$dd CB 
ANDA $aa 94 
ANDA Saaaa B4 
ANDA $ff,X A4 
ANDA #$dd 84 
ANDB $aa D4 
ANDB Saaaa F4 
ANDB $ff,X E4 
ANDB #$dd C4 
ASL Saaaa 78 
ASL $ff,X 68 
ASLA 48 
ASLB 58 
ASR Saaaa 77 
ASR $ff,X 67 
ASRA 47 
ASRB 57 
BCC Srr 24 
BCS Sir 25 
BEQ Srr 27 
BGE Srr 2C 
BGT Srr 2E 
BHI $rr 22 
BITA Saa 95 
BITA Saaaa B5 
BITA $ff,X A5 
BITA #$dd 85 
BITB $aa D5 
BITB Saaaa F5 
BITB $ff,X E5 
BITB #$dd C5 
BLE Srr 2F 
BLS Srr 23 
BLTSrr 2D 

Assembler Op 

BMI Srr 2B 
BNE Srr 26 
BPL Srr 2A 
BRA Srr 20 
BSR $rr 8D 
BVC Srr 28 
BVS Srr 29 
CBA 11 
CLC OC 
CLI 0E 
CLR Saaaa 7F 
CLR $ff,X 6F 
CLRA 4F 
CLRB 5F 
CLV 0A 
CMPA Saa 91 
CMPA Saaaa B1 
CMPA $ff,X A1 
CMPA #$dd 81 
CMPB Saa D1 
CMPB Saaaa FI 
CMPB $ff,X El 
CMPB #$dd Cl 
COM Saaaa 73 
COM $ff,X 63 
COMA 43 
COMB 53 
CPX Saa 9C 
CPX Saaaa BC 
CPX Sff,X AC 
CPX #$dd 8C 
DAA 19 
DEC Saaaa 7A 
DEC $ff,X 6A 
DECA 4A 
DECB 5A 
DES 34 
DEX 09 
EORA $aa 98 
EORA Saaaa B8 
EORA $ff,X A8 
EORA #$dd 88 
EORB Saa D8 
EORB Saaaa F8 
EORB $ff,X E8 
EORB #$dd C8 
INC Saaaa 7C 
INC $ff,X 6C 
INCA 4C 
INCB 5C 

Assembler Op 

INS 31 
INX 08 
JMP Saaaa 7E 
JMP $ff,X 6E 
JSR Saaaa BD 
JSR $ff,X AD 
LDAA Saa 96 
LDAA Saaaa B6 
LDAA $ff,X A6 
LDAA #$dd 86 
LDAB Saa D6 
LDAB Saaaa F6 
LDAB $ff,X E6 
LDAB #$dd C6 
LDS $aa 9E 
LDS Saaaa BE 
LDS $ff,X AE 
LDS #Sdddd 8E 
LDX Saa DE 
LDX Saaaa FE 
LDX $ff,X EE 
LDX #$dd CE 
LSR Saaaa 74 
LSR $ff,X 64 
LSRA 44 
LSRB 54 
NEG Saaaa 70 
NEG Sff,X 60 
NEGA 40 
NEGB 50 
NOP 01 
ORAA Saa 9A 
ORAA Saaaa BA 
ORAA $ff,X AA 
ORAA #$dd 8A 
ORAB Saa DA 
ORAB Saaaa FA 
ORAB $ff,X EA 
ORAB #Sdd CA 
PSIIA 36 
PSHB 37 
PULA 32 
PULB 33 
ROL Saaaa 79 
ROL Sff,X 69 
ROLA 49 
ROLB 59 
ROR Saaaa 76 
ROR $ff,X 66 
RORA 46 

Assembler Op 

RORB 56 
RTI 3B 
RTS 39 
SBA 10 
SBCA Saa 92 
SBCA Saaaa B2 
SBCA Sff,X A2 
SBCA #Sdd 82 
SBCB Saa D2 
SBCB Saaaa F2 
SBCB $ff,X E2 
SBCB #$dd C2 
SEC 0D 
SEI OF 
SEV 0B 
STAA Saa 97 
STAA Saaaa B7 
STAA $ff,X A7 
STAB Saa D7 
STAB Saaaa F7 
STAB $ff,X E7 
STS Saa 9F 
STS Saaaa BF 
STS Sff,X AF 
STX Saa DF 
STX Saaaa FF 
STX $ff,X EF 
SUBA Saa 90 

SUBA Saaaa B0 
SUBA $ff,X A0 
SUBA #$dd 80 
SUBB Saa DO 
SUBB Saaaa FO 
SUBB $ff,X E0 

SUBB #$dd CO 
SWI 3F 
TAB 16 
TAP 06 
TBA 17 
TPA 07 
TST Saaaa 7D 
TST $ff,X 6D 
TSTA 4D 
TSTB 5D 
TSX 30 
TXS 35 
WAI 3E 
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CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY OP CODE 

Op Assembler Op Assembler 

01 NOP 49 ROLA 

06 TAP 4A DECA 

07 TPA 4C INCA 

08 INX 4D TSTA 

09 DEX 4F CLRA 

0A CLV 50 NEGB 

OB SEV 53 COMB 

OC CLC 54 LSRB 

0D SEC 56 RORB 

0E CLI 57 ASRB 

OF SEI 58 ASLB 

10 SBA 59 ROLB 

11 CBA 5A DECB 

16 TAB 5C INCB 

17 TBA 5D TSTB 

19 DAA 5F CLRB 

IB ABA 60 NEG $ff,X 

20 BRA $rr 63 COM $ff,X 

22 BHI Srr 64 LSR $ff,X 

23 BLS $rr 66 ROR $ff,X 

24 BCC $rr 67 ASR $ff,X 

25 BCS Srr 68 ASL $ff,X 

26 BNE Srr 69 ROL $ff,X 

27 BEQ Sit 6A DEC $ff,X 

28 BVC Srr 6C INC $ff,X 

29 BVS Srr 6D TST $ff,X 

2A BPL Srr 6E JMP $ff,X 

2B BMI Srr 6F CLR $ff,X 

2C BGE Srr 70 NEG Saaaa 

2D BLT Srr 73 COM Saaaa 

2E BGT Srr 74 LSR Saaaa 

2F BLE Srr 76 ROR Saaaa 

30 TSX 77 ASR Saaaa 

31 INS 78 ASL Saaaa 

32 PULA 79 ROL Saaaa 

33 PULB 7A DEC Saaaa 

34 DES 7C INC Saaaa 

35 TXS 7D TST Saaaa 

36 PSHA 7E JMP Saaaa 

37 PSHB 7F CLR Saaaa 

39 RTS 80 SUBA #$dd 

3B RTI 81 CMPA #$dd 

3E WAI 82 SBCA #$dd 

3F SWI 84 ANDA #Sdd 

40 NEGA 85 BITA #$dd 

43 COMA 86 LDAA #Sdd 

44 LSRA 88 EORA #$dd 

46 RORA 89 ADCA #$dd 

47 ASRA 8A ORAA #$dd 

48 ASLA 8B ADDA #$dd 

Op Assembler Op Assembler 

8C CPX #Sdd C4 ANDB #$dd 

8D BSR Srr C5 BITB #$dd 

8E LDS #$dddd C6 LDAB #$dd 

90 SUBA $aa C8 EORB #$dd 

91 CMPA $aa C9 ADCB #$dd 

92 SBCA Saa CA ORAB #Sdd 

94 ANDA $aa CB ADDB #$dd 

95 BETA Saa CE LDX #$dd 

96 LDAA Saa DO SUBB Saa 

97 STAA Saa D1 CMPB Saa 

98 EORA Saa D2 SBCB Saa 

99 ADCA Saa D4 ANDB Saa 

9A ORAA Saa D5 BITB Saa 

9B ADDA Saa D6 LDAB Saa 

9C CPX Saa D7 STAB $aa 

9E LDS Saa D8 EORB Saa 

9F STS $aa D9 ADCB Saa 

A0 SUBA $ff,X DA ORAB $aa 

A1 CMPA $ff,X DB ADDB Saa 

A2 SBCA Sff,X DE LDX Saa 

A4 ANDA $ff,X DF STX Saa 

AS BITA $ff,X E0 SUBB $ff,X 

A6 LDAA $ff,X El CMPB $ff,X 

A7 STAA $ff,X E2 SBCB Sff,X 

A8 EORA $ff,X E4 ANDB $ff,X 

A9 ADCA $ff,X E5 BITB $ff,X 

AA ORAA $ff,X E6 LDAB $ff,X 

AB ADDA $ff,X E7 STAB $ff,X 

AC CPX $ff,X E8 EORB $ff,X 

AD JSR $ff,X E9 ADCB Sff,X 

AE LDS $ff,X EA ORAB $ff,X 

AF STS $ff,X EB ADDB $ff,X 

B0 SUBA Saaaa EE LDX $ff,X 

B1 CMPA Saaaa EF STX $ff,X 

B2 SBCA Saaaa F0 SUBB Saaaa 

B4 ANDA Saaaa FI CMPB Saaaa 

B5 BITA Saaaa F2 SBCB Saaaa 

B6 LDAA Saaaa F4 ANDB Saaaa 

B7 STAA Saaaa F5 BITB Saaaa 

B8 EORA Saaaa F6 LDAB Saaaa 

B9 ADCA Saaaa F7 STAB Saaaa 

BA ORAA Saaaa F8 EORB Saaaa 

BB ADDA Saaaa F9 ADCB Saaaa 

BC CPX Saaaa FA ORAB Saaaa 

BD JSR Saaaa FB ADDB Saaaa 

BE LDS Saaaa FE LDX Saaaa 

BF STS Saaaa FF STX Saaaa 

CO SUBB #$dd 

Cl CMPB #$dd 

C2 SBCB #$dd 
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EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY 

CPU Control Instructions 

^ ESCape 

The ESC instruction allows the 8086/8088 to pass instructions to the 8087 math 

coprocessor. The instructions for the coprocessor appear as a 6-bit code embedded 

m the escape instruction. The 8086/8088 performs a NOP while the 8087 executes 
the mstruction. IFlags affected - none] 

HLT HaLT 

The HLT instruction causes the 8086/8088 to stop fetching and executing 

instructions and enter a halt state. To exit from the halt state the microprocessor 
must receive a hardware reset or interrupt signal, fFlags affegted . nnn„j 

L0CK LOCK 

LOCK is a prefix which can be used in front of 8086/8088 instructions. It prevents 

any other processors from gaining access to the systems buses during the following 
instruction. [Flags affected - none] 6 

N(“)P No OPeration 

The NOP instruction simply uses up three clock cycles during which nothing is done 

and no flags are affected. It is useful 1) in programs requiring time delays, and 2) 

as a means to hold space open in programs so instructions can be added at a later 
date. [Hags affected - none] 

WAIT WAIT 

The WAIT instruction causes the 8086/8088 to enter a wait state or idle condition 

during which no further processing occurs (except valid interrupts) until a signal is 
received on the TEST pin. fFlags afferieH - nnn.| 

Data Transfer Instructions 

Load AH from Flag 

The LAHF instruction copies the low-order byte of the flag (status) register to AH. 

The flags themselves are not affected. The low order byte of the 8086/8088 status 

register is the same as that of the 8085. This instruction is used primarily to 

translate 8085 software into 8086/8088 software. fFlags afferieH - nnnP] 

Load Data Segment 

The LDS mstruction performs two distinct operations. First it loads two 

consecutive bytes of memory into one of the 16-bit general, index, or pointer 

registers. Then it loads the next two consecutive bytes of memory into the 16-bit 
DS register. 

For example, if DI = 1000 then: 

LDS BX,[DI] 

copies the contents of memory locations 1000 and 1001 of the data segment 

into register BX and the contents of memory locations 1002 and 1003 of the 
data segment into register DS. 
[Flags affected - none] 
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EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

LEA 

LES 

MOV 

SAHF 

XCHG 

XLAT 

Flag Instructions 

CLC 

Load Effective Address 
The LEA instruction loads one of the 16-bit general, index, or pointer registers 

from another register or memory. 

Example: 
LEA CX,[SI] 

copies the number (address) in the SI register to the CX register. 

[Flags affected - none! 

Load Extra Segment 
The LES instruction performs two distinct operations. First it loads two consecutive 

bytes of memory into one of the 16-bit general, index, or pointer registers. Then 

it loads the next two consecutive bytes of memory into the 16-bit ES register. 

For example, if DI = 1000 then: 

LES BX,[DI] 
copies the contents of memory locations 1000 and 1001 of the data segment 

into register BX and the contents of memory locations 1002 and 1003 of the 

data segment into register ES. [Flags affected - nonel 

MOVe 
The MOV instruction copies the contents of a register, memory location, or 

immediate number to a register or memory location. The source and destination 

must both be of the same length and both cannot be memory locations. [Flags 

affected - none! 

Store AH in Flags 
The SAHF instruction copies AH to the low-order byte of the flag (status) register. 

The low-order byte of the 8086/8088 status register is the same as that of the 8085. 

This instruction is used primarily to translate 8085 software into 8086/8088 software. 

After this instruction is executed SF, ZF, AF, PF, and CF will correspond to bits 

7, 6, 4, 2, and 1 of AH respectively. [Flags affected - SF. ZF, AF, PF, CF1 

eXCHanGe 
The XCHG instruction exchanges the contents of two registers or a register and a 

memory location. Segment registers cannot be used nor can two memory locations. 

The source and destination must be of the same length. [Flags affected - none] 

trans(X)LATe 
The XLAT instruction is used to look up values in a table. First the location of the 

beginning of the table must be loaded into the BX register. Then the relative 

location within the table of the desired value must be placed in the AL register. 

When the XLAT instruction is executed the value of BX is added to AL to form 

an address. The contents of that address then replaces the former value in AL. 

This instruction can be used to translate ASCII values into EBCDIC values for 

example. [Flags affected - nonel 

CLear Carry flag 
The CLC instruction places a zero (0) in the carry flag bit of the status register. 

[Flags affected - CF = 01 
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CLD 

CLI 

CMC 

STC 

STD 

STI 

CLear Direction flag (auto-increment) 

Wh™ thD P'a“s a 2cro <°>th= direction Hag bit of the status register. 
When thus nag is cleared (0), SI and DI will automatically increment when certain 
string instructions are executed. fFlags affected - DF=n] 

CLear Interrupt-enable flag 

Ssto1 irr nlaC“ " lhe 'nterruPt'enabie flag bit of the status 

pb-^ on ihe nmi p“ - « s 

CoMplement Carry flag 

0 hh 2? h “i""? “ver,s 0>8 “■ of Ike status register. If the CF is 
(.Ip, ° c “scd 10 a L If * ts a f. t mil be changed to 0. IFlans affect.H . 

SeT Carry flag 

j^TC^uctaplaces a one (1) in the cnry flag bi, of the status register. 

SeT Direction flag (auto-decrement) 

Whefoc ,"st™ctlon Pjaees a one (1) in the direction nag bit of the status register. 
When this nag is set (!) SI and DI will automatically decrement when ce,tainting 
instructions are executed. fFlags affected - DF=i] ® 

SeT Interrupt enable flag 

register^ CilT ‘ °”'™ “ lhe “'-“Pt-aabl. Hag bit of the status 
register. When this flag is set (1) the 8086/8088 will respond to interrupt signals 
on the INTR pin. fFlags affected . rr-i] P Upt SlgnalS 

Arithmetic Instructions 

ASCII Adjust for Addition 

The AAA instruction can be used after addition to adjust or alter the number in 

AL to what it would be if the last two operands were ASCII numbers. AH will be 

cleared. fFlags effected - AF. CF. OF (undefined!. SF (undefined! 7F 
(undefined!. PF ('undefined')] 

ASCII Adjust for Division 

The AAD instruction is used before division by a single-digit, unpacked, BCD 

number. First you must have an unpacked, two-digit, BCD number in AX. The 

AAD mstruction can then be used to adjust that number. This adjustment must 

occur before any division can take place. The adjustment changes the two-digit, 

unpacked, BCD number in AX into its equivalent binary number in AL. AH is 

changed to OOh. Next, AX can be divided by an 8-bit, single-digit, unpacked BCD 

number. The binary quotient will be in AL with the binary remainder in AH. 

Note: To use this instruction with ASCII numbers the "3" in the upper nibble must 

be masked out of the numbers first. fFlags affected - SF. ZF. PF. OF (undefined!. 
AF (undefined!. CF (undefined!] 
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AAM 

AAS 

ADC 

ADD 

CBW 

CWD 

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

ASCII Adjust for Multiplication 
The AAM instruction adjusts the product after multiplication of two, unpacked, 

single-digit, BCD numbers. To use this instruction you must have two single-digit, 

unpacked, BCD numbers. One must be in AL and the other in a register or 

memory location. After you multiply the two single-digit, unpacked, BCD numbers 

the binary answer will be in AL. The AAM instruction will convert it to its 

unpacked BCD equivalent. Note: To use this instruction with ASCII numbers you 

must first mask the "3" in the upper nibble. [Flags affected - SF, ZF, PF, AF 

fnndefinedL OF (undefined!. CF (undefined)] 

ASCII Adjust for Subtraction 
The AAS instruction can be used after subtraction to adjust or alter the number in 

AL to what it would be if the last two operands were ASCII numbers. AH will be 

cleared. [Flags affected - AF, CF, OF (undefined!. SF (undefined), ZF 

(undefined}, PF (undefined!! 

AdD with Carry 
The ADC instruction works the same as the ADD instruction except that it adds 

the value in the carry flag (CF) to the sum of the two operands. [Flags affected^ 

CF. PF. AF. ZF. SF. OF] 

ADD 
The ADD instruction adds a binary number in a source register, memory location, 

or immediate number to a destination binary number in a register or memory 

location. The result is placed in the destination location. The source and 

destination are assumed to be binary, both must be of the same size (byte or word), 

and both cannot be memory locations. [Flags affected - CF, PF, AF, ZF, SF, OF] 

Convert Byte to Word 
The CBW instruction takes bit 7 (the highest-order bit) of AL and duplicates it in 

every bit of AH. This converts an 8-bit signed-binary number in AL into a 16-bit 

signed-binary number in AX. This must be done before division (IDIV) involving 

two 8-bit signed-binary numbers to convert the dividend (in AL) into its 16-bit form 

(in AX). (For unsigned-binary numbers place 00H in AH.) It can also be used 

before integer multiplication (IMUL) involving an 8-bit operand and a 16-bit 

operand. The 8-bit operand can be converted to a 16-bit operand before the IMUL 

instruction is executed. [Flags affected - nonel 

Convert Word to Double word 
The CWD instruction is similar to the CBW instruction except that it converts 16- 

bit values into 32-bit values instead of 8-bit to 16-bit. It takes bit 15 (the highest- 

order bit) of AX and duplicates it in every bit of DX. This converts a 16-bit 

signed-binary number in AX into a 32-bit signed-binary number in DX:AX (high 

16 bits in DX, low 16 bits in AX). This must be done before division involving two 

16-bit numbers to convert the dividend (in AX) into its 32-bit form (in DX.AX). 

[Flags affected - none! 
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DAA 

DAS 

DIV 

IDIV 

IMUL 

Decimal Adjust for Addition 

“ thC C°ntentS °fALfrom a binary number to a packed 
( C°ded de)C,mal) number when used after addition. When addition is 

packedmBCD T™* *° ^ binary numbers‘ If they were “ fact 
packed BCD numbers then the DAA instruction would have to be used after the 

dchbon to correct the result. Note that DAA only works on AL so each byte of 

mu ti-byte packed BCD number must be moved into AL, added adjusted^ and 

Decimal Adjust for Subtraction 

The DAS instruction adjusts the contents of AL from a binary number to a packed 

CD (binary-coded-decimal) number when used after subtraction When 

subtraction is Performed the operands are assumed to be binary numbers. If they 

Xr I s S f DUmberS theD the °AS instruction would have to be used 

fch bt rf ° C°rrfCt the rCSUlt N°te th3t DAS only works AL so 
^ a multi-byte packed BCD number must be moved into AL, subtracted, 

adjusted and then the result moved back out to make room for the next byte 
[Flags affected - SF, ZF. AF. PF CF, OF Amde.fin.Ht] * ' 

Divide (unsigned) 

The DIV instruction can divide a 16-bit unsigned-binary number in AX by an 8-bit 

unsigned-binary number in a register or memory location. If you want to divide one 

-bit number by another you must first change the dividend in AL into a 16-bit 

number by placing 00H in AH. After execution the result (quotient) will be in AL 
and the remainder in AH. 

D|v can also divide a 32-bit unsigned-binary number in DX:AX (high-order 

word in DX, low-order word in AX) by a 16-bit unsigned-binary number in a 

register or memory location. If you wish to divide one 16-bit number by another 

7 ““LS2 .COnV“‘ the divid“d ” AX into a 32-bit number in DX:AX by 
p acing (MOOT m DX. The result (quotient) will be in AX and the remainder in 

, . .tHy^gal ~ °F fundefined!. SF fllndelinedl. ZF fllndeti-edl SB 
(undefined), PF (undefined), CF (undefined^ 

Integer Division (signed) 

The IDIV instruction can divide a 16-bit signed-binary number in AX by an 8-bit 

signed-binary number in a register or memory location. The result (quotient) will 

be in AL and the remainder in AH. It can also divide a 32-bit signed-binary 

number in DX:AX (high-order word in DX, low-order word in AX) by a 16-bit 

signed-binary number in a register or memory location. The result (quotient) will 

be m AX and the remainder in DX. Important! - See CBW and CWD. fFlags 

~g|ted ~ °F fllndpfined^ SF (undefined), ZF (undefined). AF (undefined PF 
(undefined). CF (undefined!) -- 

Integer MULtiplication (signed) 

The IMUL instruction multiplies a signed binary number in a register or memory 

location times a signed number in AL if 8-bit or AX if 16-bit. If two 8-bit numbers 

are multiplied then a 16-bit answer will be found in AX. If two 16-bit numbers are 

multiplied then a 32-bit answer will be found in DX:AX (high byte in DX, low byte 

in AX). To multiply an 8-bit signed binary number by a 16-bit signed-binary 

number see the CBW instruction. fFlags affected - OF. CF. SF (undefined) 7F 

(undefined), AF (undefined). PF (undefined)] - 
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EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

MUL 

SBB 

SUB 

Logical Instructions 

AND 

NEG 

NOT 

MULtiply (unsigned) 
The MUL instruction multiplies an unsigned binary number in a register or memory 

location times an unsigned number in AL if 8-bit or AX if 16-bit. If two 8-bit 

numbers are multiplied then a 16-bit answer will be found in AX. If two 16-bit 

numbers are multiplied then a 32-bit answer will be found in DX:AX (high byte in 

DX, low byte in AX). [Flags affected - OF. CF. SF (undefined), ZF (undefined), 

AF (undefinedi. PF (undefined)! 

SuBtract with Borrow 
The SBB instruction is the same as the SUB instruction except that the value in the 

carry flag (CF) is also subtracted. That is, the source (second operand) and CF are 

both subtracted from the destination (first operand). The source and destination 

must both be either 8-bit or 16-bit. All values are assumed to be binary. [Flags 

affected - OF. SF. ZF. AF. PF. CF] 

SUBtract 
The SUB instruction subtracts the contents of a source (the second operand m 

8086/8088 assembly language) register, memory location, or an immediate number 

from the contents of a destination (the first operand in 8086/8088 assembly 

language) register or memory location. The result is placed in the destination 

location. The source and destination must both be of the same size (byte or word) 

and both cannot be memory locations. [Flags affected - CF, PF, AF, ZF, SF, OF] 

logical AND 
The AND instruction performs a logical AND of each bit of the source and 

destination operands. The source (second operand in 8086/8088 assembly language) 

can be an immediate number, register, or memory location. The destination can 

be a register or memory location. Both source and destination cannot be memory 

locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a 

segment register. After execution the source is unchanged but the destination will 

contain the result of the ANDing operation. [Flags affected - OF=Q, SF, ZF, PF, 

CF=0. AF (undefined)! 

NEGate (2’s complement) 
The NEG instruction produces the 2’s complement of a binary number. This can 

be done manually by inverting each bit then adding one (1). This instruction is also 

essentially the same as subtracting the number from zero. [Flags affected - OF, SF, 

ZF. AF. PF. CF1 

NOT 
The NOT instruction inverts every bit of the operand. The operand can be in a 

register or memory location. [Flags affected - nonel 
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OR 

The OR instruction performs a logical OR of each bit of the source and destination 

operands. The source (second operand in 8086/8088 assembly language) can be an 

immediate number, register, or memory location. The destination can be a register 

or memory location. Both source and destination cannot be memory locations 

Both operands can be 8-bit or both can be 16-bit. Neither can be a segment 

register. After execution the source is unchanged but the destination will contain 

the result of the ORing operation. [Flags affected - OF=Q. SF. ZF. PF CF=n AF 
(undefined-)] 1 1 1-4- 

exclusive OR 

The XOR instruction performs a logical XOR of each bit of the source and 

destination operands. The source (second operand in 8086/8088 assembly language) 

can be an immediate number, register, or memory location. The destination can 

be a register or memory location. Both source and destination cannot be memory 

locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a 

segment register. After execution the source is unchanged but the destination will 

contain the result of the XORing operation. [Flags affected - OF=Q SF ZF PF 
CF=Q, AF (undefined)] ~'l~’ * 

Shift Instructions 

Rotate through Carry to the Left 

CF -MSB -*-LSB * 

The RCL instruction rotates the bits of the destination as shown above. After an 

RCL instruction the destination will have rotated toward the left, the carry flag will 

hold the bit most recently rotated out of the MSB, and the LSB will hold the bit 

most recently rotated from the carry flag. The destination can be a register or 

memory location. If you want to rotate one bit position you specify a "1" in the 

instruction. If you want to rotate more than one bit position place the number of 
bits in the CL register and include that register in the instruction. 

Examples: 

RCL AX,1 

rotates AX one bit position 

RCL AX,CL 

rotates AX the number of bit positions indicated by the 
number held in the CL register. 

[Flags affected - OF CF] 
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RCR 

ROL 

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Rotate through Carry to the Right 

I—*- CF-► MSB-*- LSB —| 

The RCR instruction rotates the bits of the destination as shown above. After an 

RCR instruction the destination will have rotated toward the right, the carry flag 

will hold the bit most recently rotated from the LSB, and the MSB wall hold the bit 

most recently rotated from the carry flag. The destination can be a register or 

memory location. If you want to rotate one bit position you specify a "1" in the 

instruction. If you want to rotate more than one bit position place the number of 

bits in the CL register and include that register in the instruction. 

Examples: 

RCR AX,1 
rotates AX one bit position 

RCR AX,CL 
rotates AX the number of bit positions indicated by the 

number held in the CL register. 

[Flags affected - OF. CF1 

ROtate Left 

CF -*-MSB --LSB --1 

The ROL instruction rotates the bits of the destination as shown above. After an 

ROL instruction the destination will have rotated toward the left, and the carry flag 

and the LSB will both contain the same bit which was most recently rotated into 

them from the MSB. The destination can be a register or memory location. If you 

want to rotate one bit position you specify a "1" in the instruction. If you want to 

rotate more than one bit position place the number of bits in the CL register and 

include that register in the instruction. 

Examples: 

ROL AX,1 
rotates AX one bit position 

ROL AX,CL 
rotates AX the number of bit positions indicated by the 

number held in the CL register. 

[Flags affected - OF. CF1 
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ROR 

SAL/SHL 

ROtate Right 

CF MSB-*- LSB-1 

The ROR instruction rotates the bits of the destination as shown above. After an 

ROR instruction the destination will have rotated toward the right, and the carry 

flag and the MSB will both contain the same bit which was most recently rotated 

into them from the LSB. The destination can be a register or memory location. 

If you want to rotate one bit position you specify a "1" in the instruction. If you 

want to rotate more than one bit position place the number of bits in the CL 
register and include that register in the instruction. 

Examples: 

ROR AX,1 

rotates AX one bit position 

ROR AX.CL 

rotates AX the number of bit positions indicated by the 
number held in the CL register. 

fFlaes affected - OF. CF] 

Shift Arithmetic Left/SHift logical Left 

CF ■*-MSB-*-LSB -*-0 

The SAL or SHL instruction shifts the bits of the destination as shown above. 

After an SAL/SHL instruction the destination will have shifted toward the left, the 

carry flag will contain the bit most recently shifted out of the MSB, and the LSB 

will contain a 0. The destination can be a register or memory location. If you want 

to rotate one bit position you specify a "1" in the instruction. If you want to rotate 

more than one bit position place the number of bits in the CL register and include 
that register in the instruction. 

Examples: 

SHL AX,1 

rotates AX one bit position 

SHL AX,CL 

rotates AX the number of bit positions indicated by the 
number held in the CL register. 

(Debug Note: DEBUG only allows the SHL mnemonic.) 

fFlaes affected - OF. SF. ZF. PF. CF. AF (undefinpHi] 
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Shift Arithmetic Right 

i-► MSB-► LSB-► CF 

The SAR instruction shifts the bits of the destination as shown above. After an 

SAR instruction the destination will have shifted to the right, the MSB will contain 

what it did before the instruction (i.e,, it duplicates itself and shifts a copy of itself 

to the right), and the carry flag will hold the bit most recently shifted out of the 

LSB. The destination can be a register or memory location. If you want to rotate 

one bit position you specify a "1" in the instruction. If you want to rotate more than 

one bit position place the number of bits in the CL register and include that 

register in the instruction. 

Examples: 

SAR AX,1 
rotates AX one bit position 

SAR AX,CL 
rotates AX the number of bit positions indicated by the 

number held in the CL register. 

[Flavs affected - OF. SF. ZF. PF, CF. AF /undefined)! 

SHift logical Right 

0-►MSB-► LSB-►CF 

The SHR instruction shifts the bits of the destination as shown above. After an 

SHR instruction the destination will have shifted toward the right, the MSB will 

contain a 0, and the carry flag will hold the bit most recently shifted in from the 

LSB. The destination can be a register or memory location. If you want to rotate 

one bit position you specify a "1" in the instruction. If you want to rotate more than 

one bit position place the number of bits in the CL register and include that 

register in the instruction. 

Examples: 

SHR AX,1 
rotates AX one bit position 

SHR AX,CL 
rotates AX the number of bit positions indicated by the 

number held in the CL register. 

[Flags affected - OF. SF. ZF. PF. CF. AF (undefined)] 
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Increment and Decrement Instructions 

DEC DECrement 

The DEC instruction decreases the value in the destination by 1. The destination 

is assumed to be a binary number and can be a register (except a segment register) 

or memory location. It is worthwhile to note that the CF is not affected by this 
instruction. fFlags affected - OF. SF. ZF. AF. PF] 

INC INCrement 

The INC instruction increases the value in the destination by 1. The destination is 

assumed to be a binary number and can be a register (except a segment register) 

or memory location. It is worthwhile to note that the CF is not affected by this 
instruction. fFlags affected - OF. SF. ZF. AF. PF] 

Unconditional .Tump Instructions 

imp jump 

JMP is an unconditional jump instruction which causes the 8086/8088 to continue 

executing instructions at some other place in the program. The jump can be 

classified as short, near, or for. The short and near instructions are relative to the 

current instruction pointer (IP) location. Since the IP always points to the next 

instruction to be executed you start counting forward or backward from the next 

instruction after the JMP instruction. A short jump can be up to a maximum of 

127 memory bytes forward from the current IP position (7E16 or +12710) or up to 

128 memory bytes backward from the current IP position (8016 or -12810). A near 

jump can be anywhere within the current 64K code segment. The assembler will 

calculate this as being up to 32,767 bytes forward (7FFF16 or +32,76710) or 32,768 

bytes backward (800016 or -32,76810) from the current IP position. A far jump can 

be anywhere in the 1-Mbyte addressing range of the 8086/8088. The far jump 

specifies both the desired code segment (CS) and the desired instruction pointer 

(IP). Debug Note: When you want to JMP you do not need to be concerned about 

calculating the distance forward or backward from the current instruction pointer 

(IP) position. Simply specify the location you want to go to in the form 

JMP XXXX 

where XXXX is the memory location (and therefore the desired instruction pointer 

value) for the short and near jumps and DEBUG will determine whether this is a 

forward or backward jump and will calculate the exact distance for you. Likewise 

if you want to use the value in a register as your destination simply specify that 

register and Debug will calculate the relative jump distance for you. In the case 
of the far jump specify the location you want to jump to in the form 

JMP YYYY:XXXX 

where YYYY is the code segment (CS) and XXXX is the instruction pointer (IP). 
[Flags affected - none] 
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Test (Compare) Instructions 

CMP CoMPare 
The CMP instruction is used to compare two operands for the purpose of affecting 

flags according to the outcome. That is, the compare instruction subtracts the 

source operand (the second operand) from the destination (the first operand). 

Neither operand is changed; only the flags are affected. The source can be an 

immediate number, a register, or a memory location. The destination can be a 

register or memory location. Both operands cannot be memory locations. [Flags 

affected - OR SF. ZF. AF, PF, CB 

TEST TEST 
The TEST instruction ANDs the source and destination operands but neither stores 

a result nor changes either operand. Rather, the flags are affected by the ANDing. 

This is useful before a conditional jump instruction. The source can be an 

immediate number, register, or memory location. The destination can be a register 

or memory location. Both operands cannot be memory locations. [Flags affected : 

OF=0. CF=0. SF. ZF. AF (undefined^ PF (only lower 8 bits of destination)] 

Conditional Jump (Branch) Instructions 

JA/JNBE Jump if Above/Jump if Not Below nor Equal 
The JA/JNBE conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if CF=0 and if ZF=0 (both must be 0). If this 

condition is not true no jump occurs. When used after CMP, this instruction is 

referring to the unsigned values of the operands used by the CMP instruction. 

DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG 

always disassembles this op code as JA. [Flags affected - nonel 

JAE/JNB/JNC Jump if Above or Equal/Jump if Not Below/Jump if No Carry 
The JAE/JNB/JNC conditional jump instruction will cause program execution to 

transfer to another location in a range from +127 bytes to -128 bytes from the 

instruction following the jump instruction if CF=0. If this condition is not true no 

jump occurs. When used after CMP, this instruction is referring to the unsigned 

values of the operands used by the CMP instruction. Debug Note: Regardless of 

which mnemonic is used during assembly, DEBUG always disassembles this op code 

as JNB. [Flags affected - nonel 

JB/JNAE/JC Jump if Below/Jump if Not Above nor Equal/Jump if Carry 

The JB/JNAE/JC conditional jump instruction will cause program execution to 

transfer to another location in a range from +127 bytes to -128 bytes from the 

instruction following the jump instruction if CF = 1. If this condition is not true no 

jump occurs. When used after CMP, this instruction is referring to the unsigned 

values of the operands used by the CMP instruction. DEBUG Note: Regardless of 

which mnemonic is used during assembly, DEBUG always disassembles this op code 

as JB. [Flags affected - nonel 
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JBE/JNA 

JCXZ 

JE/JZ 

JG/JNLE 

JGE/JNL 

Jump if Below or Equal/Jump if Not Above 

The JBE/JNA conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if CF=0 or ZF=1. If this condition is not true no 

jump occurs. When used after CMP, this instruction is referring to the unsigned 

values of the operands used by the CMP instruction. Debug Note: Regardless of 

which mnemonic is used during assembly, Debug always disassembles this op code 
as JBE. [Flags affected - none] 

Jump if CX register is Zero 

The JCXZ conditional jump instruction will cause program execution to transfer to 

another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if the CX register is 0. If this condition is not true 
no jump occurs. [Flags affected - none] 

Jump if Equal to/jump if Zero 

The JE/JZ conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if ZF=1. If this condition is not true no jump 

occurs. When used after CMP, this instruction is referring to the values of the 
operands used by the CMP instruction. Debug Note: Regardless of which 

mnemonic is used during assembly, Debug always disassembles this op code as 
JZ. [Flags affected - none] 

Jump if Greater/Jump if Not Less than nor Equal 

The JG/JNLE conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if (SF XOR OF) OR ZF = 0. To say it another 

way, the jump occurs if the sign flag and the overflow flag are equal (both 0 or both 

1) at the same time that the zero flag is 0. Only two combinations are possible. 

If SF=0, OF=0, and ZF=0 the jump occurs; or if SF=1, OF=l, and ZF=0 the 

jump also occurs. If this condition is not true no jump occurs. When used after 

CMP, this instruction is referring to the signed values of the operands used by the 

CMP instruction. DEBUG Note: Regardless of which mnemonic is used during 

assembly, DEBUG always disassembles this op code as JG. [Flags affected - non*] 

Jump if Greater than or Equal/Jump if Not Less 

The JGE/JNL conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if SF=OF. If this condition is not true no jump 

occurs. When used after CMP, this instruction is referring to the signed values of 

the operands used by the CMP instruction. DEBUG Note: Regardless of which 

mnemonic is used during assembly, Debug always disassembles this op code as 
JGE. [Flags affected - none] 
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JL/JNGE Jump if Less/Jump if Not Greater than nor Equal 
The JGE/JNL conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if the SF does not equal the OF. If this condition 

is not true no jump occurs. When used after CMP, this instruction is referring to 

the signed values of the operands used by the CMP instruction. Debug Note: 

Regardless of which mnemonic is used during assembly, DEBUG always 

disassembles this op code as JL. [Flags affected - none! 

JLE/JNG Jump if Less than or Equal/Jump if Not Greater 
The JLE/JNG conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if (SF XOR OF) OR ZF = 1. To say it another 

way, the jump occurs if the sign flag and the overflow flag are not equal, or if the 

zero flag is 0. Only two combinations do not produce the jump. If SF = 0, OF=0, 

and ZF=0 then no jump occurs; or if SF=1, OF=l, and ZF=0 then no jump 

occurs. When used after CMP, this instruction is referring to the signed values of 

the operands used by the CMP instruction. Debug Note: Regardless of which 

mnemonic is used during assembly, Debug always disassembles this op code as 

JLE. [Flags affected - nonel 

JNE/JNZ Jump if Not Equal to/jump if Not Zero 
The JNE/JNZ conditional jump instruction will cause program execution to transfer 

to another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if ZF = 0. If this condition is not true no jump 

occurs. When used after CMP, this instruction is referring to the values of the 

operands used by the CMP instruction. DEBUG Note: Regardless of which 

mnemonic is used during assembly, DEBUG always disassembles this op code as 

JNZ. [Flags affected - nonel 

JNO Jump if Not Overflow 
An overflow occurs when the result of a signed arithmetic operation is too large to 

fit in the register or memory location. The JNO conditioned jump instruction will 

cause program execution to transfer to another location in a range from +127 bytes 

to -128 bytes from the instruction following the jump instruction if OF = 0, that is, 

if an overflow has not occurred. If this condition is not true no jump occurs. 

[Flags affected - nonel 

JNP/JPO Jump if Not Parity/Jump if Parity Odd 
When the result of an operation which affects the parity flag has a result which has 

an odd number of Is in it then the PF=0. The JNP/JPO conditional jump 

instruction will cause program execution to transfer to another location in a range 

from +127 bytes to -128 bytes from the instruction following the jump instruction 

if PF=0. If this condition is not true no jump occurs. Debug Note: Regardless of 

which mnemonic is used during assembly, Debug always disassembles this op code 

as JPO. [Flags affected - nonel 
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Jump if Not Sign 

The JNS conditional jump instruction will cause program execution to transfer to 

another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if SF=0. If this condition is not true no jump occurs. 

Since a 0 in the sign flag occurs when the result of the last operation was a 

positive signed number, this instruction is essentially saying to jump if the last 

operation produced a positive signed result. fFlags affected - none] 

Jump if Overflow 

An overflow occurs when the result of a signed arithmetic operation is too large to 

fit in the register or memory location. The JO conditional jump instruction will 

cause program execution to transfer to another location in a range from +127 bytes 

to -128 bytes from the instruction following the jump instruction if OF=l, that is, 

if an overflow has occurred. If this condition is not true no jump occurs. fFlags 
affected - none] 

Jump if Parity/Jump if Parity Even 

When the result of an operation which affects the parity flag has a result which has 

an even number of Is in it then the PF=1. The JP/JPE conditional jump 

instruction will cause program execution to transfer to another location in a range 

from +127 bytes to -128 bytes from the instruction following the jump instruction 

if PF= 1. If this condition is not true no jump occurs. DEBUG Note: Regardless of 

which mnemonic is used during assembly, Debug always disassembles this op code 
as JPE. fFlags affected - none] 

Jump if Sign 

The JS conditional jump instruction will cause program execution to transfer to 

another location in a range from +127 bytes to -128 bytes from the instruction 

following the jump instruction if SF= 1. If this condition is not true no jump occurs. 

Since a 1” in the sign flag occurs when the result of the last operation was a 

negative signed number, this instruction is essentially saying to jump if the last 

operation produced a negative signed result. fFlags affected - none] 

CALL procedure 

The CALL instruction causes the 8086/8088 to leave its current location in the 

program and to begin executing a procedure (a small special purpose program or 

subroutine located in a different place in memory) and then automatically return 

after that procedure is finished. The call can be classified as near or far. The near 

instruction is relative to the current instruction pointer (IP) location. Since the IP 

always points to the next instruction to be executed you start counting forward or 

backward from the next instruction after the CALL instruction. A near call can be 

anywhere within the current 64K code segment. The assembler will calculate this 

as being up to 32,767 bytes forward (7FFF16 or +32,76710) or 32,768 bytes backward 

(800016 or -32,76810) from the current IP position. When a near call is executed the 

contents of the instruction pointer (IP) are pushed onto the stack so that the 

8086/8088 will know where to return after the procedure has been finished. A far 

call can be anywhere in the 1-Mbyte addressing range of the 8086/8088. The far 

call specifies both the desired code segment (CS) and the desired instruction pointer 
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(IP). When a far call is executed the contents of both the instruction pointer (IP) 

and the code segment (CS) are pushed onto the stack so that the 8086/8088 will 

know where to return after the procedure has been finished. Debug Note: When 

you want to CALL a procedure you do not need to be concerned about calculating 

the distance forward or backward from the current instruction pointer (IP) 

position. Simply specify the location of the procedure in the form 

CALL XXXX 

where XXXX is the memory location (and therefore the desired instruction pointer 

value) for the near call and DEBUG will determine whether that location is forward 

or backward and will calculate the exact distance for you. Likewise if you want 

to use the value in a register as your destination simply specify that register and 

DEBUG will calculate the relative distance for you. In the case of a far call specify 

the location of the procedure in the form 

CALL YYYYiXXXX 

where YYYY is the code segment (CS) and XXXX is the instruction pointer (IP). 

(See also RETurn.) [Flags affected - none] 

RETurn from subroutine 

The RET instruction is placed at the end of a procedure or subroutine. It marks 

the end of that procedure and causes the 8086/8088 to return to the instruction 

immediately following the CALL instruction which began this particular procedure. 

The 8086/8088 knows where to return because the CALL instruction pushed the 

contents of the instruction pointer (IP) onto the stack. The RET instruction pops 

the value of the IP from the stack and places it in the IP. In the case of a far call 

the return instruction pops both the IP value and the code segment (CS) value from 

the stack. DEBUG Note: Debug accepts both RET and RETN as the mnemonics 

for a return from a near call. When disassembled both will appear as RET. To 

specify a return from a far call the mnemonic RETF must be used and it will be 

disassembled as RETF. [Flags affected - none] 

POP from stack 

The POP instruction copies the word at the top of the stack to the destination 

operand. The destination can be a general-purpose register, segment register, or 

two consecutive memory locations. (The CS register is illegal.) After the POP, the 

stack pointer (SP) is incremented by 2 to point to the new top-of-stack. [Flags 

affected - none] 

POP Flags from stack 

The POPF instruction copies the word at the top of the stack into the flag register, 

replacing the values of all flags. The stack pointer (SP) is then incremented by 2. 

(Using POPF and PUSHF provides a way to change the TF. There is no 

instruction for directly altering this flag.) [Flags affected - OF. DF. IF. TF. SF. ZF. 

AF, PF, CF] 
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PUSH PUSH onto stack 

The PUSH instruction decrements the stack pointer (SP) by 2 and then copies the 

source operand (word) to the new top-of-stack. The source can be a general- 

purpose register, segment register, or two consecutive memory locations. [Flags 
affected - none] 

PUSHF PUSH Flags onto stack 

The PUSHF instruction decrements the stack pointer (SP) by 2 and then copies the 
flag register to the new top-of-stack. fFlaes affected - none] 

Interrupt Instructions 

I NT INTerrupt 

The INT instruction causes program execution to be transferred to a special type 

of routine whose address is pointed to by an interrupt vector. There are 256 

interrupt vectors in memory locations OOOOOh to 003FFh. Each vector is 4 bytes in 

length and contains the address (CS:IP) of the routine which handles this particular 

type of interrupt. The INT operand is a decimal number from 0 through 255 which 

identifies which interrupt vector is to be used. The actual memory location of the 

interrupt is calculated by multiplying the operand by 4. That answer forms the 

decimal equivalent of the beginning of the four memory locations which hold the 

interrupt vector. When the INT instruction is executed the following occur: 

1. The stack pointer is decremented by 2 and the flags are pushed onto the 
stack. 

2. IF and TF are cleared. 

3. The stack pointer is decremented by 2 and CS is pushed onto the stack. 

4. The new CS is fetched from the interrupt vector and the interrupt vector 
+ 1. 

5. The stack pointer is decremented by 2 and IP is pushed onto the stack. 

6. The new IP is fetched from the interrupt vector + 2 and the interrupt 
vector + 3. 

7. Begin execution of the interrupt routine located at memory location CS:IP. 

The routine will continue until a IRET instruction is encountered, at which point 

program execution will pick up where it left off immediately after the INT 
instruction. fFlaes affected - IF and TF] 

INTO INTerrupt on Overflow 

The INTO instruction initiates a software interrupt which is, in all respects, the 

same as that produced by the INT instruction except that the INTO instruction is 

conditional, and the operand cannot be specified but is automatically type 4. That 

is, the INTO instruction will branch to the interrupt routine only if OF = 1 and there 

is no choice as to where the interrupt vector will come from. It will always be a 
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type 4 interrupt which is held in the 4 bytes starting at memory location lOh. This 

instruction is most often used after arithmetic operations to handle any overflow 

conditions. See the discussion for the I NT instruction for more details, [Flags 

affected - IF and TF1 

TRET Interrupt RETurn 
The IRET instruction is used to return from an interrupt routine (whether a 

hardware or software interrupt). The IP, CS, and flags are all popped from the 

stack and program execution continues from the instruction immediately following 

the INT instruction. The IRET instruction has no operand. [Flags affected - OF, 

DF. IF. TF. SF. ZF. AF, FF. CF1 

Input-Output Instructions 

IN INput 
The IN instruction allows a byte or word to be acquired from an I/O device 

[source] and placed in AL (byte) or AX (word) [destination]. An I/O address 

[source operand] from OOh through FFh can be specified directly in the instruction. 

If an address larger than FFh is desired a 16-bit address can be placed in DX used 

as the source operand in the IN instruction. Only AX and AL can be used as 

destinations [destination operand] by the IN instruction. 

Example: 

IN AL,45 copy a byte from I/O address 45h into AL 

IN AX,78 copy a word from I/O address 78h into AX 

IN AL,DX copy a byte from the I/O address pointed to by the contents 

of DX and place in AL 

I/O port addresses F8h through FFh are reserved by Intel for future hardware and 

software products and should not be used for any other purpose. [Flags affected - 

none] 

OUT OUTput 

The OUT instruction allows a byte or word to be sent from AL (byte) or AX 

(word) [source] to an I/O device [destination]. An I/O address [destination 

operand] from OOh through FFh can be specified directly in the instruction. If an 

address larger than FFh is desired a 16-bit address can be placed in DX used as the 

destination operand in the OUT instruction. Only AX and AL can be used as 

sources [source operand] by the OUT instruction. 

Example: 

OUT 45,AL copy a byte from AL to I/O address 45h 
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OUT 78,AX copy a word from AX to I/O address 78h 

String Instructions 

CMPS/CMPSB/CMPSW 

LODS/LODSB/LODSW 

MOVS/MOVSB/MOVSW 

OUT DX,AL copy a byte from AL to the I/O address pointed to by the 

contents of DX 

I/O port addresses F8h through FFh are reserved by Intel for future hardware and 

software products and should not be used for any other purpose. IFlags affected - 
none] 

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word 

The CMPS/CMPSB/CMPSW instruction is used to compare the contents of two 

memory bytes, two words, or two entire sections of memory. The SI (source index) 

is used to point to the source in the DS (data segment). The DI (destination index) 

is used to point to the destination in the ES (extra segment). The 8086/8088 makes 

the comparison by subtracting the destination from the source. Neither operand is 

changed by the comparison; only flags are affected. After the comparison DI and 

SI are automatically incremented (if DF=0) or decremented (if DF=1). The 

increment/decrement is 1 if the CMPB mnemonic is used or 2 if CMPW is used. 

The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used with this 
instruction to compare an entire section of memory. Debug Note: Only the 

CMPSB and CMPSW mnemonics are accepted by DEBUG. [Flags affected - OF. 
SF. ZF. AF. PF. CF] 

LOaD String/LOaD String Byte/LOaD String Word 

The LODS/LODSB/LODSW instruction loads (copies) either a byte (LODSB) 

from the memory location pointed to by SI into AL, or a word (LODSW) from the 

memory location pointed to by SI into AX. SI is either automatically incremented 

by 1 (LODSB) or by 2 (LODSW) if DF=0, or SI is automatically decremented by 

1 (LODSB) or by 2 (LODSW) if DF=1. The REP/REPE/REPZ and 

REPNE/REPNZ repeat prefixes can be used with this instruction. DEBUG Note: 

Debug only accepts the LODSB and LODSW mnemonics. IFlags affected - none], 

MOVe String/MOVe String Byte/MOVe String Word 

The MOVS/MOVSB/MOVSW instruction is used to transfer the contents of a 

block of memory to another area in memory. The SI (source index) is used to 

point to the source in the DS (data segment). The DI (destination index) is used 

to point to the destination in the ES (extra segment). After the move DI and SI 

are automatically incremented (if DF=0) or decremented (if DF=1). The 

increment/decrement is 1 if the MOVSB mnemonic is used or 2 if MOVSW is 

used. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used 

with this instruction to move an entire section of memory. Debug Note: Only the 

MOVSB and MOVSW mnemonics are accepted by Debug, fFlags affected - none] 
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REP/REPE/REPZ 

REPNE/REPNZ 

SCAS/SCASB/SCASW 

STOS/STOSB/STOSW 

Loop Instructions 

LOOP 

REPeat/REPeat if Equal/REPeat if Zero 
REP/REPE/REPZ is a prefix which causes string instructions to be repeated the 

number of times indicated by the value in CX. Each time the string instruction is 

repeated CX is decremented by one. This continues 1) in the case of MOVS and 

STOS, until CX = 0, or 2) in the case of CMPS and SCAS, until either CX=0 or 

the compared bytes or words are not equal (ie. ZF=0). Debug Note: REP, REPE, 

and REPZ are all mnemonics for the same op code and Debug disassembles all 

of them as REPZ. [Flags affected - nonel 

REPeat if Not Equal/REPeat if Not Zero 

REPNE/REPNZ is a prefix which causes string instructions to be repeated the 

number of times indicated by the value in CX. Each time the string instruction is 

repeated CX is decremented by 1. This continues 1) in the case of MOVS and 

STOS, until CX = 0, or 2) in the case of CMPS and SCAS, until either CX = 0 or 

the compared bytes or words are equal (ie. ZF=1). DEBUG Note: REPNE and 

REPNZ are mnemonics for the same op code and DEBUG disassembles all of them 

as REPNZ. [Flags affected - none] 

SCAn String/SCAn String Byte/SCAn String Word 

The SCAS/SCASB/SCASW instruction is used to check a string for the occurrence 

or non-occurrence of a particular byte or word. The instruction accomplishes this 

by subtracting the byte or word in the extra segment (ES) which is pointed to by 

DI from AL (if a byte) or AX (if a word). Neither the contents of the string nor 

those of AX/AL are changed; however the flags are affected by the operation. 

After the operation, DI is automatically incremented (if DF = 0) or decremented (if 

DF = 1). DI will be incremented or decremented by 1 for byte scans or by 2 for 

word scans. The REP/REPE/REPZ prefix can be used to scan for the non¬ 

occurrence of a byte or word. The REPNE/REPNZ prefix can be used to scan for 

the occurrence of a byte or word. Debug Note: Debug only recognizes the SCASB 

and SCASW mnemonics. [Flags affected - OF. SF. ZF. AF. PF. CF1 

STOre String/STOre String Byte/STOre String Word 

The STOS/STOSB/STOSW instruction copies a byte from AL or a word from AX 

to a memory location in the extra segment (ES) pointed to by DI. After the 

operation, DI is automatically incremented (if DF=0) or decremented (if DF=1). 

DI will be incremented or decremented by 1 for a byte store or by 2 for a word 

store. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used 

with this instruction to store a certain value in a range of memory locations. 

DEBUG Note: Only the STOSB and STOSW mnemonics are accepted by DEBUG. 

[Flags affected - nonel 

LOOP 

The LOOP instruction provides a way to repeat a group of instructions the number 

of times indicated by the value in the CX register. The LOOP instruction 

unconditionally transfers program execution to a memory location in the range of - 

128 to +127 bytes from the address of the instruction immediately following the 
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LOOP instruction if CX > 0. Each time the LOOP instruction is executed CX is 

decremented by 1; then the value of CX is checked. If CX > 0, program execution 

will branch to the location indicated by the operand of the LOOP instruction. If 

CX = 0, the program does not branch and the instruction immediately following 

the LOOP instruction is executed next. As CX is decremented wraparound occurs 
from OOOOh to FFFFh. 1 Flags affected - none] 

LOOPE/LOOPZ LOOP while Equal/LOOP while Zero 

The LOOPE/LOOPZ instruction provides a way to repeat a group of instructions 

the number of times indicated by the value in the CX register. The 

LOOPE/LOOPZ instruction transfers program execution to a memory location in 

the range of -128 to +127 bytes from the address of the instruction immediately 

following the LOOP instruction if CX > 0 and ZF=1. Each time the LOOP 

instruction is executed CX is decremented by 1; then the values of CX and ZF are 

checked. If CX > 0, program execution will branch to the location indicated by the 

operand of the LOOP instruction if ZF=1 also. If either CX = 0 or ZF=0, the 

program does not branch, and the instruction immediately following the LOOP 

instruction is executed next. As CX is decremented wraparound occurs from OOOOh 
to FFFFh. fFlags affected - none] 

LOOPNE/LOOPNZ LOOP while Not Equal/LOOP while Not Zero 

The LOOPNE/LOOPNZ instruction provides a way to repeat a group of 

instructions the number of times indicated by the value in the CX register. The 

LOOPNE/LOOPNZ instruction transfers program execution to a memory location 

in the range of -128 to +127 bytes from the address of the instruction immediately 

following the LOOP instruction if CX > 0 and ZF=0. Each time the LOOP 

instruction is executed CX is decremented by 1; then the values of CX and ZF are 

checked. If CX > 0, program execution will branch to the location indicated by the 

operand of the LOOP instruction if ZF=0 also. If either CX = 0 or ZF=1, the 

program does not branch, and the instruction immediately following the LOOP 

instruction is executed next. As CX is decremented wraparound occurs from OOOOh 
to FFFFh. IFlags affected - none] 

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY 

CPU Control Instructions 

ESC ESCape 
HLT HaLT 
LOCK LOCK 
NOP No OPeration 
WAIT WAIT 
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CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Data Transfer Instructions 

LAHF Load AH from Flag 

LDS Load Data Segment 

LEA Load Effective Address 

LES Load Extra Segment 

MOV MOVe 

SAHF Store AH in Flags 

XCHG eXCHanGe 

XLAT trans(X)LATe 

Flag Instructions 

CLC CLear Carry flag 

CLD CLear Direction flag (auto-increment) 

CLI CLear Interrupt-enable flag 

CMC CoMplement Carry flag 

STC SeT Carry flag 

STD SeT Direction flag (auto-decrement) 

STI SeT Interrupt enable flag 

Arithmetic Instructions 

AAA ASCII Adjust for Addition 

AAD ASCII Adjust for Division 

AAM ASCII Adjust for Multiplication 

AAS ASCII Adjust for Subtraction 

ADC AdD with Carry 

ADD ADD 

CBW Convert Byte to Word 

CWD Convert Word to Double word 

DAA Decimal Adjust for Addition 

DAS Decimal Adjust for Subtraction 

DIV Divide (unsigned) 

IDIV Integer Division (signed) 

IMUL Integer MULtiplication (signed) 

MUL MULtiply (unsigned) 

SBB SuBtract with Borrow 

SUB SUBtract 

Logical Instructions 

AND logical AND 

NEC NEGate (2’s complement) 

NOT NOT 

OR OR 

XOR exclusive OR 
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Rotate and Shift Instructions 

RCL Rotate through Carry to the Left 
RCR Rotate through Carry to the Right 
ROL ROtate Left 
ROR ROtate Right 
SAL/SHL Shift Arithmetic Left/SHift logical LefT 
SAR Shift Arithmetic Right 
SHR SHift logical Right 

Increment and Decrement Instructions 

DEC DECrement 
INC INCrement 

Unconditional .TumD Instructions 

JMP Jump 

Test (Compare) Instructions 

CMP CoMPare 
TEST TEST 

Conditional .TumD (Branch) Instructions 

JA/JNBE Jump if Above/Jump if Not Below nor Equal 
JAE/JNB/JNC Jump if Above or Equal/Jump if Not Below/Jump if No Carry 
JB/JNAE/JC Jump if Below/Jump if Not Above nor Equal/Jump if Carry 
JBE/JNA Jump if Below or Equal/Jump if Not Above 
JCXZ Jump if CX register is Zero 
JE/JZ Jump if Equal to/jump if Zero 
JG/JNLE Jump if Greater/Jump if Not Less than nor Equal 
JGE/JNL Jump if Greater than or Equal/Jump if Not Less 
JL/JNGE Jump if Less/Jump if Not Greater than nor Equal 
JLE/JNG Jump if Less than or Equal/Jump if Not Greater 
JNE/JNZ Jump if Not Equal to/jump if Not Zero 
JNO Jump if Not Overflow 
JNP/JPO Jump if Not Parity/Jump if Parity Odd 
JNS Jump if Not Sign 
JO Jump if Overflow 
JP/JPE Jump if Parity/Jump if Parity Even 
JS Jump if Sign 
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CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Subroutine Instructions 

CALL 

RET 

Stack Instructions 

POP 

POPF 

PUSH 

PUSHF 

Interrupt Instructions 

INT 

INTO 

IRET 

Input-Output Instructions 

IN 

OUT 

String Instructions 

CMPS/CMPSB / CMPSW 

LODS/LODSB/LODSW 

MO VS/MO VSB/MO VSW 

REP/REPE/REPZ 

REPNE/REPNZ 

SCAS/SCASB/SCASW 

STOS/STOSB/STOSW 

Loop Instructions 

LOOP 
LOOPE/LOOPZ 

LOOPNE/LOOPNZ 

CALL procedure 

RETurn from subroutine 

POP from stack 

POP Flags from stack 

PUSH onto stack 

PUSH Flags onto stack 

INTerrupt 

INTerrupt on Overflow 

Interrupt RETurn 

INput 

OUTput 

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word 

LOaD String/LOaD String Byte/LOaD String Word 

MOVe String/MOVe String Byte/MOVe String Word 

REPeat/REPeat if Equal/REPeat if Zero 

REPeat if Not Equal/REPeat if Not Zero 

SCAn String/SCAn String Byte/SCAn String Word 

STOre String/STOre String Byte/STOre String Word 

LOOP 
LOOP while Equal/LOOP while Zero 

LOOP while Not Equal/LOOP while Not Zero 
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CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED ALPHABETICALLY 

AAA 

AAD 

AAM 

AAS 

ADC 

ADD 

AND 

CALL 

CBW 

CLC 

CLD 

CLI 

CMC 
CMP--- 

CMPS/CMPSB/CMPSW 
CWD 

DAA 

DAS 

DEC 

DIV 

ESC 

HLT 

IDIV 

IMUL 

IN 

INC 

INT 

INTO 

IRET 

JA/JNBE 

JAE/JNB/JNC 

JB/JNAE/JC 
JBE/JNA 

JCXZ 

JE/JZ 

JG/JNLE 

JGE/JNL 

JL/JNGE 

JLE/JNG 
JMP 

JNE/JNZ 

JNO 

JNP/JPO 

JNS 

JO 

JP/JPE 
JS 

LAHF 

LDS 

ASCII Adjust for Addition 

ASCII Adjust for Division 

ASCII Adjust for Multiplication 

ASCII Adjust for Subtraction 

AdD with Carry 

ADD 

logical AND 

CALL procedure 

Convert Byte to Word 
CLear Carry flag 

CLear Direction flag (auto-increment) 

CLear Interrupt-enable flag 

CoMplement Carry flag 

CoMPare 

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word 
Convert Word to Double word 

Decimal Adjust for Addition 

Decimal Adjust for Subtraction 

DECrement 

Divide (unsigned) 

ESCape 

HaLT 

Integer Division (signed) 

Integer MULtiplication (signed) 
INput 

INCrement 

INTerrupt 

INTerrupt on Overflow 

Interrupt RETurn 

Jump if Above/Jump if Not Below nor Equal 

Jump if Above or Equal/Jump if Not Below/Jump if No Carry 

Jump if Below/Jump if Not Above nor Equal/Jump if Carry 

Jump if Below or Equal/Jump if Not Above 

Jump if CX register is Zero 

Jump if Equal to/jump if Zero 

Jump if Greater/Jump if Not Less than nor Equal 

Jump if Greater than or Equal/Jump if Not Less 

Jump if Less/Jump if Not Greater than nor Equal 

Jump if Less than or Equal/Jump if Not Greater 

JuMP unconditional 

Jump if Not Equal to/jump if Not Zero 

Jump if Not Overflow 

Jump if Not Parity/Jump if Parity Odd 
Jump if Not Sign 

Jump if Overflow 

Jump if Parity/Jump if Parity Even 
Jump if Sign 

Load AH from Flag 

Load Data Segment 
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CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED ALPHABETICALLY (Continued) 

LEA 

LES 

LOCK 
LODS/LODSB/LODSW 

LOOP 
LOOPE/LOOPZ 

LOOPNE/LOOPNZ 

MOV 

MO VS/MO VSB/MOVSW 

MUL 

NEC 

NOP 

NOT 

OR 

OUT 

POP 

POPF 

PUSH 

PUSHF 

RCL 

RCR 
REP/REPE/REPZ 

REPNE/REPNZ 

RET 

ROL 

ROR 

SAHF 

SAL/SHL 

SAR 

SBB 

SCAS/SCASB/SCASW 

SHR 

STC 

STD 

STI 

STOS/STOSB/STOSW 

SUB 

TEST 

WAIT 

XCHG 

XLAT 

XOR 

Load Effective Address 

Load Extra Segment 

LOCK 
LOaD String/LOaD String Byte/LOaD String Word 

LOOP 

LOOP while Equal/LOOP while Zero 

LOOP while Not Equal/LOOP while Not Zero 

MOVe 
MOVe String/MOVe String Byte/MOVe String Word 

MULtiply (unsigned) 

NEGate (2’s complement) 

No OPeration 

NOT 

OR 

OUTput 

POP from stack 

POP Flags from stack 

PUSH onto stack 

PUSH Flags onto stack 

Rotate through Carry to the Left 

Rotate through Carry to the Right 

REPeat/REPeat if Equal/REPeat if Zero 

REPeat if Not Equal/REPeat if Not Zero 

RETurn from subroutine 

ROtate Left 

ROtate Right 

Store AH in Flags 

Shift Arithmetic Left/SHift logical Left 

Shift Arithmetic Right 

SuBtract with Borrow 

SC An String/SCAn String Byte/SCAn String Word 

SHift logical Right 

SeT Carry flag 

SeT Direction flag (auto-decrement) 

SeT Interrupt enable flag 

STOre String/STOre String Byte/STOre String Word 

SUBtract 

TEST 

WAIT 

eXCHanGe (source with destination) 

trans(X)LATe 

exclusive OR 
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EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY 

Mne- Operation Boolean/Arith Flags Address Assembler Op ~ # 

mon'c _ Operation NV-BDIZC Mode Notation 

CPU Control Instructions 

NOP No Operation Nothing xx-xxxxx Implied NOP EA 2 1 

BRK BReaK (forced 

interrupt) 

PC + 2 S 

SP - 2 -> SP 

PSR -> S 

SP - 1 -» s 
SFFFE -» PC 

xx-lxlxx Implied BRK 00 7 1 

Data Transfer Instructions 

LDA LoaD Accumulator M -» A Nx-xxxZx Immediate LDA #$dd A9 2 2 
Absolute LDA $aaaa AD 4 3 
Zero Page LDA $aa A5 3 2 
Indxd Indct LDA ($ff,X) A1 6 2 
IndctIndxd LDA ($aa),Y B1 5* 2 
Zero page,X LDA $ff,X B5 4 2 

Absolute,X LDA $ffff,X BD 4* 3 
Absolute,Y LDA $ffff,Y B9 4* 3 

LDX LoaD X register M X Nx-xxxZx Immediate LDX #$dd A2 2 2 
Absolute LDX $aaaa AE 4 3 
Zero page LDX $aa A6 3 2 
Absolute,Y LDX $ffff,Y BE 4* 3 
Zero page,Y LDX $ff,Y B6 4 2 

LDY LoaD Y register M -> Y Nx-xxxZx Immediate LDY #$dd AO 2 2 
Absolute LDY $aaaa AC 4 3 
Zero page LDY $aa A4 3 2 
Zero page,X LDY $ff,X B4 4 2 

Absolute,X LDY $ffff,X BC 4* 3 

STA STore Accumulator A + M xx-xxxxx Absolute STA $aaaa 8D 4 3 
Zero page STA $aa 85 3 2 
Indxd Indct STA ($ff,X) 81 6 2 
Indct Indxd STA ($aa),Y 91 6 2 
Zero page,X STA $ff,X 95 4 2 

Absolute,X STA $ffff,X 9D 5 3 
Absolute,Y STA $ffff,Y 99 5 3 

STX STore X register X -» M xx-xxxxx Absolute STX $aaaa 8E 4 3 
Zero page STX $aa 86 3 2 
Zero page,Y STX $ff,Y 96 4 2 

STY STore Y register Y - M xx-xxxxx Absolute STY $aaaa 8C 4 3 
Zero page STY $aa 84 3 2 
Zero page,X STY $ff,X 94 4 2 

TAX Transfer Accumulator A -> X Nx-xxxZx Implied TAX AA 2 1 
to X register 

TXA Transfer X register X -► A Nx-xxxZx Implied TXA 8A 2 1 
to Accumulator 

Notes 

Microprocessor Instruction Set Tables 471 



EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne¬ 

monic 

Operation Boolean/Arith 

Operation 

Flags 

NV-BDIZC 

Address 

Mode 

Assembler 

Notation 

Op # Notes 

TAY Transfer Accumulator A -» Y 

to Y register 

Nx-xxxZx Implied TAY A8 2 1 

TYA Transfer Y register Y ■* A 

to Accumulator 

Nx-xxxZx Implied TYA 98 2 1 

Flae Instructions 

CLC CLear Carry flag 0 C xx-xxxxO Implied CLC 18 2 1 

CLD CLear Decimal flag 0 -> D xx-xOxxx Implied CLD D8 2 1 

CLI CLear Interrupt flag 0 + I xx-xxOxx Implied CLI 58 2 1 

CLV CLear overflow flag 0 -» V xO-xxxxx Implied CLV B8 2 1 

SEC SEt Carry flag 1 * c xx-xxxxl Implied SEC 38 2 1 

SED SEt Decimal flag 1 * D xx-xlxxx Implied SED F8 2 1 

SEI SEt Interrupt flag 1 -* I xx-xxlxx Implied SEI 78 2 1 

Arithmetic Instructions 

ADC AdD with Carry A + M + C -» A NV-xxxZC Immediate ADC #$dd 69 2 2 The carry flag must be cleared 

Absolute ADC $aaaa 6D 4 3 before single-precision addition 

Zero page ADC $aa 65 3 2 or before the first byte of 

Indxd Indct ADC ($ff,X) 61 6 2 multiple-precision addition. 

IndctIndxd ADC ($aa),Y 71 5* 2 

Zero page,X ADC $ff,X 75 4 2 

Absolute,X ADC $ffff,X 7D 4* 3 

Absolute,Y ADC $ffff,Y 79 4* 3 

SBC SuBtract with Carry A - M - NV-xxxZC Immediate SBC #$dd E9 2 2 The carry flag must be set 

(l-C) - A Absolute SBC $aaaa ED 4 3 before single-precision 

Zero page SBC Saa E5 3 2 subtraction or before the First 

Note: (l-C) = Indxd Indct SBC ($ff,X) El 6 2 byte of multiple-precision 

Borrow Indct Indxd SBC ($aa),Y FI 5* 2 subtraction. 

Zero page,X SBC $ff,X F5 4 2 

Absolute,X SBC $ffff,X FD 4* 3 The operation of the carry flag 

Absolute,Y SBC Sffff.Y F9 4* 3 is inverted during subtraction. 

Logical Instructions 

AND logical AND A AND M -> A Nx-xxxZx Immediate AND #$dd 29 2 2 

Absolute AND $aaaa 2D 4 3 

Zero page AND Saa 25 3 2 

Indxd Indct AND ($ff,X) 21 6 2 

Indct Indxd AND ($aa),Y 31 5 2 

Zero page,X AND $ff,X 35 4 2 

Absolute,X AND $ffff,X 3D 4* 3 

Absolute,Y AND Sffff.Y 39 4* 3 
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Mne- Operation 

monic 

EOR Exclusive OR 

ORA OR Accumulator 

BIT test memory BITs 

ASL Arithmetic Shift 

Left 

LSR Logical Shift Right 

ROL Rotate Left 

ROR ROtate Right 

INC INCrement memory 

Boolean/Arith 

Operation 

Flags 

NV-BDIZC 

Address 

Mode 
Assembler 

Notation 

Op - # 

A EOR M -> A Nx-xxxZx Immediate EOR #$dd 49 2 2 
Absolute EOR Saaaa 4D 4 3 
Zero page EOR $aa 45 3 2 
Indxd Indct EOR ($ff,X) 41 6 2 
Indct Indxd EOR ($aa),Y 51 5* 2 
Zero page,X EOR $ff,X 55 4 2 
Absolute,X EOR $ffff,X 5D 4* 3 
Absolute,Y EOR $ffff,Y 59 4* 3 

A OR M-*A Nx-xxxZx Immediate ORA #$dd 09 2 2 
Absolute ORA Saaaa 0D 4 3 
Zero page ORA Saa 05 3 2 
Indxd Indct ORA ($ff,X) 01 6 2 
IndctIndxd ORA ($aa),Y 11 5 2 
Zero page,X ORA $ff,X 15 4 2 
Absolute,X ORA Sffff.X ID 4* 3 
Absolute,Y ORA Sffff.Y 19 4* 3 

A AND M 76-xxxZx Absolute BIT Saaaa 2C 4 3 
M7 -» N Zero page BIT Saa 24 3 2 
m6 + v 

Rotate and Shift Instructions 

C «- 7...0 <- 0 Nx-xxxZC Absolute ASL Saaaa 0E 6 3 
Zero page ASL $aa 06 5 2 

Accumulator ASL A 0A 2 1 
Zero page,X ASL $ff,X 16 6 2 
Absolute,X ASL $ffff,X IE 7 3 

0 ■* 7...0 -* C Ox-xxxZC Absolute LSR Saaaa 4E 6 3 
Zero page LSR Saa 46 5 2 
Accumulator LSR A 4A 2 1 
Zero page,X LSR $ff,X 56 6 2 
Absolute,X LSR $ffff,X 5E 7 3 

Notes 

Memory bits 7 and 6 are 

transferred into the N and V 

flags respectively. 

Nx-xxxZC Absolute ROL 

Zero page ROL 

Accumulator ROL 

Zero page,X ROL 

Absolute,X ROL 

Saaaa 2E 6 3 

Saa 26 5 2 

A 2A 2 1 
Sff,X 36 6 2 

Sffff,X 3E 7 3 

a Nx-xxxZC Absolute ROR 

Zero page ROR 

Accumulator ROR 

Zero page,X ROR 

Absolute,X ROR 

Saaaa 6E 6 3 

Saa 66 5 2 

A 6A 2 1 

$ff,X 76 6 2 

Sffff,X 7E 7 3 

Increment and Decrement Instructions 

Absolute INC Saaaa EE 6 3 
Zero page INC Saa E6 5 2 
Zero page,X INC $ff,X F6 6 2 

Absolute,X INC Sffff,X FE 7 3 
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EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne- Operation Boolean/Arith Flags Address Assembler Op - # Notes 

monic Operation NV-BDIZC Mode_Notation __ 

I NX INcrement X 

register 

X + 1 -> X Nx-xxxZx Implied INX E8 2 1 

I NY INcrement Y 

register 

Y + 1 -> Y Nx-xxxZx Implied INY C8 2 1 

DEC DECrement memory M - 1 4 M Nx-xxxZx Absolute DEC Saaaa CE 6 3 

Zero page DEC $aa C6 5 2 

Zero page,X DEC $ff,X D6 6 2 

Absolute,X DEC $ffff,X DE 7 3 

DEX DEcrement X 

register 

X - 1 -> X Nx-xxxZx Implied DEX CA 2 1 

DEY DEcrement Y 

register 

Y - 1 * Y Nx-xxxZx Implied DEY 88 2 1 

Unconditional Jump Instructions 

JMP JuMP to new aaaa -> PC xx-xxxxx Absolute JMP Saaaa 4C 3 3 In the indirect addressing 

memory location {abs addressing} Indirect JMP (Saaaa) 6C 5 3 mode, aaaa is not transferred 

into the PC but rather the 

(aaaa) 4 PC^ contents of memory location 

(aaaa + 1) *♦ PCH aaaa and aaaa + 1 are placed in 

(indirect addressing} the PC 

Special Note: Care should be 

used with this mode because of 

a bug in the 6502 chip family. If 

the indirect address is located 

at a page boundary (example, 

JMP ($5FFF)} an incorrect 

address will be generated. 

Test (Compare') Instructions 

CMP CoMPare memory A-M Nx-xxxZC Immediate CMP #$dd C9 2 2 

location to Absolute CMP Saaaa CD 4 3 

accumulator Zero page CMP Saa C5 3 2 

Indxd Indct CMP ($ff,X) Cl 6 2 

Indct Indxd CMP ($aa),Y D1 5* 2 

Zero page,X CMP $ff,X D5 4 2 

Absolute,X CMP $ffff,X DD 4* 3 

Absolute,Y CMP $ffff,Y D9 4* 3 

CPX ComPare memory X- M Nx-xxxZC Immediate CPX #$dd E0 2 2 

location to X Absolute CPX Saaaa EC 4 3 

register Zero page CPX Saa E4 3 2 

CPY ComPare memory Y - M Nx-xxxZC Immediate CPY #$dd CO 2 2 

location to Y Absolute CPY Saaaa cc 4 3 

register Zero page CPY Saa C4 3 2 
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Mne- Operation 

monic 

BCC Branch if Carry 

Clear 

BCS Branch if Carry 

Set 

BEO Branch if last 

result EQual to 

zero 

BNE Branch if last 

result Not Equal 

to zero 

BMI Branch if last 

result a Minus 

(neg) number 

BPL Branch is last 

result a PLus 

(pos) number 

BVC Branch if 

oVerflow flag 

Clear 

BVS Branch if 

oVerflow flag 

Set 

JSR Jump to SubRoutine 

RTS ReTum from 

Subroutine 

PI1A PusH Accumulator 

onto stack 

PLA PulL Accumulator 

from stack 

PHP PusH Processor 

status register 

onto stack 

Boolean/Arith Flags Address Assembler Op - # 

Operation_NV-BDIZC Mode_Notation 

Conditional Jump ('Branch') Instructions 

PC + rr -» PC 

if C = 0 
xx-xxxxx Relative BCC Sit 90 2 + 2 

PC + rr -> PC 

if C=1 
xx-xxxxx Relative BCS Srr BO 2 + 2 

PC + rr ^ PC 

if Z= 1 
xx-xxxxx Relative BEQ Srr F0 2 + 2 

PC + rr -» PC 

if Z=0 
xx-xxxxx Relative BNE Srr DO 2 + 2 

PC + rr -> PC 

if N=1 
xx-xxxxx Relative BMI Srr 30 2 + 2 

PC + rr + PC 

if N = 0 
xx-xxxxx Relative BPL Srr 10 2 + 2 

PC + rr -» PC 

if V = 0 
xx-xxxxx Relative BVC Srr 50 2 + 2 

PC + rr ^ PC 

if V = 1 
xx-xxxxx Relative BVS $rr 70 2 + 2 

Subroutine Instructions 

PC + 2 -> S 

aaaa -> PC 

SP - 2 -» SP 

xx-xxxxx Absolute JSR Saaaa 20 6 3 

S (2 bytes) 

-> PC 

PC + 1 -> PC 

SP + 2 -> SP 

xx-xxxxx Implied RTS 60 6 1 

Stack Instructions 

A -> S 

SP - 1 ^ SP 
xx-xxxxx Implied PHA 48 3 1 

S -* A 

SP + 1 -> SP 
Nx-xxxZx Implied PLA 68 4 1 

PSR -> S 

SP - 1 -> SP 
xx-xxxxx Implied PHP 08 3 1 
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EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued) 

Mne¬ 

monic 

Operation Boolean/Arith 

Operation 

Flags 

NV-BDIZC 

Address 

Mode 

Assembler 

Notation 

Op ~ # 

PLP PulL Processor 

status register 

from stack 

S -> PSR 

SP + 1 * SP 

NV-BDIZC Implied PLP 28 4 1 

TXS Transfer X 

register into 

Stack pointer 

X->SP xx-xxxxx Implied TXS 9A 2 1 

TSX Transfer Stack 

pointer into 

X register 

SP -> X Nx-xxxZx Implied TSX BA 2 1 

Interrupt Instructions 

RTI ReTum from 

Interrupt 

S * PSR 

SP + 1 -» SP 

S (2 bytes) 

*> PC 

SP + 2 -» SP 

NV-BDIZC Implied RTI 40 6 1 

Input-Output Instructions 

The 6502 memory-maps all 

input and output rather than 

using special instructions. 

Notes 

Address Modes Assembler Notation 

Immediate Mnemonic #$dd 

Absolute Mnemonic Saaaa 

Zero page Mnemonic $aa 

Accumulator Mnemonic A 

Implied Mnemonic 

Indxd Indct Mnemonic ($ff,X) 

Indct Indxd Mnemonic ($aa),Y 

Zero page,X Mnemonic $ff,X 

Absolute,X Mnemonic $ffff,X 

Absolute,Y Mnemonic $ffff,Y 

Relative Mnemonic $rr 

Indirect Mnemonic ($aaaa) 

Zero page,Y Mnemonic $ff,Y 

Abbreviations and Explanations 

Indxd Indct = Indexed Indirect 

Indct Indxd = Indirect Indexed 

a = address (one hex digit) 

d = data (one hex digit) 

f = address offset (one hex digit) ($ff is an unsigned binary number 

and is therefore positive) 

r = relative address (one hex digit) ($rr is a 2’s-complement signed 

binary number and can therefore be positive or negative) 

* = add 1 cycle if page boundary crossed 

+ = add 1 cycle if branch occurs; add 1 more cycle if branch crosses 

page 

( ) =the contents of the address within parentheses form the actual 

address 

7...0 = bits 0 through 7 of memory or the accumulator 

M7, M6, etc. = Bits 7, 6, etc. of a memory location 

L - low-order byte 

H = high-order byte 

PC = program counter 

S = stack (contents of the top byte of the stack) 

SP = stack pointer 

PSR = processor status register (flags) 

* = Add 1 cycle if crossing page boundary 

Flags_ 

0 = flag always cleared 

1 = flag always set 
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X = flag not affected 

N = negative flag 

V « overflow flag 

B - break flag 

D = decimal flag 

I = interrupt flag 

Z = zero flag 

C = carry flag 

Symbols in the Page Heading 

~ = clock cycles 

# = # of bytes used by instruction (and following address or data 
if used) 

Addressing Modes - Summary 

zero since both of these are 8-bit numbers). The microprocessor then 

gets the contents of this memory location and the following location 

to form another address where it will then find the data (operand). 

Indct Indxd (Mnemonic ($aa),Y): This addressing mode is 

sometimes confused with the one above though it does work 

differently. First, the microprocessor goes to address $aa and the 

address immediately following $aa. It uses the contents of these two 

locations to form a 16-bit address to which the Y register is added. 

This then forms the actual address where the operand is located. 

Zero page,X (Mnemonic $ff,X): In this form of addressing the 

number $ff is added to the X register to form a second address 

where the operand is located. Because both $ff and X are 8-bit 

binary numbers, the actual address must be in page zero. If the sum 

of these two numbers exceeds $FF (the end of page zero), any carry 

will be ignored and the address will "wrap around" to the beginning 
of page zero. 

Absolute^ (Mnemonic $fttf,X): In this case, the 16-bit number Sffff 

is added to the X register to form the actual address. If this number 

exceeds hexadecimal SFFFF, the carry is ignored and the address 

"wraps around" to $0000 and continues from there. 

Immediate (Mnemonic #$dd): The data to be operated on (#$dd) 

is in the next byte of memory after the instruction itself. Therefore 
no address is needed. 

Absolute (Mnemonic $aaaa): The data to be operated on is found 

in the memory location indicated ($aaaa). This is a 2-byte address 

and can point to any place in the 6502’s 64K (65,536 byte) addressing 
range. 

Zero page (Mnemonic $aa): The data to be operated on is found 

in the memory location indicated ($aa). This is a 1-byte address and 

can point only to a place in page zero of memory. Page zero is 

address S00-SFF (decimal 0-255). 

Accumulator (Mnemonic A): These are instructions which use 

implied addressing, where the data is already in the accumulator. 

Implied (Mnemonic): These instructions indicate where the data is 

or will be within the instruction itself. 

Indxd Indct (Mnemonic ($ff^X)): In this form of addressing, the 

operand (the number which is going to have something done to it) 

is found through a multistep process. First, the offset ($ff) is added 

to the X register to form an address (this address must be in page 

Absolute,Y (Mnemonic Sffff,Y): This address mode works the same 

as Absolute,X except that the Y register is used instead. 

Relative (Mnemonic $rr): $rr is a 2’s-complement signed binary 

number; that is, it can be positive or negative. This number is added 

to the current contents of the program counter to determine the 

actual address. $rr is different from an offset (Sffff or $ff) because 

it is not added to another register but directly to the program 

counter itself. It directs the microprocessor relative to its current 
place in memory. 

Indirect (Mnemonic ($aaaa)): In this mode, the contents of address 

Saaaa and the contents of the address immediately following it are 

used to form the actual address where the operand is to be found. 

(Only the JMP instruction uses this addressing mode.) 

Zero page,Y (Mnemonic $ff,Y): This addressing mode is exactly like 

the Zero page,X" mode except that register Y is used instead. 
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SHORT TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY 

Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

NV-BDIZC 

Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

NV-BDIZC 

CPU Control Instructions TAY A8 A -> Y Nx-xxxZx 

TYA 98 Y * A Nx-xxxZx 

NOP EA Nothing xx-xxxxx 

BRK 00 PC + 2 -* S xx-lxlxx Flap Instructions 
SP - 2 -> SP 

PSR ■» S 

SP - 1 * S CLC 18 0 + C xx-xxxxO 

SFFFE -» PC 

CLD D8 0 4 D xx-xOxxx 

Data Transfer Instructions CLI 58 o->i xx-xxOxx 

CLV B8 0 -» V xO-xxxxx 

LDA #$dd A9 M + A Nx-xxxZx 

LDA $aaaa AD SEC 38 1 c xx-xxxxl 

LDA Saa A5 

LDA ($ff,X) A1 SED F8 1 -► D xx-xlxxx 

LDA ($aa),Y B1 

LDA $ff,X B5 SEI 78 1 I xx-xxlxx 

LDA Sffff,X BD 

LDA Sffff.Y B9 

Arithmetic Instructions 
LDX #$dd A2 M -» X Nx-xxxZx 

LDX $aaaa AE 

LDX Saa A6 ADC #Sdd 69 A + M + C -> A NV-xxxZC 

LDX Sffff.Y BE ADC Saaaa 6D 

LDX $ff,Y B6 ADC Saa 65 

ADC (Sff.X) 61 

LDY #$dd AO M *♦ Y Nx-xxxZx ADC (Saa),Y 71 

LDY Saaaa AC ADC $ff,X 75 

LDY Saa A4 ADC $ffff,X 7D 

LDY Sff.X B4 ADC Sffff.Y 79 

LDY Sffff.X BC SBC #$dd E9 A - M - NV-xxxZC 

SBC Saaaa ED (1-C) ■* A 

STA Saaaa 8D A -> M xx-xxxxx SBC Saa E5 

STA Saa 85 SBC ($ff,X) El Note: (1-C) = 

STA (Sff.X) 81 SBC ($aa),Y FI Borrow 

STA ($aa),Y 91 SBC $fftX F5 

STA $ff,X 95 SBC Sffff.X FD 

STA Sffff.X 9D SBC Sffff.Y F9 

STA Sffff.Y 99 

STX Saaaa 8E X -> M xx-xxxxx Logical Instructions 
STX Saa 86 

STX $ff,Y 96 

STY Saaaa 8C Y -> M xx-xxxxx 
AND #$dd 29 A AND M -» A Nx-xxxZx 

STY Saa 84 AND Saaaa 2D 
STY Sff.X 94 AND Saa 25 

AND (Sff.X) 21 
TAX AA A X Nx-xxxZx 

AND ($aa),Y 31 

AND Sff.X 35 
TXA 8A X A Nx-xxxZx 

AND Sffff.X 3D 

AND Sffff.Y 39 
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Assembler 

Notation 

Op Boolean/A 

Operation 

EOR #$dd 49 A EOR M 
EOR Saaaa 4D 
EOR Saa 45 

EOR ($ff,X) 41 
EOR ($aa),Y 51 

EOR $ff,X 55 

EOR Sffff.X 5D 

EOR Sffff.Y 59 

ORA #$dd 09 A OR M -* 
ORA Saaaa OD 

ORA $aa 05 
ORA ($ff,X) 01 

ORA ($aa),Y 11 
ORA Sff.X 15 

ORA $ffff,X ID 

ORA Sffff.Y 19 

BIT Saaaa 2C A AND M 
BIT Saa 24 M7 ■* N 

m6*v 

Flags 

NV-BDIZC 

Nx-xxxZx 

Nx-xxxZx 

76-xxxZx 

Rotate and Shift Instructions 

ASL Saaaa 0E 
ASL Saa 06 
ASL A 0A 

ASL $ff,X 16 

ASL $ffff,X IE 

LSR Saaaa 4E 
LSR Saa 46 

LSR A 4A 
LSR $ff,X 56 

LSR $ffff,X 5E 

ROL Saaaa 2E 
ROL Saa 26 

ROL A 2A 
ROL $ff,X 36 

ROL $ffff,X 3E 

ROR Saaaa 6E 
ROR Saa 66 

ROR A 6A 

ROR $ff,X 76 
ROR $ffff,X 7E 

C <- 7...0 <- 0 

0 -» 7...0 -» C 

Nx-xxxZC 

Ox-xxxZC 

Nx-xxxZC 

Nx-xxxZC 

Increment and Decrement Instructions 

INC Saaaa EE 
INC Saa E6 

INC Sff.X F6 
INC Sffff.X FE 

Nx-xxxZx 

Assembler 

Notation 

Op Boolean/Arith 

Operation 
Flags 

NV-BDIZC 

INX E8 X + 1 -> x Nx-xxxZx 

INY C8 Y + 1 -» Y Nx-xxxZx 

DEC Saaaa CE M - 1 -* M Nx-xxxZx 
DEC Saa C6 
DEC $ff,X D6 
DEC $ffff,X DE 

DEX CA X- 1 •» X Nx-xxxZx 

DEY 88 Y - 1 ■» Y Nx-xxxZx 

Unconditional Jump Instructions 

JMP Saaaa 4C aaaa -> PC 

(abs addressing} 
xx-xxxxx 

JMP (Saaaa) 6C (aaaa) -> PCL 

(aaaa + 1) * PC^ 

(indirect addressing} 

Test (Compare) Instructions 

CMP #$dd C9 A-M Nx-xxxZC 
CMP Saaaa CD 

CMP Saa C5 

CMP (Sff.X) Cl 

CMP ($aa),Y D1 

CMP Sff.X D5 

CMP Sffff.X DD 

CMP Sffff.Y D9 

CPX #$dd E0 X - M Nx-xxxZC 
CPX Saaaa EC 
CPX Saa E4 

CPY #$dd CO Y - M Nx-xxxZC 
CPY Saaaa cc 
CPY Saa C4 

Conditional Jump (Branch) Instructions 

BCC Srr 90 PC + rr -» PC 

if C = 0 
xx-xxxxx 

BCS Srr B0 PC + rr -» PC 

if C=1 
xx-xxxxx 

BEQ Srr P0 PC + rr -» PC 

if Z=1 
xx-xxxxx 
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Assembler 

Notation 

BNE Srr 

BMI Srr 

BPL Srr 

BVC Srr 

BVS Srr 

JSR Saaaa 

SHORT TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (iContinued) 

Op Boolean/Arith Flags Assembler Op Boolean/Arith 

Operation _NV-BDIZC Notation_Operation_ 

DO PC + rr * PC 

if Z=0 

30 PC + rr -> PC 

if N = 1 

10 PC + rr -> PC 

if N = 0 

50 PC + rr -> PC 

if V = 0 

70 PC + rr ^ PC 

if V = 1 

Subroutine Instructions 

20 PC + 2 -> S 

aaaa *♦ PC 

SP - 2 *» SP 

60 S (2 bytes) 

■* PC 

PC + 1 + PC 

SP + 2 -> SP 

Flags 

NV-BDIZC 

Assembler 

Notation 

Op Boolean/Arith 

Operation 

Flags 

NV-BDIZC 

xx-xxxxx PLA 68 S-> A 

SP + 1 -> SP 

Nx-xxxZx 

xx-xxxxx PHP 08 PSR -* S 

SP - 1 ^ SP 

xx-xxxxx 

xx-xxxxx PLP 28 S -* PSR 

SP + 1^ SP 

NV-BDIZC 

xx-xxxxx TXS 9A X -> SP xx-xxxxx 

TSX BA SP -> X Nx-xxxZx 

Interrupt Instructions 

40 s ■+ PSR 

SP + l+ SP 

S (2 bytes) 

-► PC 

SP + 2 -> SP 

Input-Output Instructions 

NV-BDIZC 

Stack Instructions 

48 A -> S 

SP - 1 + SP 

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY 

CPU Control LDX #$dd A2 

Instructions LDX Saaaa AE 

LDX $aa A6 

NOP EA LDX $ffff,Y BE 

BRK 00 LDX $ff,Y B6 

Data Transfer LDY #$dd A0 

Instructions LDY Saaaa AC 

LDY Saa A4 

LDA #$dd A9 LDY $ff,X B4 

LDA Saaaa AD LDY $ffff,X BC 

LDA $aa A5 

LDA ($ff,X) A1 STA Saaaa 8D 

LDA ($aa),Y B1 ST A $aa 85 

LDA Sff.X B5 STA ($ff,X) 81 

LDA $ffff,X BD STA (Saa),Y 91 

LDA Sffff.Y B9 STA $ff,X 95 

STA $ffff,X 9D Flae Instructions 

STA Sffff.Y 99 
CLC 18 

STX Saaaa 8E CLD D8 

STX Saa 86 CLI 58 

STX $ff,Y 96 CLV B8 

SEC 38 

STY Saaaa 8C SED F8 

STY Saa 84 SEI 78 

STY $ff,X 94 
Arithmetic 

TAX AA Instructions 

TXA 8A 
ADC #$dd 69 

TAY A8 ADC Saaaa 6D 

TYA 98 ADC Saa 65 

ADC ($ff,X) 61 
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CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY 0Continued) 
ADC (Saa),Y 

ADC $ff,X 

ADC Sffff.X 

ADC $ffff,Y 

SBC #$dd 

SBC Saaaa 

SBC $aa 

SBC ($ff,X) 

SBC ($aa),Y 

SBC $ff,X 

SBC Sffff.X 

SBC $ffff,Y 

Logical 

Instructions 

AND 

AND 

AND 

AND 

AND 

AND 

AND 

AND 

#$dd 

Saaaa 

$aa 

(Sff,X) 
($aa),Y 

$ff,X 

Sffff.x 
$ffff,Y 

EOR #$dd 

EOR Saaaa 

EOR Saa 

EOR ($ff,X) 

EOR ($aa),Y 

EOR $ff,X 

EOR $ffff,X 

EOR Sffff.Y 

ORA #$dd 

ORA Saaaa 

ORA $aa 

ORA ($ff,X) 

ORA ($aa),Y 

ORA $ff,X 

71 

75 

7D 

79 

E9 

ED 

E5 

El 

FI 

F5 

FD 

F9 

29 

2D 

25 

21 

31 

35 

3D 

39 

49 

4D 

45 

41 

51 

55 

5D 

59 

09 

0D 

05 

01 

11 

15 

ORA $ffff,X ID INX E8 BEQ $rr F0 
ORA Sffff.Y 19 INY C8 BNE Srr DO 

BIT Saaaa 2C DEC Saaaa CE 
BMI Srr 30 

BIT Saa 24 DEC Saa C6 
BPL Srr 10 

BVC Srr 50 
DEC $ff,X D6 

Rotate and Shift DEC Sffff.X DE 
BVS $rr 70 

Instructions DEX CA 
Subroutine 

ASL Saaaa 0E 
JDc Y 88 

Instructions 

ASL Saa 06 Unconditional 
ASL A 0A Jump Instructions 

JSR Saaaa 20 

ASL Sff.X 16 RTS 60 

ASL Sffff.X IE JMP Saaaa 4C 

LSR Saaaa 4E 
JMP (Saaaa) 6C 

Instructions 

LSR Saa 46 Test (Compare) 
LSR A 4A Instructions PHA 48 

LSR $ff,X 56 PLA 68 

LSR Sffff.X 5E CMP #$dd C9 PHP 08 

CMP Saaaa CD PLP 28 

ROL Saaaa 2E CMP Saa C5 TXS 9A 

ROL Saa 26 CMP ($ff,X) Cl TSX BA 

ROL A 2A CMP ($aa),Y D1 

ROL $ff,X 36 CMP $ff,X D5 Interrupt 

ROL $ffff,X 3E CMP $ffff,X DD Instructions 

CMP $ffff,Y D9 

ROR Saaaa 6E RTI 40 

ROR Saa 66 CPX #$dd E0 

ROR A 6A CPX Saaaa EC Input-Output 

ROR $ff,X 76 CPX Saa E4 Instructions 

ROR $ffff,X 7E 

CPY #$dd CO None 

Increment and CPY Saaaa cc 
Decrement CPY Saa C4 

Instructions 
Conditional Jump 

INC Saaaa EE (Branch) 

INC Saa E6 Instructions 

INC $ff,X F6 

INC $ffff,X FE BCC $jt 90 

BCS Srr B0 

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED ALPHABETICALLY 

ADC ($aa),Y 71 AND $ffff,Y 39 
ADC ($ff,X) 61 AND $ff,X 35 
ADC Saa 65 AND #$dd 29 
ADC Saaaa 6D ASL Saa 06 
ADC Sffff.X 7D ASL Saaaa 0E 
ADC Sffff.Y 79 ASL $ffff,X IE 
ADC Sff.X 75 ASL $ff,X 16 
ADC #$dd 69 ASL A 0A 
AND ($aa),Y 31 BCC Srr 90 
AND (Sff.X) 21 BCS Srr B0 
AND Saa 25 BEQ Srr F0 
AND Saaaa 2D BIT Saa 24 
AND Sffff.X 3D BIT Saaaa 2C 

BMI Srr 30 CMP Saaaa CD 
BNE $rr DO CMP $ffff,X DD 
BPL Srr 10 CMP $ffff,Y D9 
BRK 00 CMP $ff,X D5 
BVC Srr 50 CMP #$dd C9 
BVS Srr 70 CPX Saa E4 
CLC 18 CPX Saaaa EC 
CLD D8 CPX #$dd E0 
CLI 58 CPY Saa C4 
CLV B8 CPY Saaaa CC 
CMP ($aa),Y D1 CPY #Sdd CO 
CMP ($ff,X) Cl DEC Saa C6 
CMP Saa C5 DEC Saaaa CE 
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CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED ALPHABETICALLY (Continued) 

DEC Sffff,X DE LDA Sffff,X BD 

DEC $ff,X D6 LDA Sffff.Y B9 

DEX CA LDA $ff,X B5 

DEY 88 LDA #Sdd A9 

EOR (Saa).Y 51 LDX Saa A6 

EOR (Sff.X) 41 LDX Saaaa AE 

EOR $aa 45 LDX Sffff.Y BE 

EOR Saaaa 4D LDX $ff,Y B6 

EOR Sffff.X 5D LDX #$dd A2 

EOR $ffff,Y 59 LDY Saa A4 

EOR $ff,X 55 LDY Saaaa AC 

EOR #Sdd 49 LDY Sffff.X BC 

INC $aa E6 LDY Sff.X B4 

INC Saaaa EE LDY #$dd AO 

INC $ffff,X FE LSR Saa 46 

INC Sff.X F6 LSR Saaaa 4E 

INX E8 LSR Sffff.X 5E 

INY C8 LSR Sff.X 56 

JMP (Saaaa) 6C LSR A 4A 

JMP Saaaa 4C NOP EA 

JSR Saaaa 20 ORA (Saa),Y 11 

LDA (Saa).Y B1 ORA (Sff.X) 01 

LDA (Sff.X) A1 ORA Saa 05 

LDA Saa A5 ORA Saaaa 0D 

LDA Saaaa AD ORA Sffff.X ID 

ORA Sffff.Y 19 SBC $ff,X F5 

ORA Sff.X 15 SBC #$dd E9 

ORA #$dd 09 SEC 38 

PHA 48 SED F8 

PHP 08 SEI 78 

PLA 68 STA ($aa),Y 91 

PLP 28 STA (Sff.X) 81 

ROL Saa 26 STA Saa 85 

ROL Saaaa 2E STA Saaaa 8D 

ROL Sffff.X 3E STA Sffff.X 9D 

ROL Sff,X 36 STA Sffff.Y 99 

ROL A 2A STA $ff,X 95 

ROR $aa 66 STX Saa 86 

ROR Saaaa 6E STX Saaaa 8E 

ROR Sffff.X 7E STX $ff,Y 96 

ROR $ff,X 76 STY Saa 84 

ROR A 6A STY Saaaa 8C 

RTI 40 STY $ff,X 94 

RTS 60 TAX AA 

SBC ($aa),Y FI TAY A8 

SBC (Sff.X) El TSX BA 

SBC Saa E5 TXA 8A 

SBC Saaaa ED TXS 9A 

SBC Sffff.X FD TYA 98 

SBC Sffff,Y F9 

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY OP CODE 

00 BRK 31 AND (Saa).Y 

01 ORA (Sff.X) 35 AND $ff,X 

05 ORA Saa 36 ROL Sff.X 

06 ASL Saa 38 SEC 

08 PHP 39 AND Sffff.Y 

09 ORA #$dd 3D AND Sffff.X 

0A ASL A 3E ROL Sffff.X 

0D ORA Saaaa 40 RTI 

0E ASL Saaaa 41 EOR (Sff.X) 

10 BPL Srr 45 EOR Saa 

11 ORA ($aa),Y 46 LSR Saa 

15 ORA $ff,X 48 PHA 

16 ASL $ff,X 49 EOR #$dd 

18 CLC 4A LSR A 

19 ORA $ffff,Y 4C JMP Saaaa 

ID ORA $ffff,X 4D EOR Saaaa 

IE ASL $ffff,X 4E LSR Saaaa 

20 JSR Saaaa 50 BVC Srr 

21 AND ($ff,X) 51 EOR ($aa),Y 

24 BIT Saa 55 EOR Sff.X 

25 AND Saa 56 LSR Sff.X 

26 ROL Saa 58 CLI 

28 PLP 59 EOR Sffff.Y 

29 AND #$dd 5D EOR $ffff,X 

2A ROL A 5E LSR Sffff.X 

2C BIT Saaaa 60 RTS 

2D AND Saaaa 61 ADC (Sff.X) 

2E ROL Saaaa 65 ADC Saa 

30 BMI Srr 66 ROR $aa 

68 PLA 99 STA Sffff.Y 

69 ADC #$dd 9A TXS 

6A ROR A 9D STA $ffff,X 

6C JMP (Saaaa) A0 LDY #$dd 

6D ADC Saaaa A1 LDA ($ff,X) 

6E ROR Saaaa A2 LDX #$dd 

70 BVS Srr A4 LDY Saa 

71 ADC ($aa),Y A5 LDA Saa 

75 ADC Sff.X A6 LDX Saa 

76 ROR Sff.X A8 TAY 

78 SEI A9 LDA #$dd 

79 ADC Sffff.Y AA TAX 

7D ADC Sffff.X AC LDY Saaaa 

7E ROR $ffff,X AD LDA Saaaa 

81 STA (Sff.X) AE LDX Saaaa 

84 STY Saa B0 BCS Srr 

85 STA Saa B1 LDA ($aa),Y 

86 STX Saa B4 LDY $ff,X 

88 DEY B5 LDA $ff.X 

8A TXA B6 LDX $ff,Y 

8C STY Saaaa B8 CLV 

8D STA Saaaa B9 LDA Sffff.Y 

8E STX Saaaa BA TSX 

90 BCC Srr BC LDY Sffff.X 

91 STA ($aa),Y BD LDA $ffff,X 

94 sty $ff,x BE LDX Sffff.Y 

95 STA Sff.X CO CPY #$dd 

96 STX $ff,Y Cl CMP (Sff.X) 

98 TYA C4 CPY Saa 
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CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY OP CODE (Continued) 

CMP $aa 

DEC $aa 

INY 

CMP #$dd 

DEX 

CC CPY $aaaa 

CD CMP Saaaa 

CE DEC Saaaa 

DO BNE Srr 

D1 CMP ($aa),Y 

D5 CMP $ff,X 

D6 DEC $ff,X 

D8 CLD 

D9 CMP Sffff.Y 

DD CMP Sffff,X 

DE DEC Sffff.X 

E0 CPX #$dd 

El SBC ($ff,X) 

E4 CPX $aa 

E5 SBC $aa 

E6 INC $aa 

E8 INX 

E9 SBC #$dd 

EA NOP 

EC CPX Saaaa 

ED SBC Saaaa 

EE INC Saaaa 

F0 BEQ Srr 

FI SBC ($aa),Y 

F5 SBC $ff,X 

F6 INC $ff,X 

F8 SED 

F9 SBC $ffff,Y 

FD SBC $ffff,X 

FE INC Sffff.X 
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Appendixes 

APPENDIX 1. THE ANALOG INTERFACE 
The data in a microprocessor is in digital form. This differs 

from the outside world where data is in analog (continuous) 

form. To get digital data, we need to use an analog-to- 

digital <A/D) converter; it will convert analog voltage or 

current into an equivalent digital word. 

Conversely, after a CPU has processed data, it is often 

necessary to convert the digital answer into an analog 

voltage or current. This conversion requires a digital-to- 

analog (D/A) converter. 

The analog interface is the boundary where digital and 

analog meet, where the microcomputer connects to the 

outside world. At this interface, we find either an A/D 

converter (input side) or a D/A converter (output side). 

This chapter discusses some of the hardware and software 

found at the analog interface. 

A1-1 OP-AMP BASICS 

Let us briefly review the operational amplifier (op amp) 

because this device is used with D/A and A/D converters. 

We will zero in on the key features that make the op amp 

useful at the analog interface. 

input voltage may be treated as 0 V. Furthermore, the input 

impedance of the inverting input approaches infinity (some¬ 

times FETs are used for the input stage, as in B1FET op 

amps). These key features, zero input voltage and infinite 

input impedance, make the inverting input a virtual ground 

point. 

How is a virtual ground different from an ordinary 

ground? An ordinary ground has zero voltage while sinking 

any amount of current. A virtual ground, however, is a 

ground for voltage but not for current; it has zero voltage 

but can sink no current. In the discussion that follows, we 

will approximate the inverting input of an op amp as a 

virtual ground point: this means zero voltage and zero 

current. 

/ / 

Fig. Al-1 Operational amplifier. 

Virtual Ground 

Figure Al l shows the symbol for an op amp. VOUT is the 

output voltage with respect to ground. A is the open-loop 

voltage gain of the op amp, often more than 100,000. When 

connected as an inverter, the noninverting input (+ input) 

is grounded. The inverting input (- input) receives the 

signal voltage. 

Because the voltage gain of an op amp is so large, the 

input voltage is in microvolts. To a first approximation, the 

2.5 kC2 i kn 

Output Voltage and Current 

Figure Al-2a shows an inverting op amp with input and 

output resistors. V,N is the input voltage with respect to 

ground, and VOLT is the output voltage with respect to 

ground. Because of the high gain and input impedance, we 



can approximate the inverting input as a virtual ground 

point. Therefore, all the input voltage appears across the 

input resistor, which means that the input current is 

J=VlN 

^IN 
(All) 

Summing Circuit 

Figure A1-3 is an op-amp circuit whose output current is 

the sum of the input currents. Here is the proof. Because 

of the virtual ground point, each input voltage appears 

across its resistor. This means that the input currents are 

Since none of the input current can enter the virtual 

ground point, it must pass through the output resistor. In 

other words, the output current equals the input current. 

And the output voltage is 

h 
Ry 

h 
T. 

Rx 
/« = 

*0 

Kirchhoff’s current law gives a total input current of 

Tout ~ ^out (A 1-2) 

The minus sign indicates phase inversion. If the input 

voltage is positive, the output voltage is negative. 

As an example of calculating input current and output 

voltage, look at Fig. A1-2/?. The input current is 

/ — h + h + /| + A) 

Again, the virtual ground guarantees that all this input 

current goes through the output resistor. As before, 

Tqut ~ — ^out 

5 V 

2.5 kO 
2 mA 

The output voltage is 

Tout ~ — 2 mA X 1 kfl = — 2 V 

v3 i/, vQ 

A1-2 A BASIC D/A CONVERTER 

The op-amp summing circuit can be used to build a D/A 

converter by selecting input resistors that are weighted in 

binary progression. Figure A1-4 gives you the idea. VREH 

is an accurate reference voltage, and the resistors are 

precision resistors to get accurate input currents. The 

switches can be open or closed. When all switches are 

open, all input currents are zero and the output current is 
zero. 

All Bits High 

When all switches are closed, the input currents are 

h 
Treh 

R 
I2 

Tree 

2 R 
/. 

= Tret- 

8 R 

Fig. A1-4 D/A conversion with binary-weighted resistors. 
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The output current with all switches closed is the 

all input currents and equals 

I = + 0.5 + 0.25 + 0.125) 

sum of 

(A 1 -3) 

TABLE AM. WEIGHTE1 

d3 d2 d, d0 

D D/A CONVERTER 

Output 
current, Fraction of 

mA maximum 

V'ref / = 1.875-^g 0 0 0 0 0 0 

R 0 0 0 1 0.125 
1 

15 

0 0 1 0 0.25 2 
15 

By opening and closing switches we can produce 16 different 0 0 1 1 0.375 3 
15 

output currents from 0 to 1.875VREF//?. 0 1 0 0 0.5 4 
15 

0 1 0 1 0.625 5 
1 5 

Any Digital Input 0 

0 

1 

1 

1 

1 

0 

1 

0.75 

0.875 

(J 
15 

1 5 

If 0 stands for an open switch and 1 for a closed switch. 1 0 0 0 1 8 
'15 

we can rewrite Eq. A1-3 as 1 0 0 1 1.125 f) 
15 

1 0 1 0 1.25 10 

/ = + 0.5 D2 + 0.25 D, + 0.125D„) 
R 

(A 1-4) 
1 

1 

0 

1 

1 

0 

1 

0 

1.375 

1.5 

1 1 
1 5 
12 
15 

1 1 0 1 1.625 13 
15 

In powers of 2, 1 1 1 0 1.75 1-1 
15 

1 1 1 1 1.875 15 
15 

/ = _^(D, + 2-'D: + 2 “-D, + 2-'D0) (Al-5) 
R 

This says that the output current is the sum of binary- 

weighted input currents. In other words, we have a D/A 

converter. For instance, suppose VREF = 5 V and R = 5 

kfi. Then the total output current varies from 0 to 1.875 

mA, as shown in Table A1-1. 

Current Switches 

Figure Al-5 shows how we can transistorize the switching. 

Data bits D3 through D{) drive the bases of the transistors 

through the current-limiting resistors. When a bit is high, 

it produces enough base current to saturate its transistor. 

When a bit is low, the transistor is cut off. Since each 

transistor is saturated or cut off, it acts like a closed or 

open switch. (Base resistance is not critical; it need only 

be less than collector resistance multiplied by (3dc.) 

If the lower 4 bits of an output port are connected to D} 

to Z)0, the circuit of Fig. Al-5 will convert digital data to 

analog current. For instance, assume port 22H has been 

programmed as an output port in a minimum system. If the 

lower 4 bits of port 22H are connected to D3 to D{), this 

program segment will operate the D/A converter: 

Label Mnemonic Comment 

MVI A,FFH initialize accumulator 

LOOP: INR A ;Count up 

OUT 22H ;Output nibble 

JMPLOOP ;Get next nibble 

O3 Z?2 ^1 °0 

Fig. Al-5 Transistor switches for D/A converter. 
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Maximum 

(b) 

Fig. Al-6 (a) Staircase output current; (b) each step equals an 
LSB increment. 

The first INR A produces accumulator contents of 00H. 

Subsequent INR executions produce 01H, 02H, . . . , OFH, 

10H, 11H.1FH, 20H, 21H.FFH. As far as 

D3 to D0 are concerned, they see a nibble stream of 0000, 

0001,0010, 0011, ...,1111,0000, 0001, and so on. 

Figure Al-6 a illustrates how the output current of the 

D/A converter appears. As each input nibble is latched into 

port 22H, the output current moves one step higher until 

reaching the maximum current. Then the cycle repeats. If 

all resistors are exact and all transistors matched, all steps 

are identical in size. 

Resolution 

In the perfect staircase of Fig. Al-6b a step is called an 

LSB increment because it is produced by a change in the 

LSB. One way to measure the quality of a D/A converter 

is its resolution, the ratio of the LSB increment to the 

maximum output. As a formula. 

Resolution = —-— (Al-6) 
2n - 1 

For instance, a 4-bit D/A converter has a resolution of 

Resolution =-= — 
24 — 1 15 

This is sometimes read as 1 part in 15. 

The number of different steps an /7-bit converter produces 

is 

Steps = 2" - 1 (A 1 -6a) 

Therefore, an alternative way to think of resolution is 

Resolution = —!— (Al-6 b) 
steps 

Percent resolution is given by 

Percent resolution = resolution x 100% (A 1-7) 

If the resolution is 1 part in 15, then 

Percent resolution = x 100% = 6.67% 

The greater the number of bits, the better the resolution. 

With Eqs. Al-6 and A1-7 we can calculate the resolution 

and percent resolution for more bits. Table A1-2 is a 

summary of the resolution for converters with 4 to 18 bits. 

Because the number of bits determines the resolution in 

Eq. Al-6, an indirect way to specify resolution is by stating 

the number of bits. For instance, an 8-bit converter has 8- 

bit resolution, a 10-bit converter has 10-bit resolution, and 

so on. This is a quick and easy way to pin down the 

resolution. When necessary, Eqs. Al-6, Al-6 a, and A1-7 

can give additional information. 

Accuracy 

In a D/A converter, absolute accuracy refers to how close 

each output current is to its ideal value. In Fig. A1-5 

absolute accuracy depends on the reference voltage, resistor 

tolerance, transistor mismatch, and so forth. In a typical 

application, a trimmer adjustment is included to set the 

full-scale output at a preassigned value. 

Relative accuracy refers to how close each output level 

is to its ideal fraction of full-scale output. With a 4-bit 

TABLE Al-2. RESOLUTION 

Bits Resolution Percent 

4 1 part in 15 6.67 

6 1 part in 63 1.59 

8 1 part in 255 0.392 

10 1 part in 1,023 0.0978 

12 1 part in 4,095 0.0244 

14 1 part in 16,383 0.0061 

16 1 part in 65,535 0.00153 
18 1 part in 262,143 0.000381 
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converter, the ideal output levels as a fraction of full-scale 

should be 0, A, A, fk, and so on. Because data sheets 

specify relative accuracy rather than absolute accuracy, our 

subsequent discussions will emphasize relative accuracy. 

Relative accuracy depends mainly on the tolerance of the 

weighted resistors in Fig. A1-5. If they are exactly /?, 2R, 

4/?, and 8/?, all steps equal 1 LSB increment in Fig. Al¬ 

ba. When the resistors depart from ideal values, the steps 

may be larger or smaller than 1 LSB increment. 

Error = 1 LSB 

(b) 

Fig. Al-7 Error specified in LSB increments. 

Errors are specified in terms of LSB increments. For 

instance, Fig. Al-7a shows an error of 1 LSB; the actual 

output (solid line) differs from the ideal output (dashed 

line) by 1 LSB increment. If a negative error follows a 

positive error, the staircase can fall as shown in Fig. Al- 

1b. Here you see an error of + 1 LSB followed by an error 

of - 1 LSB. 

Monotonicity 

A monotonic D/A converter is one that produces an increase 

in output current for each successive digital input. The 

staircases of Fig. Al-7a and b are not monotonic because 

they do not produce an increase for each digital input. 

Figure Al-7a is almost monotonic, but Fig. A1-7Z? is far 

from monotonic. Monotonicity is the least we can expect 

from a D/A converter because it only makes sense; the 

output should increase when the input does. 

For a D/A converter to be monotonic the error must be 

less than ±i LSB at each output level. Why? Because in 

Fig. Al-8 Critical level for monotonicity. 

the worst case, a +£-LSB error followed by a — i-LSB 

error produces the critical level where monotonicity is about 

to be lost. Figure Al-8 illustrates this critical case, an error 

of LSB followed by an error of — | LSB. If the error 

of a converter is less than LSB for each output level, 

we are guaranteed a rising current for each successive 

digital input. Almost all commercially available D/A con¬ 

verters are monotonic because they have an accuracy of 

better than ±i LSB at each output level. 

Settling Time 

After you apply a digital input, it takes a D/A converter 

anywhere from nanoseconds to microseconds to produce 

the correct output. Settling time is defined as the time it 

takes for the converter output to stabilize to within \ LSB 

of its final value. This time depends on the stray capacitance, 

saturation delay time, and other factors. Settling time is 

important because it places a limit on how fast you can 

change the digital inputs. 

Disadvantages of Weighted Resistors 

For a weighted-resistor circuit to be monotonic the tolerance 

of the resistors must be less than the percent resolution. 

For instance, if the resolution is r* (6.67 percent), resistors 

with a tolerance of less than ±6.67 percent will produce a 

monotonic staircase. If the resolution is 2W (about 0.4 

percent), the resistors need a tolerance of better than ±0.4 

percent for a monotonic output. As you see, 4 bits are no 

problem, but 8 bits are. 

Another difficulty arises with weighted resistors. As the 

number of bits increases, the range of resistance values gets 

awkward. For 8 bits, we need resistances of /?, 2/?, 4/?, 

. . . , 128/?. The largest resistance is 128 times the smallest. 

For a 12-bit converter, the largest resistance needs to be 

2,048 times the smallest. Because of the tolerance and 

range problems, mass production of weighted-resistor D/A 

converters is impractical. 
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A1-3 THE LADDER METHOD 

One way to get around the problems of a binary-weighted 

resistors is to use a ladder circuit. Figure A1-9a is an 

example of the R-2R ladder commonly used in integrated 

D/A converters. Only two resistance values are needed; this 

eliminates the range problem. Furthermore, since the resis¬ 

tors are on the same chip, they have almost identical 

characteristics; this minimizes the tolerance problem. In 

other words, as the number of bits increases, an integrated 

ladder can divide the current much more accurately than a 

binary-weighted circuit. 

Ladder Properties 

An R-2R ladder does something interesting to the impedance 

at different points in the circuit. To begin with, the two 

resistors at node D in Fig. A1-9a are in parallel and may 

be reduced to an equivalent resistance /?, shown in Fig. 

A1-9b. Now, to the right of node C we have R in series 

with /?, a total of 2R. Since node C has 2R is in parallel 

with 2R, the circuit reduces to Fig. Al-9r. 

Looking into the left side of node B (Fig. Al-9e), we 

see 2R in parallel with 2R. Therefore, the circuit reduces 

to Fig. A1-9d. Again, 2R is in parallel with 2/?, so the 

circuit reduces to the single R shown in Fig. A1-9^. 

Figure A1-10 summarizes ladder impedances. Do you 

see the point? Looking into the left side of a node, we 

always see an equivalent resistance of R. Just to the right 

of each node, we always see a resistance of 2R. This 

impedance phenomenon is the key to analyzing modern D/ 

A converters because they use the ladders instead of 

weighted resistors. 

Binary Division of Current 

Figure A1-11 shows how a ladder can divide the current 

into binary levels. The typical D/A converter has a reference 

current set by the user. In this example, the reference 

current is 2 mA. The bottom of each 2R resistor is grounded 

in either switch position. When a switch is to the right, the 

current through a 2R resistor flows to the upper ground. 

When a switch is to the left, the lower ground sinks the 

current. With all the switches to the right, as shown in Fig. 

A1-11, /OUT is zero. 

Here is how the ladder divides the 2 mA of reference 

current. Just to the right of node A we see an equivalent 

resistance of 2R. Therefore, the 2 mA of input current 

divides equally at node A. Similarly, at node B we see 2R 

in parallel with 2R\ again, the current divides equally into 

0.5-mA branch currents. This process continues through 

the ladder, so that we wind up with the upper grounds 

sinking 1, 0.5, 0.25, and 0.125 mA. 

Other Switch Positions 

When we move the switches, we do not change the way 

the current divides at the nodes, it still divides equally at 

each node. But when a switch is to the left, it steers the 

Fig. AMO Ladder impedances. 
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4 R B R C R D 

Fig. Al-11 D/A conversion with R-2R ladder. 

current into the lower ground. Bits to D0 control the 

transistorized switches. From previous discussions, we can 

see that 

/out = (Dj + 2-'D2 + 2~2£>| + 2-^D0)~ (AI-8) 

Therefore, the output current of a 4-bit ladder is from 0 to 
ISir 
16/ref- 

More Bits 

the ladder remain constant; all that changes are the ground 

points. Constant current implies constant voltage, which 

means that stray capacitance in the ladder has little effect. 

In other words, we do not get the usual exponential charge 

and discharge associated with a change in voltage. This 

reduces the settling time. For this reason, IC converters 

often use the current-steering approach shown in Fig. 
Al-11. 

A1-4 THE COUNTER METHOD OF 
A/D CONVERSION 

A similar analysis applies to longer ladders. The output 

current is 

/out = (0„-1 + 2+ • • • + 2'-"D0)^p (A 1 -9) 

For instance, an 8-bit ladder produces a maximum output 

current of M/ref- The LSB increment is 2ib/RKF. 

Figure A1 -12 shows the simplest but least used method of 

A/D conversion. V1N is the analog input voltage. D1 to D0 

are the digital output. The digital output drives a D/A 

converter, which produces an analog output Foux. When 

COUNT is high, the counter counts upward. When COUNT 

is low, the counter stops. For convenience, an 8-bit D/A 

converter and 8-bit counter are used, but the idea applies 

to any number of bits. 

Why Steer Current Operation 

Current steering may seem more complicated than neces- The A/D conversion takes place as follows. First, the 

sary, but there is good reason for it. The currents throughout START pulse goes low, clearing the counter. When the 

Comparator 
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START pulse returns high, the counter is ready to go. 

Initially, VOLl is zero; therefore, the op amp has a high 

output and COUNT is high. The counter starts counting 

upward from zero. Since the output of the counter drives a 

D/A converter, the converter output is a positive voltage 

staircase. As long as VlN is greater than VOUT, the op amp 

has a positive output, COUNT remains high, and the 

staircase voltage keeps rising. 

At some point along the staircase, the next step makes 

V0ut greater than Vw. This forces COUNT to go low, and 

the counter stops. Now, the digital output D7 to D0 is the 

digital equivalent of the analog input. The negative-going 

edge of the COUNT signal is used as an end-of-conversion 

signal; this tells other circuits that the A/D conversion is 

finished. 

If the analog input V]N is changed, external circuits must 

send another START pulse to start the conversion. This 

clears the count and a new cycle begins. When the digital 

data is ready, the end-of-conversion signal has a falling 

edge. 

Disadvantage 

The main disadvantage of the counter method is its slow 

speed. In the worst case (maximum analog input) the 

counter has to reach the maximum count before the staircase 

voltage is greater than the analog input. For an 8-bit 

converter, this means a conversion time of 255 clock 

periods. For a 12-bit converter, the conversion time is 4,095 

clock periods. 

before, the output of a D/A converter drives the inverting 

input of an op-amp comparator. The difference, however, 

is in how the SAR register converges on the digital 

equivalent. (SAR stands for successive-approximation reg¬ 

ister.) When the conversion is finished, the digital equivalent 

is transferred to the output buffer register. 

MSB First 

When the start-of-conversion signal goes low, the SAR 

register is cleared and VOUT drops to zero. When the start- 

of-conversion signal goes high, the conversion begins. 

Instead of counting up 1 bit at a time, the successive- 

approximation method starts by setting the MSB. In other 

words, during the first clock pulse the control circuit loads 

a high MSB into the SAR register, whose output then equals 

1000 0000 

As soon as this digital output appears, F0ut jumps to Ml 

times full-scale. If this is more than VIN, the negative output 

of the comparator signals the control circuit to reset the 

MSB. On the other hand, if VOUT is less than V1N, the 

positive output of the comparator indicates that the MSB 

is to remain set. In some designs, setting and testing the 

MSB take place during the first clock pulse following the 

start of conversion. In other designs, several clock pulses 

may be needed to set the MSB, test it, and reset it if 

necessary. 

A1-5 SUCCESSIVE APPROXIMATION 
Remaining Bits 

The most widely used approach in A/D conversion is the Let us assume that the MSB was not reset. The SAR register 

successive-approximation method (see Fig. A I-13). As contents are now 1000 0000. The next clock pulse will set 

Comparator 

D-j Dq i D4 Og Og D-| Do 

Start of conversion 

CLK 

End of conversion 

Fig. Al-13 A/D conversion by successive approximation. 
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D6, giving a digital output of 

1100 0000 

V0ut now steps to Mi times full-scale. If VOUT is greater 

than VlN, the negative op-amp output causes Db to reset. If 

V0UT is less than VIN, D6 remains set. 

During the remaining clock pulses, successive bits are 

set and tested. Whenever a bit causes VOUT to exceed VIN, 

the bit is reset. In this way, all bits are set, tested, and 

reset if necessary. With the fastest circuits, the conversion 

is finished after eight clock pulses, and the D/A output is 

the analog equivalent of the register contents. Slower designs 

take longer because more clock pulses are needed to set, 

test, and possibly reset each bit. 

Output Buffer 

When the conversion is finished, the control circuit sends 

out a low end-of-conversion signal. The falling edge of this 

signal loads the digital equivalent into the buffer register. 

In this way, the digital output will remain even though we 

start a new conversion cycle. 

Advantage 

The main advantage of the successive-approximation method 

is speed. At best, it takes only n clock pulses to produce 

n-b\t resolution of the analog signal. This is a big improve¬ 

ment over the counter method. Even with slower designs, 

the successive-approximation method is still considerably 

better than the counter method. 
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APPENDIX 2. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS 

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal 

0000 0000 00 0 0 0011 0000 30 12,288 48 

0000 0001 01 256 1 0011 0001 31 12,544 49 

0000 0010 02 512 2 0011 0010 32 12,800 50 

0000 0011 03 768 3 

0000 0100 04 1,024 4 0011 0011 33 13,056 51 

0000 0101 05 1.280 5 
0011 0100 34 13,312 52 

0000 0110 06 1,536 6 
0011 0101 35 13,568 53 

0000 0111 07 1,792 7 
0011 0110 36 13,824 54 

0000 1000 08 2,048 8 
0011 0111 37 14,080 55 

0000 1001 09 2,304 9 
0011 1000 38 14,336 56 

0000 1010 0A 2,560 10 
0011 1001 39 14,592 57 

0011 1010 3A 14,848 58 

0011 1011 3B 15,104 59 

0000 1011 OB 2,816 11 0011 1100 3C 15,360 60 

0000 1100 oc 3,072 12 

0000 1101 OD 3,328 13 0011 1101 3D 15,616 61 

0000 1110 OE 3,584 14 0011 1110 3E 15,872 62 

0000 1111 OF 3,840 15 oon nn 3F 16,128 63 

0001 0000 10 4,096 16 0100 0000 40 16,384 64 

0001 0001 11 4,352 17 0100 0001 41 16,640 65 

0001 0010 12 4,608 18 0100 0010 42 16,896 66 

0001 0011 13 4,864 19 0100 0011 43 17,152 67 

0001 0100 14 5,120 20 0100 0100 44 17,408 68 

0100 0101 45 17.664 69 
0001 0101 15 5,376 21 0100 0110 46 17,920 70 
0001 0110 16 5,632 22 

0001 0111 17 5,888 23 0100 0111 47 18,176 71 

0001 1000 18 6,144 24 0100 1000 48 18,432 72 

0001 1001 19 6,400 25 0100 1001 49 18,688 73 

0001 1010 1A 6,656 26 0100 1010 4A 18,944 74 

0001 1011 IB 6,912 27 0100 1011 4B 19,200 75 

0001 1100 1C 7,168 28 0100 1100 4C 19,456 76 

0001 1101 ID 7,424 29 0100 1101 4D 19,712 77 

0001 1110 IE 7,680 30 0100 1110 4E 19,968 78 

0100 1111 4F 20,224 79 
oooi mi IF 7,936 31 0101 0000 50 20,480 80 
0010 0000 20 8,192 32 

0010 0001 21 8,448 33 0101 0001 51 20,736 81 

0010 0010 22 8,704 34 0101 0010 52 20,992 82 

0010 0011 23' 8,960 35 oioi oon 53 21,248 83 

0010 0100 24 9,216 36 0101 0100 54 21,504 84 

0010 0101 25 9,472 37 0101 0101 55 21,760 85 

0010 0110 26 9,728 38 0101 0110 56 22,016 86 

0010 0111 27 9,984 39 0101 0111 57 22,272 87 

0010 1000 28 10,240 40 0101 1000 58 22,528 88 

0101 1001 59 22,784 89 
0010 1001 29 10,496 41 0101 1010 5A 23,040 90 
0010 1010 2A 10,752 42 

0010 1011 2B 11,008 43 0101 1011 5B 23,296 91 

0010 1100 2C 11,264 44 0101 1100 5C 23,552 92 

0010 1101 2D 11,520 45 0101 1101 5D 23,808 93 

0010 1110 2E 11,776 46 0101 1110 5E 24,064 94 

ooio mi 2F 12,032 47 oioi nn 5F 24,320 95 
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Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal 

0110 0000 60 24,576 96 1001 0010 92 37,376 146 
0110 0001 61 24,832 97 1001 0011 93 37,632 147 
0110 0010 62 25,088 98 1001 0100 94 37,888 148 
0110 0011 63 25,344 99 1001 0101 95 38.144 149 
0110 0100 64 25,600 100 iooi ono 96 38,400 150 

0110 0101 65 25,856 101 1001 0111 97 38,656 151 
0110 0110 66 26,112 102 1001 1000 98 38,912 152 
0110 0111 67 26,368 103 1001 1001 99 39,168 153 
0110 1000 68 26,624 104 1001 1010 9A 39,424 154 
0110 1001 69 26,880 105 1001 1011 9B 39,680 155 
0110 1010 6A 27,136 106 1001 1100 9C 39,936 156 
0110 1011 6B 27,392 107 1001 1101 9D 40,192 157 
0110 1100 6C 27,648 108 1001 1110 9E 40,448 158 
0110 1101 6D 27,904 109 iooi nil 9F 40,704 159 
0110 1110 6E 28,160 no 1010 0000 AO 40,960 160 

ono mi 6F 28,416 111 1010 0001 A1 41,216 161 
0111 0000 70 28,672 112 1010 0010 A2 41,472 162 
0111 0001 71 28,928 113 1010 0011 A3 41,728 163 
0111 0010 72 29,184 114 1010 0100 A4 41,984 164 
0111 0011 73 29,440 115 10100101 A5 42,240 165 
0111 0100 74 29,696 116 ioio ono A6 42,496 166 
0111 0101 75 29,952 117 1010 0111 A7 42,752 167 
0111 0110 76 30,208 118 1010 1000 A8 43,008 168 
0111 0111 77 30,464 119 1010 1001 A9 43,264 169 
0111 1000 78 30,720 120 1010 1010 AA 43,520 170 

01 11 1001 79 30,976 121 1010 1011 AB 43,776 171 
0111 1010 7A 31,232 122 1010 1100 AC 44,032 172 
0111 1011 7B 31,488 123 1010 1101 AD 44,288 173 
0111 1100 7C 31,744 124 1010 1110 AE 44,544 174 
0111 1101 7D 32,000 125 ioio ini AF 44,800 175 
0111 1110 7E 32,256 126 1011 0000 BO 45,056 176 
oin mi 7F 32,512 127 1011 0001 B1 45,312 177 
1000 0000 80 32,768 128 1011 0010 B2 45,568 178 
1000 0001 81 33,024 129 1011 0011 B3 45,824 179 
1000 0010 82 33,280 130 1011 0100 B4 46,080 180 

1000 0011 83 33,536 131 1011 0101 B5 46,336 181 
1000 0100 84 33,792 132 ion ono B6 46,592 182 
1000 0101 85 34,048 133 1011 0111 B7 46,848 183 
iooo ono 86 34,304 134 1011 1000 B8 47,104 184 
1000 0111 87 34,560 135 1011 1001 B9 47,360 185 
1000 1000 88 34,816 136 1011 1010 BA 47,616 186 
1000 1001 89 35,072 137 1011 1011 BB 47,872 187 
1000 1010 8A 35,328 138 1011 1100 BC 48,128 188 
1000 1011 8B 35,584 139 1011 1101 BD 48,384 189 
1000 1100 8C 35,840 140 1011 1110 BE 48,640 190 

1000 1101 8D 36,096 141 ion nil BF 48,896 191 
1000 1110 8E 36,352 142 1100 0000 CO 49,152 192 
iooo nil 8F 36,608 143 1100 0001 Cl 49,408 193 
1001 0000 90 36,864 144 1100 0010 C2 49,664 194 
1001 0001 91 37,120 145 1100 0011 C3 49,920 195 
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APPENDIX 2. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS (Continued) 

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal 

1100 0100 C4 50,176 196 1110 0010 E2 57,856 226 

1100 0101 C5 50,432 197 1110 0011 E3 58,112 227 

1100 0110 C6 50,688 198 1110 0100 E4 58,368 228 

1100 0111 Cl 50,944 199 1110 0101 E5 58,624 229 

1100 1000 C8 51,200 200 11100110 E6 58,880 230 

1100 1001 C9 51,456 201 1110 0111 E7 59,136 231 

1100 1010 CA 51,712 202 1110 1000 E8 59,392 232 

1100 1011 CB 51,968 203 1 11101001 E9 59,648 233 

1100 1100 cc 52,224 204 1110 1010 EA 59,904 234 

1100 1101 CD 52,480 205 1110 1011 EB 60,160 235 

1100 1110 CE 52,736 206 1110 1100 EC 60,416 236 

iioo mi CF 52,992 207 1110 1101 ED 60,672 237 

1101 0000 DO 53,248 208 1110 1110 EE 60,928 238 

1101 0001 D1 53,504 209 mo nil EF 61,184 239 

1101 0010 D2 53,760 210 1111 0000 FO 61,440 240 

1101 0011 D3 54,016 211 1111 0001 FI 61,696 241 

1101 0100 D4 54,272 212 nil ooio F2 61,952 242 

1101 0101 D5 54,528 213 nn oon F3 62,208 243 

1101 0110 D6 54,784 214 nil oioo F4 62,464 244 

1101 0111 D7 55,040 215 nil oioi F5 62,720 245 

1101 1000 D8 55,296 216 1111 0110 F6 62,976 246 

1101 1001 D9 55,552 217 nil oni F7 63,232 247 

1101 1010 DA 55,808 218 nn iooo F8 63,488 248 

1101 1011 DB 56,064 219 nil iooi F9 63,744 249 

1101 1100 DC 56,320 220 nil ioio FA 64,000 250 

1101 1101 DD 56,576 221 nn ion FB 64,256 251 

1101 1110 DE 56,832 222 1111 1100 FC 64,512 252 

noi mi DF 57,088 223 1111 1101 FD 64,768 253 

1110 0000 EO 57,344 224 1111 1110 FE 65,024 254 

1110 0001 El 57,600 225 nn nn FF 65,280 255 
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APPENDIX 3. 7400 SERIES TTL 

Number Function Number Function 

7400 Quad 2-input nand gates 7455 Expandable 4-input 2-wide and-or-invert 
7401 Quad 2-input nand gates (open collector) gates 
7402 Quad 2-input nor gates 7459 Dual 2-3 input 2-wide and-or-invert gates 
7403 Quad 2-input nor gates (open collector) 7460 Dual 4-input expanders 
7404 Hex inverters 7461 Triple 3-input expanders 
7405 Hex inverters (open collector) 7462 2-2-3-3 input 4-wide expanders 
7406 Hex inverter buffer-driver 7464 2-2-3-4 input 4-wide and-or-invert gates 
7407 Hex buffer-drivers 7465 4-wide and-or-invert gates 
7408 Quad 2-input and gates (open collector) 
7409 Quad 2-input and gates (open collector) 7470 Edge-triggered JK flip-flop 
7410 Triple 3-input nand gates 7472 JK master-slave flip-flop 
7411 Triple 3-input and gates 7473 Dual JK master-slave flip-flop 
7412 Triple 3-input nand gates (open collector) 7474 Dual D flip-flop 
7413 Dual Schmitt triggers 7475 Quad latch 
7414 Hex Schmitt triggers 7476 Dual JK master-slave flip-flop 
7416 Hex inverter buffer-drivers 7480 Gates full adder 
7417 Hex buffer-drivers 7482 2-bit binary full adder 
7420 Dual 4-input nand gates 7483 4-bit binary full adder 
7421 Dual 4-input and gates 7485 4-bit magnitude comparator 
7422 Dual 4-input nand gates (open collector) 7486 Quad exclusive-or gate 
7423 Expandable dual 4-input nor gates 7489 64-bit random-access read-write memory 
7425 Dual 4-input nor gates 7490 Decade counter 
7226 Quad 2-input TTL-MOS interface nand 7491 8-bit shift register 

gates 7492 Divide-by-12 counter 
7427 Triple 3-input nor gates 7493 4-bit binary counter 
7428 Quad 2-input nor buffer 7494 4-bit shift register 
7430 8-input nand gate 7495 4-bit right-shift-left-shift register 
7432 Quad 2-input or gates 7496 5-bit parallel-in-parallel-out shift register 
7437 Quad 2-input nand buffers 74100 4-bit bistable latch 
7438 Quad 2-input nand buffers (open collector) 74104 JK master-slave flip-flop 
7439 Quad 2-input nand buffers (open collector) 74105 JK master-slave flip-flop 
7440 Dual 4-input nand buffers 74107 Dual JK master-slave flip-flop 
7441 BCD-to-decimal decoder-Nixie driver 74109 Dual JK positive-edge-triggered flip-flop 
7442 BCD-to-decimal decoder 74116 Dual 4-bit latches with clear 
7443 Excess 3-to-decimal decoder 74121 Monostable multivibrator 
7444 Excess Gray-to-decimal 74122 Monostable multivibrator with clear 
7445 BCD-to-decimal decoder-driver 74123 Monostable multivibrator 
7446 BCD-to-seven segment decoder-drivers 74125 Three-state quad bus buffer 

(30-V output) 74126 Three-state quad bus buffer 
7447 BCD-to-seven segment decoder-drivers 74132 Quad Schmitt trigger 

(15-V output) 74136 Quad 2-input exclusive-or gate 

7448 BCD-to-seven segment decoder-drivers 74141 BCD-to-decimal decoder-driver 
7450 Expandable dual 2-input 2-wide and-or- 74142 BCD counter-latch-driver 

invert gates 74145 BCD-to-decimal decoder-driver 
7451 Dual 2-input 2-wide and-or-invert gates 74147 10/4 priority encoder 
7452 Expandable 2-input 4-wide and-or gates 74148 Priority encoder 

7453 Expandable 2-input 4-wide and-or-invert 74150 16-line-to-1 -line multiplexer 

gates 74151 8-channel digital multiplexer 
7454 2-input 4-wide and-or-invert gates 74152 8-channel data selector-multiplexer 
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APPENDIX 3. 7400 SERIES TTL (Continued) 

Number Function Number Function 

74153 Dual 4/1 multiplexer 74190 Up-down decade counter 
74154 4-line-to-16-line decoder-demultiplexer 74191 Synchronous binary up-down counter 
74155 Dual 2/4 demultiplexer 74192 Binary up-down counter 
74156 Dual 2/4 demultiplexer 74193 Binary up-down counter 
74157 Quad 2/1 data selector 74194 4-bit directional shift register 
74160 Decade counter with asynchronous clear 74195 4-bit parallel-access shift register 
74161 Synchronous 4-bit counter 74196 Presettable decade counter 
74162 Synchronous 4-bit counter 74197 Presettable binary counter 
74163 Synchronous 4-bit counter 74198 8-bit shift register 
74164 8-bit serial shift register 74199 8-bit shift register 
74165 Parallel-load 8-bit serial shift register 74221 Dual one-shot Schmitt trigger 
74166 8-bit shift register 74251 Three-state 8-channel multiplexer 
74173 4-bit three-state register 74259 8-bit addressable latch 
74174 Hex F flip-flop with clear 74276 Quad JK flip-flop 
74175 Quad D flip-flop with clear 74279 Quad debouncer 
74176 35-MHz presettable decade counter 74283 4-bit binary full adder with fast carry 
74177 35-MHz presettable binary counter 74284 Three-state 4-bit multiplexer 
74179 4-bit parallel-access shift register 74285 Three-state 4-bit multiplexer 
74180 8-bit odd-even parity generator-checker 74365 Three-state hex buffers 
74181 Arithmetic-logic unit 74366 Three-state hex buffers 
74182 Look-ahead carry generator 74367 Three-state hex buffers 
74184 BCD-to-binary converter 74368 Three-state hex buffers 
74185 Binary-to-BCD converter 74390 Individual clocks with dip-flops 
74189 Three-state 64-bit random-access memory 1 74393 Dual 4-bit binary counter 
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APPENDIX 4. PINOUTS AND FUNCTION TABLES 

74LS83 

The 74LS83 is a 4-bit full adder; the binary output is 

S = A + B 

74LS83 

Fig. A4-1 

In Fig. A4-1, pins 1, 3, 8, and 10 are the A input (A3, A2, 
A,, A0)\ pins 16, 4, 7, and 11 are the B input (Z?3, B2, Z?,, 

B0); and pins 15, 2, 6, and 9 are the S output (S3, S2, 5,. 

S0). Pin 13 is the CARRY IN, and pin 14 is the CARRY 

OUT. 

74LS157 

This chip is a word multiplexer. Two words of 4 bits each 

are the inputs; one word of 4 bits is the output. The two 

input words are designated L (left) and R (right); the output 

word is Y. In Fig. A4-2, pin 1 (SELECT) and pin 15 

(STROBE) are control inputs. The L word goes to pins 14, 

11, 5, 2 (C3, L2, Li# L0), and the R word goes to pins 13, 

10, 6, and 3 (fl3, R2, Rlt R0). 

74LS157 

Fig. A4-2 

TABLE A4-1. FUNCTION TABLE 

STROBE SELECT Y Comment 

1 X 0 Output goes low 
0 0 L Output equals left word 
0 1 R Output equals right word 

As indicated in Table A4-1, a high STROBE input 

produces a low output, no matter what the input words. 

When STROBE is low, the SELECT input controls the 

operation. A low SELECT will send the L word to the 

output; a high SELECT sends the R word to the output. 

74LS173 

Fig. A4-3 

74LS173 

The 74LS173 is a 4-bit buffer register with three-state 

outputs. In Fig. A4-3, pins 14, 13, 12, and 11 are the data 

inputs (D3> D2, D,, D0). Pins 3, 4, 5, and 6 are the data 

outputs (<23, Q2, Qx, <2w). Pins 9 and 10 (G, and G2) are 

the input control. Pins 1 and 2 (M and N) are the output 

control. 

As shown in Table A4-2, both M and N must be low to 

get a Q output. If either M or N (or both) is high, the 

output is three-stated (floating or high impedance). 

When M and N are both low, Table A4-3 applies. As 

indicated, a high CLEAR will clear all Q bits to 0. When 

CLEAR is low, G, and G2 control input loading. If either 

G, or G2 (or both) are high, no change takes place in the 

Q bits. When both G, and G2 are low, the next positive 

clock edge loads the input data. 

TABLE A4-2. OUTPUT 
CONTROL 

M N Output 

0 0 Connected 
0 1 Hi-Z 

1 0 Hi-Z 
1 1 Hi-Z 

TABLE A4-3. FUNCTION TABLE FOR M = 0 AND 
N = 0 

CLEAR CLOCK G2 D„ Q„ Comment 

1 X X X X 0 Clear output 

0 0 X X X NC No change 
0 t 1 X X NC No change 

0 t X 1 X NC No change 

0 t 0 0 0 0 Reset bit n 
0 t 0 0 1 1 Set bit n 
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74189 TABLE A4-4. FUNCTION TABLE 

a3 C 1 16 

CE C 2 15 

WEZ 3 14 

d3c 4 13 

q3c 5 12 

d2 C 6 11 

q2 c 7 10 

GND C 8 9 

3Vfcc 

3*2 

=m0 
□ ^0 

□ Q0 
□ 01 
□ Q1 

Fig. A4-4 

74189 

The 74189 is a 64-bit RAM organized as 16 words of 4 

bits each. In Fig. A4-4 pins 1, 15, 14, and 13 are the 

address inputs (A3, A2, A,, A0). Pins 4, 6, 10, and 12 are 

the data inputs (D3, D2, D,, D0). Pins 5, 7, 9, and 11 are 

the data outputs (Q3, Q2, Go Go)* 

CE WE Output Comment 

1 X Hi-Z Do nothing 

0 0 Hi-Z Write complement 

0 1 Stored word Read 

Table A4-4 summarizes the operation of this read-write 

memory. When CE is high, the output is three-stated (high 

impedance). When CE is low and WE is low, the comple¬ 

ment of the input data word is stored at the addressed 

memory location; during this write operation, the output is 

three-stated. When CE is low and WE is high, the stored 

word appears at the output. 
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APPENDIX 5. SAP-1 PARTS LIST 

Chips 

Cl: 74LS107, dual JK master-slave flip-flop 

C2: 74LS107 

C3: 74LS126, quad three-state normally open switches 

C4: 74LS173, buffer register, three-state outputs, 4 bits 

C5: 74LS157, 2-to-l nibble multiplexer 

C6: 74189, 64-bit (16 x 4) static RAM, three-state 

outputs 

C7: 74189 

C8: 74LS173 

C9: 74LS173 

CIO: 74LS173 

Cl 1: 74LS173 

Cl2: 74LS126 

C13: 74LS126 

Cl4: 74LS86, quad 2-input exclusive-or gates 

Cl5: 74LS86 

Cl6: 74LS83, quad full adders 

Cl7: 74LS83 

Cl8: 74LS126 

Cl9: 74LS126 

C20: 74LS173 

C21: 74LS173 

C22: 74LS173 

C23: 74LS173 

C24: 7400, quad 2-input nand gates 

C25: 74LS10, triple 3-input nand gates 

C26: 74LS00 

C27: 7404, hex inverter 

C28: NE555, timer 

C29: 74LS107 

C30: LM340T-5, voltage regulator, 5 V 

C31: 74LS04, hex inverter 

C32: 74LS20, dual 4-input nand gates 

C33: 74LS20 

C34: 74LS20 

C35: 74LS04 

C36: 74LS107 

C37: 74LS107 

C38: 74LS107 

C39: 74LS00 

C40: 74LS00 

C41: 74LS00 

C42: 74LS00 

C43: 74LS00 

C44: 74LS20 

C45: 74LS10 

C46: 74LS00 

C47: 74LS04 

C48: 74LS04 

Diodes 

Dl: 1N4001, rectifier diode, 50 PIV, 1 A 

D2: 1N4001 

D3: 1N4001 

D4: 1N4001 

Switches 

SI: SPST DIP switch, 4 bits 

S2: DPST on-off 

S3: SPST DIP, 8 bits 

S4: SPST push button, momentary, normally open 

S5: SPDT push button, momentary 

S6: SPDT push button, momentary 

S7: SPDT on-on switch 

Miscellaneous 

Resistors: eight 1-kfi, fourteen 10-kD, one 18-kD, one 

36-kO 

Capacitors: 0.01-(utF, 0.1-|ulF, 1000-|ulF (50 V) 

Transformer: F-25X — 115V primary, 12.6 V secondary 

CT, 1.5 A 

Fuse: |-A slow blow 

Totals 

1N4001 -4 74LS20-4 

LM340T-5-1 74LS83-2 

NE555-1 74LS86-2 

7400-1 74LS107-6 

74LS00-7 74LS126-5 

7404-1 74LS157-1 

74LS04—4 74LS173-9 

74LS10-2 74189-2 
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APPENDIX 6. 8085 INSTRUCTIONS 

Instruction Op Code T states 

AC1 byte CE 7 

ADC A 8F 4 

ADC B 88 4 

ADC C 89 4 

ADC D 8A 4 

ADC E 8B 4 

ADC H 8C 4 

ADC L 8D 4 

ADC M 8E 7 

ADD A 87 4 

ADD B 80 4 

ADD C 81 4 

ADD D 82 4 

ADD E 83 4 

ADD H 84 4 

ADD L 85 4 

ADD M 86 7 

ADI byte C6 7 

ANA A A7 4 

ANA B AO 4 

ANA C A1 4 

ANA D A2 4 

ANA E A3 4 

ANA H A4 4 

ANA L A5 4 

ANA M A6 7 

ANI byte E6 7 

CALL address CD 18 

CC address DC 18/9 

CM address FC 18/9 

CMA 2F 4 

CMC 3F 4 

CMP A BF 4 

CMP B B8 4 

CMP C B9 4 

CMP D BA 4 

CMP E BB 4 

CMP H BC 4 

CMP L BD 4 

CMP M BE 7 

CNC address D4 18/9 

CNZ address C4 18/9 

CP address F4 18/9 

CPE address EC 18/9 

CPI byte FE 7 

CPO address E4 18/9 

CZ address CC 18/9 

DAA 27 4 

DAD B 09 10 

DAD D 19 10 

DAD H 29 10 

Main Effect 

A + B + CY 

A + E 

H 4- CY 

A + B 

A + C 

A + D 

A + E 

A + H 

A + L 

A 4- Mhl 

A 4- byte 

A and A 

A AND B 

A AND C 

A AND D 

A AND E 

A AND H 

A AND L 

A AND Mhl 

A and byte 

— address 

— address if CY = 

— address if S = 1 

■A 

- address if CY — 0 

- address if Z = 0 

- address if 5 = 0 

- address if P = 1 

1 if A = byte 

- address if P = 0 

- address if Z = 1 

BCD number 

- HL + BC 

- HL 4- DE 

- HL 4- HL 
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Instruction Op Code T states Flags Main Effect 

DAD SP 

DCR A 

DCR B 

DCR C 

DCR D 

DCR E 

DCR H 

DCR L 

DCR M 

DCX B 

DCX D 

DCX H 

DCX SP 

DI 

El 

HLT 

IN byte 

INR A 

INR B 

INR C 

INR D 

INR E 

INR H 

INR L 

INR M 

INX B 

INX D 

INX H 

INX SP 

JC address 

JM address 

JMP address 

JNC address 

JNZ address 

JP address 

JPE address 

JPO address 

JZ address 

39 

3D 

05 

0D 

15 

ID 

25 

2D 

35 

OB 

IB 

2B 

3B 

F3 

FB 

76 

DB 

3C 

04 

0C 

14 

1C 

24 

2C 

34 

03 

13 

23 

33 

DA 

FA 

C3 

D2 

C2 

F2 

EA 

E2 

CA 

10 
4 

4 

4 

4 

4 

4 

4 

10 

6 
6 
6 
6 
4 

4 

5 

10 
4 

4 

4 

4 

4 

4 

4 

10 
6 
6 
6 
6 
10/7 

10/7 

10 

10/7 

10/7 

10/7 

10/7 

10/7 

10/7 

CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

None 

None 

None 

None 

None 

None 

None 

None 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

All but CY 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

HL HL + SP 

A A - 1 
B <- B - 1 
C <-C - 1 
D <— D - 1 
E <— E - 1 

H <— H — 1 

L <— L - 1 

Mhl ■*“ MHL — 1 

BC BC — 1 

DE DE - 1 

HL <— HL - 1 

SP 4- SP - 1 

Disable interrupts 

Enable interrupts 

Stop processing 

A byte 

A <— A + 1 
B B + 1 

C <- C + 1 
D <— D + 1 

E <- E + 1 

H <— H + 1 

L <- L + 1 

Mhl Mhl + 1 
BC <— BC 4- 1 

DE <— DE 4- 1 

HL HL 4- 1 

SP <- SP 4- 1 

PC <— address if CY = 1 

PC address if S = 1 

PC <— address 

PC <— address if CY = 0 

PC <— address if Z = 0 

PC <— address if S = 0 

PC <— address if P = 1 

PC «— address if P = 0 

PC address if Z = 1 
LDA address 3A 13 None A ^ Madr 
LDAX B 0A 7 None A Mbc 
LDAX D 1A 7 None A <- Mde 
LHLD address 2A 16 None H <- Madr 
LXI B, dble 01 10 None BC <- dble 
LXI D, dble 11 10 None DE <- dble 
LXI H, dble 21 10 None HL dble 
LXI SP, dble 31 10 None SP dble 
MOV A,A 7F 4 None A <— A 
MOV A,B 78 4 None A <- B 

MOV A,C 79 4 None A ^C 
MOV A,D 7A 4 None A D 

MOV A,E 7B 4 None A E 
MOV A,H 1C 4 None A <- H 
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APPENDIX 6. 8085 INSTRUCTIONS (Continued) 

Instruction Op Code T states Flags 

MOV A,L 7D 4 None 

MOV A,M 7E 7 None 

MOV B,A 47 4 None 

MOV B,B 40 4 None 

MOV B,C 41 4 None 

MOV B,D 42 4 None 

MOV B,E 43 4 None 

MOV B,H 44 4 None 

MOV B,L 45 4 None 

MOV B,M 46 7 None 

MOV C,A 4F 4 None 

MOV C,B 48 4 None 

MOV C,C 49 4 None 

MOV C,D 4A 4 None 

MOV C,E 4B 4 None 

MOV C,H 4C 4 None 

MOV C,L 4D 4 None 

MOV C,M 4E 7 None 

MOV D,A 57 4 None 

MOV D,B 50 4 None 

MOV D,C 51 4 None 

MOV D,D 52 4 None 

MOV D,E 53 4 None 

MOV D,H 54 4 None 

MOV D,L 55 4 None 

MOV D,M 56 7 None 

MOV E,A 5F 4 None 

MOV E,B 58 4 None 

MOV E,C 59 4 None 

MOV E,D 5A 4 None 

MOV E,E 5B 4 None 

MOV E,H 5C 4 None 

MOV E,L 5D 4 None 

MOV E,M 5E 7 None 

MOV H,A 67 4 None 

MOV H,B 60 4 None 

MOV H,C 61 4 None 

MOV H,D 62 4 None 

MOV H,E 63 4 None 

MOV H,H 64 4 None 

MOV H,L 65 4 None 

MOV H,M 66 7 None 

MOV L,A 6F 4 None 

MOV L,B 68 4 None 

MOV L,C 69 4 None 

MOV L,D 6A 4 None 

MOV L,E 6B 4 None 

MOV L,H 6C 4 None 

MOV L,L 6D 4 None 

MOV L,M 6E 7 None 
MOV M,A 77 7 None 

504 Appendixes 

Main Effect 

A L 

a-mhl 

B <- A 

B <— B 

B <— C 

B <— D 

B <— E 

B <- H 

B <-L 
B -Mhl 

C <- A 

C <- B 

c 
C <- D 

C ^E 

C <— H 

C L 

C^Mhl 
D A 

D B 

D 

D <- D 

D <- E 

D <- H 
D 4- L 

D 4- Mhl 

E 4- A 

E <— B 

E «-C 

E 4- D 

E «-E 

E <— H 

E L 

E^Mhl 
H 4- A 

H <— B 

H *-C 

H D 

H ^E 

H <- H 

H <- L 

H^Mhl 
L <- A 

L <- B 

L 

L <- D 

L <— E 

L 4- H 

L ^ L 

B *— Mhl 

MHl A 



Instruction T states Main Effect Op Code Flags 

MOV M,B 

MOV M,C 

MOV M,D 

MOV M,E 

MOV M,H 

MOV M,L 

MV1 A,byte 

MVI B,byte 

MVI C,byte 

MVI D,byte 

MVI E,byte 

MVI H,byte 

MVI L,byte 

MVI M,byte 

NOP 

ORA A 

ORA B 

ORA C 

ORA D 

ORA E 

ORA H 

ORA L 

ORA M 

ORI byte 

OUT byte 

PCHL 

POP B 

POP D 

POP H 

RAL 

RAR 

RC 

RET 

RIM 

RLC 

RM 

RNC 

RNZ 

RP 

RPE 

RPO 

RRC 

RST 0 

RST 1 

RST 2 

RST 3 

RST 4 

RST 5 

70 

71 

72 

73 

74 

75 

3E 

06 

0E 

16 

IE 

26 

2E 

36 

00 
B7 

BO 

B1 
B2 
B3 

B4 

B5 

B6 

F6 
D3 

E9 

Cl 
D1 

El 

17 

IF 

D8 

C9 

20 
07 

F8 
DO 

CO 

F0 
E8 

E0 

OF 

Cl 
CF 

D7 

DF 

E7 

EF 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

10 
4 

4 

4 

4 

4 

4 

4 

4 

7 

7 

10 

6 
10 

10 
10 

4 

4 

12/6 
10 

4 

4 

12/6 
12/6 
12/6 
12/6 
12/6 
12/6 
4 

12 

12 
12 
12 
12 

12 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

All 

All 

All 

All 

All 

All 

All 

All 

All 

None 

None 

None 

None 

None 

CY 

CY 

None 

None 

None 

CY 

None 

None 

None 

None 

None 

None 

CY 

None 

None 

None 

None 

None 

None 

Mhl 

M«l 
M„l 

m„l 

mhi. 

A <- 

- B 
-C 

- D 

- E 

- H 

- L 

byte 

B «- byte 

C <— byte 

D <— byte 

E <— byte 

H <- byte 

L byte 

Mhl byte 
Delay 

A 

A 

A 

A 

A 

A 

A 

A 

A 

Port byte « 

PC HL 

B «- Mstk 

D <- Mstk 

H Mstk 

A or A 

A OR B 

A or C 

A OR D 

A or E 

A or H 

A or L 

A or Mhl 

A or byte 

A 

POP PSW FI 10 None F «- Mstk, A 4- Mstk - 1 

PUSH B C5 12 None Mslk — 1 «— B, Mslk - 2 ^C 
PUSH D D5 12 None Mstk - 1 <— D, Mstk - 2 ^ E 

PUSH H E5 12 None Mstk - 1 <— H, MSIk - 2 <— L 
PUSH PSW F5 12 None Mslk — 1 «— A, Mstk - 2 ^F 

Rotate all left 

Rotate all right 

PC <— return address if CY = 1 

PC return address 

A <- I 

Rotate left with carry 

PC 

PC 

PC 

PC 

PC 

PC 

return address if S = 1 

return address if CY = 0 

return address if Z 

return address if S 
return address if P 
return address if P 

Rotate right with carry 

PC <- 0000H 

PC <- 0008H 

PC ^ 001 OH 

PC ^0018H 

PC <- 0020H 

PC <- 0028H 

0 

0 

1 

0 
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APPENDIX 6. 8085 INSTRUCTIONS (Continued) 

Instruction Op Code T states Flags Main Effect 

RST 6 F7 12 None 

RST 7 FF 12 None 

RZ C8 12/6 None 

SBB A 9F 4 All 

SBB B 98 4 All 

SBB C 99 4 All 

SBB D 9A 4 All 

SBB E 9B 4 All 

SBB H 9C 4 All 

SBB L 9D 4 All 

SBB M 9E 7 All 

SBI byte DE 7 All 

SHLD address 22 16 None 

SIM 30 4 None 

SPHL F9 6 None 

ST A address 32 13 None 

STAX B 02 7 None 

STAX D 12 7 None 

STC 37 4 CY 

SUB A 97 4 All 

SUB B 90 4 All 

SUB C 91 4 All 

SUB D 92 4 All 

SUB E 93 4 All 

SUB H 94 4 All 

SUB L 95 4 All 

SUB M 96 7 All 

SUI byte D6 7 All 

XCHG EB 4 None 

XRA A AF 4 All 

XRA B A8 4 All 

XRA C A9 4 All 

XRA D AA 4 All 

XRA E AB 4 All 

XRA H AC 4 All 

XRA L AD 4 All 

XRA M AE 7 All 

XRI byte EE 7 All 

XTHL E3 16 None 

PC <- 0030H 

PC <- 0038H 

PC return address if Z 

A <- A - A - CY 

A <- A - B - CY 

A A - C - CY 

A <— A — D - CY 

A <- A - E - CY 

A <- A - H - CY 

A <— A - L - CY 

A A - M - CY 

A A - byte - CY 

^adr+l < H, Madr L 

I A 

SP HL 

Madr <- A 

Mbc A 

Mde < A 

CY <- 1 

A <— A - A 

A <- A - B 

A <— A - C 

A <- A - D 

A 4- A - E 

A <— A - H 

A <- A - L 

A <— A - M 

A A — byte 

HL ** DE 

A <— A xor A 

A <— A xor B 
A <— A xor C 
A <— A xor D 

A <— A xor E 

A A xor H 

A <— A xor L 

A <— A xor M 

A <— A xor byte 

HL ** stack 

1 
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APPENDIX 7. MEMORY LOCATIONS: 
POWERS OF 2 

Power 
Address Bits Hexadecimal Decimal of 2 

0000 0000 0000 0001 0001H 1 0 
0000 0000 0000 0010 0002H 2 1 
0000 0000 0000 0100 0004H 4 2 
0000 0000 0000 1000 0008H 8 3 
0000 0000 0001 0000 001 OH 16 4 
0000 0000 0010 0000 0020H 32 5 
0000 0000 0100 0000 0040H 64 6 
0000 0000 1000 0000 0080H 128 7 
0000 0001 0000 0000 0100H 256 8 
0000 0010 0000 0000 0200H 512 9 
0000 0100 0000 0000 0400H 1,024 10 
0000 1000 0000 0000 0800H 2,048 11 
0001 0000 0000 0000 1000H 4,096 12 
0010 0000 0000 0000 2000H 8,192 13 
0100 0000 0000 0000 4000H 16,384 14 
1000 0000 0000 0000 8000H 32,768 15 

APPENDIX 8. MEMORY LOCATIONS: 
16K AND 8K INTERVALS 

Address Bits Hexadecimal Decimal Zone 

Zone bits = A,5A,4 

0000 0000 0000 0000 
ooii mi mi nil 

0000H 
3FFFH 

0 
16,383 

0 

0100 0000 0000 0000 
oin mi mi mi 

4000H 
7FFFH 

16,384 
32,767 

1 

1000 0000 0000 0000 
ion nil nil nil 

8000H 
BFFFH 

32,768 
49,151 

2 

1100 0000 0000 0000 
nil nil nil nil 

C000H 
FFFFH 

49,152 
65,535 

3 

Zone bits = AI5A14AI 13 

0000 0000 0000 0000 
oooi nil nil nil 

0000H 
1FFFH 

0 
8,191 

0 

0010 0000 0000 0000 
oon nil nn nil 

2000H 
3FFFH 

8,192 
16,383 

1 

0100 0000 0000 0000 
0101 1111 1111 1111 

4000H 
5FFFH 

16,384 
24,575 

2 

0110 0000 0000 0000 
0111 1111 1111 1111 

6000H 
7FFFH 

24,576 
32,767 

3 

1000 0000 0000 0000 
iooi nil nn nn 

8000H 
9FFFH 

32,768 
40,959 

4 

1010 0000 0000 0000 

1011 1111 1111 1111 

A000H 

BFFFH 

40,960 

49,151 
5 

1100 0000 0000 0000 

1101 1111 1111 1111 

C000H 

DFFFH 

49,152 

57,343 
6 

1110 0000 0000 0000 

1111 1111 1111 1111 

E000H 

FFFFH 

57,344 

65,535 
7 

APPENDIX 9. MEMORY LOCATIONS: 
4K INTERVALS 

Address Bits Hexadecimal Decimal Zone 

Zone bits = A^A^A^A^ 

0000 0000 0000 0000 
0000 1111 1111 1111 

0000H 

OFFFH 

0 
4,095 

0 

0001 0000 0000 0000 
oooi nn nn nn 

1000H 

1FFFH 

4,096 

8,191 
1 

0010 0000 0000 0000 
ooio nn nn nn 

2000H 
2FFFH 

8,192 

12,287 
2 

0011 0000 0000 0000 
oon nn nn nn 

3000H 

3FFFH 

12,288 

16,383 
3 

0100 0000 0000 0000 
oioo ini nn nn 

4000H 

4FFFH 

16,384 

20,479 
4 

0101 0000 0000 0000 
oioi nil nn nn 

5000H 

5FFFH 

20,480 

24,575 
5 

0110 0000 0000 0000 
ono nn ini nn 

6000H 

6FFFH 

24,576 

28,671 
6 

0111 0000 0000 0000 
0111 1111 1111 1111 

7000H 

7FFFH 

28,672 

32,767 
7 

1000 0000 0000 0000 
1000 1111 1111 1111 

8000H 

8FFFH 

32,768 

36,863 
8 

1001 0000 0000 0000 
1001 1111 1111 1111 

9000H 

9FFFH 

36,864 

40,959 
9 

1010 0000 0000 0000 
1010 1111 1111 1111 

A000H 

AFFFH 

40,960 

45,055 
10 

1011 0000 0000 0000 
1011 1111 1111 1111 

B000H 

BFFFH 

45,056 

49,151 
11 

1100 0000 0000 0000 
1100 1111 1111 1111 

C000H 

CFFFH 

49,152 

53,247 
12 

1101 0000 0000 0000 
1101 1111 1111 1111 

D000H 

DFFFH 

53,248 

57,343 
13 

1110 0000 0000 0000 
1110 1111 1111 1111 

E000H 

EFFFH 

57,344 

61,439 
14 

1111 0000 0000 0000 
nil nn nn nn 

F000H 

FFFFH 

61,440 

65,535 
15 
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APPENDIX 10. MEMORY LOCATIONS: 2K INTERVALS 

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone 

Zone bits = A, 5-^ 14 A ] 3 A j 2 A j | 

0000 0000 0000 0000 

oooooni mi mi 

0000H 
07FFH 

0 

2,047 
0 

1000 0000 0000 0000 

iooooni mi nn 

8000H 
87FFH 

32,768 
34,815 

16 

0000 1000 0000 0000 

0000 1111 1111 1111 

0800H 
OFFFH 

2,048 
4,095 

1 
1000 1000 0000 0000 

1000 1111 1111 1111 

8800H 
8FFFH 

34,816 
36,863 

17 

0001 0000 0000 0000 

oooi oni nil nil 

1000H 
17FFH 

4,096 
6,143 

2 
1001 0000 0000 0000 

iooi oni nil nn 

9000H 
97FFH 

36,864 
38,911 

18 

0001 1000 0000 0000 

oooi nil nil nil 

1800H 
1FFFH 

6,144 
8,191 

3 
1001 1000 0000 0000 

1001 1111 1111 1111 

9800H 
9FFFH 

38,912 
40,959 

19 

0010 0000 0000 0000 

ooiooni nil nil 

2000H 
27FFH 

8,192 
10,239 

4 
1010 0000 0000 0000 

10100111 1111 1111 

A000H 
A7FFH 

40,960 
43,007 

20 

0010 1000 0000 0000 

ooio nil nil nil 

2800H 
2FFFH 

10,240 
12,287 

5 
1010 1000 0000 0000 

1010 1111 1111 1111 

A800H 
AFFFH 

43,008 
45,055 

21 

0011 0000 0000 0000 

oon oni nil nil 

3000H 
37FFH 

12,288 
14,335 

6 
1011 0000 0000 0000 

ion oni nn nn 

B000H 
B7FFH 

45,056 
47,103 

22 

0011 1000 0000 0000 

oon nil nil nn 

3800H 
3FFFH 

14,336 
16,383 

7 
1011 1000 0000 0000 

ion nn nn nn 

B800H 

BFFFH 
47,104 

49,151 
23 

0100 0000 0000 0000 

0100 0111 1111 1111 

4000H 
47FFH 

16,384 
18,431 

8 
1100 0000 0000 0000 

1100 0111 1111 1111 

C000H 
C7FFH 

49,152 
51,199 

24 

0100 1000 0000 0000 

0100 1111 1111 1111 

4800H 
4FFFH 

18,432 
20,479 

9 
1100 1000 0000 0000 

1100 1111 1111 1111 

C800H 
CFFFH 

51,200 
53,247 

25 

0101 0000 0000 0000 

oioi oni nn nn 

5000H 
57FFH 

20,480 
22,527 

10 
1101 0000 0000 0000 

1101 0111 1111 1111 

D000H 
D7FFH 

53,248 
55,295 

26 

0101 1000 0000 0000 

0101 1111 1111 1111 

5800H 
5FFFH 

22,538 
24,575 

11 
1101 1000 0000 0000 

noi nn nn nn 

D800H 
DFFFH 

55,296 
57,343 

27 

0110 0000 0000 0000 

01100111 1111 1111 

6000H 
67FFH 

24,576 
26,623 

12 
1110 0000 0000 0000 

11100111 1111 1111 

E000H 
E7FFH 

57,344 
59,391 

28 

0110 1000 0000 0000 

0110 1111 1111 1111 

6800H 
6FFFH 

26,624 
28,671 

13 
1110 1000 0000 0000 

1110 1111 1111 1111 

E800H 
EFFFH 

59,392 
61,439 

29 

0111 0000 0000 0000 

0111 0111 1111 1111 

7000H 
77FFH 

28,672 
30,719 

14 
1111 0000 0000 0000 

nn oni nn nn 

F000H 
F7FFH 

61,440 
63,487 

30 

0111 1000 0000 0000 

0111 1111 1111 1111 

7800H 
7FFFH 

30,720 
32,767 

15 
1111 1000 0000 0000 

nn nn nn nn 

F800H 
FFFFH 

63,488 
65,535 

31 
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APPENDIX 11. MEMORY LOCATIONS: IK INTERVALS 

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone 

Zone bits = A, 5A14A| 3A|2A| j A jo 

0000 0000 0000 0000 
ooooooii mi mi 

OOOOH 
03FFH 

0 
1,023 

0 
0101 oooo oooo oooo 
oioi oon nn nn 

5000H 
53FFH 

20,480 
21,503 

20 

0000 0100 0000 0000 
oooooni nil nil 

0400H 
07FFH 

1,024 
2,047 

1 
0101 oioo oooo oooo 
0101 0111 1111 1111 

5400H 
57FFH 

21,504 
22,527 

21 

0000 1000 oooo oooo 
oooo ion nil nn 

0800H 
OBFFH 

2,048 
3,071 

2 
0101 1000 0000 0000 
0101 1011 1111 1111 

5800H 
5BFFH 

22,528 
23,551 

22 

0000 1100 oooo oooo 
0000 1111 1111 1111 

OCOOH 
OFFFH 

3,072 
4,095 

3 
0101 1100 0000 0000 
oioi nn nn nn 

5C00H 
5FFFH 

23,552 
24,575 

23 

0001 oooo oooo oooo 
0001 0011 1111 1111 

1000H 
13FFH 

4,096 
5,119 

4 
0110 oooo oooo oooo 
onooon nn nn 

6000H 
63FFH 

24,576 
25,599 

24 

0001 0100 oooo oooo 
0001 0111 1111 1111 

1400H 
17FFH 

5,120 
6,143 

5 
0110 0100 oooo oooo 
onooin nn nn 

6400H 
67FFH 

25,600 
26,623 

25 

0001 1000 0000 0000 
0001 1011 1111 1111 

1800H 
1BFFH 

6,144 
7,167 

6 
0110 1000 oooo oooo 
ono ion nn nn 

6800H 
6BFFH 

26,624 
27,647 

26 

0001 1100 0000 0000 
0001 1111 1111 1111 

1C00H 
1FFFH 

7,168 
8,191 

7 
0110 1100 oooo oooo 
ono nn nn nn 

6C00H 
6FFFH 

27,648 
28,671 

27 

0010 oooo oooo oooo 
0010 0011 1111 1111 

2000H 
23FFH 

8,192 
9,215 

8 
0111 oooo oooo oooo 
oni oon nn nn 

7000H 
73FFH 

28,672 
29,695 

28 

0010 0100 oooo oooo 
0010 0111 1111 1111 

2400H 
27FFH 

9,216 
10,239 

9 
0111 oioo oooo oooo 
oni oni nn nn 

7400H 
77FFH 

29,696 
30,719 

29 

0010 1000 oooo oooo 
0010 1011 1111 1111 

2800H 
2BFFH 

10,240 
11,263 

10 
0111 1000 0000 0000 
oni ion mi nn 

7800H 
7BFFH 

30,720 
31,743 

30 

0010 1100 oooo oooo 
0010 1111 1111 1111 

2C00H 
2FFFH 

11,264 
12,287 

11 
0111 1100 0000 0000 
oni nil nn nil 

7C00H 
7FFFH 

31,744 
32,767 

31 

0011 oooo oooo oooo 
0011 0011 1111 1111 

3000H 

33FFH 
12,288 
13,311 

12 
1000 oooo oooo oooo 
looooon nn nn 

8000H 
83FFH 

32,768 
33,791 

32 

0011 0100 oooo oooo 
oon oni nn nil 

3400H 
37FFH 

13,312 
14,335 

13 
1000 oioo oooo oooo 
1000 0111 1111 1111 

8400H 
87FFH 

33,792 
34,815 

33 

0011 1000 0000 0000 
oon ion nn nn 

3800H 
3BFFH 

14,336 
15,359 

14 
1000 1000 oooo oooo 
1000 1011 1111 1111 

8800H 
8BFFH 

34,816 
35,839 

34 

0011 1100 0000 0000 
oon nn nn nn 

3C00H 
3FFFH 

15,360 
16,383 

15 
1000 1100 oooo oooo 
1000 1111 1111 1111 

8C00H 
8FFFH 

35,840 
36,863 

35 

0100 oooo oooo oooo 
oioooon nn nn 

4000H 
43FFH 

16,384 
17,407 

16 
1001 oooo oooo oooo 
iooi oon nn nn 

9000H 
93FFH 

36,864 
37,887 

36 

0100 0100 oooo oooo 
0100 0111 1111 1111 

4400H 
47FFH 

17,408 
18,431 

17 
1001 0100 oooo oooo 
1001 0111 1111 1111 

9400H 
97FFH 

37,888 
38,911 

37 

0100 1000 oooo oooo 
0100 1011 1111 1111 

4800H 
4BFFH 

18,432 
19,455 

18 
1001 1000 0000 0000 
1001 1011 1111 1111 

9800H 
9BFFH 

38,912 
39,935 

38 

0100 1100 oooo oooo 
oioo nn nn nn 

4C00H 
4FFFH 

19,456 
20,479 

19 
1001 1100 0000 0000 
1001 1111 1111 1111 

9C00H 
9FFFH 

39,936 
40,959 

39 
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APPENDIX 11. MEMORY LOCATIONS: IK INTERVALS (Continued) 

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone 

Zone bits = Aj 5A14A13A12A1] A10 

1010 0000 0000 0000 
ioioooii mi mi 

A000H 
A3FFH 

40,960 
41,983 

40 
1101 0000 0000 0000 
1101 0011 1111 1111 

D000H 
D3FFH 

53,248 
54,271 

52 

1010 0100 0000 0000 
loiooin nil nil 

A400H 
A7FFH 

41,984 
43,007 

41 
1101 0100 0000 0000 
noi oni nil nn 

D400H 
D7FFH 

54,272 
55,295 

53 

1010 1000 0000 0000 
ioio ion nil nil 

A800H 
ABFFH 

43,008 
44,031 

42 
1101 1000 0000 0000 
noi ion nil nn 

D800H 
DBFFH 

55,296 
56,319 

54 

1010 1100 0000 0000 
ioio nil nil nil 

ACOOH 
AFFFH 

44,032 
45,055 

43 
1101 1100 0000 0000 
1101 1111 1111 1111 

DCOOH 
DFFFH 

56,320 
57,343 

55 

1011 0000 0000 0000 
ion ooii mi mi 

B000H 
B3FFH 

45,056 
46,079 

44 
1110 0000 0000 0000 
1110 0011 1111 1111 

E000H 
E3FFH 

57,344 
58,367 

56 

1011 0100 0000 0000 
ion oni nil nil 

B400H 
B7FFH 

46,080 
47,103 

45 
1110 0100 0000 0000 
liiooin nn ini 

E400H 
E7FFH 

58,368 
59,391 

57 

1011 1000 0000 0000 
ion ion mi nil 

B800H 
BBFFH 

47,104 
48,127 

46 
1110 1000 0000 0000 
1110 1011 1111 1111 

E800H 
EBFFH 

59,392 
60,415 

58 

1011 1100 0000 0000 
ion nil nil nil 

BCOOH 
BFFFH 

48,128 
49,151 

47 
1110 1100 0000 0000 
1110 1111 1111 1111 

ECOOH 
EFFFH 

60,416 
61,439 

59 

1100 0000 0000 0000 
noooon mi nil 

C000H 
C3FFH 

49,152 
50,175 

48 
1111 0000 0000 0000 
nn oon nn nn 

F000H 
F3FFH 

61,440 
62,463 

60 

1100 0100 0000 0000 
noooin nn nil 

C400H 
C7FFH 

50,176 
51,199 

49 
n n oioo oooo oooo 
1111 0111 1111 1111 

F400H 
F7FFH 

62,464 
63,487 

61 

1100 1000 0000 0000 
1100 1011 1111 1111 

C800H 
CBFFH 

51,200 
52,223 

50 
1111 1000 0000 0000 
nil ion nn ini 

F800H 
FBFFH 

63,488 
64,511 

62 

1100 1100 0000 0000 
1100 1111 1111 1111 

CCOOH 
CFFFH 

52,224 
53,247 

51 
1111 noo oooo oooo 
nil nn nil nn 

FCOOH 
FFFFH 

64,512 
65,535 

63 
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APPENDIX 12. PROGRAMMING MODELS 

0000 

0001 

A 0002 
d 
d 0003 

r 0004 
e 
s 0005 

s 0006 

s 0007 

0008 

0009 

Fig. A12-1 

0000 

0001 

A 0002 
d 
d 0003 

r 0004 
e 
s 0005 

s 0006 

I 0007 

0008 

0009 

Fig. A12-2 

Accumulator 
hh 

X Register 
hh 

Y Register j 
hh 

1 Stack pointer 
hh 

PCh—-Program 
hh 

counter—PCL 
hh 

Status register 
N V —BDIZC 
bb — bbbbb 

h | h 

6502 programming model. 

Accumulator A 
hh 

Accumulator B 
hh 

XH—X Register—XL 
hh | hh 

SPH—Stack pointer—SPL 
hh | hh 

PCH—Program 
hh 

i counter—PCL 
hh 

Status register 
1 1 H1N ZVC 
1 1 bbbbbb 

h h 

6800/6808 programming model. 

Memory 

0000 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

0008 

0009 

000A 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

Accumulator 
hh 

Register B 
hh 

Register C 
hh 

Register D 
hh 

Register E 
hh 

. 

Register H 
hh 

_i 

Register L 
hh 

i___ 

SPh—Stack pointer—SPL 
hh | hh 

PCH—Program 
hh 

counter—PCL 
hh 

Status register 
SZ — A— P — C 
bb—b—b —b 

h | h 

Fig. A12-3 8085/Z80 (8085/8080 subset) programming model. 

Memory 

A 

d 

d 

r 

e 

s 

s 

e 

s 

0100 

0101 

0102 

0103 

0104 

0105 

0106 

0107 

0108 

0109 

010A 

010B 

010C 

010D 

010E 

010F 

0110 

0111 

0112 

0113 

0114 

0115 

0116 

0117 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

hh 

— Accumulator AX — 
AH j AL 
hh D 1 dv hh -Base BX- 
BH 
hh 

CH 
hh 

- Count CX- 
i 
i 

- Data DX - 

BL 
hh 

CL 
hh 

DH 
hh 

DL 
hh 

Source index 
hhhh 

Destination index 
hhhh 

Stack pointer 
hhhh 

Base pointer 
hhhh 

Code segment 
hhhh 

Data segment 
hhhh 

Extra segment 
hhhh 

Stack segment 
hhhh 

Instruction pointer 
hhhh 

--”22^7-r i c new yb 8085-like 

-0 D 1 T 
-b b b b 

h | h 

S Z — A— P — C 
b b — b — b — b 

h | h 

Fig. A12-4 8088/8086 programming model. 
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Answers to Odd-Numbered Problems 
CHAP. 1. 1-1. a. 1 b. 2 c. 2Vi 1-3. a. 10 b. 2 c. 5 
d. 16 1-5. 1,024, 4,096, 8K 1-7. 1010 1100, 172 1-9. 
201 1-11.11000111,199 1-13,111000 1-15.10010110 
1- 17. F52B, F52C, F52D, F52E, F52F, F530 1-19. 
a. 1111 1111 b. 1010 1011 1100 c. 1100 1101 0100 0010 
d. 1111001100101001 1-21.0011 1110,0000 1110, 1101 
0011, 0010 0000, 0111 0110 1-23. a. 4,095 b. 16,383 
c. 32,740 d. 46,040 1-25. 16,384, 16K 1-27. 0000, 
FFFF 1-29. a. EE b. 1D7B c. 3BFF d. B8B5 1-31. 
a. 87 b. 2,043 c. 597,266 1-33. 100 1100, 100 1001, 101 
'O0TT, 101 0100 

CHAP. 2. 2-1 One or more, one 2-3. Nonin¬ 
verter 2-5.64,000000 2-7.3,9,C,F 2-9.128,1111111 
2- 11.0,59 2-13. Y = A + B, low 2-15.8 2-17. 0, Y 
= A + B + C, 000 to 110, 111 2-19. Y = ABC, 0 2- 
21. Y = AB + CD, 16, 0000, 0001, 0010, 0100, 0101, 
0110, 1000, 1001, 1010 2-23. a. 0000 b. 0001 c. JIM 
d. OPR 2-25. a. Positive b. Negative c. Positive d. Negative. 

CHAP. 3. 3-1. High; low; inverter 3-3. None, Z5, Z6 
3- 5. Q is 1, Q is 0 3-7. Change the output nor gate of 
Fig. 3-28a to a bubbled and gate; all bubbles cancel leaving 
the simplified circuit of Fig. 3-28b. 3-9. 0, 1 3-11.512 
3-13. 16; 0, 1, 1, 0 3-15. I, 0, inverter 3-17. a. None 
b. Z7 c. Z2 d. X2 and Y2 3-19. 0, 1 3-21. 512 3-23. 
Low, high 3-25. a. 0 b. 1 c. 1 d. 1 3-27. a. 1,1010b. 
01001 c. 11111 d. 10010 3-29. Remove the inverter 
3-31. a. CARRY = 0, SUM = 0 b. 0, 1 c. 0, 1 d. 1, 0 
3-33. a. 0011 1100 b. 0101 0000 1100 c. 0001 1110 0101 
1100 d. 1111 0000 1101 0010 

CHAP. 4. 4-1. 1.075 mA, 1.387 mA 4-3. 5 4-5. All; 
b, c, f, g 

5-5. 

aabbccdd 

CD CD CD CD 

AB 

AB 

AB 

AB 

0 0 0 0 

0 0 0 0 

1 1 1 1 

1 1 1 1 

5-9. 
CD CD CD CD 

CHAP. 5. 5-1. A BCD, ABCD, ABCD 

5-3. 

AABBCCDD 

t>- 
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5-11. 5-15. 

CD CD CD CD 

5-13. 
CD CD CD CD 

AABBCCDD 

CD CD CD CD 

AABBCCDD 

CHAP. 6. 6-1. a. 0001 1000, 18H b. 0010 0100, 24H 
c. 0010 1010, 2AH d. 0110 0011, 63H 6-3. a. 7BH 
b. 78H c. A8H d. D1H 6-5. a. +30 b. -7 c. -28 
d. +49 6-7. a. F9H b. 01H c. 03H d. 1FH 6-9. 
a. 1110 1101, EDH b. 1101 0000, DOH c. 0010 0101, 
25H d. 1101 1111, DFH 6-11. 9BH, DDH 

CHAP. 7. 7-1. a. C b. G 7-3. a. 0000 b. 1001 7-5.3 
MHz; the output frequency is half the input frequency 
7- 7. 0 = 0, Y = 1; Q = 1, Y = CLK 

CHAP. 8. 8-1. a. 0001 0111 b. 1000 1101 8-3. 385 D 
8- 5. 4 (jls 8-7. 6.4 8-9. 65,535 8-11. 1 pus, 6 |jls 

8-13. 1.6 jxs, 0.2 |uls 8-15. Two answers: 7490 (divide by 
10) and 7492 (divide by 6), or 7490 (divide by 5) and 7492 
(divide by 12) 8-17. 136 8-19. a. 0, 1 b. 1, 1 c. 0 

CHAP. 9. 9-1. 16,384 9-3. 12 

Address Data 

DDDD UDDD UDDU 
DDDU DUUU UUDD 
DDUD DDUU DUUD 
DDUU DDUD DDUU 
DUDD DDDU DUUU 
DUDU DUDU UUUU 
DUUD UUUD UUDU 
DUUU UUUU UDDD 

514 Answers to Odd-Numbered Problems 

9-7.63 9-9. BFFFH; 49,151 9-11. a. 47, 212, 207, 110, 
83, 122 b. 36,357 



CHAP. 10. 

10-3. 

10-1. Address Mnemonic 

OH LDA DH 
1H ADD EH 
2H SUB FH 
3H OUT 

4H HLT 
DH OSH 
EH 04H 
FH 06H 

Address Mnemonic 

OH LDA BH 
1H ADD CH 
2H SUB DH 
3H ADD EH 
4H SUB FH 
5H HLT 
BH 08H 
CH 04H 
DH 03H 
EH 05 H 
FH 02H 

10- 7. LDA: 1A3H or 0001 1010 0011, 2C3H or 
0010 1100 0011, 3E3H or 0011 1110 0011; SUB: 1A3H 
or 0001 1010 0011, 2E1H or 0010 1110 0001, 3CFH or 
0011 1100 1111 10-9. a. Negative edge; CLK is on its 
rising edge b. High c. Low d. High 10-11. a. Low b. Low 
c. High 

CHAP. 11. 11-1. Mnemonic 

MVI A,64H 
MVI B,96H 
MVI C,C8H 
HLT 

11- 3. 
Mnemonic 

MVI A,32H 
STA 4000H 
MVI A,33H 
STA 4001H 
MVI A,34H 
STA 4002H 
HLT 

11-5. Mnemonic 

10-5. 

ri T2 r3' T4 T5 

MVI A,44H 
MVI B,22H 
ADD B 
STA 5000H 
HLT 

11-7. a. 120 b. 119 c. Change the first instruction to MVI 
C,D2H 

11-9. Mnemonic 

MVI A,00H 
MVIB,19H 
MVI C,07H 
CALL F006H 
STA 2000H 
HLT 

11-11. Label Mnemonic 

IN 01H 
ANI 01H 
JNZ ODD 
MVI A,45H 
JMP DONE 

ODD: MVI A,4FH 
DONE: MVI C,08H 
AGAIN: OUT 04H 

RAR 
DCR C 
JNZ AGAIN 
HLT 
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11-13. 

11-15. 

11-17. 

11-19. 

Address Contents 

2000H DBH 
2001H 02H 
2002H E6H 
2003H 01H 
2004H CAH 
2005H 00H 
2006H 20H 
2007 H DBH 
2008H 01H 
2009H 32H 
200AH 00H 
200BH 40H 
200CH 76H 

Address Contents 

2000H 0EH 

2001H 23H 
2002H 0DH 

2003H C2H 
2004H 02H 
2005H 20H 
2006H C9H 

Label Mnemonic 

MVI A,05H 
LOOP: CALL F020H 

DCR A 
JNZ LOOP 
RET 

Address Contents 

E100H 3EH 
E101H 05H 
E102H CDH 
E103H 20 H 
E104H F0H 
E105H 3DH 
E106H C2H 
E107H 02H 
E108H E1H 
E109H C9H 

Address Contents 

F080H 3EH 
F081H 06 H 
F082H 32H 
F083H 93H 
F084H F0H 
F085H CDH 
F086H 60H 
F087H F0H 
F088H 3AH 
F089H 93H 
F08AH FOH 

11-21. 

F08BH 3DH 

F08CH 32H 
F08DH 93H 
F08EH FOH 
F08FH C2H 
F090H 85H 

F091H FOH 
F092H C9H 

Address Contents 

2000H D3H 

2001H 04H 
2002H 0EH 
2003H 42H 
2004H 0DH 
2005 H C2H 

2006H 04H 
2007H 20H 

2008H 2FH 
2009H 00H 
200AH C3H 
200BH 00 H 
200CH 20H 

CHAP. 12. 12-1. Mnemonic 

MVI A,00H 

MVI B,01H 
MVI C,59H 
MVI D,02H 
MVI E,F1H 
ADD C 
ADD E 
MOV L,A 
MVI A,00H 
ADC B 
ADD D 

MOV H,A 
HLT 

An alternative solution is 

Mnemonic 

MVI A,F1H 
ADI 59H 
MOV L,A 
MVI A,02H 
ACI01H 
MOV H,A 
HLT 

12-3. Label Mnemonic 

LXI H.4FFFH 
LOOP: INX H 

MOV B,M 
MOV A,H 
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12-5. 

12-7. 

ADI 40H 
MOV H,A 
MOV M,B 
SUI 40H 
MOV H,A 
CPI 53H 
JNZ LOOP 
MOV A,L 
CPI FFH 
JNZ LOOP 
HLT 

Label Mnemonic 

LXI SP.EOOOH 
MVI A,00H 
MVI B,FFH 

LOOP: INR A 
OUT 22H 
CALL F010H 
DCR B 
JNZ LOOP 
HLT 

12-9. Label Mnemonic 

LXI SP,E000H 

LXI H,4FFFH 
LOOP: INX H 

MOV A,M 
MOV B,08H 

AGAIN: OUT 22H 
CALL F010H 
RAR 
DCR B 
JNZ AGAIN 
MOV A,L 
CPI FFH 
JNZ LOOP 
HLT 

CHAP. 14. 14-1. How you would accomplish your task 
without a computer. 14-3. Branch. 14-5. The subroutine 
(part of the program) needs to be written only once but can 
then be used many times. 14-7. Formula translation. 
14-9. Creating a language which would encourage pro¬ 
grammers to write by using what are considered “correct” 
programming practices. 

Label Mnemonic 

LXI SP.EOOOH 
LXI H,5FFFH 

LOOP: INX H 
MOV A,M 
OUT 22H 
CALL F020H 
MOV A,H 
CPI 61H 
JNZ LOOP 
MOV A,L 
CPI FFH 
JNZ LOOP 
HLT 

CHAP. 15. 15-1. By its address. 15-3. 1,048,576. 
15-5. The accumulator. 15-7. Registers are faster. 
15-9. The status register (or condition code register or flag 
register). 15-11. The carry flag. 15-13. No. 15-15. DE. 
15-17. C581. 15-19. 8 bits. 15-21. 256 bytes. 15-23. 
16 bits. 15-25. Nothing. They are always set. 15-27. 
None. 15-29. It is named AX and is 16 bits wide with an 
8-bit upper half (called AH) and an 8-bit lower half (called 
AL). 15-31. The instruction pointer. 15-33. 65,536 bytes. 

CHAP. 16. 16-1. Nothing. 16-3. The original number 
in the accumulator is still there. 16-5. 00. 16-7. It copies 
the contents of the Y register to the accumulator. 16-9. 
STY. 16-11.01. 16-13.16. 16-15. CleaR accumulator 
A. 

16-17. 

Addr Obj Assembler Comment 

0000 C6 LDAB #$89 Load the number immediately following the LDAB 
op code (C6) into accumulator B (89) 0001 89 

0002 17 TBA Transfer (copy) the contents of B to A 

0003 3E WAI Stop 

16-19. 76. 16-21. It copies the contents of register C to 
register B. 16-23. STA aaaa [LD (aaaa),A]- 16-25. 
DEBUG. 16-27. Register or memory. 16-29. DL. 16- 
31. The contents of memory location 4456,6. 16-33. It 
stands for assemble and it translates 8088/8086 mnemonics 
into machine code. 16-35. It executes one instruction and 
then displays the current values of all registers and stops. 
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16-37. 
-a 
9522:0100 mov BL, AT 
9522:dims mov CL, BL 
9522:0104 

-u 1DD 1D3 
9522:01DD B3S9 MOV BL, 63 
9522:0102 66D9 MOV CL, BL 

-r 
ax=oooo bx=oooo cx=cmcm DX=0000 SP-ADDE BP=0000 SI=0000 DI=0000 

DS=9S22 £3=9522 SS=q525 CS=9522 IP=D1D 0 NV UP El PL NZ NA PO NC 

9522:0100 B369 MOV BL, AT 

-t 
AX=0000 BX=0089 cx=oaaa DX=0000 SP—ADDE BP=0000 si=ooao DI=00D0 

DS=9522 ES=9522 SS=^S2B CS=9522 IP=D1D2 NV UP El PL NZ NA PO NC 

9522:0102 flflD9 MOV CL, BL 

-t 
AX=0000 BX=00fl9 CX=0069 DX=0000 SP=ADDE BP=0000 SI=0000 DI=0000 

DS=9522 ES=9522 SS=9S22 CS=9S22 NV UP El PL NZ NA PO NC 

Note: Answers to Chapters 18 to 23 are in the teacher’s manual. 
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Index 
Note: For entries marked with (#), refer also to specific families listed under “Microprocessor families.” 

Absolute accuracy, 488 
Absolute addressing, 265, 333-334 
Access time, 132-133 
Accumulator. 142, 158, 174, 176, 184, 226, 

230, 232, 233, 235 (See also ALU) 
Accumulator addressing, 264-268 
Accuracy, 488^189 
Active low state, 98 
ADD instruction, 143, 148-150, 178, 197-198 
Adder-subtracter, 85-87, 142, 158 
Addition, 79-87, 199, 271-272, 281-282, 

284-287 , 290-292 , 294, 298-300 
Addition-with-carry, 274, 276-277 
Address, 12, 131, 133, 135-137, 330 (See also 

Addressing mode) 
Address bus, 225 
Address field, 145 
Address line, 131 
Address mapping, 183 
Address state, 147 (See also T state) 
#Addressing mode, 224-226 

absolute, 265, 333-334 
base plus index, 340 
base relative plus index, 340-341 
direct, 187, 264-268 
extended, 266 
immediate, 187, 244, 247, 264-268 
implied, 188, 264-267 
indexed, 332-336 
indexed indirect, 335 
indirect, 205, 331,333, 336, 338-340 
indirect indexed, 334-335 
paging, 263-264 
program direct, 268 
program indirect, 340 
program relative, 337-338 
range, 225 
register (accumulator), 188, 264—268 
register indirect, 336, 338-340 
register relative, 337 
relative, 330, 332-333, 335, 337-338 
zero page, 333-334 

Alphanumerics, 14 
ALU, 7, 79, 175 
American Standard Code for Information Ex¬ 

change, 14-15, 271 
ANA instruction, 184 
Analog interface, 485 
Analog-to-digital (A/D) converter, 485, 491- 

493 
and gate, 22-23, 33-34, 49, 54 
and instruction, 305-306, 308-310, 312-314 
and operations, 65-66 
and sign, 24-25 
AND-OR gate, 55 
and-or-invert gate, 55-57 
AN I instruction, 184 
#Architecture, 224-226 

of SAP-1, 140-142 
of SAP-2, 173-176 
of SAP-3, 195-196 

#Arithmetic instructions, 271-276 
Arithmetic-logic unit, 7, 79, 175 
ASCII code, 14-15, 271 
Assembler, 181, 222, 354-355, 357, 358 (See 

also Machine language) 
Assembly language, 145, 221-222, 337 
Associative law, 64 
Asynchronous operation, 142 (See also Clock¬ 

ing) 

B register, 142, 158, 175 
Base, 6-7 
Base plus index addressing, 340 
Base register, 340 
Base relative plus index addressing, 340-341 
BASIC, 221 
BCD number, 13-14, 270-271 
BCD-to-decimal conversion, 13-14 
Bidirectional register, 173 
Binary adder, 82-83 
Binary adder-subtracter, 85-87, 142, 158 
Binary addition, 79-87 (See also Addition) 
Binary code, 2-3 
Binary digit, 4 
Binary number, 2-3, 6-15, 270, 271, 274 
Binary odometer, 1-2, 84 
Binary programming (see Machine language) 
Binary subtraction, 80-81,85-87 (See also 

Subtraction) 
Binary weight, 6 
Binary word, 20 
Binary-coded-decimal number, 13-14, 270-271 
Binary-to-decimal conversion, 3, 6-7 
Binary-to-decimal decoder, 27 
Binary-to-hexadecimal conversion, 10-11, 12 
Bipolar families, 48 
Bit, 4 
Bit comparison, 42 
BIT instruction, 309-310, 311 
Bit position, 271 
Bit-serial form (see Serial data stream; Serial 

loading) 
Boldface notation, 42 
Boolean algebra, 19, 23-27, 64-70 
Boolean function generator, 58-60 
Borrow, 196, 275-276, 281 
#Branch instruction, 179-180, 219, 342-343 
Branch-back instruction (see Return instruction) 
Breakpoint, 294 
Broadside loading, 110 
Bubble memory, 135 
Bubbled and gate, 33-34 
Bubbled or gate, 36 
Buffer, 54 (See also Buffer register) 
Buffer register, 54, 106-107, 110, 122 
Bus, 69, 122 
Bus transient, 152 
Bus-organized computer, 121, 122-125, 152 
Byte, 6, 189-193 

defined, 345, 348, 351 

C language, 221 
C register, 175 
CALL instruction, 180, 182, 210-211 
Carry flag, 196-197, 272, 274-277, 281, 312 
Cell, 134 
Central processing unit (see CPU) 
Chip, 4, 49 
Chip enable, 134 
Chunking, 11 
Clear, 97 
Clear-start debouncer, 158-159 
Clock, 93, 158 
Clock generator, 102-103 
Clocking: 

edge-triggered, 96-100 
level, 93-97, 102 
master-slave, 100-103 
positive and negative, 94 

CM A instruction, 184 
CMOS, 48 
COBOL, 221 
Code, binary, 2-3 
Code segment register, 268 
Comment, 181-182 
Commutative law, 64 
#Compare and test instruction, 343 
Compatibility, 51-52 
Complement, 19 
Complement instruction, 311, 314 
Complementary MOSFETs, 48 
Computer, 7 

architecture, 224-226 
bus-organized, 121, 122-125, 152 
(See also Microprocessor) 

CON (see Control unit) 
Condition code register, 227-228, 232-233 

Conditional jump (branching), 179, 180, 187, 
342-343 

Contact bounce, 92-93 
Content, 131, 224-225 
Control input, 90 

Control matrix, 36-37, 161 
Control ROM, 163 
Control routine, 148-152 
Control unit, 7, 146-152 
Controlled buffer register, 106-107 
Controlled inverter, 41-42 

Controlled shift register, 108-110 

Controller-sequencer, 141-142, 161, 174 
Conversion, 331 

analog-to-digital, 485, 491-493 
BCD-to-decimal, 13-14 
binary-to-decimal, 6-7 
binary-to-hexadecimal, 10-11,494-496 
decimal-to-binary, 8 
decimal-to-hexadecimal, 13 
digital-to-analog, 485, 486, 489 
hexadecimal-to-binary, 10-11,270 
hexadecimal-to-decimal, 11-13 

Core RAM, 133 
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Counter: 

down, 118 
mod-10, 116-118 
presettable, 118-120, 162 
program. 113, 140, 147, 153, 173, 227, 

230-232, 234, 330 
programmable modulus, 120 
ring, 114—116, 146-147, 159-161 
ripple, 110-113 
software, 181 
synchronous, 113-114 
TTL, 120 
up-down, 118 

Counter method of A/D conversion, 491-492 
#CPU, 7,213 (See also ALU; Control unit) 
CPU register, 195-196 
Current sink, 52 
Current steering, 491 

D flip-flop, 96-98 
D latch, 95-96 
DAD instruction, 204—205 
Data, 3 
Data bus, 225 
Data processor, 3 
Data segment, 338 
Data selector, 58-59 
Data settling (see Bus transient; 

Settling time) 
#Data transfer instructions, 241-260 
Date pointer, 205 
De Morgan’s theorem, 33-37, 66 
Debouncer, 92-93, 158-159 
DEBUG, 253, 255-260, 293-302, 337-340 
Decade counter, 118, 120 
Decimal addition, 284-285, 290-292, 298-300 
Decimal adjust, 280, 284-285, 290, 298 
Decimal flag, 279-281 
Decimal number, 84—85 
Decimal odometer, 1 
Decimal weight, 6 
Decimal-to-binary conversion, 8, 21-22 
Decimal-to-hexadecimal conversion, 13 
Decision-making element, 25 
Decoder: 

binary-to-decimal, 27 
binary-to-hexadecimal, 54 
decimal-to-BCD, 54 
instruction, 125,. 158-159 
seven-segment, 54 

#Decrement instruction, 178, 180-181,200, 
205, 343 

Define byte, 345, 348, 351 
Delay, 189-190 
Digit, 1 
Digital-to-analog (D/A) converter, 485, 486-489 
Diode ROM, 130-131 
Diode-transistor logic, 48 
Direct addressing, 187, 264—268 
Direct reset, 97 
Direct set, 97 
Disassembler, 222 
Distributive law, 65 
Division. 276, 302 
Don’t care condition, 75-77, 95 
Do-nothing state (see NOP instruction) 
Double-byte addition, 199 
Double-byte subtraction, 202 
Double-dabble, 8 
Double inversion, 34, 66 
Double-precision number, 274 
Down counter, 118 
Driver, 54 
DTL, 48 

Duality theorem, 66-67 
Dynamic RAM, 133-134 

ECL, 48 
Edge triggering, 96-100 
Effective address, 330 
8080/8085/Z80 family, 214, 417-422, 502-506 

addressing, 266-267, 336, 409 
architecture, 233-235, 329 
arithmetic instructions, 286-287, 292- 

293,391-395, 411-412, 416 
conditional jump (branch) 

instructions, 351-352, 402, 413-414, 

417 
CPU control instructions, 381,410, 415 
data transfer instructions, 249-253, 381- 

390, 410-411,415-416 
flag instructions, 287-292, 390-391,408- 

409,411,416 
increment and decrement instructions, 

398-400, 413, 416-417 
input-output instructions, 408, 415, 417 
interrupt instructions, 407-408, 415, 417 
logical instructions, 395-398, 412, 416 
programming, 511 
rotate and shift instructions, 323-324, 

398,412-413,416 
stack instructions, 406-407, 415, 417 
subroutine instructions, 370-373, 402- 

406,414-415,417 
test and compare instructions, 352, 401, 

413.417 
unconditional jump instructions, 350-351, 

400.413.417 
8086/8088 family, 214, 469-470 

addressing, 267-269, 336-341 
architecture, 235-237, 329 
arithmetic instructions, 293-294, 300- 

302, 447-450, 466 
conditional jump (branch) instructions, 

357-358, 456-459, 467 
CPU control instructions, 445, 465 
data transfer instructions, 253-260, 445- 

446, 466 
flag instructions, 294—299, 446-447, 466 
increment and decrement instructions, 

455, 467 
input-output instructions, 462-463, 468 
interrupt instructions, 461-462, 468 
logical instructions, 314-317, 450-451,466 
loop instructions, 464—465, 468 
programming, 511 
rotate and shift instructions, 324-327, 

451-455, 467 
stack instructions, 460-461,468 
string instructions, 463-464, 468 
subroutine instructions, 373-377, 459- 

460, 468 
test and compare instructions, 358, 456,467 
unconditional jump instructions, 355-357, 

455,467 
Emitter-coupled logic, 48 
ENABLE input, 23 
Encoder, 21-22, 54 
End-of-conversion signal, 492 
Erasable PROM (EPROM), 132, 224 
Even parity, 39, 234 
exclusive-NOR gate, 42 
exclusive-OR gate, 37-42, 307-309 
Execution cycle, 148-152 
Expandable gate, 56-57 
Expander gate, 56-57 
Extended addressing, 266 
Extended register, 204—205 

Factoring, 69, 70 
Fanout, 52-53 
Fetch cycle, 148, 150, 151, 227 
Fetch microroutine, 152, 161 
Firmware, 243, 247, 251 
First-in-last-out (FILO) structure, 228, 363 
#Flag instructions, 175, 175, 179, 180-181, 

187, 227-228, 272-276, 310 

Flip-flop, 90-103 
Floating TTL input, 50-51 
Flowchart, 217, 218-220 
FORTH, 221 
FORTRAN, 221 
Full adder, 81-82 
Function tables, 499—500 
Fundamental product, 67 

Gate: 
and, 22-23, 33-34, 49,54 
AND-OR, 55 
and-or-invert, 55-57 
expandable, 56-57 
nand, 34-36, 49, 53-55, 118-120 
nor, 32-34, 49, 53-54 
not, 19-20 
OR, 20-22, 36,54 
standard TTL, 49 
XNOR, 42 
xor, 37-42, 49 

General-purpose register, 227, 230, 232-236 

Half-adder, 81 
Half-carry flag, 272 
Halt instruction, 143, 151, 185, 241 
Hand*assembly, 178, 183, 244, 248, 251 
Handshaking, 176, 186 
Hardware, 3-4, 213 
Hardwired control, 161 
Hex inverter, 20 
Hexadecimal address, 133, 136-137 
Hexadecimal number, 9-13, 14, 270 
Hexadecimal-to-binary conversion, 10-11,270 
Hexadecimal-to-decimal conversion. 11-13 

Hex-dabble, 13 
High-level language, 221 
High-speed TTL, 50 
Hold time, 98 

Immediate addressing, 187, 244, 247, 264-268 
Immediate instruction, 176, 184, 201-202, 

204, 206 
Implied addressing, 188, 264—267 
IN instruction, 185 
Inactive state, 90 
inclusive or (see or gate) 
#Increment instruction, 147, 178, 180-181, 

199-200, 205, 343 
Index register, 227, 231, 232, 234, 236, 332, 340 

Indexed addressing, 332, 333-336 
Indexed indirect addressing, 335 
Indirect addressing, 205, 331, 333, 336, 340 
Indirect indexed addressing, 334-335 
Indirect instruction, 205-207 
Inherent addressing, 264-267 
Input gate lead, 69 
Input-output unit, 7 
Input register, 173 
Input unit, 7 
Instruction cycle, 151 (See also 

Machine cycle) 
Instruction decoder, 125, 158-159 
Instruction field, 145 
Instruction pointer, 205, 236, 330 
Instruction register, 125, 141, 153, 174 
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Instruction set, 142-144, 240 
Integrated circuit, 4, 48 
Interface circuit (see Analog interface) 
Inversion: 

bubble, 19-20 
double, 34, 66 
sign, 19, 23-24 
symbol, 19-20 

Inverter, 19-20, 41-42 
I/O unit, 7 
Italic notation, 25 

JK flip-flop, 99-103 
JK master-slave flip-flop, 100-103 
Jump flag, 187 
#Jump instruction, 173, 179-180, 182, 183, 

202-204, 342-343 

K- (kilo-), 7 
K input, 99-100 
Karnaugh maps, 70-77 

Label, 181-182 
Ladder, 490-491 
Large-scale integration, 48 
Latch, 90-96 
LDA instruction, 142, 148, 149, 176 
LDA microroutine, 161-162 
LED display, 3 
Level clocking, 93-97, 102 
Light-emitting diode, 3 
Load the accumulator instruction, 142, 148, 

149, 176, 242-248, 252-253 
Loading: 

parallel, 110 
serial, 108-110 
TTL device, 52-53 

Logic circuit, 19, 68 
#Logical instructions, 305-308 
Loop, 181, 218-219, 342-344 
Loop counter, 181 
Low-level language, 221 
Low-power Schottky TTL, 50, 52-53 
Low-power TTL, 50 
LSB (least significant byte), 274, 488 
LSI, 48 

Machine cycle: 
definition, 151 
fixed, 161-162, 163 
variable, 163-164 

Machine language, 145, 146, 220, 221, 337 
Machine phase (see T state) 
Macroinstruction, 152-153 
Magnetic core, 5 
Magnetic tape, 5 
Manual assembly, 221 
Manual-auto debouncer, 158-159 
Mapping (see Address mapping) 
MAR, 140, 153, 174 
Mask, 131, 186, 306-308 
Master-slave flip-flop, 100-103 
Medium-scale integration, 48 
Memory, 5-7, 130-137, 224, 268 
Memory address register, 140, 153, 174 
Memory data register, 174 
Memory element, 90-103 
Memory enable (see Chip enable; Write enable) 
Memory-intensive architecture, 329 
Memory location, 10-12, 331, 507-510 
Memory-reference instruction, 143-144, 176— 

177 
Memory register (see Memory location) 
Memory state, 147 

Microcode (see Microprogram) 
Microcomputer, 7 
Microcontroller, 161-164 
Microinstruction, 152 
Microprocessor, 7, 213-216, 226-237, 270- 

271 
Microprocessor families (see 8080/8085/Z80 

family; 8086/8088 family; 6502 fam¬ 
ily; 6800/6808 family) 

Microprogram, 152-153, 161-164 
Microroutine (see Microprogram) 
Mnemonic, 143, 221 
Modulus, 116-120 
Monitor, 174, 241 

assembly, 222 
Monotonic D/A converter, 489 
MOS families, 48 
Move instruction, 177-178, 195-196, 199, 206 
MRI, 143-144, 176 
MSB (most significant bit), 200, 273, 274, 492 
MSI, 48 
Multiplexer, 58-60, 153 
Multiplication, 182, 183, 276, 300-302 
MVI, 189, 195-196, 199 

nand gate, 34-36, 49, 53-55, 118-120 
NAND latch, 92-95 
Natural modulus, 120 
n-channel MOSFETs, 48 
neg instruction, 308, 311-312, 316-317 
Negative (sign) flag, 275, 277-278, 282-283 
Negative clocking, 94 
Negative logic, 25 
Negative toggle, 118 
Nesting, 343-344 

loop, 343-344 
subroutine, 189-190, 364, 367, 369-371, 

373-374 
Nibble, 13-14 
NMOS, 48 
No operation instruction, 241, 242, 245, 249 
Noise margin, 52 
Noninverter, 20 
Non saturated circuit, 4-5 
Nonvolatile memory, 133 
NOP instruction, 148, 185, 241, 242 
nor gate, 32-34, 49, 53-54 
nor latch, 91, 92 
not gate, 19-20 
not instruction, 308, 315-316 
Notation: 

boldface, 42 
italic, 25 
positional, 11-12 
roman, 25 

Number: 
binary, 2, 3, 6-15, 270, 271,274 
binary-coded-decimal, 13-14, 270-271 
decimal, 1, 84-85 
hexadecimal, 9-13, 14, 270 
(See also Conversion) 

Object code, 221 
Object program, 145 
Octet, 72, 73 
Odd parity, 39, 234 
Odd-parity generator, 40 
Odd-parity tester, 39 
Odometer, 330 

binary, 1-2, 84 
decimal, 1 
hexadecimal, 9 

Offset, 332 
On-chip decoding, 131, 132 

1 ’s complement, 41-42, 312 
Open-collector gate, 58 
Operand, 145, 176 
Operation code, 144, 176-177, 241 
Operational amplifier (op amp), 485^-86 
or gate, 20-22, 36, 54 
OR instruction, 65, 66, 184, 306-307, 309, 

310, 313, 314-315 
or sign, 24 
OUT instruction, 143, 150-151, 185 
Output buffer, 493 
Output register, 7, 106-107, 110, 142, 158, 

176 
Overflow, 87. 196, 272-274, 279, 284, 288- 

289, 296-297 
Overlapping, 74 

Paging, 263-264 
Pair, 72 I 
Parallel loading, 110 j 
Parameter passing, 183 
Parity, 39, 234 
Parity flag, 203, 288-289, 296 
Parity generator, 39-40 
Pascal, 221 
PC, 113. 140, 147, 153 
p-channel MOSFETs, 48 
Phase (see T state) 
Pinouts, 499-500 
PMOS, 48 
Pointer, 140, 205, 227 
POP instruction, 209-210 
Port instruction, 185-186 
Positional notation, 11-12 
Positive clocking, 94 
Positive logic, 25 
Positive toggle, 118 
Power dissipation, 49 
Power of 2, 7 
Power supply, 158 
Preset, 97 
Presettable counter, 118-120, 162 
Prime memory (see Dynamic RAM; Static 

RAM) 
Program, 3, 216 
Program counter, 113, 140, 147, 153, 173, 

227, 230-232, 234, 330 
Program direct addressing, 268 
Program indirect addressing, 340 
Program relative addressing, 337-338 
Program status word, 208 
Programmable modulus, 120 
Programmable ROM (PROM), 131-132, 224 
Programmed multiplication, 182, 183 
#Programming, 135-136, 216-222 

data transfer instructions, 241-260 
models, 511 

PROM, 131-132, 224 
Propagation delay time, 49, 98 
Punched cards, 5 
PUSH instruction, 208-209 (See also Stack) 
Pushing and popping registers, 366, 367-368, 

370, 371, 374 

Quad, 72-73 

Race condition, 91,94, 95, 100 
Radix, 6-7 
RAL instruction, 185, 200, 201 
Random-access memory (RAM), 133—137, 

153, 224 
RAR instruction, 185, 200, 201 
Read-only memory (ROM), 130-133, 161- 

164, 224 
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Redundant Karnaugh group, 74-75 
Refresh, 133-134 

Register, 4, 217 
bidirectional, 173 
buffer, 54, 106-107, 110, 122 
controlled, 106-110 
CPU, 195-196 
8-bit, 229-230 
input, 173 
output, 7, 106-107, 110, 142, 158, 176 
pair, 204 
shift, 108-110 
shift-left, 108, 109 
shift-right, 108, 109 
16-bit, 230 
three-state, 121-122 
transfers, 122-123 
width of, 229-230 
(See also specific types of register) 

Register addressing, 188, 264-268 
Register indirect addressing, 336, 338-340 
Register-intensive architecture, 329 
Register parameter passing, 183 
Register relative addressing, 337 
Relative accuracy, 488-489 
Relative addressing, 330, 332-333, 335, 337-338 
Reset-and-carry, 1 
Resolution, 488 
Return instruction, 180, 210-211, 364—366 
Ring counter, 114—116, 146-147, 159-161 
Ripple counter, 110-113 
Rolling, Karnaugh map, 74 
ROM (see Read-only memory) 
Roman notation, 25 
#Rotate instruction, 185, 200, 319-321 
RS latch, 90-94 

SAP-1, 140-164 
counters, 106, 107, 113, 116, 117 
parts list, 501 
RAM, 115-116 

SAP-2, 144, 151, 173-193 
SAP-3, 144, 195-212 
Saturated circuit, 4 
Saturation delay time, 4, 50 
Schmitt trigger, 54-55 
Schottky TTL, 50, 52-53 
Segment register, 236 
Serial data stream, 191-193 
Serial loading, 108-110 
Settling time, 489 
Setup time, 98 
Seven-segment decoder, 54 
#Shift instruction, 319, 320 
Shift register, 108-110 
SHL control, 108-110 
Sign bit, 83 
Sign flag, 175, 179, 180-181, 287, 294-296 
Signed binary number, 83, 272, 284, 289 
Sign-magnitude number, 83 
Single-precision number, 274 
Single-step debouncer, 158-159 
Sink, 52 
6502 family, 214,481-483 

addressing, 265, 332-335, 476, 477 
architecture, 230-231, 329 
arithmetic instructions, 276-277, 472, 

478, 480-481 
conditional jump (branch) instructions, 

345-346, 475, 479-480, 481 
CPU control instructions, 242, 471, 478, 

480 
data transfer instructions, 242-245, 471— 

472, 478, 480 

6502 family (Cont.)\ 

flag instructions, 277-281,472, 476-478, 

480 
increment and decrement instructions, 

473-474, 479, 481 
input-output instructions, 476, 480, 481 
interrupt instructions, 476, 480, 481 
logical instructions, 308-310, 472-473, 

478-479, 481 
programming, 511 
rotate and shift instructions, 321-322, 

473, 479, 481 
stack instructions, 475-476, 480, 481 
subroutine instructions, 366-369, 475, 

480,481 
test and compare instructions, 346, 474, 

479, 481 
unconditional jump instructions, 344, 474, 

479, 481 
6800/6808 family, 214, 434-437, 443, 444 

addressing, 265-266, 335-336, 433 
architecture, 329, 632-633 
arithmetic instructions, 281-282, 285- 

286, 424-425 , 438 , 441 
conditional jump (branch) 

instructions, 348-349, 429-431, 440, 
442 

CPU control instructions, 422, 437, 441 
data transfer instructions, 245-249, 423, 

437, 441 
flag instructions, 282-285, 423^424, 433, 

437- 438, 441 
increment and decrement instructions, 

428, 439, 442 
input-output instructions, 432, 441, 442 
interrupt instructions, 432, 441,442 
logical instructions, 310-314, 425-426, 

438- 439, 441-442 
programming, 511 
rotate and shift instructions, 322-323, 

426-427, 439, 442 
stack instructions, 431-432, 440-441, 442 
subroutine instructions, 369-370, 431, 

440, 442 
test and compare instructions, 349, 428- 

429, 439, 442 
unconditional jump instructions, 347-348, 

428, 439, 442 
Small-scale integration, 48 
Software, 3-4, 218 
Software emulation program, 215 
Source, 52 
Source code, 221 
Source program, 145 
SSI, 48 
#Stack, 195, 207-211, 228-229, 231, 233, 

234, 236, 363-364 
Stack pointer, 195, 207-208, 228-229, 231, 

233, 234, 236, 363-364, 366-367, 
369, 371, 373 

Stack segment, 338 
Standard TTL, 49-52 
State diagram, 117 
Static RAM, 133-134 
Status register, 227-228, 231-234, 236 
Store the accumulator, 176 
Straight-line program, 218 
String, 1 
#Subroutine, 180, 219, 363-377 

branching vs., 364 
nested, 189-190, 364, 367, 369-371, 

373-374 
pushing and popping registers, 366, 367- 

368, 370, 371, 374 

# Subroutine (Cont.): 

return instruction, 180, 210-211, 364-366 
stack and stack pointer, 363-364, 366- 

367, 369, 371, 373 
Subtract instruction, 143, 150, 178, 198-199 
Subtraction, 80-81, 86-87, 202, 275, 285—286, 

292-293, 300 
Subtraction-with-carry (borrow), 196, 275-276, 

281 
Successive-approximation method, 492-493 
Sum-of-products circuit, 67-68 
Switch, current, 487^188 
Switch debouncer, 92-93 
Synchronous counter, 113-114 

T state, 146-151, 187 
Temporary register, 175 
Three-state RAM, 134 
Three-state register, 121-122 
Three-state switch, 121 
Time delay, 189-190 
Timing diagram, 91, 92, 94, 95 
Timing signal, 36, 116 
Timing state, 146-151 
Toggle, 99-100, 102, 118 
Totem-pole output, 49 
Trace command, 293 
Traffic light, 190-191 
Trainer, microprocessor, 215 
Transistor, 4 

inverter, 19 
latch, 90-91 
register, 4 

Transistor-transistor logic, 48-63 
Transparent latch, 95 
Triple-precision number, 274 
Tristate switch, 111-112 
Truth table, 20, 21 

deriving logic circuit from, 68 
JK master-slave, 102 
Karnaugh maps from, 70-77 
transistor latch, 90-91, 94 

TTL, 48-63, 120, 135-136, 497-498 
2’s complement, 83-87, 312, 331 
Two-state design, 4—6 

#Unconditional jump, 179, 180, 342 
Universal logic circuit, 60 
Unsigned binary number, 272, 284, 289-290 
Up-down counter, 118 

Virtual ground point, 485 
Volatile RAM, 134 

Weight: 
binary, 6 
decimal, 6 
hexadecimal, 11-12 

Weighted resistors, 489 
Word, 20, 208 
Word comparator, 42-43 
Word multiplexer, 60 
Worksheet, 222 
Worst-case TTL characteristics, 50-51 
Write enable, 134 

xnor gate, 42 
xor gate, 37-42, 49 
xor instruction, 313, 315 
XRA instruction, 184 
XRI instruction, 184 

Zero flag, 175, 179, 180-181, 275, 278-279, 
283-284, 287-289, 296, 332 

Zero page addressing, 333-334 
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