
Digital
Computer
Electronics

Third Edition

Albert Paul Malvino, Ph.D.

Jerald A. Brown

GL£NCOE
McGraw-Hill

New York, New York Columbus, Ohio Woodland Hills, California Peoria, Illinois

This textbook was prepared with the assistance of Publishing Advisory Service.

LSI circuit photo: Manfred Kage/Peter Arnold Inc.

To my wife, Joanna, who encourages me to write.

And to my daughters, Joanna, Antonia, Lucinda,

Patricia, and Miriam, who keep me young.
—A.P.M.

. . . to my wife Vickie

dearest friend

fellow adventurer

love of my life

—J.A.B.

Library of Congress Cataloging-in-Publication Data

Malvino, Albert Paul.
Digital computer electronics / Albert Paul Malvino, Jerald A.

Brown. — 3rd ed.
p. cm.

Includes index.
ISBN 0-02-800594-5 (hardcover)
1. Electronic digital computers. 2. Microcomputers. 3. Intel

8085 (Microprocessor) I. Brown, Jerald A. II. Title.
TK7888.3.M337 1993
621.39'16—dc20 92-5895

CIP

Digital Computer Electronics, Third Edition

Imprint 1999
Copyright© 1993,1983 by Glencoe/McGraw-Hill. All rights reserved. Copyright© 1983, 1977 by
McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the United States Copyright Act, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without
prior written permission of the publisher.

ISBN 0-02-800594-5

Printed in the United States of America.

4567891011 12 004/043 03 02 01 00 99

Contents
PREFACE vi

PART I

Digital Principles 1
CHAPTER 1. NUMBER SYSTEMS AND
CODES 1

1-1. Decimal Odometer 1-2. Binary Odometer

1-3. Number Codes 1-4. Why Binary Numbers Are

Used 1-5. Binary-to-Decimal Conversion

1-6. Microprocessors 1-7. Decimal-to-Binary

Conversion 1-8. Hexadecimal Numbers

1-9. Hexadecimal-Binary Conversions

1-10. Hexadecimal-to-Decimal Conversion

1-11. Decimal-to-Hexadecimal Conversion

1- 12. BCD Numbers 1-13. The ASCII Code

CHAPTER 2. GATES 19

2- 1. Inverters 2-2. or Gates 2-3. and Gates

2- 4. Boolean Algebra

CHAPTER 3. MORE LOGIC GATES 32
3- 1. nor Gates 3-2. De Morgan’s First Theorem

3-3. nand Gates 3-4. De Morgan’s Second Theorem

3-5. exclusive-or Gates 3-6. The Controlled

Inverter 3-7. exclusive-nor Gates

CHAPTER 4. TTL CIRCUITS 48

4-1. Digital Integrated Circuits 4-2. 7400 Devices

4-3. TTL Characteristics 4-4. TTL Overview

4-5. and-or-invert Gates 4-6. Open-Collector Gates

4-7. Multiplexers

CHAPTER 5. BOOLEAN ALGEBRA AND
KARNAUGH MAPS 64

5-1. Boolean Relations 5-2. Sum-of-Products Method

5-3. Algebraic Simplification 5-4. Karnaugh Maps

5-5. Pairs, Quads, and Octets 5-6. Karnaugh

Simplifications 5-7. Don’t-Care Conditions

CHAPTER 6. ARITHMETIC-LOGIC UNITS
79

6-1. Binary Addition 6-2. Binary Subtraction

6- 3. Half Adders 6-4. Full Adders 6-5. Binary

Adders 6-6. Signed Binary Numbers 6-7. 2’s

Complement 6-8. 2’s-Complement Adder-Subtracter

CHAPTER 7. FLIP-FLOPS 90
7- 1. /?,£ Latches 7-2. Level Clocking 7-3. D Latches

7- 4. Edge-Triggered D Flip-Flops 7-5. Edge-Triggered

JK Flip-Flops 7-6. JK Master-Slave Flip-Flop

CHAPTER 8. REGISTERS AND
COUNTERS 106

8- 1. Buffer Registers 8-2. Shift Registers

8-3. Controlled Shift Registers 8-4. Ripple Counters

8-5. Synchronous Counters 8-6. Ring Counters

8-7. Other Counters 8-8. Three-State Registers

8- 9. Bus-Organized Computers

CHAPTER 9. MEMORIES 130

9- 1. ROMs 9-2. PROMs and EPROMs 9-3. RAMs

9-4. A Small TTL Memory 9-5. Hexadecimal

Addresses

PART 2

SAP (Simple-as-Possible)
Computers 140
CHAPTER 10. SAP-1 140

10-1. Architecture 10-2. Instruction Set

10-3. Programming SAP-1 10-4. Fetch Cycle

10-5. Execution Cycle 10-6. The SAP-1

Microprogram 10-7. The SAP-1 Schematic Diagram

10- 8. Microprogramming

CHAPTER 11. SAP-2 173

11- 1. Bidirectional Registers 11-2. Architecture

11-3. Memory-Reference Instructions 11-4. Register

Instructions 11-5. Jump and Call Instructions

11-6. Logic Instructions 11-7. Other Instructions

11-8. SAP-2 Summary

• • •

ill

CHAPTER 12. SAP-3 195

12-1. Programming Model 12-2. MOV and MVI

12-3. Arithmetic Instructions 12-4. Increments,

Decrements, and Rotates 12-5. Logic Instructions

12-6. Arithmetic and Logic Immediates 12-7. Jump

Instructions 12-8. Extended-Register Instructions

12-9. Indirect Instructions 12-10. Stack Instructions

PART 3

Programming Popular
Microprocessors 213
CHAPTER 13. INTRODUCTION TO
MICROPROCESSORS 213

13-1. Computer Hardware

13-2. Definition of a Microprocessor

13-3. Some Common Uses for Microprocessors

13-4. Microprocessors Featured in This Text

13- 5. Access to Microprocessors

CHAPTER 14. PROGRAMMING AND
LANGUAGES 216

14- 1. Relationship between Electronics and Programming

14-2. Programming 14-3. Fundamental Premise

14-4. Flowcharts 14-5. Programming Languages

14- 6. Assembly Language 14-7. Worksheets

CHAPTER 15. SYSTEM OVERVIEW 224

New Concepts 15-1. Computer Architecture

15- 2. Microprocessor Architecture

Specific Microprocessor Families

15-3. 6502 Family 15-4. 6800/6808 Family

15- 5. 8080/8085/Z80 Family 15-6. 8086/8088 Family

CHAPTER 16. DATA TRANSFER
INSTRUCTIONS 240

New Concepts 16-1. CPU Control Instructions

16- 2. Data Transfer Instructions

Specific Microprocessor Families

16-3. 6502 Family 16-4. 6800/6808 Family

16- 5. 8080/8085/Z80 Family 16-6. 8086/8088 Family

CHAPTER 17. ADDRESSING MODES—I 263

New'Concepts 17-1. What Is an Addressing Mode?

17- 2. The Paging Concept

17-3. Basic Addressing Modes

Specific Microprocessor Families 17-4. 6502 Family

17-5. 6800/6808 Family 17-6. 8080/8085/Z80 Family

17-7. 8086/8088 Family

CHAPTER 18. ARITHMETIC AND FLAGS
270

New Concepts 18-1. Microprocessors and Numbers

18-2. Arithmetic Instructions 18-3. Flag Instructions

Specific Microprocessor Families 18.4 6502 Family

18-5. 6800/6808 Family 18-6. 8080/8085/Z80 Family

18- 7. 8086/8088 Family

CHAPTER 19. LOGICAL INSTRUCTIONS
305

New Concepts 19-1. The and Instruction

19- 2. The OR Instruction

19-3. The exclusiveor (EOR, xor) Instruction

19-4. The not Instruction

19-5. The neg (NEGate) Instruction

Specific Microprocessor Families 19-6. 6502 Family

19-7. 6800/6808 Family 19-8. 8080/8085/Z80 Family

19- 9. 8086/8088 Family

CHAPTER 20. SHIFT AND ROTATE
INSTRUCTIONS 319

New Concepts 20-1. Rotating 20-2. Shifting

20- 3. An Example Specific Microprocessor Families

20-4. 6502 Family 20-5. 6800/6808 Family

20- 6. 8080/8085/Z80 Family 20-7. 8086/8088 Family

CHAPTER 21. ADDRESSING MODES—II 329

New Concepts 21-1. Advanced Addressing Modes

Specific Microprocessor Families 21-2. 6502 Family

21- 3. 6800/6808 Family 21-4. 8080/8085/Z80 Family

21- 5. 8086/8088 Family

CHAPTER 22. BRANCHING AND LOOPS 342

New Concepts 22-1. Unconditional Jumps

22- 2. Conditional Branching

22-3. Compare and Test Instructions

22-4. Increment and Decrement Instructions

22-5. Nested Loops

Specific Microprocessor Families 22-6. 6502 Family

22-7. 6800/6808 Family 22-8. 8080/8085/Z80 Family

22- 9. 8086/8088 Family

CHAPTER 23. SUBROUTINE AND STACK
INSTRUCTIONS 363

New7 Concepts 23-1. Stack and Stack Pointer

23- 2. Branching versus Subroutines

23-3. How Do Subroutines Return?

23-4. Pushing and Popping Registers

Specific Microprocessor Families 23-5. 6502 Family

23- 6. 6800/6808 Family 23-7. 8080/8085/Z80 Family

24- 8. 8086/8088 Family

tV Contents

PART 4

Microprocessor Instruction
Set Tables 379

A.

Expanded Table of 8085/8080 and Z80 (8080 Subset)

Instructions Listed by Category 381

Mini Table of 8085/8080 and Z80 (8080 Subset)

Instructions Listed by Category 410

Condensed Table of 8085/8080 and Z80 (8080)

Instructions Listed by Category 415

Condensed Table of 8085/8080 and Z80 (8080 Subset)

Instructions Listed by Op Code 417

Condensed Table of 8085/8080 and Z80 (8080 Subset)

Instructions Listed Alphabetically by 8085/8080

Mnemonic 419

Condensed Table of 8085/8080 and Z80 (8080 Subset)

Instructions Listed Alphabetically by Z80 Mnemonic
421

B.

Expanded Table of 6800 Instructions Listed by Category
422

Short Table of 6800 Instructions Listed Alphabetically
434

Short Table of 6800 Instructions Listed by Category
437

Condensed Table of 6800 Instructions Listed by Category
441

Condensed Table of 6800 Instructions Listed

Alphabetically 443

Condensed Table of 6800 Instructions Listed by Op Code
444

C.

Expanded Table of 8086/8088 Instructions Listed by

Category 445

Condensed Table of 8086/8088 Instructions Listed by

Category 465

Condensed Table of 8086/8088 Instructions Listed

Alphabetically 469

D.

Expanded Table of 6502 Instructions Listed by Category
471

Short Table of 6502 Instructions Listed by Category
478

Condensed Table of 6502 Instructions Listed by Category
480

Condensed Table of 6502 Instructions Listed

Alphabetically 481

Condensed Table of 6502 Instructions Listed by Op Code
482

APPENDIXES 485

L The Analog Interface 2. Binary-Hexadecimal-

Decimal Equivalents 3. 7400 Series TTL

4. Pinouts and Function Tables 5. SAP-1 Parts List

6. 8085 Instructions 7. Memory Locations: Powers of 2

8. Memory Locations: 16K and 8K Intervals

9. Memory Locations: 4K Intervals 10. Memory

Locations: 2K Intervals 11. Memory Locations: IK

Intervals 12. Programming Models

ANSWERS TO ODD-NUMBERED PROBLEMS
513

INDEX 519

Contents V

Preface
Textbooks on microprocessors are sometimes hard to un¬

derstand. This text attempts to present the various aspects

of microprocessors in ways that are understandable and

interesting. The only prerequisite to using this textbook is

an understanding of diodes and transistors.

A unique aspect of this text is its wide range. Whether

you are interested in the student-constructed SAP (simple -

as-possible) microprocessor, the 6502, the 6800/6808, the

8080/8085/Z80, or the 8086/8088, this textbook can meet

your needs.

The text is divided into four parts. These parts can be

used in different ways to meet the needs of a wide variety

of students, classrooms, and instructors.

Part 1, Digital Principles, is composed of Chapters 1 to

9. Featured topics include number systems, gates, boolean

algebra, flip-flops, registers, counters, and memory. This

information prepares the student for the microprocessor

sections which follow.

Part 2, which consists of Chapters 10 to 12, presents the

SAP (simple-as-possible) microprocessor. The student con¬

structs this processor using digital components. The SAP

processor contains the most common microprocessor func¬

tions. It features an instruction set which is a subset of that

of the Intel 8085—leading naturally to a study of that

microprocessor.

Part 3, Programming Popular Microprocessors (Chapters

13 to 23), simultaneously treats the MOS/Rockwell 6502,

the Motorola 6800/6808, the Intel 8080/8085 and Zilog

Z80, and the 16-bit Intel 8086/8088. Each chapter is divided

into two sections. The first section presents new concepts;

second section applies the new concepts to each micropro¬

cessor family. Discussion, programming examples, and

problems are provided. The potential for comparative study

is excellent.

This part of the text takes a strong programming approach

to the study of microprocessors. Study is centered around

the microprocessor’s instruction set and programming model.

The 8-bit examples and homework problems can be per¬

formed by using either hand assembly or cross-assemblers.

The 16-bit 8086/8088 examples and problems can be per¬

formed by using either an assembler or the DOS DEBUG

utility.

Part 4 is devoted to the presentation of the instruction

sets of each microprocessor family in table form. Several

tables are provided for each microprocessor family, per¬

mitting instructions to be looked up alphabetically, by op

code, or by functional category, with varying levels of

detail. The same functional categories are correspondingly

used in the chapters in Part 3. This coordination between

parts makes the learning process easier and more enjoyable.

Additional reference tables are provided in the appen¬

dixes. Answers to odd-numbered problems for Chapters 1

to 16 follow the appendixes.

A correlated laboratory manual, Experiments for Digital

Computer Electronics by Michael A. Miller, is available

for use with this textbook. It contains experiments for every

part of the text. It also includes programming problems for

each of the featured microprocessors.

A teacher’s manual is available which contains answers

to all of the problems and programs for every micropro¬

cessor. In addition, a diskette (MS-DOS 360K 5!/4-inch

diskette) containing cross-assemblers is included in the

teacher’s manual.

Special thanks to Brian Mackin for being such a patient

and supportive editor. To Olive Collen for her editorial

work. To Michael Miller for his work on the lab manual.

And to Thomas Anderson of Speech Technologies Inc. for

the use of his cross-assemblers. Thanks also to reviewers

Lawrence Fryda, Illinois State University; Malachi Mc¬

Ginnis, ITT Technical Institute, Garland Texas; and Ben¬

jamin Suntag.

Albert Paul Malvino

Jerald A. Brown

A man of true science uses but few hard words,

and those only when none other will answer his purpose;

whereas the smatterer in science thinks that

by mouthing hard words he understands hard things.

Herman Melville

PART 1
DIGITAL PRINCIPLES

Number Systems
and Codes

Modem computers don’t work with decimal numbers.

Instead, they process binary numbers, groups of Os and Is.

Why binary numbers? Because electronic devices are most

reliable when designed for two-state (binary) operation.

This chapter discusses binary numbers and other concepts

needed to understand computer operation.

1-1 DECIMAL ODOMETER

Rene Descartes (1596-1650) said that the way to learn a

new subject is to go from the known to the unknown, from

the simple to the complex. Let’s try it.

The Known

Everyone has seen an odometer (miles indicator) in action.

When a car is new, its odometer starts with

00000

After 1 mile the reading becomes

00001

Successive miles produce 00002, 00003, and so on, up to

00009

A familiar thing happens at the end of the tenth mile.

When the units wheel turns from 9 back to 0, a tab on this

wheel forces the tens wheel to advance by 1. This is why

the numbers change to

00010

Reset-and-Carry

The units wheel has reset to 0 and sent a carry to the tens

wheel. Let’s call this familiar action reset-and-carry.

The other wheels also reset and carry. After 999 miles

the odometer shows

00999

What does the next mile do? The units wheel resets and

carries, the tens wheel resets and carries, the hundreds

wheel resets and carries, and the thousands wheel advances

by 1, to get

01000

Digits and Strings

The numbers on each odometer wheel are called digits.

The decimal number system uses ten digits, 0 through 9.

In a decimal odometer, each time the units wheel runs out

of digits, it resets to 0 and sends a carry to the tens wheel.

When the tens wheel runs out of digits, it resets to 0 and

sends a carry to the hundreds wheel. And so on with the

remaining wheels.

One more point. A string is a group of characters (either

letters or digits) written one after another. For instance,

734 is a string of 7, 3, and 4. Similarly, 2C8A is a string

of 2, C, 8, and A.

1-2 BINARY ODOMETER

Binary means two. The binary number system uses only

two digits, 0 and 1. All other digits (2 through 9) are

thrown away. In other words, binary numbers are strings

of 0s and Is.

An Unusual Odometer

Visualize an odometer whose wheels have only two digits,

0 and 1. When each wheel turns, it displays 0, then 1, then

1

back to 0, and the cycle repeats. Because each wheel has

only two digits, we call this device a binary odometer.

In a car a binary odometer starts with

0000 (zero)

After 1 mile, it indicates

0001 (one)

The next mile forces the units wheel to reset and carry; so

the numbers change to

0010 (two)

The third mile results in

0011 (three)

What happens after 4 miles? The units wheel resets and

carries, the second wheel resets and carries, and the third

wheel advances by 1. This gives

0100 (four)

Successive miles produce

0101 (five)

0110 (six)

0111 (seven)

After 8 miles, the units wheel resets and carries, the

second wheel resets and carries, the third wheel resets and

carries, and the fourth wheel advances by 1. The result is

1000 (eight)

The ninth mile gives

1001 (nine)

and the tenth mile produces

1010 (ten)

(Try working out a few more readings on your own.)

You should have the idea by now. Each mile advances

the units wheel by 1. Whenever the units wheel runs out

of digits, it resets and carries. Whenever the second wheel

runs out of digits, it resets and carries. And so for the other

wheels.

Binary Numbers

A binary odometer displays binary numbers, strings of 0s

and Is. The number 0001 stands for 1, 0010 for 2, 0011

for 3, and so forth. Binary numbers are long when large

amounts are involved. For instance, 101010 represents

decimal 42. As another example, 111100001111 stands for

decimal 3,855.
Computer circuits are like binary odometers; they count

and work with binary numbers. Therefore, you have to

learn to count with binary numbers, to convert them to

decimal numbers, and to do binary arithmetic. Then you

will be ready to understand how computers operate.

A final point. When a decimal odometer shows 0036,

we can drop the leading 0s and read the number as 36.

Similarly, when a binary odometer indicates 0011, we can

drop the leading 0s and read the number as 11. With the

leading 0s omitted, the binary numbers are 0, 1, 10, 11,

100, 101, and so on. To avoid confusion with decimal

numbers, read the binary numbers like this: zero, one, one-

zero, one-one, one-zero-zero, one-zero-one, etc.

1-3 NUMBER CODES

People used to count with pebbles. The numbers 1, 2, 3

looked like • , •••. Larger numbers were worse:

seven appeared as •••••••.

Codes

From the earliest times, people have been creating codes

that allow us to think, calculate, and communicate. The

decimal numbers are an example of a code (see Table

1-1). It’s an old idea now, but at the time it was as

revolutionary; 1 stands for •, 2 for ##, 3 for ###,

and so forth.

Table 1-1 also shows the binary code. 1 stands for #, 10

for ##, 11 for ###, and so on. A binary number and a

decimal number are equivalent if each represents the same

amount of pebbles. Binary 10 and decimal 2 are equivalent

because each represents ##. Binary 101 and decimal 5 are

equivalent because each stands for #####.

TABLE 1-1. NUMBER CODES

Decimal Pebbles Binary

0 None 0

1 • 1

2 •• 10

3 ••• 11

4 •••• 100

5 ••••• 101

6 •••••• 110

7 ••••••• 111

8 1000

9 1001

2 Digital Computer Electronics

Equivalence is the common ground between us and

computers; it tells us when we’re talking about the same

thing. If a computer comes up with a binary answer of 101,

equivalence means that the decimal answer is 5. As a start

to understanding computers, memorize the binary-decimal

equivalences of Table 1-1.

EXAMPLE 1-1

Figure 1-1 a shows four light-emitting diodes (LEDs). A

dark circle means that the LED is off; a light circle means

it’s on. To read the display, use this code:

©o o
(a) (b)

Fig. 1-1 LED display of binary numbers.

TABLE 1-2. BINARY-TO-DECIMAL
EQUIVALENCES

Decimal Binary Decimal Binary

0 0000 8 1000

1 0001 9 1001

2 0010 10 1010

3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110

7 0111 15 mi

Therefore, you should memorize the equivalences of Table
1-2.

LED Binary

Off 0

On 1

What binary number does Fig. 1-la indicate? Fig. 1-16?

SOLUTION

Figure 1-la shows off-off-on-on. This stands for binary

0011, equivalent to decimal 3.

Figure 1-16 is off-on-off-on, decoded as binary 0101 and

equivalent to decimal 5.

EXAMPLE 1-2

A binary odometer has four wheels. What are the successive

binary numbers?

SOLUTION

As previously discussed, the first eight binary numbers are

0000, 0001, 0010, 0011,0100, 0101, 0110, and 0111. On

the next count, the three wheels on the right reset and carry;

the fourth wheel advances by one. So the next eight numbers

are 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111.

The final reading of 1111 is equivalent to decimal 15. The

next mile resets all wheels to 0, and the cycle repeats.

Being able to count in binary from 0000 to 1111 is

essential for understanding the operation of computers.

1-4 WHY BINARY NUMBERS
ARE USED

The word “computer” is misleading because it suggests a

machine that can solve only numerical problems. But a

computer is more than an automatic adding machine. It can

play games, translate languages, draw pictures, and so on.

To suggest this broad range of application, a computer is

often referred to as a data processor.

Program and Data

Data means names, numbers, facts, anything needed to

work out a problem. Data goes into a computer, where it

is processed or manipulated to get new information. Before

it goes into a computer, however, the data must be coded

in binary form. The reason was given earlier: a computer’s

circuits can respond only to binary numbers.

Besides the data, someone has to work out a program,

a list of instructions telling the computer what to do. These

instructions spell out each and every step in the data

processing. Like the data, the program must be coded in

binary form before it goes into the computer.

So the two things we must input to a computer are the

program and the data. These are stored inside the computer

before the processing begins. Once the computer run starts,

each instruction is executed and the data is processed.

Hardware and Software

The electronic, magnetic, and mechanical devices of a

computer are known as hardware. Programs are called

software. Without software, a computer is a pile of ‘ ‘dumb”
metal.

Chapter 1 Number Systems and Codes 3

An analogy may help. A phonograph is like hardware

and records are like software. The phonograph is useless

without records. Furthermore, the music you get depends

on the record you play. A similar idea applies to computers.

A computer is the hardware and programs are the software.

The computer is useless without programs. The program

stored in the computer determines what the computer will

do; change the program and the computer processes the

data in a different way.

Transistors

Computers use integrated circuits (ICs) with thousands of

transistors, either bipolar or MOS. The parameters (pdc,

Ico, gm>etc.)can vary more than 50 percent with temperature

change and from one transistor to the next. Yet these

computer ICs work remarkably well despite the transistor

variations. How is it possible?

The answer is two-state design, using only two points

on the load line of each transistor. For instance, the common

two-state design is the cutoff-saturation approach; each

transistor is forced to operate at either cutoff or saturation.

When a transistor is cut off or saturated, parameter variations

have almost no effect. Because of this, it’s possible to

design reliable two-state circuits that are almost independent

of temperature change and transistor variations.

Transistor Register

Here’s an example of two-state design. Figure 1-2 shows

a transistor register. (A register is a string of devices that

store data.) The transistors on the left are cut off because

the input base voltages are 0 V. The dark shading symbolizes

the cutoff condition. The two transistors on the right have

base drives of 5 V.

The transistors operate at either saturation or cutoff. A

base voltage of 0 V forces each transistor to cut off, while

a base voltage of 5 V drives it into saturation. Because of

this two-state action, each transistor stays in a given state

until the base voltage switches it to the opposite state.

Another Code

Two-state operation is universal in digital electronics. By

deliberate design, all input and output voltages are either

low or high. Here’s how binary numbers come in: low

voltage represents binary 0, and high voltage stands for

binary 1. In other words, we use this code:

Voltage Binary

Low 0

High 1

For instance, the base voltages of Fig. 1-2 are low-low-

high-high, or binary 0011. The collector voltages are high-

high-low-low, orbinary 1100. By changing the base voltages

we can store any binary number from 0000 to 1111 (decimal

0 to 15).

Bit

Bit is an abbreviation for binary digit. A binary number

like 1100 has 4 bits; 110011 has 6 bits; and 11001100 has

8 bits. Figure 1-2 is a 4-bit register. To store larger binary

numbers, it needs more transistors. Add two transistors and

you get a 6-bit register. With four more transistors, you’d

have an 8-bit register.

Nonsaturated Circuits

Don’t get the idea that all two-state circuits switch between

cutoff and saturation. When a bipolar transistor is heavily

saturated, extra carriers are stored in the base region. If the

base voltage suddenly switches from high to low, the

transistor cannot come out of saturation until these extra

carriers have a chance to leave the base region. The time

it takes for these carriers to leave is called the saturation

delay time td. Typically, td is in nanoseconds.

In most applications the saturation delay time is too short

to matter. But some applications require the fastest possible

Fig. 1-2 Transistor register.

4 Digital Computer Electronics

switching time. To get this maximum speed, designers have

come up with circuits that switch from cutoff (or near

cutoff) to a higher point on the load line (but short of

saturation). These nonsaturated circuits rely on clamping

diodes or heavy negative feedback to overcome transistor

variations.

Remember this: whether saturated or nonsaturated circuits

are used, the transistors switch between distinct points on

the load line. This means that all input and output voltages

are easily recognized as low or high, binary 0 or binary 1.

(a)

Fig. 1-3 Core register.

Magnetic Cores

Early digital computers used magnetic cores to store data.

Figure l-3a shows a 4-bit core register. With the right-

hand rule, you can see that conventional current into a wire

produces a clockwise flux; reversing the current gives a

counterclockwise flux. (The same result is obtained if

electron-flow is assumed and the left-hand rule is used.)

The cores have rectangular hysteresis loops; this means

that flux remains in a core even though the magnetizing

current is removed (see Fig. 1-3b). This is why a core

register can store binary data indefinitely. For instance,

let’s use the following code:

Flux Binary

Counterclockwise 0

Clockwise 1

Other Two-State Examples

The simplest example of a two-state device is the on-off

switch. When this switch is closed, it represents binary 1;

when it’s open, it stands for binary 0.

Punched cards are another example of the two-state

concept. A hole in a card stands for binary 1, the absence

of a hole for binary 0. Using a prearranged code, a card-

punch machine with a keyboard can produce a stack of

cards containing the program and data needed to run a

computer.

Magnetic tape can also store binary numbers. Tape

recorders magnetize some points on the tape (binary 1),

while leaving other points unmagnetized (binary 0). By a

prearranged code, a row of points represents either a coded

instruction or data. In this way, a reel of tape can store

thousands of binary instructions and data for later use in a

computer.

Even the lights on the control panel of a large computer

are binary; a light that’s on stands for binary 1, and one

that’s off stands for binary 0. In a 16-bit computer, for

instance, a row of 16 lights allows the operator to see the

binary contents in different computer registers. The operator

can then monitor the overall operation and, when necessary,

troubleshoot.

In summary, switches, transistors, cores, cards, tape,

lights, and almost all other devices used with computers

are based on two-state operation. This is why we are forced

to use binary numbers when analyzing computer action.

EXAMPLE 13

Figure 1-4 shows a strip of magnetic tape. The black circles

are magnetized points and the white circles unmagnetized

points. What binary number does each horizontal row

represent?

Then, the core register of Fig. 1-3b stores binary 1001,

equivalent to decimal 9. By changing the magnetizing

currents in Fig. 1-3a we can change the stored data.

To store larger binary numbers, add more cores. Two

cores added to Fig. 1-3a result in a 6-bit register; four more

cores give an 8-bit register.

The memory is one of the main parts of a computer.

Some memories contain thousands of core registers. These

registers store the program and data needed to run the

computer.

Fig. 1-4 Binary numbers on magnetic tape.

SOLUTION

The tape stores these binary numbers:

Row 1 00001111 Row 5 11100110
Row 2 10000110 Row 6 01001001
Row 3 10110111 Row 7 11001101
Row 4 00110001

Chapter 1 Number Systems and Codes 5

(Note: these binary numbers may represent either coded

instructions or data.)

A string of 8 bits is called a byte. In this example, the

magnetic tape stores 7 bytes. The first byte (row 1) is

00001 111. The second byte (row 2) is 10000110. The third

byte is 10110111. And so on.

A byte is the basic unit of data in computers. Most

computers process data in strings of 8 bits or some multiple

(16, 24, 32, and so on). Likewise, the memory stores data

in strings of 8 bits or some multiple of 8 bits.

(1 x 24) + (1 X 23) + (0 X 22) + (0 X V)

+ (1 x 2°) = 16 + 8 + 0 + 0 + 1 = 25

Binary 11001 is therefore equivalent to decimal 25.

As another example, the byte 11001100 converts to

decimal as follows:

(1 x 27) + (1 x 26) T (0 x 25) + (0 x 24)

+ (1 X 23) + (1 X 22) + (0 x V) + (0 X 2°)

= 128 + 64 + 0 + 0 + 8 + 4 + 0 + 0 = 204

1-5 BINARY-TO-DECIMAL
CONVERSION

You already know how to count to 15 using binary numbers.

The next thing to learn is how to convert larger binary

numbers to their decimal equivalents.

5 7 0 3 4 1 1 0 0 1

104 103 102 101 10° 24 23 22 21 2°

(a) (b)

Fig. 1-5 (a) Decimal weights; (b) binary weights.

Decimal Weights

The decimal number system is an example of positional

notation; each digit position has a weight or value. With

decimal numbers the weights are units, tens, hundreds,

thousands, and so on. The sum of all digits multiplied by

their weights gives the total amount being represented.

For instance, Fig. 1 -5a illustrates a decimal odometer.

Below each digit is its weight. The digit on the right has a

weight of 10° (units), the second digit has a weight of 10'

(tens), the third digit a weight of 102 (hundreds), and so

forth. The sum of all units multiplied by their weights is

So, binary 11001100 is equivalent to decimal 204.

Fast and Easy Conversion

Here’s a streamlined way to convert a binary number to its

decimal equivalent:

1. Write the binary number.

2. Write the weights 1, 2, 4, 8, ... , under the binary

digits.

3. Cross out any weight under a 0.

4. Add the remaining weights.

For instance, binary 1101 converts to decimal as follows:

1. 1 1 0 1
2. 8 4 2 1

3. 8 4 0 1

4. 8 + 4 + 0+1 = 13

(Write binary number)

(Write weights)

(Cross out weights)

(Add weights)

You can compress the steps even further:

110 1 (Step 1)

8 4 t 1 —> 13 (Steps 2 to 4)

As another example, here’s the conversion of binary

1110101 in compressed form:

(5 x 104) + (7 x 103) + (0 X 102) + (3 x 101)

+ (4x 10°) = 50,000 + 7000 + 0 + 30 + 4
= 57,034

Binary Weights

Positional notation is also used with binary numbers because

each digit position has a weight. Since only two digits are

used, the weights are powers of 2 instead of 10. As shown

in the binary odometer of Fig. 1-5b, these weights are 2°

(units), 21 (twos), 22 (fours), 23 (eights), and 24 (sixteens).

If longer binary numbers are involved, the weights continue

in ascending powers of 2.

The decimal equivalent of a binary number equals the

sum of all binary digits multiplied by their weights. For

instance, the binary reading of Fig. 1-5b has a decimal
equivalent of

1 1 10 10 1
64 32 16 0 4 % 1 —^ 117

Base or Radix

The base or radix of a number system equals the number

of digits it has. Decimal numbers have a base of 10 because

digits 0 through 9 are used. Binary numbers have a base

of 2 because only the digits 0 and 1 are used. (In terms of

an odometer, the base or radix is the number of digits on

each wheel.)

A subscript attached to a number indicates the base of

the number. 1002 means binary 100. On the other hand,

100lo stands for decimal 100. Subscripts help clarify equa¬

tions where binary and decimal numbers are mixed. For

instance, the last two examples of binary-to-decimal con¬

version can be written like this:

6 Digital Computer Electronics

11012 = 1310

11101012 - 117,0

In this book we will use subscripts when necessary for

clarity.

1-6 MICROPROCESSORS

What is inside a computer? What is a microprocessor? What

is a microcomputer?

Computer

The five main sections of a computer are input, memory,

arithmetic and logic, control, and output. Here is a brief

description of each.

Input This consists of all the circuits needed to get

programs and data into the computer. In some computers

the input section includes a typewriter keyboard that converts

letters and numbers into strings of binary data.

Memory This stores the program and data before the

computer run begins. It also can store partial solutions

during a computer run, similar to the way we use a scratchpad

while working out a problem.

Control This is the computer’s center of gravity, analo¬

gous to the conscious part of the mind. The control section

directs the operation of all other sections. Like the conductor

of an orchestra, it tells the other sections what to do and

when to do it.

Arithmetic and logic This is the number-crunching sec¬

tion of the machine. It can also make logical decisions.

With control telling it what to do and with memory feeding

it data, the arithmetic-logic unit (ALU) grinds out answers

to number and logic problems.

Output This passes answers and other processed data to

the outside world. The output section usually includes a

video display to allow the user to see the processed data.

Microprocessor

The control section and the ALU are often combined

physically into a single unit called the central processing

unit (CPU). Furthermore, it’s convenient to combine the

input and output sections into a single unit called the input-

output (I/O) unit. In earlier computers, the CPU, memory,

and I/O unit filled an entire room.

With the advent of integrated circuits, the CPU, memory,

and I/O unit have shrunk dramatically. Nowadays the CPU

can be fabricated on a single semiconductor chip called a

microprocessor. In other words, a microprocessor is nothing

more than a CPU on a chip.

Likewise, the I/O circuits and memory can be fabricated

on chips. In this way, the computer circuits that once filled

a room now fit on a few chips.

Microcomputer

As the name implies, a microcomputer is a small computer.

More specifically, a microcomputer is a computer that uses

a microprocessor for its CPU. The typical microcomputer

has three kinds of chips: microprocessor (usually one chip),

memory (several chips), and TO (one or more chips).

If a small memory is acceptable, a manufacturer can

fabricate all computer circuits on a single chip. For instance,

the 8048 from Intel Corporation is a one-chip microcomputer

with an 8-bit CPU, 1,088 bytes of memory, and 27 I/O

lines.

Powers of 2

Microprocessor design started with 4-bit devices, then

evolved to 8- and 16-bit devices. In our later discussions

of microprocessors, powers of 2 keep coming up because

of the binary nature of computers. For this reason, you

should study Table 1-3. It lists the powers of 2 encountered

in microcomputer analysis. As shown, the abbreviation K

stands for 1,024 (approximately l,000).f Therefore, IK

means 1,024, 2K stands for 2,048, 4K for 4,096, and so
on.

Most personal microcomputers have 640K (or greater)

memories that can store 655,360 bytes (or more).

TABLE 1-3. POWERS OF 2

Powers of 2 Decimal equivalent Abbreviation

2° 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1,024 IK

211 2,048 2K

212 4,096 4K

213 8,192 8K

214 16,384 16K

215 32,768 32K

216 65,536 64K

t The abbreviations IK, 2K, and so on, became established
before K- for kilo- was in common use. Retaining the capital K
serves as a useful reminder that K only approximates 1,000.

Chapter 1 Number Systems and Codes 7

1-7 DECIMAL-TO-BINARY
CONVERSION

Next, you need to know how to convert from decimal to

binary. After you know how it’s done, you will be able to

understand how circuits can be built to convert decimal

numbers into binary numbers.

Double-Dabble

Double-dabble is a way of converting any decimal number

to its binary equivalent. It requires successive division by

2, writing down each quotient and its remainder. The

remainders are the binary equivalent of the decimal number.

The only way to understand the method is to go through

an example, step by step.

Here is how to convert decimal 13 to its binary equivalent.

Step 1. Divide 13 by 2, writing your work like this:

6 1 —> (first remainder)

2 7T3

The quotient is 6 with a remainder of 1.

Step 2. Divide 6 by 2 to get

3 0 —» (second remainder)

2 J6 1

2 Jl3

This division gives 3 with a remainder of 0.

Step 3. Again you divide by 2:

1 1 —> (third remainder)

2 J3 0

2 F6 1

2 Jl3

Here you get a quotient of 1 and a remainder of 1.

Step 4. One more division by 2 gives

Read

down

0 1

2 FT i

2 F3 0

2 F6 1

2 Fl3

In this final division, 2 does not divide into 1; therefore,

the quotient is 0 with a remainder of 1.

Whenever you arrive at a quotient of 0 with a remainder

of 1, the conversion is finished. The remainders when read

downward give the binary equivalent. In this example,

binary 1101 is equivalent to decimal 13.

Double-dabble works with any decimal number. Pro¬

gressively divide by 2, writing each quotient and its

remainder. When you reach a quotient of 0 and a remainder

of 1, you are finished; the remainders read downward are

the binary equivalent of the decimal number.

Streamlined Double-Dabble

There’s no need to keep writing down 2 before each division

because you’re always dividing by 2. From now on, here’s

how to show the conversion of decimal 13 to its binary

equivalent:

0 1

n i

Jl 0

J~6 1 w

2 FI3

EXAMPLE 1-4

Convert decimal 23 to binary.

SOLUTION

The first step in the conversion looks like this:

11 1

2 F23

After all divisions, the finished work looks like this:

0 1

FT 0

12 1

FT 1

m 1

2 J23 /

This says that binary 10111 is equivalent to decimal 23.

8 Digital Computer Electronics

1-8 HEXADECIMAL NUMBERS

Hexadecimal numbers are extensively used in micropro¬

cessor work. To begin with, they are much shorter than

binary numbers. This makes them easy to write and

remember. Furthermore, you can mentally convert them to

binary form whenever necessary.

An Unusual Odometer

Hexadecimal means 16. The hexadecimal number system

has a base or radix of 16. This means that it uses 16 digits

to represent all numbers. The digits are 0 through 9, and

A through F as follows: 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, and F. Hexadecimal numbers are strings of these

digits like 8A5, 4CF7, and EC58.

An easy way to understand hexadecimal numbers is to

visualize a hexadecimal odometer. Each wheel has 16 digits

on its circumference. As it turns, it displays 0 through 9

as before. But then, instead of resetting, it goes on to

display A, B, C, D, E, and F.

The idea of reset and carry applies to a hexadecimal

odometer. When a wheel turns from F back to 0, it forces

the next higher wheel to advance by 1. In other words,

when a wheel runs out of hexadecimal digits, it resets and

carries.

If used in a car, a hexadecimal odometer would count

as follows. When the car is new, the odometer shows all

Os:

0000 (zero)

The next 9 miles produce readings of

0001 (one)

0002 (two)

0003 (three)

0004 (four)

0005 (five)

0006 (six)

0007 (seven)

0008 (eight)

0009 (nine)

The next 6 miles give

000A (ten)

000B (eleven)

000C (twelve)

000D (thirteen)

000E (fourteen)

000F (fifteen)

At this point the least significant wheel has run out of

digits. Therefore, the next mile forces a reset-and-carry to

get

0010 (sixteen)

The next 15 miles produce these readings: 0011, 0012,

0013, 0014, 0015, 0016, 0017, 0018, 0019, 001A, 001B,

001C, 001D, 001E, and 001F. Once again, the least

significant wheel has run out of digits. So, the next mile

results in a reset-and-carry:

0020 (thirty-two)

Subsequent readings are 0021, 0022, 0023, 0024, 0025,

0026, 0027, 0028, 0029, 002A, 002B, 002C, 002D, 002E,

and 002F.

You should have the idea by now. Each mile advances

the least significant wheel by 1. When this wheel runs out

of hexadecimal digits, it resets and carries. And so on for

the other wheels. For instance, if the odometer reading is

835F

the next reading is 8360. As another example, given

5FFF

the next hexadecimal number is 6000.

Equivalences

Table 1-4 shows the equivalences between hexadecimal,

binary, and decimal digits. Memorize this table. It’s essential

that you be able to convert instantly from one system to

another.

TABLE 1-4. EQUIVALENCES

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F mi 15

Chapter 1 Number Systems and Codes 9

1-9 HEXADECIMAL-BINARY
CONVERSIONS

After you know the equivalences of Table 1-4, you can

mentally convert any hexadecimal string to its binary

equivalent and vice versa.

Hexadecimal to Binary

To convert a hexadecimal number to a binary number,

convert each hexadecimal digit to its 4-bit equivalent, using

Table 1-4. For instance, here’s how 9AF converts to binary:

9 A F

l' "i 'i
looi ioio mi

As another example, C5E2 converts like this:

C 5 E 2

>1 >t >L
1100 0101 1110 0010

Incidentally, for easy reading it’s common practice to leave

a space between the 4-bit strings. For example, instead of

writing

C5E216 - 11000101111000102

we can write

C5E2i6 = 1100 0101 1110 00102

Binary to Hexadecimal

To convert in the opposite direction, from binary to

hexadecimal, you again use Table 1-4. Here are two

examples. The byte 1000 1100 converts as follows:

1000 1100

i i
8 C

The 16-bit number 1110 1000 1101 0110 converts like this:

1110 1000 1101 0110

't >1 i' >i
E 8 D 6

In both these conversions, we start with a binary number

and wind up with the equivalent hexadecimal number.

EXAMPLE 1-5

Solve the following equation for x:

r16 = mi mi mi nn2

SOLUTION

This is the same as asking for the hexadecimal equivalent

of binary 1111 1111 1111 1111. Since hexadecimal F is

equivalent to 1111, x = FFFF. Therefore,

ffff16 = mi mi nil nn2

EXAMPLE 1-6

As mentioned earlier, the memory contains thousands of

registers (core or semiconductor) that store the program and

data needed for a computer run. These memory registers

are known as memory locations. A typical microcomputer

may have up to 65,536 memory locations, each storing 1

byte.

Suppose the first 16 memory locations contain these

bytes:

0011 1100

1100 1101

0101 0111

0010 1000

ini oooi
0010 1010

1101 0100

0100 0000

0111 0111

1100 0011

1000 0100

0010 1000

0010 0001

0011 1010

0011 1110

oooi nil

Convert these bytes to their hexadecimal equivalents.

SOLUTION

Here are the stored bytes and their hexadecimal equivalents:

Memory Contents Hex Equivalents

0011 1100 3C

1100 1101 CD

01010111 57

0010 1000 28

1111 0001 FI

10 Digital Computer Electronics

0010 1010 2A

1101 0100 D4

0100 0000 40

0111 0111 77

1100 0011 C3

1000 0100 84

0010 1000 28

0010 0001 21

0011 1010 3A

0011 1110 3E

0001 1111 IF

What’s the point of this example? When talking about

the contents of a computer memory, we can use either

binary numbers or hexadecimal numbers. For instance, we

can say that the first memory location contains 0011 1100,

or we can say that it contains 3C. Either string gives the

same information. But notice how much easier it is to say,

write, and think 3C than it is to say, write, and think 0011

1100. In other words, hexadecimal strings are much easier

for people to work with. This is why everybody working

with microprocessors uses hexadecimal notation to represent

particular bytes.

What we have just done is known as chunking, replacing

longer strings of data with shorter ones. At the first memory

location we chunk the digits 0011 1100 into 3C. At the

second memory location we chunk the digits 1100 1101

into CD, and so on.

EXAMPLE 1-7

The typical microcomputer has a typewriter keyboard that

allows you to enter programs and data; a video screen

displays answers and other information.

Suppose the video screen of a microcomputer displays

the hexadecimal contents of the first eight memory locations

as

A7

28

C3

19

5A

4D

2C

F8

What are the binary contents of the memory locations?

SOLUTION

Convert from hexadecimal to binary to get

1010 0111

0010 1000

1100 0011

0001 1001

0101 1010

0100 1101

0010 1100

mi iooo

The first memory location stores the byte 1010 0111, the

second memory location stores the byte 0010 1000, and so

on.

This example emphasizes a widespread industrial prac¬

tice. Microcomputers are programmed to display chunked

data, often hexadecimal. The user is expected to know

hexadecimal-binary conversions. In other words, a computer

manufacturer assumes that you know that A7 represents

1010 0111, 28 stands for 0010 1000, and so on.

One more point. Notice that each memory location in

this example stores 1 byte. This is typical of first-generation

microcomputers because they use 8-bit microprocessors.

1-10 HEXADECIMAL-TO-DECIMAL
CONVERSION

You often need to convert a hexadecimal number to its

decimal equivalent. This section discusses methods for

doing it.

Hexadecimal to Binary to Decimal

One way to convert from hexadecimal to decimal is the

two-step method of converting from hexadecimal to binary

and then from binary to decimal. For instance, here’s how

to convert hexadecimal 3C to its decimal equivalent.

Step 1. Convert 3C to its binary equivalent:

3 C

i i
0011 1100

Step 2. Convert 0011 1100 to its decimal equivalent:

0 0 1 1110 0
M 32 16 8 4 % /->60

Therefore, decimal 60 is equivalent to hexadecimal 3C. As

an equation,

3C16 = 0011 11002 = 6010

Positional-Notation Method

Positional notation is also used with hexadecimal numbers

because each digit position has a weight. Since 16 digits

are used, the weights are the powers of 16. As shown in

Chapter 1 Number Systems and Codes 11

□ 8 E □
163 162 161

Fig. 1 -6 Hexadecimal weights.

the hexadecimal odometer of Fig. 1-6, the weights are 16°,

161, 162, and 163. If longer hexadecimal numbers are

involved, the weights continue in ascending powers of 16.

The decimal equivalent of a hexadecimal string equals

the sum of all hexadecimal digits multiplied by their weights.

(In processing hexadecimal digits A through F, use 10

through 15.) For instance, the hexadecimal reading of Fig.

1-6 has a decimal equivalent of

(F X 163) + (8 x 162) + (E x 161) + (6x 16°)

= (15 x 163) + (8 x 162) + (14 x 161) + (6 x 16°)

= 61,440 + 2,048 + 224 + 6

= 63,718

In other words,

F8E616 = 63,718,0

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000 B

00 0C

000D

000E

000F

3C

CD

57

28

FI

2A

D4

40

77

C3

84

28

21

3A

3E

IF

16
locations

0000

FFFF

65,536
locations

<a> (b)

Fig. 1-7 (a) First 16 words in memory; (b) 64K memory.

Memory Locations and Addresses

If a certain microcomputer has 64K memory, meaning

65,536 memory locations, each is able to store 1 byte. The

different memory locations are identified by hexadecimal

numbers called addresses. For instance, Fig. I -la shows

the first 16 memory locations; their addresses are from 0000
to 000F.

The address of a memory location is different from its

stored contents, just as a house address is different from

12 Digital Computer Electronics

the people living in the house. Figure I -la emphasizes the

point. At address 0000 the stored contents are 3C (equivalent

to 0011 1100). At address 0001 the stored contents are CD,

at address 0002 the stored contents are 57, and so on.

Figure 1-7b shows how to visualize a 64K memory. The

first address is 0000, and the last is FFFF.

Table of Binaiy-Hexadecimal-Decimal
Equivalents

A 64K memory has 65,536 hexadecimal addresses from

0000 to FFFF. The equivalent binary addresses are from

0000 0000 0000 0000

to

mi mi nil nil

The first 8 bits are called the upper byte (UB); the second

8 bits are the lower byte (LB). If you have to do a lot of

binary-hexadecimal-decimal conversions, use the table of

equivalents in Appendix 2, which shows all the values for
a 64K memory.

Appendix 2 has four headings: binary, hexadecimal, UB

decimal, and LB decimal. Given a 16-bit address, you

convert the upper byte to its decimal equivalent (UB

decimal), the lower byte to its decimal equivalent (LB

decimal), and then add the two decimal equivalents. For

instance, suppose you want to convert

1101 0111 1010 0010

to its decimal equivalent. The upper byte is 1101 0111, or

hexadecimal D7; the lower byte is 1010 0010, or A2. Using

Appendix 2, find D7 and its UB decimal equivalent

D7 55,040

Next, find A2 and its LB decimal equivalent

A2 —» 162

Add the UB and LB decimal equivalents to get

55,040 + 162 = 55,202

This is the decimal equivalent of hexadecimal D7A2 or

binary 1101 0111 1010 0010.

Once familiar with Appendix 2, you will find it enor¬

mously helpful. It is faster, more accurate, and less tiring

than other methods. The only calculation required is adding

the UB and LB decimal, easily done mentally, with pencil

and paper, or if necessary, on a calculator. Furthermore, if

you are interested in converting only the lower byte, no

calculation is required, as shown in the next example.

EXAMPLE 1-8

Convert hexadecimal 7E to its decimal equivalent.

SOLUTION

When converting only a single byte, all you are dealing

with is the lower byte. With Appendix 2, look up 7E and

its LB decimal equivalent to get

7E —» 126

In other words, Appendix 2 can be used to convert single

bytes to their decimal equivalents (LB decimal) or double

bytes to their decimal equivalents (UB decimal + LB

decimal).

1-11 DECIMAL-TO-HEXADECIMAL
CONVERSION

One way to perform decimal-to-hexadecimal conversion is

to go from decimal to binary then to hexadecimal. Another

way is hex-dabble. The idea is to divide successively by

16, writing down the remainders. (Hex-dabble is like double-

dabble except that 16 is used for the divisor instead of 2.)

Here’s an example of how to convert decimal 2,479 into

hexadecimal form. The first division is

154 15 F

16) 2,479

The next step is

9 10 A

) 154 15 F

16)2,479

The final step is

Read

down
0 9 9

J9 10 A

) 154 15 F

16) 2,479

Notice how similar hex-dabble is to double-dabble. Also,

remainders greater than 9 have to be changed to hexadecimal

digits (10 becomes A, 15 becomes F, etc.).

If you prefer, use Appendix 2 to look up the decimal-

hexadecimal equivalents. The next two examples show

how.

EXAMPLE 1-9

Convert decimal 141 to hexadecimal.

SOLUTION

Whenever the decimal number is between 0 and 255, all

you have to do is look up the decimal number and its

hexadecimal equivalent. With Appendix 2, you can see at

a glance that

8D <- 141

EXAMPLE 1-10

Convert decimal 36,020 to its hexadecimal equivalent.

SOLUTION

If the decimal number is between 256 and 65,535, you

need to proceed as follows. First, locate the largest UB

decimal that is less than 36,020. In Appendix 2, the largest

UB decimal is

UB decimal = 35,840

which has a hexadecimal equivalent of

8C <- 35,840

This is the upper byte.

Next, subtract the UB decimal from the original decimal

number:

36,020 - 35,840 - 180

The difference 180 has a hexadecimal equivalent

B4 <- 180

This is the lower byte.

By combining the upper and lower bytes, we get the

complete answer: 8CB4. This is the hexadecimal equivalent

of 36,020.

After a little practice, you will find Appendix 2 to be

one of the fastest methods of decimal-hexadecimal conver¬

sion.

1-12 BCD NUMBERS

A nibble is a string of 4 bits. Binary-coded-decimal (BCD)

numbers express each decimal digit as a nibble. For instance,

decimal 2,945 converts to a BCD number as follows:

Chapter 1 Number Systems and Codes 13

2 9 4 5

't >1 I' 'i
0010 1001 0100 0101

As you see, each decimal digit is coded as a nibble.

Here’s another example: 9,86310 converts like this:

9 8 6 3

'l I' 'l >1
1001 1000 0110 0011

Therefore, 1001 1000 0110 0011 is the BCD equivalent of

9,86310.

The reverse conversion is similar. For instance, 0010

1000 0111 0100 converts as follows:

0010 1000 0111 0100

1 l' 'l >i
2 8 7 4

Applications

BCD numbers are useful wherever decimal information is

transferred into or out of a digital system. The circuits

inside pocket calculators, for example, can process BCD

numbers because you enter decimal numbers through the

keyboard and see decimal answers on the LED or liquid-

crystal display. Other examples of BCD systems are elec¬

tronic counters, digital voltmeters, and digital clocks; their

circuits can work with BCD numbers.

BCD Computers

BCD numbers have limited value in computers. A few

early computers processed BCD numbers but were slower

and more complicated than binary computers. As previously

mentioned, a computer is more than a number cruncher

because it must handle names and other nonnumeric data.

In other words, a modem computer must be able to process

alphanumerics (alphabet letters, numbers, and other sym¬

bols). This why modem computers have CPUs that process

binary numbers rather than BCD numbers.

Comparison of Number Systems

Table 1-5 shows the four number systems we have discussed.

Each number system uses strings of digits to represent

quantity. Above 9, equivalent strings appear different. For

instance, decimal string 128, hexadecimal string 80, binary

string 1000 0000, and BCD string 0001 0010 1000 are

equivalent because they represent the same number of

pebbles.

Machines have to use long strings of binary or BCD

numbers, but people prefer to chunk the data in either

decimal or hexadecimal form. As long as we know how to

14 Digital Computer Electronics

TABLE 1-5. NUMBER SYSTEMS

Decimal Hexadecimal Binary BCD

0 0 0000 0000 0000 0000 0000
1 1 0000 0001 0000 0000 0001
2 2 0000 0010 0000 0000 0010

3 3 0000 0011 0000 0000 0011
4 4 0000 0100 0000 0000 0100

5 5 0000 0101 0000 0000 0101

6 6 0000 0110 0000 0000 0110
7 7 0000 0111 0000 0000 0111
8 8 0000 1000 0000 0000 1000
9 9 0000 1001 0000 0000 1001

10 A 0000 1010 0000 0001 0000

11 B 0000 1011 0000 0001 0001
12 C 0000 1100 0000 0001 0010

13 D 0000 1101 0000 0001 0011

14 E 0000 1110 0000 0001 0100
15 F oooo mi 0000 0001 0101
16 10 0001 0000 0000 0001 0110
32 20 0010 0000 0000 0011 0010
64 40 0100 0000 0000 0110 0100

128 80 1000 0000 0001 0010 1000
255 FF mi nil 0010 0101 0101

convert from one number system to the next, we can always

get back to the ultimate meaning, which is the number of

pebbles being represented.

1-13 THE ASCII CODE

To get information into and out of a computer, we need to

use numbers, letters, and other symbols. This implies some

kind of alphanumeric code for the I/O unit of a computer.

At one time, every manufacturer had a different code,

which led to all kinds of confusion. Eventually, industry

settled on an input-output code known as the American

Standard Code for Information Interchange (abbreviated

ASCII). This code allows manufacturers to standardize

I/O hardware such as keyboards, printers, video displays,
and so on.

The ASCII (pronounced ask'-ee) code is a 7-bit code

whose format (arrangement) is

X6X5X4X3X2X1X0

where each X is a 0 or a 1. For instance, the letter A is

coded as

1000001

Sometimes, a space is inserted for easier reading:

100 0001

TABLE 1-6. THE ASCII CODE More examples are

(b)

(c)
(d)

X3X2XjXo
x6x5x4

010 Oil 100 101 110 in

0000 SP 0 @ p p
0001 ! 1 A Q a q
0010

rr 2 B R b r

0011 # 3 c s c s

0100 $ 4 D T d t

0101 % 5 E U e u

0110 & 6 F V f V

0111 ’ 7 G w g w

1000 (8 H X h x

1001) 9 I Y i y
1010 * J Z j z

1011 + * K k

1100 > < L 1

1101 - = M m

1110 • > N n

mi / ? O 0

Table 1-6 shows the ASCII code. Read the table the

same as a graph. For instance, the letter A has an X6X5X4

of 100 and an X3X2XJXQ of 0001. Therefore, its ASCII

code is

100 0001 (A)

Table 1-6 includes the ASCII code for lowercase letters.

The letter a is coded as

110 0001 (a)

1100010

110 0011

1100100

and so on.

Also look at the punctuation and mathematical symbols.

Some examples are

010 0100 ($)
0101011 (+)
0111101 (=)

In Table 1-6, SP stands for space (blank). Hitting the space

bar of an ASCII keyboard sends this into a microcomputer:

010 0000 (space)

EXAMPLE 1-11

With an ASCII keyboard, each keystroke produces the

ASCII equivalent of the designated character. Suppose you

type

PRINT X

What is the output of an ASCII keyboard?

SOLUTION

P (101 0000), R (101 0010), I (100 1001), N (100 1110),

T (101 0100), space (010 0000), X (101 1000).

GLOSSARY

address Each memory location has an address, analogous

to a house address. Using addresses, we can tell the computer

where desired data is stored.

alphanumeric Letters, numbers, and other symbols.

base The number of digits (basic symbols) in a number

system. Decimal has a base of 10, binary a base of 2, and

hexadecimal a base of 16. Also called the radix.

bit An abbreviation for binary digit.

byte A string of 8 bits. The byte is the basic unit of binary

information. Most computers process data with a length of

8 bits or some multiple of 8 bits.

central processing unit The control section and the arith¬

metic-logic section. Abbreviated CPU.

chip An integrated circuit.

chunking Replacing a longer string by a shorter one.

data Names, numbers, and any other information needed

to solve a problem.

digital Pertains to anything in the form of digits, for

example, digital data.

hardware The electronic, magnetic, and mechanical de¬

vices used in a computer.

hexadecimal A number system with a base of 16. Hexa¬

decimal numbers are used in microprocessor work.

input-output Abbreviated I/O. The input and output sec¬

tions of a computer are often lumped into one unit known

as the I/O unit.

microcomputer A computer that uses a microprocessor

for its central processing unit (CPU).

microprocessor A CPU on a chip. It contains the control

and arithmetic-logic sections. Sometimes abbreviated MPU

(microprocessor unit).

nibble A string of 4 bits. Half of a byte.

program A sequence of instructions that tells the computer

how to process the data. Also known as software.

register A group of electronic, magnetic, or mechanical

devices that store digital data.

software Programs.

string A group of digits or other symbols.

Chapter 1 Number Systems and Codes 1 5

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1* Binary means-Binary numbers have a

base of 2. The digits used in a binary number

system are_and_

2. (two; 0, 1) Names, numbers, and other information

needed to solve a problem are called_

The-is a sequence of instructions that

tells the computer how to process the data.

3. (data, program) Computer ICs work reliably be¬

cause they are based on_design. When

a transistor is cut off or saturated, transistor

-have almost no effect.

4. (two-state, variations) A_is a group of

devices that store digital data._is an

abbreviation for binary digit. A byte is a string of

_bits.

5. (register, Bit, 8) The control and arithmetic-logic

sections are called the_(CPU). A micro¬

processor is a CPU on a chip. A microcomputer

is a computer that uses a_for its CPU.

6. (central processing unit, microprocessor) The ab¬

breviation K indicates units of approximately 1,000

or precisely 1,024. Therefore, IK means 1,024, 2K

means 2,048, 4K means_and 64 K

means_

7. (4,096, 65,536) The hexadecimal number system is

widely used in analyzing and programming_

The hexadecimal digits are 0 to 9 and A to_

The main advantage of hexadecimal numbers is the

ease of conversion from hexadecimal to_

and vice versa.

8. (microprocessors, F, binary) A typical microcom¬

puter may have up to 65,536 registers in its mem¬

ory. Each of these registers, usually called a_,

stores 1 byte. Such a memory is specified as a 64-

kilobyte memory, or simply a_memory.

9. (memory location, 64K) Binary-coded-decimal

(BCD) numbers express each decimal digit as a_

BCD numbers are useful whenever_in¬

formation is transferred into or out of a digital

system. Equipment using BCD numbers includes

pocket calculators, electronic counters, and digital

voltmeters.

10. (nibble, decimal) The ASCII code is a 7-bit code

for-(letters, numbers, and other sym¬

bols).

11. (alphanumerics) With the typical microcomputer,

you enter the program and data with typewriter

keyboard that converts each character into ASCII

code.

PROBLEMS

1-1. How many bytes are there in each of these num¬

bers?

a. 1100 0101

b. 1011 1001 0110 1110

c. 1111 1011 0111 0100 1010

1-2. What are the equivalent decimal numbers for each

of the following binary numbers: 10, 110, 111,

1011, 1100, and 1110?

1-3. What is the base for each of these numbers?

a. 348 io

b. 1100 01012

c. 23125

d. F4C316

1-4. Write the equation

2 + 2 — 4

using binary numbers.

1-5. What is the decimal equivalent of 210? What does

4K represent? Express 8,192 in K units.

1-6. A 4-bit register has output voltages of high-low-

high-low. What is the binary number stored in the

register? The decimal equivalent?

16 Digital Computer Electronics

o*oioo»»
Fig. 1-8 An 8-bit LED display.

1-7. Figure 1-8 shows an 8-bit LED display. A light

circle means that a LED is on (binary 1) and a

dark circle means a LED is off (binary 0). What

is the binary number being displayed? The deci¬

mal equivalent?

1-8. Convert the following binary numbers to decimal

numbers:

a. 00111

b. 11001

c. 10110

d. 11110

1-9. Solve the following equation for x:

x10 = 110010012

1-10. An 8-bit transistor register has this output:

low-high-low-high-low-high-low-high

What is the equivalent decimal number being

stored?

Fig- 1-9 An 8-bit core register.

1-11.

Fig. 1

1-12.

M3.
1-14.
1-15.

1-16.

1-17.

1-18.

1-19.

1-20.

In Fig. 1-9 clockwise flux stands for binary 1 and

counterclockwise flux for binary 0. What is the

binary number stored in the 8-bit core register?

Convert this byte to an equivalent decimal

number.

10 A 5-bit switch register.

Figure 1-10 shows a 5-bit switch register. By

opening and closing the switches you can set up

different binary numbers. As usual, high output

voltage stands for binary 1 and low output voltage

for binary 0. What is the binary number stored in

the switch register? The equivalent decimal num¬

ber?

Convert decimal 56 to its binary equivalent.

Convert 7210 to a binary number.

An 8-bit transistor register stores decimal 150.

What is the binary output of the register?

How would you set the switches of Fig. 1-10 to

get a decimal output of 27?

A hexadecimal odometer displays F52A. What are

the next six readings?

The reading on a hexadecimal odometer is 27FF.

What is the next reading? Miles later, you see a

reading of 8AFC. What are the next six readings?

Convert each of the following hexadecimal num¬

bers to binary:

a. FF

b. ABC

c. CD42

d. F329

Convert each of these binary numbers to an

equivalent hexadecimal number:

a. 1110 1000

b. 1100 1011

c. 1010 11110110

d. 1000 1011 1101 0110

1-21. Here is a program written for the 8085 micro¬

processor:

Address Hex Contents

2000 3E ! 1

2001 0E

2002 D3

2003 20

2004 76

Convert the hex contents to equivalent binary

numbers.

1-22. Convert each of these hexadecimal numbers to its

decimal equivalent:
a. FF

b. A4

c. 9B

d. 3C

1-23. Convert the following hexadecimal numbers to

their decimal equivalents:

a. 0FFF

b. 3FFF

c. 7FE4

d. B3D8

1-24. A microcomputer has memory locations from

0000 to 0FFF. Each memory location stores 1

byte. In decimal, how many bytes can the micro¬

computer store in its memory ? How many kilo¬

bytes is this?

1-25. Suppose a microcomputer has memory locations

from 0000 to 3FFF, each storing 1 byte. How

Chapter 1 Number Systems and Codes 1 7

many bytes can the memory store? Express this in

kilobytes.

1-26. A microcomputer has a 32K memory. How many

bytes does this represent? If 0000 stands for the

first memory location, what is the hexadecimal

notation for the last memory location?

1-27. If a microcomputer has a 64K memory, what are

the hexadecimal notations for the first and last

memory locations?

1-28. Convert the following decimal numbers to hexa¬

decimal:

a. 4,095

b. 16,383

c. 32,767

d. 65,535

1-29. Convert each of the following decimal numbers to

hexadecimal numbers:

a. 238

b. 7,547

c. 15,359

d. 47,285

1-30. How many nibbles are there in each of the fol¬

lowing:

/j a. 1000 0111- *

b. 10QJ OODO 01(10 0011

c. 0101 1001 0111 0010 0110 01K)

1-31. If the numbers in Prob. 1-30 are BCD numbers,

what are the equivalent decimal numbers?

1-32. What is the ASCII code for each of the following:

a. 7

b. W

c. f

d. y

1-33. Suppose you type LIST with an ASCII keyboard.

What is the binary output as you strike each

letter?

1-34. For each of the following rows, provide the miss¬

ing numbers in the bases indicated.

Base 2 Base 10 Base 16

a 0100 0001

b. 200

C. 3CD

d. 125

noi mo mi

f. FFFF

g.
2,000

18 Digital Computer Electronics

Gates

For centuries mathematicians felt there was a connection

between mathematics and logic, but no one before George

Boole could find this missing link. In 1854 he invented

symbolic logic, known today as boolean algebra. Each

variable in boolean algebra has either of two values: true

or false. The original purpose of this two-state algebra was

to solve logic problems.

Boolean algebra had no practical application until 1938,

when Claude Shannon used it to analyze telephone switching

circuits. He let the variables represent closed and open

relays. In other words, Shannon came up with a new

application for boolean algebra. Because of Shannon’s

work, engineers realized that boolean algebra could be

applied to computer electronics.

This chapter introduces the gate, a circuit with one or

more input signals but only one output signal. Gates are

digital (two-state) circuits because the input and output

signals are either low or high voltages. Gates are often

called logic circuits because they can be analyzed with

boolean algebra.

2-1 INVERTERS

An inverter is a gate with only one input signal and one

output signal; the output state is always the opposite of the

• input state.

Transistor Inverter

Figure 2-1 shows a transistor inverter. This common-emitter

amplifier switches between cutoff and saturation. When VIN

is low (approximately 0 V), the transistor cuts off and FGut

is high. On the other hand, a high VIN saturates the transistor,

forcing Vol]T to go low.

Table 2-1 summarizes the operation. A low input produces

a high output, and a high input results in a low output.

Table 2-2 gives the same information in binary form; binary

0 stands for low voltage and binary 1 for high voltage.

An inverter is also called a not gate because the output

is not the same as the input. The output is sometimes called

the complement (opposite) of the input.

+5 V

Fig. 2-1 Example of inverter design.

TABLE 2-1 TABLE 2-2

(c) (d)

Fig. 2-2 Logic symbols: (a) inverter; (b) another inverter symbol;
(c) double inverter; (d) buffer.

Inverter Symbol

Figure 2-2a is the symbol for an inverter of any design.

Sometimes a schematic diagram will use the alternative

symbol shown in Fig. 2-2b\ the bubble (small circle) is on

19

the input side. Whenever you see either of these symbols,

remember that the output is the complement of the input.

Noninverter Symbol

If you cascade two inverters (Fig. 2-2c), you get a nonin¬

verting amplifier. Figure 2-2d is the symbol for a nonin¬

verting amplifier. Regardless of the circuit design, the action

is always the same: a low input voltage produces a low

output voltage, and a high input voltage results in a high

output voltage.

The main use of noninverting amplifier is buffering

(isolating) two other circuits. More will be said about

buffers in a later chapter.

EXAMPLE 2-1

i 1 -TSq_u A \s°

B
0

B 0 rso -1
[y°

0
0 h>o 1

6 bit 6-bit l/°
register

D
1 register

r> 1 ISo 0 U
ly°

0 p 0 ISo 1 B o
ly°

F
1

F
■ 1>° ■

(a) (b)

Fig. 2-3 Example 2-1.

Figure 2-3a has an output, A to F, of 100101. Show how

to complement each bit.

SOLUTION

Easy. Use an inverter on each signal line (Fig. 2-3b). The

final output is now 011010.

A hex inverter is a commercially available IC containing

six separate inverters. Given a 6-bit register like Fig. 2-3a,

we can connect a hex inverter to complement each bit as

shown in Fig. 2-3b.

One more point. In Fig. 2-3a the bits may represent a

coded instruction, number, letter, etc. To convey this variety

of meaning, a string of bits is often called a binary word

or simply a word. In Fig. 2-3b the word 100101 is

complemented to get the word 011010.

2-2 OR GATES

The or gate has two or more input signals but only one

output signal. If any input signal is high, the output signal

is high.

A O

B O

Fig. 2-4 A 2 -input diode or gate.

Diode or Gate

Figure 2-4 shows one way to build an or gate. If both

inputs are low, the output is low. If either input is high,

the diode with the high input conducts and the output is

high. Because of the two inputs, we call this circuit a 2-

input or gate.

Table 2-3 summarizes the action; binary 0 stands for low

voltage and binary 1 for high voltage. Notice that one or

more high inputs produce a high output; this is why the

circuit is called an or gate.

-1>\-

B o-£>(-n-

CO-W-

Fig. 2-5 A 3-input diode or gate.

More than Two Inputs

Figure 2-5 shows a 3-input or gate. If all inputs are low,

all diodes are off and the output is low. If 1 or more inputs

are high, the output is high.

Table 2-4 summarizes the action. A table like this is

called a truth table; it lists all the input possibilities and

the corresponding outputs. When constructing a truth table,

always list the input words in a binary progression as shown

(000, 001, 010, . . . , 111); this guarantees that all input

possibilities will be accounted for.

An or gate can have as many inputs as desired; add one

diode for each additional input. Six diodes result in a 6-

TABLE 2-3.
TWO INPUT
OR GATE

A B Y

0 0 0
0 1 1
1 0 1
1 1 1

TABLE 2-4. THREE-
INPUT or GATE

A B c Y

0 0 0 0
0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1
1 0 1 1

1 1 0 1
1 1 1 1

20 Digital Computer Electronics

input or gate, nine diodes in a 9-input or gate. No matter

how many inputs, the action of any or gate is summarized

like this: one or more high inputs produce a high output.

Bipolar transistors and MOSFETs can also be used to

build or gates. But no matter what devices are used, or

gates always produce a high output when one or more

inputs are high. Figure 2-6 shows the logic symbols for

2-, 3-, and 4-input or gates.

(a) (b) (c)

Fig. 2-6 OR-gate symbols.

EXAMPLE 2-3

How many inputs words are in the truth table of an 8-input

or gate? Which input words produce a high output?

SOLUTION

The input words are 0000 0000, 0000 0001, . . . , 1111

1111. With the formula of the preceding example, the total

number of input words is 2" = 28 = 256.

In any or gate, 1 or more high inputs produce a high

output. Therefore, the input word of 0000 0000 results in

a low output; all other input words produce a high output.

EXAMPLE 2-2

Show the truth table of a 4-input or gate.

SOLUTION

Let Y stand for the output bit and A, B, C, D for input bits.

Then the truth table has input words of 0000, 0001, 0010,

. . . , 1111, as shown in Table 2-5. As expected, output Y

is 0 for input word 0000; Y is 1 for all other input words.

As a check, the number of input words in a truth table

always equals 2", where n is the number of input bits. A

2-input or gate has a truth table with 22 or 4 input words;

a 3-input or gate has 23 or 8 input words; and a 4-input

or gate has 24 or 16 input words.

TABLE 2-5. FOUR-INPUT or

GATE

A B c D Y

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 j 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

- ■ \
\ i \ ;

EXAMPLE 2-4

+5 V

Fig. 2-7 Decimal-to-binary encoder.

The switches of Fig. 2-7 are push-button switches like those

of a pocket calculator. The bits out of the or gates form a

4-bit word, designated Y3Y2Y!Y0. What does the circuit

do?

SOLUTION

Figure 2-7 is a decimal-to-binary encoder, a circuit that

converts decimal to binary. For instance, when push button

3 is pressed, the Yx and Y0 or gates have high inputs;

therefore, the output word is

Y3Y2Y1Y0 = 0011

Chapter 2 Gates 21

If button 5 is keyed, the V2 and Y0 or gates have high

inputs and the output word becomes
TABLE 2-6. TWO-

INPUT and GATE

Y3Y2Y,Y0 = 0101

When switch 9 is pressed,

Y3Y2Y,Yo = 1001

Check the other input switches to convince yourself that

the output word always equals the binary equivalent of the

switch being pressed.

2-3 AND GATES

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

Table 2-6 summarizes the action. As usual, binary zero

stands for low voltage and binary 1 for high voltage. As

you see, A and B must be high to get a high output; this is

why the circuit is called an and gate.

The and gate has two or more input signals but only one

output signal. All inputs must be high to get a high output.

+5 v

fa)

+5 V

+5 V +5 V

Fig. 2-8 A 2-input and gate, (a) circuit; (b) both inputs low; (t*)l
low input, 1 high; (d) both inputs high.

+5 V

Fig. 2-9 A 3-input and gate.

More than Two Inputs

Figure 2-9 is a 3-input and gate. If all inputs are low, all

diodes conduct and pull the output down to a low voltage.

Even one conducting diode will pull the output down to a

low voltage; therefore, the only way to get a high output

is to have all inputs high. When all inputs are high, all

diodes are nonconducting and the supply voltage pulls the

output up to a high voltage.

Table 2-7 summarizes the 3-input and gate. The output

is 0 for all input words except 111. That is, all inputs must

be high to get a high output.

and gates can have as many inputs as desired; add one

diode for each additional input. Eight diodes, for instance,

result in an 8-input and gate; sixteen diodes in a 16-input

Diode and Gate

Figure 2-8a shows one way to build an and gate. In this

circuit the inputs can be either low (ground) or high (4- 5

V). When both inputs are low (Fig. 2-8b), both diodes

conduct and pull the output down to a low voltage. If one

of the inputs is low and the other high (Fig. 2-8c), the

diode with the low input conducts and this pulls the output

down to a low voltage. The diode with the high input, on

the other hand, is reverse-biased or cut off, symbolized by

the dark shading in Fig. 2-8c.

When both inputs are high (Fig. 2-8d), both diodes are

cut off. Since there is no current in the resistor, the supply

voltage pulls the output up to a high voltage (-1-5 V).

TABLE 2-7. THREE-
INPUT and GATE

A B c Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

22 Digital Computer Electronics

(a) (b) (c)

Fig. 2-10 AND-gate symbols.

and gate. No matter how many inputs an and gate has,

the action can be summarized like this: All inputs must be

high to get a high output.

Figure 2-10 shows the logic symbols for 2-, 3-, and 4-

input and gates.

EXAMPLE 2-5

Describe the truth table of an 8-input and gate.

SOLUTION

The input words are from 0000 0000 to 1111 1111, following

the binary progression. The total number of input words is

2* = 28 = 256

The first 255 input words produce a 0 output. Only the last

word, 111 1 1111, results in a 1 output. This is because all

inputs must be high to get a high output.

For instance, when

ENABLE = 0

each and gate has a low ENABLE input. No matter what

the register contents, the output of each and gate must be

low. Therefore, the final word is

Y5Y4Y3Y2Y1Yo = oooooo

As you see, a low ENABLE blocks the register contents

from the final output.

On the other hand, when

ENABLE = 1

the output of each and gate depends on the data inputs (A,
B, C, . . .); a low data input results in a low output, and

a high data input in a high output. For example, if ABCDEF

= 100100, a high ENABLE gives

Y5Y4Y3Y2Y1Yo = 100100

In general, a high ENABLE transmits the register contents

to the final output to get

Y5Y4Y3Y2Y1Y0 = ABCDEF

EXAMPLE 2-6

Fig. 2-11 Using and gates to block or transmit data.

The 6-bit register of Fig. 2-11 stores the word ABCDEF.

The ENABLE input can be low or high. What does the

circuit do?

SOLUTION

One use of and gates is to transmit data when certain

conditions are satisfied. In Fig. 2-11 a low ENABLE blocks

the register contents from the final output, but a high

ENABLE transmits the register contents.

2-4 BOOLEAN ALGEBRA

As mentioned earlier, Boole invented two-state algebra to

solve logic problems. This new algebra had no practical

use until Shannon applied it to telephone switching circuits.

Today boolean algebra is the backbone of computer circuit

analysis and design.

Inversion Sign

In boolean algebra a variable can be either a 0 or a 1. For

digital circuits, this means that a signal voltage can be

either low or high. Figure 2-12 is an example of a digital

circuit because the input and output voltages are either low

or high. Furthermore, because of the inversion, Y is always

the complement of A.

Fig. 2-12 Inverter.

A word equation for Fig. 2-12 is

Y = NOT A (2-1)

Chapter 2 Gates 23

If A is 0,

Y = NOT 0 = 1

On the other hand, if A is 1,

Y = not I = 0

In boolean algebra, the overbar stands for the NOT

operation. This means that Eq. 2-1 can be written

Y = A (2-2)

Read this as ‘7 equals not A” or ‘T equals the complement

of A. ” Equation 2-2 is the standard way to write the output

of an inverter.

Using the equation is easy. Given the value of A, substitute

and solve for Y. For instance, if A is 0,

Y = A = 0=1

because not 0 is 1. On the other hand, if A is 1,

Y = A = I = 0

because not 1 is 0.

Fig. 2-13 or gate.

or Sign

A word equation for Fig. 2-13 is

Y = A or B (2-3)

Given the inputs, you can solve for the output. For instance,

if A = 0 and B — 0,

Y = 0 or 0 = 0

because 0 comes out of an or gate when both inputs are

0s.

As another example, if A = 0 and B = 1,

Y = 0 or 1 = 1

because 1 comes out of an or gate when either input is 1.

Similarly, if A = 1 and # = 0,

r = i or o = i

If A — 1 and B = 1,

Y =] OR 1 = 1

In boolean algebra the + sign stands for the or operation.

In other words, Eq. 2-3 can be written

Y = A + B (2-4)

Read this as ‘T equals A or ZT” Equation 2-4 is the

standard way to write the output of an or gate.

Given the inputs, you can substitute and solve for the

output. For instance, if A = 0 and B — 0,

Y = A + B = 0 + 0 = 0

If A = 0 and B = 1,

F = A+ 5 = 0+ l = l

because 0 ORed with 1 results in 1. If A = 1 and B — 0,

y=A+S=l+0=l

If both inputs are high,

y = A + 5 = 1 + 1 = 1

because 1 ORed with 1 gives 1.

Don’t let the new meaning of the + sign bother you.

There’s nothing unusual about symbols having more than

one meaning. For instance, 44pot” may mean a cooking

utensil, a flower container, the money wagered in a card

game, a derivative of cannabis sativa and so forth; the

intended meaning is clear from the sentence it’s used in.

Similarly, the + sign may stand for ordinary addition or

or addition; the intended meaning comes across in the way

it’s used. If we’re talking about decimal numbers, + means

ordinary addition, but when the discussion is about logic

circuits, + stands for or addition.

and Sign

A word equation for Fig. 2-14 is

Y = A AND B (2-5)

In boolean algebra the multiplication sign stands for the

and operation. Therefore, Eq. 2-5 can be written

Y = A * B

or simply

Y — AB (2-6)

24 Digital Computer Electronics

Read this as ‘T equals A and 5.” Equation 2-6 is the

standard way to write the output of an and gate.

Given the inputs, you can substitute and solve for the

output. For instance, if both inputs are low,

F = A£ = 0- 0 = 0

because 0 ANDed with 0 gives 0. If A is low and B is high,

Y = AB = 0-1=0

because 0 comes out of an and gate if any input is 0. If A
is 1 and B is 0,

Y = AB = 1-0 = 0

When both inputs are high,

Y = AB = 1-1 = 1

because 1 ANDed with 1 gives 1.

Decision-Making Elements

The inverter, or gate, and and gate are often called

decision-making elements because they can recognize some

input words while disregarding others. A gate recognizes a

word when its output is high; it disregards a word when its

output is low. For example, the and gate disregards all

words with one or more 0s; it recognizes only the word
whose bits are all Is.

Notation

In later equations we need to distinguish between bits that

are ANDed and bits that are part of a binary word. To do

this we will use italic (slanted) letters (A, B, Y, etc.) for

ANDed bits and roman (upright) letters (A, B, Y, etc.) for

bits that form a word.

For example, Y2Y2YXY0 stands for the logical product

(ANDing) of y3, Y2, Y]9 and Y0. If Y3 = 1, Y2 = 0, Yx =

0, and Y0 = 1, the product Y3Y2YXY0 will reduce as follows:

y3y2y1y0 = 1 • 0 • 0 • 1 = 0 O' ■

In this case, the italic letters represent bits that are being
ANDed.

On the other hand, Y3Y2Y1Y0 is our notation for a 4-bit

word. With the Y values just given, we can write

Y3Y2YjY0 = 1001

In this equation, we are not dealing with bits that are

ANDed; instead, we are dealing with bits that are part of a
word.

The distinction between italic and roman notation will

become clearer when we get to computer analysis.

Positive and Negative Logic

A final point. Positive logic means that 1 stands for the

more positive of the two voltage levels. Negative logic
means that 1 stands for the more negative of the two voltage

levels. For instance, if the two voltage levels are 0 and -5

V, positive logic would have 1 stand for 0 V and 0 for -5

V, whereas negative logic would have 1 stand for - 5 V
and 0 for 0 V.

Ordinarily, people use positive logic with positive supply

voltages and negative logic with negative supply voltages.

Throughout this book, we will be using positive logic.

EXAMPLE 2-7

(a)

:=D-£>—
(b)

Fig. 2-15 Logic circuits.

What is the boolean equation for Fig. 2-15a? The output if

both inputs are high?

SOLUTION

A is inverted before it reaches^ the or gate; therefore, the

upper input to the or gate is A. The final output is

Y = A + 5

This is the boolean equation for Fig. 2-15a.

To find the output when both inputs are high, either of

two approaches can be used. First, you can substitute

directly into the foregoing equation and solve for Y

f = a + z? = T+ i = o+ i = 1

Alternatively, you can analyze the operation of Fig. 2-15a

like this. If both inputs are high, the inputs to the or gate

are 0 and 1. Now, 0 ORed with 1 gives 1. Therefore, the

final output is high.

EXAMPLE 2-8

What is the boolean equation for Fig. 2-15bl If both inputs
are high, what is the output?

Chapter 2 Gates 25

SOLUTION TABLE 2-8. TRUTH TABLE
FOR Y = AB + CD

The and gate forms the logical product AB, which is

inverted to get

Y = AB

Read this as “Y equals not AB” or “F equals the

complement of AB.”

If both inputs are high, direct substitution into the equation

gives

Y = AB = I7! = 1 = 0

Note the order of operations: the ANDing is done first, then

the inversion.

Instead of using the equation, you can analyze Fig.

2-15B as follows. If both inputs are high, the and gate has

a high output. Therefore, the final output is low.

EXAMPLE 2-9

Fig. 2-16 Logic circuits.

What is the boolean equation for Fig. 2-16a! The truth

table? Which input words does the circuit recognize?

SOLUTION

The upper and gate forms the logical product AB, and the

lower and gate gives CD. ORing these products results in

Y = AB + CD

Read this as “T equals AB or CD.”

Next, look at Fig. 2-16a. The final output is high if the

or gate has one or more high inputs. This happens when

AB is 1, CD is 1, or both are Is. In turn, AB is 1 when

A = 1 and B = 1

A B c D Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

CD is 1 when

C = 1 and D = 1

Both products are Is when

A — l B = 1 C = 1 and D = 1

Therefore, the final output is high when A and B are Is,

when C and D are Is, or when all inputs are Is.

Table 2-8 summarizes the foregoing analysis. From this

it’s clear that the circuit recognizes these input words: 0011,

0111, 1011, 1100, 1101, 1110, and 1111.

EXAMPLE 2-10

Write the boolean equation for Fig. 2-16b. If all inputs are

high, what is the output?

SOLUTION

The OR gate forms the logical sum B + C. This sum is

ANDed with A to get

Y = A(B + C)

(Parentheses indicate ANDing.)

One way to find the output when all inputs are high is

to substitute and solve as follows:

Y = A(B + C) = 1(1 + 1) = 1(1) = 1

26 Digital Computer Electronics

Alternatively, you can analyze Fig. 2-166 like this. If all

inputs are high, the OR gate has a high output; therefore,

both inputs to the and gate are high. Since all high inputs

to an and gate result in a high output, the final output is
high.

EXAMPLE 2-11

Fig. 2-17 A l-of-10 decoder.

What is the boolean equation for each Y output in Fig.
2-17 ?

SOLUTION

Each and gate forms the logical product of its input signals.

The inputs to the top and gate are A, B, C and D; therefore,

To = ABCD

The inputs to the next and gate are A, B, C and D: this
means that

T, = ABCD

Analyzing the remaining gates gives

Y2 = ABCD

T3 = ABCD

Y4 = ABCD

Y5 = ABCD

Y6 = ABCD

Y7 = ABCD

T8 = ABCD

Y9 = ABCD

EXAMPLE 2-12

What does the circuit of Fig. 2-17 do?

SOLUTION

This is a binary-to-decimal decoder, a circuit that converts

from binary to decimal. For instance, when the register

contents are 0011, the T3 and gate has all high inputs;

therefore, T3 is high. Furthermore, register contents of 0011

mean that all other and gates have at least one low input.

As a result, all other and gates have low outputs. (Analyze

the circuit to convince yourself.)

If the register contents change to 0100, only the Y4 and

gate has all high inputs; therefore, only Y4 is high. If the

register contents change to 0111, Y7 is the only high output.

In general, the subscript of the high output equals the

decimal equivalent of the binary number stored in the

register. This is why the circuit is called a binary-to-decimal
decoder.

The circuit of this example is also called a 4-line-to-10-

line decoder because there are 4 input lines and 10 output

lines. Another name for it is a l-of-10 decoder because

only 1 of 10 output lines has a high voltage.

GLOSSARY

AND gate A logic circuit whose output is high only when boolean algebra Originally known as symbolic logic, this

all inputs are high. modem algebra uses the set of numbers 0 and 1. The

Chapter 2 Gates 27

operations or, and, and not are sometimes called union,
intersection, and inversion. Boolean algebra is ideally suited

to digital circuit analysis.

complement The output of an inverter.

gate A logic circuit with one or more input signals but

only one output signal.

inverter A gate with only 1 input and 1 output. The output

is always the complement of the input. Also known as a

not gate.

logic circuit A circuit whose input and output signals are

two-state, either low or high voltages. The basic logic

circuits are or, and, and not gates.

OR gate A logic circuit with 2 or more inputs and only 1

output; 1 or more high inputs produce a high output.

truth table A table that shows all input and output

possibilities for a logic circuit. The input words are listed

in binary progression.

word A string of bits that represent a coded instruction

or data.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. A gate is a logic circuit with one or more input

signals but only_output signal. These

signals are either-or high.

2. (one, low) An inverter is a gate with only-

input; the output is always in the opposite state from

the input. An inverter is also called a-

gate. Sometimes the output is referred to as the

complement of the input.

3. (7, not) The or gate has two or more input signals.

If any input is_, the output is high. The

number of input words in a truth table always equals

_, where n is the number of input bits.

4. (high, 2n) The __-___- gate has two or more

input signals. All inputs must be high to get a high

output.
5. (and) In boolean algebra, the overbar stands for the

not operation, the plus sign stands for the-

operation, and the times sign for the-

operation.

6. (or, and) The inverter, or gate, and and gate are

called decision-making elements because they can

recognize some input-while disregarding

others. A gate recognizes a word when its output is

7. (words, high) A binary-to-decimal decoder is also

called a 4-line-to-10-line decoder because it has 4

input lines and 10 output lines. Another name for it

is the l-of-10 decoder because only 1 of its 10 output

lines is high at a time.

PROBLEMS

2-1. How many inputs signals can a gate have? How

many output signals?

2-2. If you cascade seven inverters, does the overall

circuit act like an inverter or noninverter?

2-3. Double inversion occurs when two inverters are

cascaded. Does such a connection act like an

inverter or noninverter?

2-4. The contents of the 6-bit register in Fig. 2-3b

change to 101010. What is the decimal equivalent

of the register contents? The decimal equivalent

out of the hex inverter?

2-5. An or gate has 6 inputs. How many input words

are in its truth table? What is the only input word

that produces a 0 output?

2-6. Figure 2-18 shows a hexadecimal encoder, a cir¬

cuit that converts hexadecimal to binary. Press¬

ing each push-button switch results in a differ¬

ent output word Y3Y2Y1Y0. Starting with switch

0, what are the output words? (Note: The new

symbol in Fig. 2-18 is another way to draw an or

gate.

2 8 Digital Computer Electronics

2-7. In Fig. 2-18 what switches would you press to

produce

0011 1001 1100 1111

(Work from left to right.)

2-8. What is the 4-bit output in Fig. 2-18 when switch

A is pressed? Switch 4? Switch E? Switch 6?

2-9. An and gate has 7 inputs. How many input

words are in its truth table? What is the only

input word that produces a 1 output?

2-10. Visualize the register contents of Fig. 2-19 as the

word A7A6 • • • A0, and the final output as the

word Y7Y6 • • • Y0. What is the output word for

each of the following conditions:

a. A7A6 • A0 = 1100 1010, ENABLE = 0.

b. a7a6 • ,* • • Aq = 0101 1101, ENABLE = 1.

c. A7A6 • • A0 = 1111 0000, ENABLE = 1.

d. A7A6 ■ • A0 = 1010 1010, ENABLE = 0.

+ 5 V

Fig. 2-18 Hexadecimal encoder.

ENABLE

Fig. 2-20

(a)

BcE^y~£>°—r

(b)

2-11. The 8-bit register of Fig. 2-19 stores 59I0. What

is the decimal equivalent of the final output word

if ENABLE = 0? If ENABLE - 1?

2-12. Answer these questions:

a. What input words does a 6-input or gate

recognize? What word does it disregard?

b. What input word does an 8-input and gate

recognize? What words does it disregard?

2-13. What is the boolean equation for Fig. 2-20a? The

output if both inputs are high?

2-14. If all inputs are high in Fig. 2-206, what is the

output? The boolean equation for the circuit?

What is the only ABC input word the circuit

recognizes?

2-15. If you constructed the truth table for Fig. 2-206,

how many input words would it contain?

Chapter 2 Gates 29

2-16. What is the boolean equation for Fig. 2-21 at The

output if both inputs are high?

2-17. If all inputs are high in Fig. 2-21 b, what is the

output? What is the boolean equation of the cir¬

cuit? What ABC input words does the circuit

recognize? What is the only word it disregards?

2-18. What is the boolean equation for Fig. 2-22al The

output if all inputs are Is? If you were to con¬

struct the truth table, how many input words

would it have?

2-19. Write the boolean equation for Fig. 2-22b. If all

inputs are Is, what is the output?

2-20. If both inputs are high in Fig. 2-23, what is the

output? What is the boolean equation for the cir¬

cuit? Describe the truth table.

2-21. What is the boolean equation for Fig. 2-24? How

many ABCD input words are in the truth table?

Which input words does the circuit recognize?

2-22. Because of the historical connection between bool¬

ean algebra and logic, some people use the words

“true” and “false” instead of “high” and

“low” when discussing logic circuits. For in¬

stance, here’s how an and gate can be described.

If any input is false, the output is false; if all

inputs are true, the output is true.

a. If both inputs are false in Fig. 2-23, what is

the output?

b. What is the output in Fig. 2-23 if one input is

false and the other true?

c. In Fig. 2-23 what is the output if all inputs are

true?

2-23. Figure 2-25 shows a l-of-16 decoder. The signals

coming out of the decoder are labeled LDA,

ADD, SUB, and so on. The word formed by the 4

leftmost register bits is called the OP CODE. As

an equation,

OP CODE = I15I14I13I12

a. If LDA is high, what does OP CODE equal?

b. If ADD is high, what does it equal?

c. When OP CODE = 1001, which of the output

signals is high?

d. Which output signal is high if OP CODE =

mi?

2-24. In Fig. 2-25, list the OP CODE words and the

corresponding high output signals. (Start with

0000 and proceed in binary to 1111.)

2-25. In the following equations the equals sign means

“is equivalent to.” Classify each of the following

as positive or negative logic:

a. 0 = 0 V and 1 = +5 V.

b. 0 = +5 V and 1 = 0 V.

c. 0 = —5 V and 1 = 0 V.

d. 0 = 0 V and 1 = — 5 V.

2-26. In Fig. 2-25 four output lines come from the

decoder. Is it possible to add more op codes

without increasing the number of output lines?

2-27. How many output lines from the decoder would

be needed to have 256 op codes?

Chapter 2 Gates 31

More Logic Gates
This chapter introduces nor and nand gates, devices that

are widely used in industry. You will also learn about De

Morgan’s theorems; they help you to rearrange and simplify

logic circuits.

3-1 NOR GATES

The nor gate has two or more input signals but only one

output signal. All inputs must be low to get a high output.

In other words, the NOR gate recognizes only the input

word whose bits are all Os.

Fig. 3-1 nor gate: (a) logical meaning; (b) standard symbol.

TABLE 3-1. TWO-
INPUT nor GATE

A B A + B

0 0 1
0 1 0
1 0 0
1 1 0

Incidentally, the boolean equation for a 2-input nor gate

is

Y = AT~B (3-1)

Read this as ‘T equals not A or B.” If you use this

equation, remember that the ORing is done first, then the

inversion.

Two-Input Gate

Figure 3-1 a shows the logical structure of a nor gate,

which is an or gate followed by an inverter. Therefore,

the final output is not the or of the inputs. Originally

called a not-or gate, the circuit is now referred to as a

nor gate.

Figure 3-lb is the standard symbol for a nor gate. Notice

that the inverter triangle has been deleted and the small

circle or bubble moved to the OR-gate output. The bubble

is a reminder of the inversion that follows the ORing.

With Fig. 3-la and b the following ideas are clear. If

both inputs are low, the final output is high. If one input

is low and the other high, the output is low. And if both

inputs are high, the output is low.

Table 3-1 summarizes the circuit action. As you see, the

nor gate recognizes only the input word whose bits are all

Os. In other words, all inputs must be low to get a high

output.

Three-Input Gate

Regardless of how many inputs a NOR gate has, it is still

logically equivalent to an or gate followed by an inverter.

For instance, Fig. 3-2a shows a 3-input nor gate. The 3

inputs are ORed, and the result is inverted. Therefore, the

boolean equation is

Y = A + B + C (3-2)

The analysis of Fig. 3-2a goes like this. If all inputs are

low, the result of ORing is low; therefore, the final output

32

TABLE 3-2. THREE-INPUT
nor GATE

A B c A + B + C

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

is high. If one or more inputs are high, the result of ORing

is high; so the final output is low.

Table 3-2 summarizes the action of a 3-input nor gate.

As you see, the circuit recognizes only the input word

whose bits are Os. In other words, all inputs must be low

to get a high output.

Four-Input Gate

Figure 3-2b is the symbol for a 4-input nor gate. The

inputs are ORed, and the result is inverted. For this reason,

the boolean equation is

Y=A+B+C+D (3-3)

The corresponding truth table has input words from 0000

to 1111. Word 0000 gives a 1 output; all other words

produce a 0 output. (For practice, you should construct the

truth table of the 4-input nor gate.)

3-2 DE MORGAN’S FIRST THEOREM

Most mathematicians ignored boolean algbebra when it first

appeared; some even ridiculed it. But Augustus De Morgan

saw that it offered profound insights. He was the first to

acclaim Boole’s great achievement.

Always a warm and likable man, De Morgan himself

had paved the way for boolean algebra by discovering two

important theorems. This section introduces the first theo¬
rem.

The First Theorem

Figure 3-3a is a 2-input nor gate, analyzed earlier. As you

recall, the boolean equation is

Y = A + B

and Table 3-3 is the truth table.

D—
(a)

Fig. 3-3 De Morgan’s first theorem: («) nor gate; (b) and gate
with inverted inputs.

Figure 3-3b has the inputs inverted before they reach the

and gate. Therefore, the boolean equation is

Y = AB

If both inputs are low in Fig. 3-3b, the and gate has high

inputs; therefore, the final output is high. If one or more

inputs are high, one or more AND-gate inputs must be low

and the final output is low. Table 3-4 summarizes these
ideas.

TABLE 3-3 TABLE 3-4

A B A B AB A + B

0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

Compare Tables 3-3 and 3-4. They’re identical. This

means that the two circuits are logically equivalent; given

the same inputs, the outputs are the same. In other words,

the circuits of Fig. 3-3 are interchangeable.

De Morgan discovered the foregoing equivalence long

before logic circuits were invented. His first theorem says

A + B = AB (3-4)

The left member of this equation represents Fig. 3-3a; the

right member, Fig. 3-3b. Equation 3-4 says that Fig. 3-3«

and b are equivalent (interchangeable).

Bubbled and Gate

Figure 3-4a shows an and gate with inverted inputs. This

circuit is so widely used that the abbreviated logic symbol

of Fig. 3-4b has been adopted. Notice that the inverter

triangles have been deleted and the bubbles moved to the

Chapter 3 More Logic Gates 33

:=D-'
(b)

Fig. 3-4 AND gate with inverted inputs: (a) circuit; (b) abbreviated

symbol.

AND-gate inputs. From now on, we will refer to Fig.

3-4b as a bubbled and gate; the bubbles are a reminder of

the inversion that takes place before ANDing.

Fig. 3-5 De Morgan’s first theorem.

Figure 3-5 is a graphic summary of De Morgan’s first

theorem. A nor gate and a bubbled and gate are equivalent.

As shown later, because the circuits are interchangeable,

you can often reduce complicated logic circuits to simpler

forms.

Here’s what really counts. Equation 3-5 says that a 3-

input nor gate and a 3-input bubbled and gate are equivalent

(see Fig. 3-6a). Equation 3-6 means that a 4-input nor

gate and a 4-input bubbled and gate are equivalent (Fig.

3-6b). Memorize these equivalent circuits; they are a visual

statement of De Morgan’s first theorem.

Notice in Fig. 3-6b how the input edges of the NOR gate

and the bubbled and gate have been extended. This is

common drafting practice when there are many input signals.

The same idea applies to any type of gate.

EXAMPLE 3-1

Prove that Fig. 3-la and c are equivalent.

Fig. 3-7 Equivalent De Morgan circuits.

SOLUTION

More than Two Inputs

When 3 inputs are involved, De Morgan’s first theorem is

written

A + B + C = ABC (3-5)

For 4 inputs

A + B + C + D = ABCD (3-6)

In both cases, the theorem says that the complement of a

sum equals the product of the complements.

Fig. 3-6 De Morgan’s first theorem: (a) 3-input circuits; (b) 4-
input circuits.

The final nor gate in Fig. 3-7a is equivalent to a bubbled

and gate. This allows us to redraw the circuit as shown in

Fig. 3-lb.
Double inversion produces noninversion; therefore, each

double inversion in Fig. 3-lb cancels out, leaving the

simplified circuit of Fig. 3-7c. Figure 3-la and c are

therefore equivalent.

Remember the idea. Given a logic circuit, you can replace

any nor'gate by a bubbled and gate. Then any double

inversion (a pair of bubbles in a series path) cancels out.

Sometimes you wind up with a simpler logic circuit than

you started with; sometimes not.
But the point remains. De Morgan’s first theorem enables

you to rearrange a logic circuit with the hope of finding a

simpler equivalent circuit or perhaps getting more insight

into how the original circuit works.

3-3 NAND GATES

The nand gate has two or more input signals but only one

output signal. All input signals must be high to get a low

output.

34 Digital Computer Electronics

Ial (b)
Fig. 3-8 nand gate: (a) logical meaning; (b) standard symbol.

Two-Input Gate

Figure 3-8a shows the logical structure of a nand gate, an

and gate followed by an inverter. Therefore, the final

output is not the and of the inputs. Originally called a

not-and gate, the circuit is now referred to as a nand

gate.

Figure 3-8£ is the standard symbol for a nand gate. The

inverter triangle has been deleted and the bubble moved to

the AND-gate output. If one or more inputs are low, the

result of ANDing is low; therefore, the final inverted output

is high. Only when all inputs are high does the ANDing

produce a high signal; then the final output is low.

Table 3-5 summarizes the action of a 2-input nand gate.

As shown, the nand gate recognizes any input word with

one or more Os. That is, one or more low inputs produce

a high output. The boolean equation for a 2-input nand

gate is

Y = AB (3-7)

TABLE 3-5.
TWO-INPUT
nand GATE

A B AB

0 0 1

0 1 1

1 0 1

1 1 0

Four-Input Gate

TABLE 3-6. THREE-
INPUT nand GATE

A B c ABC

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Figure 3-9b is the symbol for a 4-input nand gate. The

inputs are ANDed, and the result is inverted. Therefore, the

boolean equation is

Y = ABCD (3-9)

If you construct the truth table, you will have input words

from 0000 to 1111. All words from 0000 through 1110

produce a 1 output; only the word 1111 gives a 0 output.

Read this as ‘T equals not AB” If you use this equation, 3-4 DE MORGAN'S SECOND
remember that the ANDing is done first then the inversion. THEOREM

4—1
A -
B -
c-

>
>o-y * —
^ c-

D-
zy~Y

M (b)

Fig. 3-9 nand gates: (a) 3-input; (b) 4-input.

Three-Input Gate

Regardless of how many inputs a nand gate has, it’s still

logically equivalent to an and gate followed by an inverter.

For example, Fig. 3-9a shows a 3-input nand gate. The

inputs are ANDed, and the product is inverted. Therefore,

the boolean equation is

The proof of De Morgan’s second theorem is similar to the

proof given for the first theorem. What follows is a brief

explanation.

The Second Theorem

When two inputs are used, De Morgan’s second theorem

says that

AB = A + B (3-10)
>

In words, the complement of a product equals the sum of

the complements. The left member of this equation repre¬

sents a nand gate (Fig. 3-10a); the right member stands

Y = ABC (3-8)

Here is the analysis of Fig. 3-9a. If one or more inputs

are low, the result of ANDing is low; therefore, the final

output is high. If all inputs are high, the ANDing gives a

high signal; so the final output is low.

Table 3-6 is the truth table for a 3-input nand gate. As

indicated, the circuit recognizes words with one or more

0s. This means that one or more low inputs produce a high
output.

(c)

Fig. 3-10 De Morgan’s second theorem: (a) nand gate; (b) or

gate with inverted inputs; (c) bubbled or gate.

Chapter 3 More Logic Gates 3 5

for an or gate with inverted inputs (Fig. 3-106). Therefore,

De Morgan's second theorem boils down to the fact that

Fig. 3-10a and 6 are equivalent.

=0 ■ =£>
Fig. 3-11 De Morgan’s second theorem.

Bubbled or Gate

The circuit of Fig. 3-10b is so widely used that the

abbreviated logic symbol of Fig. 3-10c has been adopted.

From now on we will refer to Fig. 3-10c as a bubbled or

gate; the bubbles are a reminder of the inversion that takes

place before ORing.

Figure 3-11 is a visual statement of De Morgan’s second

theorem: a nand gate and a bubbled OR gate are equivalent.

This equivalence allows you to replace one circuit by the

other whenever desired. This may lead to a simpler logic

circuit or give you more insight into how the original circuit

works.

More than Two Inputs

When 3 inputs are involved, De Morgan’s second theorem

is written

ABC = A + B + C (3-11)

If 4 inputs are used,

ABCD =A+£+C+D (3-12)

These equations say that the complement of a product

equals the sum of the complements.

(a)

(b)
Fig. 3-12 De Morgan’s second theorem: (a) 3-input circuits; (b)
4-input circuits.

Figure 3-12 is a visual summary of the second theorem.

Whether 3 or 4 inputs are involved, a nand gate and a

bubbled or gate are equivalent (interchangeable).

EXAMPLE 3-2

Prove that Fig. 3-13a and c are equivalent.

(c)

Fig. 3-13 Equivalent circuits.

SOLUTION

Replace the final nand gate in Fig. 3-13a by a bubbled or
gate. This gives Fig. 3-136. The double inversions cancel

out, leaving the simplified circuit of Fig. 3-13c. Figure

3-13a and c are therefore equivalent. Driven by the same

inputs, either circuit produces the same output as the other.

So if you’re loaded with nand gates, build Fig. 3-13a. If

your shelves are full of and and or gates, build Fig.

3-13c.
Incidentally, most people find Fig. 3-13b easier to analyze

than Fig. 3-13a. For this reason, if you build Fig. 3-13a,
draw the circuit like Fig. 3-136. Anyone who sees Fig.

3-136 on a schematic diagram knows that the bubbled or

gate is the same as a nand gate and that the built-up circuit

is two nand gates working into a nand gate.

EXAMPLE 3-3

Figure 3-14 shows a circuit called a control matrix. At first,

it looks complicated, but on closer inspection it is relatively

simple because of the repetition of nand gates. De Morgan’s

theorem tells us that nand gates driving nand gates are

equivalent to and gates driving or gates.

The upper set of inputs T] to T6 are called timing signals;
only one of them is high at a time. goes high first, then

72, then T3, and so on. These signals control the rate and

sequence of computer operations.

The lower set of inputs LDA, ADD, SUB, and OUT are

computer instructions; only one of them is high at a time.

The outputs CP, EP, LM, . . . , to L0 control different

registers in the computer.

Answer the following questions about the control matrix:

a. Which outputs are high when 7, is high?

b. If T4 and LDA are high, which outputs are high?

c. When T6 and SUB are high, which outputs are high?

36 Digital Computer Electronics

SOLUTION

a. Visualize T{ high. You can quickly check out each

gate and realize that EP and LM are the only high

outputs.

b. This time T4 and LDA are high. Check each gate and

you can see that LM and Ej are the only high outputs.

c. When T6 and SUB are high, the high outputs are LA,
and E\j.

3-5 EXCLUSIVE-OR GATES

An or gate recognizes words with one or more Is. The

exclusive-or gate is different; it recognizes only words

that have an odd number of Is.

Two Inputs

Figure 3-15a shows one way to build an exclusive-or

gate, abbreviated xor. The upper and gate forms the

product AB, and the lower and gate gives AB. Therefore,

the boolean equation is

Y = AB + AB (3-13)

Here’s what the circuit does. In Fig. 3-15a two low

inputs mean both and gates have low outputs; so the final

output is low. If A is low and B is high, the upper and

gate has a high output; therefore, the final output is high.

Likewise, a high A and low B result in a final output that

is high. If both inputs are high, both and gates have low

outputs and the final output is low.

Table 3-7 shows the truth table for a 2-input exclusive-

or gate. The output is high when A or B is high but not

both; this is why the circuit is known as an exclusive-or

gate. In other words, the output is a 1 only when the inputs
are different.

Chapter 3 More Logic Gates 3 7

TABLE 3-7* TWO-

INPUT xor GATE

A B AB + AB

0 0 0
0 1 1
1 o : 1
1 i 0

Logic Symbol and Boolean Sign

Figure 3-15b is the standard symbol for a 2-input xor gate.

Whenever you see this symbol, remember the action: the

inputs must be different to get a high output.

A word equation for Fig. 3-15b is

Y = A xor B (3-14)

In boolean algebra the sign © stands for xor addition.

This means that Eq. 3-14 can be written

Y = A © B (3-15)

Read this as “F equals A xor B."
Given the inputs, you can substitute and solve for the

output. For instance, if both inputs are low,

Y = 0 © 0 = 0

because 0 xoRed with 0 gives 0. If one input is low and

the other high,

y = o ® i = i

because 0 xoRed with 1 produces 1. And so on.

Here’s a summary of the four possible xor additions:

0 © 0 = 0

0© 1 = 1
1 © 0 = I
1 © 1 = 0

Remember these four results; we will be using xor addition

when we get to arithmetic circuits.

Four Inputs

In Fig. 3- 16a the upper gate produces A © B, while the

lower gate gives C © D. The final gate xors both of these

sums to get

Y = (A® B)@(C@D) (3-16)

3 8 Digital Computer Electronics

(a)

(b)

Fig. 3-16 A 4-input exclusive-or gate: (a) circuit with 2-input
xor gates; (b) logic symbol.

It’s possible to substitute input values into the equation and

solve for the output. For instance, if A through C are low

and D is high,

Y = (0 © 0) © (0 © 1)

= 0© 1
= 1

One way to get the truth table is to plow through all the

input possibilities.

Alternatively, you can analyze Fig. 3-16a as follows. If

all inputs are 0s, the first two gates have 0 outputs; so the

final gate has a 0 output. If A to C are 0s and D is a 1, the

upper gate has a 0 output, the lower gate has a 1 output,

and the final gate has a 1 output. In this way, you can

analyze the circuit action for all input words.

Table 3-8 summarizes the action. Here is an important

property: each input word with an odd number of Is

produces a 1 output. For instance, the first input word to

produce a 1 output is 0001; this word has an odd number

of Is. The next word with a 1 output is 0010; again an odd

number of Is. A 1 output also occurs for these words:

0100, 0111, 1000, 1011, 1101, and 1110, all of which

have an odd number of Is.

The circuit of Fig, 3-16a recognizes words with an odd

number of Is; it disregards words with an even number of

Is. Figure 3-16a is a 4-input xor gate. In this book, we

will use the abbreviated symbol of Fig. 3-16b to represent

a 4-input xor gate. When you see this symbol, remember

the action: the circuit recognizes words with an odd number

of Is.

Any Number of Inputs

Using 2-input xor gates as building blocks, we can make

xor gates with any number of inputs. For example, Fig.

TABLE 3-8. FOUR-INPUT
xor GATE

Comment A B c D Y

Even 0 0 0 0 0
Odd 0 0 0 1 1
Odd 0 0 1 0 1
Even 0 0 1 1 0
Odd 0 1 0 0 1
Even 0 1 0 1 0
Even 0 1 1 0 0
Odd 0 1 1 JL-
Odd 1 0. ~0 0 1
Even 1 0 0 1 o
Even 1 0 1 0 0
Odd 1 0 1 1 l
Even 1 1 0 0 0
Odd 1 1 0 1 i
Odd 1 1 1 0 i
Even 1 1 1 1 0

(3) (b)

Fig. 3-17 xor gates: {a) 3-input; (b) 6-input.

3-11 a shows the abbreviated symbol for a 3-input xor gate,

and Fig. 3-17b is the symbol for a 6-input xor gate. The

final output of any xor gate is the xor sum of the inputs:

Y = A ®B © C • • • (3-17)

What you have to remember for practical work is this:

an xor gate, no matter how many inputs, recognizes only

words with an odd number of Is.

Parity

Even parity means a word has an even number of Is. For

instance, 110011 has even parity because it contains four

Is. Odd parity means a word has an odd number of Is. As

an example, 110001 has odd parity because it contains
three Is.

Here are two more examples:

1111 0000 1111 0011 (Even parity)

1111 0000 1111 0111 (Odd parity)

The first word has even parity because it contains ten Is;

the second word has odd parity because it contains eleven
Is.

xor gates are ideal for testing the parity of a word, xor

gates recognize words with an odd number of Is. Therefore,

even-parity words produce a low output and odd-parity

words produce a high output.

EXAMPLE 3-4

What is the output of Fig. 3-18 for each of these input
words?

a. 1010 1100 1000 1100

b. 1010 1100 1000 1101

16 bits

ODD

Fig. 3-18 Odd-parity tester.

SOLUTION

a. The word has seven Is, an odd number. Therefore,

the output signal is

ODD =.1

b. The word has eight Is, an even number. Now

ODD = 0

This is an example of an odd-parity tester. An even-

parity word produces a low output. An odd-parity word

results in a high output.

EXAMPLE 3-5

The 7-bit register of Fig. 3-19 stores the letter A in ASCII

form. What does the 8-bit output word equal?

Chapter 3 More Logic Gates 39

bit Instruction or data bits

8-bit word with odd parity

Fig. 3-19 Odd-parity generator.

SOLUTION

The ASCII code for letter A is

100 0001

(see Table 1-6 for the ASCII code). This word has an even

parity, which means that the xor gate has a 0 output.

Because of the inverter, the overall output of the circuit is

the 8-bit word

Because of the 1-bit error, we receive letter C when letter

A was actually sent.
One solution is to transmit an odd-parity bit along with

the data word and have an xor gate test each received

word for odd parity. For instance, with a circuit like Fig.

3-19 the letter A would be transmitted as

1100 0001

An XOR gate will test this word when it is received. If no

error has occurred, the xor gate will recognize the word.

On the other hand, if a 1-bit error has crept in, the xor

gate will disregard the received word and the data can be

rejected.

A final point. When errors come, they are usually 1-bit

errors. This is why the method described catches most of

the errors in transmitted data.

EXAMPLE 3-6

What does the circuit of Fig. 3-20 do?

Fig. 3-20

SOLUTION

1100 0001

Notice that this has odd parity.

The circuit is called an odd-parity generator because it

produces an 8-bit output word with odd parity. If the register

word has even parity, 0 comes out of the xor gate and the

odd-parity bit is 1. On the other hand, if the register word

has odd parity, a 1 comes out of the xor gate and the odd-

parity bit is 0. No matter what the register contents, the

odd-parity bit and the register bits form a new 8-bit word

that has odd parity.

What is the practical application? Because of transients,

noise, and other disturbances, 1-bit errors sometimes occur

in transmitted data. For instance, the letter A may be

transmitted over phone lines in ASCII form:

100 0001 (A)

Somewhere along the line, one of the bits may be changed.

If the X\ bit changes, the received data will be

When INVERT = 0 and A = 0,

Y - 0 © 0 = 0

When INVERT = 0 and A = 1,

Y = 0©1 = 1

In either case, the output is the same as A; that is,

Y = A

for a low INVERT signal.

On the other hand, when INVERT = 1 and A = 0,

Y = 1 © 0 = 1

When INVERT = 1 and A = 1,

100 0011 (C) Y = 1 © 1 = 0

40 Digital Computer Electronics

This time, the output is the complement of A. As an

equation,

Y = A

for a high INVERT signal.

To summarize, the circuit of Fig. 3-20 does either of

two things. It transmits A when INVERT is 0 and A when

INVERT is 1.

3-6 THE CONTROLLED INVERTER

The preceding example suggests the idea of a controlled
inverter, a circuit that transmits a binary word or its Es
complement.

The l's Complement

Complement each bit in a word and the new word you get

is the l’s complement. For instance, given

1100 0111

the 1 ’s complement is

0011 1000

Each bit in the original word is inverted to get the l’s

complement.

The Circuit

The xor gates of Fig. 3-21 form a controlled inverter
(sometimes called a programmed inverter). This circuit can

transmit the register contents or the l’s complement of the

register contents. As demonstrated in Example 3-6, each

xor gate acts like this. A low INVERT results in

Y„ = A„

and a high INVERT gives

' Yn = A„ U

So each bit is either transmitted or inverted before reaching

the final output.

Visualize the register contents as a word A7A6 ■ • • A0

and the final output as a word Y7Y6 • • • Y0. Then a low

INVERT means

Y7Y6 • Y0 = A7A6 * * * A0

On the other hand, a high INVERT results in

Y7Y6 Y0 = A7A6 * * A0

As a concrete example, suppose the register word is

A7A6 • • • Ao = 1110 0110

Then, a low INVERT gives an output word of

y7y6 ■ • • Y0 = 1110 0110

and a high INVERT produces

Y7Y6 • • • Y0 = 0001 1001

The controlled inverter of Fig. 3-21 is important. Later

you will see how it is used in solving arithmetic and logic

problems. For now, all you need to remember is the key

idea. The output word from a controlled inverter equals the

Chapter 3 More Logic Gates 41

input word when INVERT is low; the output word equals

the l’s complement when INVERT is high.

Boldface Notation

After you understand an idea, it simplifies discussions and

equations if you use a symbol, letter, or other sign to

represent the idea. From now on, boldface letters will stand

for binary words.

For instance, instead of writing

A7A6 • • • A0 = 1110 0110

we can write

A = 1110 0110

Likewise, instead of

Y7Y6 • • • Y0 = 0001 1001

the simpler equation

Y = 0001 1001

can be used.

This is another example of chunking. We are replacing

long strings like A7A6 • • • A0 and Y7Y6 ♦ • • Y0 by A and

Y. This chunked notation will be convenient when we get

to computer analysis.

This is how to summarize the action of a controlled

inverter:

[A when INVERT = 0

Y “ [A when INVERT = 1

(Note: A boldface letter with an overbar means that each

bit in the word is complemented; if A is a word, A is its

l’s complement.)

3-7 EXCLUSIVE-NOR GATES

The exclusive-nor gate, abbreviated xnor, is logically

equivalent to an xor gate followed by an inverter. For

example, Fig. 3-22a shows a 2-input xnor gate. Figure

3-22b is an abbreviated way to draw the same circuit.

(a) (b)

Fig. 3 -22 A 2-input xnor gate: (a) circuit; (b) abbreviated symbol.

TABLE 3-9.

TWO-INPUT
xnor GATE

A B
F

0 0
1

; 1

0 1 0

1 0 0

1 1 1

Because of the inversion on the output side, the truth

table of an xnor gate is the complement of an xor truth

table. As shown in Table 3-9, the output is high when the

inputs are the same. For this reason, the 2-input xnor gate

is ideally suited for bit comparison, recognizing when two

input bits are identical. (Example 3-7 tells you more about

bit comparison.)

(a) (b)

Fig. 3-23 xnor gates: (a) 3-input; (b) 4-input.

Figure 3-23a is the symbol for a 3-input xnor gate, and

Fig. 3-23 b is the 4-input xnor gate. Because of the inversion

on the output side, these xnor gates perform the comple¬

mentary function of xor gates. Instead of recognizing odd-

parity words, xnor gates recognize even-parity words.

EXAMPLE 3-7

What does the circuit of Fig. 3-24 do?

SOLUTION

The circuit is a word comparator; it recognizes two identical

words. Here is how it works. The leftmost xnor gate

compares A5 and B5\ if they are the same, Y5 is a 1. The

second xnor gate compares A4 and #4; if they are the same,

Y4 is a 1. In turn, the remaining xnor gates compare the

bits that are left, producing a 1 output for equal bits and a

0 output for unequal bits.

If the words A and B are identical, all xnor gates have

high outputs and the and gate has a high EQUAL. If words

A and B differ in one or more bit positions, the and gate

has a low EQUAL.

42 Digital Computer Electronics

1 (

A register

5 4 ^3 ^2 A *0

r
B register

. r '~> i

e5 S4 e3 K eo

WWW

V
EQUAL

Fig. 3-24 Word comparator.

GLOSSARY

controlled inverter This circuit produces the l’s comple¬

ment of the input word. One application is binary subtrac¬

tion. It is sometimes called a programmed inverter.

De Morgan’s theorems The first theorem says that a nor

gate is equivalent to a bubbled and gate. The second

theorem says that a nand gate is equivalent to a bubbled

or gate.

even parity An even number of Is in a binary word.

nand gate Equivalent to an and gate followed by an

inverter. All inputs must be high to get a low output.

nor gate Equivalent to an or gate followed by an inverter.

All inputs must be low to get a high output.

odd parity An odd number of Is in a binary word.

parity generator A circuit that produces either an odd- or

even-parity bit to go along with the data.

xnor gate Equivalent to an exclusive-or gate followed

by an inverter. The output is high only when the input word

has even parity.

xor gate An exclusive-or gate. It has a high output

only when the input word has odd parity. For a 2-input

xor gate, the output is high only when the inputs are

different.

SELF TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. A nor gate has two or more input signals. All inputs

must be_to get a high output. A nor

gate recognizes only the input word whose bits are

_The nor gate is logically equivalent to

an or gate followed by an_

2. (low, Os, inverter) De Morgan's first theorem says

that a nor gate is equivalent to a bubbled_

gate.

3. (and) A nand gate is equivalent to an and gate

followed by an inverter. All inputs must be_

to get a low output. De Morgan's second theorem

says that a nand gate is equivalent to a bubbled

-gate.

4. (high, or) An xor gate recognizes only words with

an_number of Is. The 2-input xor gate

has a high output only when the input bits are

_xor gates are ideal for testing parity

because even-parity words produce a_

output and odd-parity words produce a_

output.

5. (odd, different, low, high) An odd-parity generator

produces an odd-parity bit to go along with the data.

Chapter 3 More Logic Gates 43

The parity of the transmitted data is_An 7. (7' s) The exclusive-nor gate is equivalent to an

XOR gate can test each received word for parity, XOR gate followed by an inverter. Because of this,

rejecting words with_parity. even-parity words produce a high output.

6. (odd, even) A controlled inverter is a logic circuit

that transmits a binary word or its_com¬

plement.

PROBLEMS

3-1. In Fig. 3-25a the two inputs are connected to¬

gether. If A is low, what is Y1 If A is high, what

is F? Does the circuit act like a noninverter or an

inverter?

3-5. The outputs in Fig. 3-27 are cross-coupled back

to the inputs of thejvior gates. If R = 0 and S ■
1, what do Q and Q equal?

3-2. What is the output in Fig. 3-25b if both inputs are

low? If one is low and the other high? If both are

high? Does the circuit act like an or gate or an

and gate?

3-3. Figure 3-26 shows a NOR-gate crossbar switch. If

all X and Y inputs are high, which of the Z

outputs is high? If all inputs are high except Xx
and Z2, which Z output is high? If X2 and Y0 are

low and all other inputs are high, which Z output

is high?

3-4. In Fig. 3-26, you want Z7 to be 1 and all other Z

outputs to be 0. What values must the X and Y
inputs have?

R *

Fig. 3-27 Cross-coupled nor gates.

3-6. If R = 1 and S = 0 in Fig. 3-27, what does Q
equal? Q1

3-7. Prove that Fig. 3-28a and b are equivalent.

3-8. What is the output in Fig. 3-28a if all inputs are

Os. If all inputs are Is?

3-9. What is the output in Fig. 3-28b if all inputs are

Os. If all inputs are Is?

3-10. A nor has 6 inputs. How many input words are

in its truth table? What is the only input word that

produces a 1 output?

3-11. In Fig. 3-28a how many input words are there in

the truth table?

3-12. What is the output in Fig. 3-29 if all inputs are

low? If all inputs are high?

44 Digital Computer Electronics

Fig. 3-28 n /?

Fig. 3-29

How many words are in the truth table of Fig.

3-29. What is the value of Y for each of the

following?

a. ABCD = 0011

b. ABCD = 0110

c. ABCD = 1001

d. ABCD = 1100

Which ABCD input words does the circuits of

Fig. 3-29 recognize?

In Fig. 3-30a the two inputs are connected to¬

gether. If A = 0 what does Y equal? If A = 1,

what does Y equal? Does the circuit act like a

noninverter or an inverter?

b. If all inputs are low except X2 and Yu which

Z output is low?

c. If all inputs are low except X0 and Y2, which

Z output is low?

d. To get a low Z8 output, which inputs must be

high?

3-18. In Fig. 3-31, what are the outputs if R = 0 and

5=1?

Fig. 3-31 Cross-coupled nand gates.

3-19. If R = J. and S = 0 in Fig. 3-31, what does Q
equal? Q?

3-20. What is the output in Fig. 3-32a if all inputs are

0s? If all inputs are Is?

3-21. How many input words are there in the truth table

of Fig. 3-32al ^ .. Ai M , * , - -.

Fig. 3-30

What is the output in Fig. 3-30Z? if both inputs are

low? If one input is low and the other high? If

both are high? Does the circuit act like an or gate

or an and gate?

Suppose the nor gates of Fig. 3-26 are replaced

by nand gates. Then you’ve got a NAND-gate

crossbar switch.

a. If all X and Y inputs are low, which Z output
is low? Fig. 3-32

Chapter 3 More Logic Gates 45

3-22. Prove that Fig. 3-32a and b are equivalent.

3-23. What is the output in Fig. 3-33 if all inputs are
low? If they are all high?

3-24. How many words are in the truth table of Fig.

3-33? What does Y equal for each of the follow¬

ing:

a. ABCDE = 00111

b. ABCDE = 10110

c. ABCDE - 11010

d. ABCDE = 10101

3-25. In Fig. 3-34 the inputs are 74, JMP, JAM, JAZ,
AM9 and Az; the output is LP. What is the output

for each of these input conditions?

a. All inputs are 0s.

b. All inputs are low except T4 and JMP.

Fig. 3-33

c. All inputs are low except T4, JAZ, and Az.

d. The only high inputs are T4, JAM, and AM,
3-26. Figure 3-35 shows the control matrix discussed in

Example 3-3. Only one of the timing signals Tx to

T6 is high at a time. Also, only one of the instruc¬

tions, LDA to OUT, is high at a time. Which are

the high outputs for each of the following condi-

tions?

a. T, high g- T5 and ADD high

b. T2 high h. T6 and ADD high

c. f3 high i. T4 and SUB high

d. 74 and LDA high j* T5 and SUB high

e. Ts and LDA high k. T6 and SUB high

f. r4 and ADD high 1. T4 and OUT high

T2 r3 ta T5 t6

46 Digital Computer Electronics

3-27. Figure 3-36 shows a binary-to-Gray-code con¬

verter. (Gray code is a special code used in ana-

log-to-digital conversions.) The input word is

X4X3 • • • X0, and the output word is Y4Y3 • * •

Y0. What does the output word equal for each of

these inputs?

a. X4X3 • • x0 = 10011
b. X4X3 • • Xo = 01110
c. X4X3 • • ■ x0 = 10101
d. X4X3 • • • ■ Xo = 11100

Fig. 3-36 Binary-to-Gray-code converter.

3-28. How many input words are there in the truth table

of an 8-input xor gate?

3-29. How can you modify Fig. 3-19 so that it produces

an 8-bit output word with even parity?

3-30. In the controlled inverter of Fig. 3-21, what is the

output word Y for each of these conditions?

a. A = 1100 1111 and INVERT = 0

b. A = 0101 0001 and INVERT = 1

c. A = 1110 1000 and INVERT = 1

d. A = 1010 0101 and INVERT = 0

3-31. The inputs A and B of Fig. 3-37 produce outputs

of CARRY and SUM. What are the values of

CARRY and SUM for each of these inputs?

a. A = 0 and B ~ 0

b. A = 0 and B = 1

c. A = 1 and B - 0

d. A = 1 and B = 1

A B

Fig. 3-37

3-32. In Fig. 3-37, what is the boolean equation for

CARRY? For SUM?
3-33. What is the l’s complement for each of these

numbers?

a. 1100 0011
b. 1010 11110011
c. 1110 0001 1010 0011
d. 0000 1111 0010 1101

3-34. What is the output of a 16-input xnor gate for

each of these input words?

a. 0000 0000 0000 1111
b. 1111 0101 1110 1100
c. 0101 1100 0001 0011
d. 1111 0000 1010 0110

3-35. The boolean equation for a certain logic circuit is

Y = AB + CD + AC. What does Y equal for

each of the following:

a. ABCD - 0000
b. ABCD = 0101
C. ABCD - 1010
d. ABCD = 1001

Chapter 3 More Logic Gates 47

=D-

TTL Circuits
In 1964 Texas Instruments introduced transistor-transistor
logic (TTL), a widely used family of digital devices. TTL

is fast, inexpensive, and easy to use. This chapter concen¬

trates on TTL because once you are familiar with it, you

can branch out to other logic families and technologies.

4-1 DIGITAL INTEGRATED
CIRCUITS

Using advanced photographic techniques, a manufacturer

can produce miniature circuits on the surface of a chip (a

small piece of semiconductor material). The finished net¬

work is so small you need a microscope to see the

connections. Such a circuit is called an integrated circuit
(IC) because the components (transistors, diodes, resistors)

are an integral part of the chip. This is different from a

discrete circuit, in which the components are individually

connected during assembly.

Levels of Integration

Small-scale integration (SSI) refers to ICs with fewer than

12 gates on the same chip. Medium-scale integration (MSI)

means from 12 to 100 gates per chip. And large-scale
integration (LSI) refers to more than 100 gates per chip.

The typical microcomputer has its microprocessor, memory,

and I/O circuits on LSI chips; a number of SSI and MSI

chips are used to support the LSI chips.

Technologies and Families

The two basic technologies for manufacturing digital ICs

are bipolar and MOS. The first fabricates bipolar transistors

on a chip; the second, MOSFETS. Bipolar technology is

preferred for SSI and MSI because it is faster. MOS

technology dominates the LSI field because more MOSFETs

can be packed on the same chip area.

A digital family is a group of compatible devices with

the same logic levels and supply voltages (“compatible”

means that you can connect the output of one device to the

input of another). Compatibility permits a large number of

different combinations.

Bipolar Families

In the bipolar category are these basic families:

DTL Diode-transistor logic

TTL Transistor-transistor logic

ECL Emitter-coupled logic

DTL uses diodes and transistors; this design, once popular,

is now obsolete. TTL uses transistors almost exclusively;

it has become the most popular family of SSI and MSI

chips. ECL, the fastest logic family, is used in high-speed

applications.

MOS Families

In the MOS category are these families:

PMOS p-Channel MOSFETs

NMOS n-Channel MOSFETs

CMOS Complementary MOSFETs

PMOS, the oldest and slowest type, is becoming obsolete.

NMOS dominates the LSI field, being used for micropro¬

cessors and memories. CMOS, a push-pull arrangement of

n- and p-channel MOSFETs, is extensively used where low

power consumption is needed, as in pocket calculators,

digital wristwatches, etc.

4-2 7400 DEVICES

The 7400 series, a line of TTL circuits introduced by Texas

Instruments in 1964, has become the most widely used of

all bipolar ICs. This TTL family contains a variety of SSI

and MSI chips that allow you to build all kinds of digital

circuits and systems.

48

Fig. 4-1 Standard TTL nand gate.

Standard TTL

Figure 4-1 shows a TTL nand gate. The multiple-emitter

input transistor is typical of all the gates and circuits in the

7400 series. Each emitter acts like a diode; therefore, Q,

and the 4-kfl resistor act like a 2-input and gate. The rest

of the circuit inverts the signal; therefore, the overall circuit

acts like a 2-input nand gate.

The output transistors (Q3 and Q4) form a totem-pole

connection, typical of most TTL devices. Either one or the

other is on. When Q3 is on, the output is high; when Q4 is

on, the output is low. The advantage of a totem-pole

connection is its low output impedance.

Ideally, the input voltages A and B are either low

(grounded) or high (5 V). If A or B is low, Q, saturates.

This reduces the base voltage of Q2 to almost zero.

Therefore, Q2 cuts off, forcing Q4 to cut off. Under these

conditions, Q3 acts like an emitter follower and couples a

high voltage to the output.

On the other hand, when both A and B are high, the

collector diode of Q: goes into forward conduction; this

forces Q2 and Q4 into saturation, producing a low output.

Table 4-1 summarizes all input and output conditions.

Incidentally, without diode Dl in the circuit, Q3 would

conduct slightly when the output is low. To prevent this,

the diode is inserted; its voltage drop keeps the base-emitter

TABLE 4-1.
TWO-
INPUT
NAND GATE

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

diode of Q3 reverse-biased. In this way, only Q4 conducts

when the output is low.

Totem-Pole Output

Why are totem-pole transistors used? Because they produce

a low output impedance. Either Q3 acts like an emitter

follower (high output) or Q4 is saturated (low output).

Either way, the output impedance is very low. This is

important because it reduces the switching time. In other

words, when the output changes from low to high, or vice

versa, the low output impedance implies a short RC time

constant; this short time constant means that the output

voltage can change quickly from one state to the other.

Propagation Delay Time and Power Dissipation

Two quantities needed for our later discussions are power

dissipation and propagation delay time. A standard TTL

gate has a power dissipation of about \0 mW. It may vary

from this value because of signal levels, tolerances, etc.,

but on the average, it’s 10 mW per gate.

The propagation delay time is the amount of time it takes

for the output of a gate to change after the inputs have

changed. The propagation delay time of a TTL gate is in

the vicinity of 10 ns.

Device Numbers

By varying the design of Fig. 4-1 manufacturers can alter

the number of inputs and the logic function. The multiple-

emitter inputs and the totem-pole outputs are still used, no

matter what the design. (The only exception is an open

collector, discussed later.)

Table 4-2 lists some of the 7400-series TTL gates. For

instance, the 7400 is a chip with four 2-input nand gates

in one package. Similarly, the 7402 has four 2-input nor

gates, the 7404 has six inverters, and so on.

TABLE 4-2. STANDARD TTL

Device number Description

7400 Quad 2-input nand gates
7402 Quad 2-input nor gates
7404 Hex inverter
7408 Quad 2-input and gates
7410 Triple 3-input nand gates
7411 Triple 3-input and gates
7420 Dual 4-input nand gates
7421 Dual 4-input and gates

7427 Triple 3-input nor gates
7430 8-input nand gate
7486 Quad 2-input xor gates

Chapter 4 TTL Circuits 49

5400 Series

Any device in the 7400 series works over a temperature

range of 0° to 70°C and over a supply range of 4.75 to

5.25 V. This is adequate for commercial applications. The

5400 series, developed for the military applications, has

the same logic functions as the 7400 series, except that it

works over a temperature range of —55 to 125°C and over

a supply range of 4.5 to 5.5 V. Although 5400-series

devices can replace 7400-series devices, they are rarely

used commercially because of their much higher cost.

High-Speed TTL

The circuit of Fig. 4-1 is called standard TTL. By decreasing

the resistances a manufacturer can lower the internal time

constants; this decreases the propagation delay time. The

smaller resistances, however, increase the power dissipa¬

tion. This variation is known as high-speed TTL. Devices

of this type are numbered 74H00, 74H01, 74H02, and so

on. A high-speed TTL gate has a power dissipation around

22 mW and a propagation delay time of approximately 6

ns.

Low-Power TTL

By increasing the internal resistances a manufacturer can

reduce the power dissipation of TTL gates. Devices of this

type are called low-power TTL and are numbered 74L00,

74L01, 74L02, etc. These devices are slower than standard

TTL because of the larger internal time constants. A low-

power TTL gate has a power dissipation of approximately

1 mW and a propagation delay time around 35 ns.

Schottky TTL

With standard TTL, high-speed TTL, and low-power TTL,

the transistors go into saturation causing extra carriers to

flood the base. If you try to switch this transistor from

saturation to cutoff, you have to wait for the extra carriers

to flow out of the base; the delay is known as the saturation
delay time.

One way to reduce saturation delay time is with Schottky

TTL. The idea is to fabricate a Schottky diode along with

each bipolar transistor of a TTL circuit, as shown in Fig.

4-2. Because the Schottky diode has a forward voltage of

only 0.4 V, it prevents the transistor from saturating fully.

This virtually eliminates saturation delay time, which means

better switching speed. This variation is called Schottky
TTL; the devices are numbered 74S00, 74S01, 74S02, and

so forth.

Schottky TTL devices are very fast, capable of operating

reliably at 100 MHz. The 74S00 has a power dissipation

around 20 mW per gate and a propagation delay time of

approximately 3 ns.

Low-Power Schottky TTL

By increasing internal resistances as well as using Schottky

diodes manufacturers have come up with the best compro¬

mise between low power and high speed: low-power Schottky
TTL. Devices of this type are numbered 74LS00, 74LS01,

74LS02, etc. A low-power Schottky gate has a power

dissipation of around 2 mW and a propagation delay time

of approximately 10 ns, as shown in Table 4-3.

Standard TTL and low-power Schottky TTL are the

mainstays of the digital designer. In other words, of the

five TTL types listed in Table 4-3, standard TTL and low-

power Schottky TTL have emerged as the favorites of the

digital designers. You will see them used more than any

other bipolar types.

4-3 TTL CHARACTERISTICS

7400-series devices are guaranteed to work reliably over a

temperature range of 0 to 70°C and over a supply range of

4.75 to 5.25 V. In the discussion that follows, worst case
means that the parameters (characteristics like maximum

input current, minimum output voltage, and so on) are

measured under the worst conditions of temperature and

voltage—maximum temperature and minimum voltage for

some parameters, minimum temperature and maximum

voltage for others, or whatever combination produces the

worst values.

Floating Inputs

When a TTL input is low or grounded, a current lE
(conventional direction) exists in the emitter, as shown in

TABLE 4-3. TTL POWER-DELAY VALUES

Type
Power,

mW
Delay time,

ns

Low-power 1 35

Low-power Schottky 2 10

Standard 10 10

High-speed 22 6

Schottky 20 3

o

*sF—■■

Fig. 4-2 Schottky diode prevents transistor saturation.

50 Digital Computer Electronics

+5 V +5 V

f
(c) i • . . (d)

(„■? , ’ '

Fig. 4-3 Open or floating input is the same as a high input.

Fig. 4-3a. On the other hand, when a TTL input is high

(Fig. 4-36), the emitter diode cuts off and the emitter

current is approximately zero.

When a TTL input is floating (unconnected), as shown

in Fig. 4-3c, no emitter current is possible. Therefore, a

floating TTL input is equivalent to a high input. In other

words, Fig. 4-3c produces the same output as Fig. 4-36.

This is important to remember. In building circuits any
floating TTL input will act like a high input.

Figure 4-3d emphasizes the point. The input is floating

and is equivalent to a high input; therefore, the output of

the inverter is low.

Fig. 4-4 TTL inverter.

Worst-Case Input Voltages

Figure 4-4 shows a TTL inverter with an input voltage of

Vj and an output voltage of VQ. When V, is 0 V (grounded),

the output voltage is high. With TTL devices, we can raise

V{ to 0.8 V and still have a high output. The maximum

low-level input voltage is designated VIL. Data sheets list

this worst-case low input as

VIL = 0.8 V

Take the other extreme. Suppose V, is 5 V in Fig. 4-4.

This is a high input; therefore, the output of the inverter is

low. Vj can decrease all the way down to 2 V, and the

output will still be low. Data sheets list this worst-case

high input as

In other words, any input voltage from 2 to 5 V is a high

input for TTL devices.

Worst-Case Output Voltages

Ideally, 0 V is the low output, and 5 V is the high output.

We cannot attain these ideal values because of internal

voltage drops. When the output is low in Fig. 4-4, Q4 is

saturated and has a small voltage drop across it. With TTL

devices, any voltage from 0 to 0.4 V is a low output.

When the output is high. Q3 acts like an emitter follower.

Because of the drop across Q3, Du and the 130-0 resistor,

the output is less than 5 V. With TTL devices, a high

output is between 2.4 and 3.9 V, depending on the supply

voltage, temperature, and load.

This means that the worst-case output values are

VOL = 0.4 V - 2.4 V

Table 4-4 summarizes the worst-case values. Remember

that they are valid over the temperature range (0 to 70°C)

and supply range (4.75 to 5.25 V).

Compatibility

The values shown in Table 4-4 indicate that TTL devices

are compatible. This means that the output of a TTL device

can drive the input of another TTL device, as shown in

Fig. 4-5a. To be specific, Fig. 4-56 shows a low TTL

output (0 to 0.4 V). This is low enough to drive the second

TTL device because any input less than 0.8 V is a low

input.

TABLE 4-4. TTL STATES (WORST
CASE)

Output, V Input, V

Low 0.4 0.8
High 2.4 2

Chapter 4 TTL Circuits 51

TTL TTL

device Vo V, device

(a)

Similarly, Fig. 4-5c shows a high TTL output (2.4 to

3.9 V). This is more than enough to drive the second TTL

because any input greater than 2 V is a high input.

Noise Margin

In the worst case, there is a margin of 0,4-Y between the

driver and the load in Fig. 4-5b and c. This difference,

called the noise margin, represents protection against noise.

In other words, the connecting wire between a TTL driver

and a TTL load may pick up stray noise voltages. As long

as these induced voltages are less than 0.4 V, we get no

false triggering of the TTL load.

Sourcing and Sinking

When a standard TTL output is low (Fig. 4-5b), an emitter

current of approximately 1.6 mA (worst case) exists in the

direction shown. The charges flow from the emitter of Qj

to the collector of Q4. Because it is saturated, Q4 acts like
a current sink; charges flow through it to ground like water

flowing down a drain.

On the other hand, when a standard TTL output is high

(Fig. 4-5c), a reverse emitter current of 40 jjlA (worst case)

exists in the direction shown. Charges flow from Q3 to the

emitter of QL. In this case, Q3 is acting like a source.
Data sheets lists the worst-case input currents as

llL = —1.6 mA IiH = 40 jxA

The minus sign indicates that the current is out of the

device; plus means the current is into the device. All data

sheets use this convention.

Standard Loading

A TTL device can source current (high output) or it can

sink current (low output). Data sheets of standard TTL

devices indicate that any 7400-series device can sink up to

16 mA, designated as

IOL = 16 mA

and can source up to 400 |aA, designated

I oh = -400 |jlA

(Again, a minus sign means that the current is out of the

device and a plus sign means that it’s into the device.)

A single TTL load has a low-level input current of 1.6

mA (Fig., 4-5b) and a high-level input current of 40 |aA

(Fig. 4-5c). Since the maximum output currents are 10

times as large, we can connect up to 10 TTL emitters to

any TTL output.

Figure 4-6a illustrates a low output. Here you see the

TTL driver sinking 16 mA, the sum of 10 TTL load

currents. In this state, the output voltage is guaranteed to

be 0.4 V or less. If you try connecting more than 10

emitters, the output voltage may rise above 0.4 V.

Figure 4-6b shows a high output with the driver sourcing

400 jxA for 10 TTL loads of 40 pA each. For this maximum

loading, the output voltage is guaranteed to be 2.4 V or

more under worst-case conditions.

Loading Rules

The maximum number of TTL emitters that can be reliably

driven under worst-case conditions is called the fanout.
With standard TTL, the fanout is 10, as shown in Fig.

4-6. Sometimes, we may want to use a standard TTL device

to drive low-power Schottky devices. In this case, the

fanout increases because low-power Schottky devices have

less input current.

52 Digital Computer Electronics

(a)

the right. Pick the driver, pick the load, and read the fanout

at the intersection of the two. For instance, the fanout of a

standard device (74) driving low-power Schottky devices

(74LS) is 20. As another example, the fanout of a low-

power device (74L) driving high-speed devices (74H) is
only 1.

4-4 TTL OVERVIEW

Let’s take a look at the logic functions available in the

7400 series. This overview will give you an idea of the

variety of gates and circuits found in the TTL family. As

guide, Appendix 3 lists some of the 7400-series devices.

You will find it useful when looking for a device number
or logic function.

Fig. 4-6 Fanout of standard TTL devices: (a) low output; (b)
high output.

By examining data sheets for the different TTL types we

can calculate the fanout for all possible combinations. Table

4-5 summarizes these fanouts, which may be useful if you

ever have to mix TTL types.

Read Table 4-5 as follows. The series numbers have

been abbreviated; 74 stands for 7400 series, 74H for 74H00

series, and so forth. Drivers are on the left and loads on

TABLE 4-5. FANOUTS

TTL TTL load

driver 74 74H 74L 74S 74LS

74 10 8 40 8 20
74H 12 10 50 10 25
74L 2 1 20 1 10
74S 12 10 100 10 50
74LS 5 4 40 4 20

Fig. 4-7 Three, four, and eight inputs.

nand Gates

To begin with, the nand gate is the backbone of the entire

series. All devices in the 7400 series are derived from the

2-input nand gate shown in Fig. 4-1. To produce 3-, 4-,

and 8-input nand gates the manufacturer uses 3-, 4-, and

8-emitter transistors, as shown in Fig. 4-7. Because they

are so basic, nand gates are the least expensive devices in
the 7400 series.

nor Gates

To get other logic functions the manufacturer modifies the

basic NAND-gate design. For instance, Fig. 4-8 shows a 2-

input nor gate. Qj, Q2, Q3, and Q4 are the same as in the

basic design. Q5 and Q6 have been added to produce ORing.

Notice that Q2 and Q6 are in parallel, the key to the ORing

followed by inversion to get NORing.

Chapter 4 TTL Circuits 53

The input currents are the same as those of a standard nand

gate, but the output currents are 3 times as high, which

means that the 7437 can drive heavier loads.

Appendix 3 includes several other buffer-drivers.

'U- u
(a)

Fig. 4-9 Seven-segment display.

When A and B are both low, Q{ and Q5 are saturated;

this cuts off Q2 and Q6. Then Q3 acts like an emitter

follower and we get a high output.

If A or B or both are high, Q! or Q5 or both are cut off,

forcing Q2 or Q6 or both to turn on. When this happens,

Q4 saturates and pulls the output down to a low voltage.

With more transistors, manufacturers can produce 3- and

4-input nor gates. (A TTL 8-input nor gate is not available.)

and and OR Gates

To produce the and function, another common-emitter

stage is inserted before the totem-pole output of the basic

nand gate design. The extra inversion converts the nand

gate to an and gate. Similarly, another CE stage can be

inserted before the totem-pole output of Fig. 4-8; this

converts the nor gate to an or gate.

Buffer-Drivers

A buffer is a device that isolates two other devices.

Typically, a buffer has a high input impedance and a low

output impedance. In terms of digital ICs, this means a low

input current and a high output current.

Since the output current of a standard TTL gate can be

10 times the input current, a basic gate does a certain

amount of buffering (isolating). But it’s only when the

manufacturer optimizes the design for high output currents

that we call a device a buffer or driver.

As an example, the 7437 is a quad 2-input nand buffer,

meaning four 2-input nand gates optimized to get high

output currents. Each gate has the following worst-case

values of input and output currents:

I1L = —1.6 mA IIH = 40 \xA

/ ol — 48 mA I oh — 1.2 mA

Encoders and Decoders

A number of TTL chips are available for encoding and

decoding data. For instance, the 74147 is a decimal-to-

BCD encoder. It has 10 input lines (decimal) and 4 output

lines (BCD). As another example, the 74154 is a l-of-16

decoder. It has 4 input lines (binary) and 16 output lines

(hexadecimal).

Seven-segment decoders (7446, 7447, etc.) are useful for

decimal displays. They convert a BCD nibble into an output

that can drive a seven-segment display. Figure 4-9a illus¬

trates the idea behind a seven-segment LED display. It has

seven separate LEDs that allow you to display any digit

between 0 and 9. To display a 7, the decoder will turn on

LEDs a, b, and c (Fig. 4-9b).

Seven-segment displays are not limited to decimal num¬

bers. For instance, in some microprocessor trainers, seven-

segment displays are used to indicate hexadecimal digits.

Digits A, C, E, and F are displayed in uppercase form;

digit B is shown as a lowercase b (LEDs c, d, e, f, g); and

digit D as a lowercase d (LEDs b, c, e, g).

Schmitt Triggers

When a computer is running, the outputs of gates are

rapidly switching from one state to another. If you look at

these signals with an oscilloscope, you see signals that

ideally resemble rectangular waves like Fig. 4-10a.

When digital signals are transmitted and later received,

they are often corrupted by noise, attenuation, or other

factors and may wind up looking like the ragged waveform

shown in Fig. 4-10b. If you try to use these nonrectangular

signals to drive a gate or other digital device, you get

unreliable operation.

This is where the Schmitt trigger comes in. It designed

to clean up ragged looking pulses, producing almost vertical

54 Digital Computer Electronics

(c)

Fig. 4-10 Schmitt trigger produces rectangular output.

(b) (c)

Fig. 4-11 (a) Hex Schmitt-trigger inverters; (b) 4-input nand

Schmitt trigger; (c) 2-input nand Schmitt trigger.

transitions between the low and high state, and vice versa

(Fig. 4-10c). In other words, the Schmitt trigger produces

a rectangular output, regardless of the input waveform.

The 7414 is a hex Schmitt-trigger inverter, meaning six

Schmitt-trigger inverters in one package like Fig. 4-11 a.
Notice the hysteresis symbol inside each inverter; it des¬

ignates the Schmitt-trigger function.

Two other TTL Schmitt triggers are available. The 7413

is a dual 4-input nand Schmitt trigger, two Schmitt-trigger

gates like Fig. 4-11 b. The 74132 is a quad 2-input nand

Schmitt trigger, four Schmitt-trigger gates like Fig. 4-1 lc.

Other Devices

The 7400 series also includes a number of other devices

that you will find useful, such as and-or-invert gates

(discussed in the next section), latches and flip-flops (Chap.

7), registers and counters (Chap. 8), and memories (Chap.

9).

4-5 AND-OR-INVERT GATES

Figure 4-12a shows an and-or circuit. Figure 4-12b shows

the De Morgan equivalent circuit, a nand-nand network.

In either case, the boolean equation is

Y = AB + CD (4-1)

Since nand gates are the preferred TTL gates, we would

build the circuit of Fig. 4-12b. nand-nand circuits like

this are important because with them you can build any

desired logic circuit (discussed in Chap. 5).

TTL Devices

Is there any TTL device with the output given by Eq. 4-1?

Yes, there are some and-or gates but they are not easily

derived from the basic NAND-gate design. The gate that is

easy to derive and comes close to having an expression like

Eq. 4-1 is the and-or-invert gate shown in Fig. 4-12c.

In other words, a variety of circuits like this are available

on chips. Because of the inversion, the output has an

equation of

Y = AB + CD (4-2)

(c)

Fig. 4-12 (a) and-or circuit; (b) nand-nand circuit; (c) and-

or-invert circuit.

Chapter 4 TTL Circuits 5 5

Fig. 4-13 and-or-invert schematic diagram.

Figure 4-13 shows the schematic diagram of a TTL and-

or-invert gate. Qi, Q2j Q3, and Q4 form the basic 2-input

nand gate of the 7400 series. By adding Q5 and Q6 we

convert the basic nand gate to an and-or-invert gate.

Qj and Q5 act like 2-input and gates; Q2 and Q6 produce

ORing and inversion. Because of this, the circuit is logically

equivalent to Fig. 4-12c.

In Table 4-6, listing the and-or-invert gates available

in the 7400 series, 2-wide means two and gates across, 4-

wide means four and gates across, and so on. For instance,

the 7454 is a 2-input 4-wide and-or-invert gate like Fig.

4-14a; each and gate has two inputs (2-input) and there

are four and gates (4-wide). Figure 4-14b shows the 7464;

it is a 2-2-3-4-input 4-wide and-or-invert gate.

When we want the output given by Eq. 4-1, we can

connect the output of a 2-input 2-wide and-or-invert gate

to another inverter. This cancels out the internal inversion,

giving us the equivalent of an and-or circuit (Fig. 4-12a)

or a nand-nand network (Fig. 4-12b).

Expandable and-or-invert Gates

The widest and-or-invert gate available in the 7400 series

is 4-wide. What do we do when we need a 6- or 8-wide

circuit? One solution is to use an expandable and-or-

invert gate.

TABLE 4-6. and-or-invert GATES

Device Description

7451 Dual 2-input 2-wide

7454 2-input 4-wide

7459 Dual 2-3 input 2-wide

7464 2-2-3-4 input 4-wide

5 6 Digital Computer Electronics

(b)
Fig. 4-14 Examples of and-or-invert circuits.

Figure 4-15a shows the schematic diagram of an ex¬

pandable and-or-invert gate. The only difference between

this and the preceding and-or-invert gate (Fig. 4-13) is

collector and emitter tie points brought outside the package.

Since Q2 and Q6 are the key to the ORing operation, we are

being given access to the internal ORing function. By

connecting other gates to these new inputs we can expand

the width of the and-or-invert gate.

Figure 4-15b shows the logic symbol for an expandable

and-or-invert gate. The arrow input represents the emitter,

and the bubble stands for the collector. Table 4-7 lists the

expandable and-or-invert gates in the 7400 series.

Expanders

What do we connect to the collector and emitter inputs of

an expandable gate? The output of an expander like Fig.

4-16a. The input transistor acts like a 4-input and gate.

The output transistor is a phase splitter; it produces two

TABLE 4-7. EXPANDABLE and-or-

invert GATES

Device Description

7450 Dual 2-input 2-wide

7453 2-input 4-wide

7455 4-input 2-wide

Collector

Fig. 4-15 (a) Expandable and-or-invert gate; (b) logic symbol.
(b)

O1

(e) (c) {d)

Fig. 4-16 (a) Expander; (b) symbol for expander; (c) expander
driving expandable and-or-invert gate; (d) and-or-invert cir¬
cuit; (e) expandable and-or-invert with two expanders.

output signals, one in phase (emitter) and the other inverted

(collector). Figure 4-16b shows the symbol of a 4-input
expander.

Visualize the outputs of Fig. 4-16a connected to the

collector and emitter inputs of Fig. 4-15a. Then Q8 is in

parallel with Q2 and Q6. Figure 4-16c shows the logic

circuit. This means that the expander outputs are being

ORed with the signals of the and-or-invert gate. In other

words, Fig. 4-16c is equivalent to the and-or-invert

circuit of Fig. 4-16d.

We can connect more expanders. Figure 4-16c shows

two expanders driving the expandable gate. Now we have

a 2-2-4-4-input 4-wide and-or-invert circuit.

The 7460 is a dual 4-input expander. The 7450, a dual

expandable and-or-invert gate, is designed for use with

up to four 7460 expanders. This means that we can add

two more expanders in Fig. 4-16c to get a 2-2-4-4-4-4-

input 6-wide and-or-invert circuit.

Chapter 4 TTL Circuits 5 7

4-6 OPEN-COLLECTOR GATES

Instead of a totem-pole output, some TTL devices have an

open-collector output. This means they use only the lower

transistor of a totem-pole pair. Figure 4-lla shows a 2-

input nand gate with an open-collector output. Because

the collector of Q4 is open, a gate like this won’t work

properly until you connect an external pull-up resistor,

shown in Fig. 4-176.

(a)

+5 v

Putl-up
resistor

f-0/

(b)

Fig. 4-17 Open-collector TTL: (a) circuit; (b) with pull-up resistor.

The outputs of open-collector gates can be wired together

and connected to a common pull-up resistor. This is known

as wire-or. The big disadvantage of open-collector gates

is their slow switching speed.

Open-collector gates are virtually obsolete because a new

device called the three-state switch appeared in the early

1970s. Section 8-8 discusses three-state switches in detail.

4-7 MULTIPLEXERS

Multiplex means “many into one.” A multiplexer is a

circuit with many inputs but only one output. By applying

control signals we can steer any input to the output.

Data Selection

Figure 4-18 shows a 16-to-l multiplexer, also called a data

selector. The input data bits are D0 to Dl5. Only one of

these is transmitted to the output. Control word ABCD

determines which data bit is passed to the output. For

instance, when

ABCD = 0000

the upper and gate is enabled but all other and gates are

disabled. Therefore, data bit D0 is transmitted to the output,

giving

Y = D0

If the control word is changed to

ABCD =1111

the bottom gate is enabled and all other gates are disabled.

In this case,

Y = Dl5

Boolean Function Generator

Digital design often starts with a truth table. The problem

then is to come up with an equivalent logic circuit.

Multiplexers give us a simple way to transform a truth table

into an equivalent logic circuit. The idea is to use input

data bits that are equal to the desired output bits of the

truth table.
For example, look at the truth table of Table 4-8. When

the input word ABCD is 0000, the output is 0; when ABCD

TABLE 4-8

A B c D Y

0 0 0 0 0
0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0
0 1 0 1 0

0 1 1 0 1

0 1 1 1 1
1 0 0 0 0

1 0 0 1 0
1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

58 Digital Computer Electronics

Chapter 4 TTL Circuits 59

ABCD

Fig. 4-19 Generating a boolean function.

= 0001, the output is 1; when ABCD = 0010, the output

is 0; and so on. Figure 4-19 shows how to set up a

multiplexer with the foregoing truth table. When ABCD

= 0000, data bit 0 is steered to the output; when ABCD

= 0001, data bit 1 is steered to the output; when ABCD

= 0010, data bit 0 is steered to the output; and so forth.

As a result, the truth table of this circuit is the same as

Table 4-8.

Universal Logic Circuit

The 74150 is a 16-to-l multiplexer. This TTL device is a

universal logic circuit because you can use it to get the

hardware equivalent of any four-variable truth table. In

other words, by changing the input data bits the same IC

can be made to generate thousands of different truth tables.

Multiplexing Words

Figure 4-20 illustrates a word multiplexer that has two input

words and one output word. The input word on the left is

L3L2L1L0 and the one on the right is R3R2RiR0. The control

signal labeled RIGHT selects the input word that will be

transmitted to the output. When RIGHT is low, the four

nand gates on the left are activated; therefore,

OUT = L3L2L1L0

When RIGHT is high,

OUT — R^R2RiR0

The 74157 is TTL multiplexer with an equivalent circuit

like Fig. 4-20. Appendix 3 lists other multiplexers available

in the 7400 series.

GLOSSARY

bipolar Having two types of charge carriers: free electrons fanout The maximum number of TTL loads that a TTL

and holes. device can drive reliably over the specified temperature

chip A small piece of semiconductor material. Sometimes, range.

chip refers an IC device including its pins. low-power Schottky TTL A modification of standard TTL

60 Digital Computer Electronics

in which larger resistances and Schottky diodes are used.

The increased resistances decrease the power dissipation,

and the Schottky diodes increase the speed.

multiplexer A circuit with many inputs but only one

output. Control signals select which input reaches the output.

noise margin The amount of noise voltage that causes

unreliable operation. With TTL it is 0.4 V. As long as

noise voltages induced on connecting lines are less than

0.4 V, the TTL devices will work reliably.

saturation delay time The time delay encountered when

a transistor tries to come out of the saturation region. When

the base drive switches from high to low, a transistor cannot

instantaneously come out of saturation; extra carriers that

flooded the base region must first flow out of the base.

Schmitt trigger A digital circuit that produces a rectangular

output from any input large enough to drive the Schmitt

trigger. The input waveform may be sinusoidal, triangular,

distorted, and so on. The output is always rectangular.

sink A place where something is absorbed. When satu¬

rated, the lower transistor in a totem-pole output acts like

a current sink because conventional charges flow through
the transistor to ground.

source A place where something originates. The upper

transistor of a totem-pole output acts like a source because

charges flow out of its emitter into the load.

standard TTL The initial TTL design with resistance

values that produce a power dissipation of 10 mW per gate

and a propagation delay time of 10 ns.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Small-scale integration, abbreviated_, re¬

fers to fewer than 12 gates on the same chip.

Medium-scale integration (MSI) means 12 to 100

gates per chip. And large-scale integration (LSI)

refers to more than_gates per chip.

2. (SSI, 100) The two basic technologies for digital

ICs are bipolar and MOS. Bipolar technology is

preferred for_and_whereas

MOS technology is better suited to LSI. The reason

MOS dominates the LSI field is that more_

can be fabricated on the same chip area.

3. (SSI, MSI, MOSFETs) Some of the bipolar families

include DTL, TTL, and ECL_has be¬

come the most widely used bipolar family._

is the fastest logic family; it’s used in high-speed

applications.

4. (TTL, ECL) Some of the MOS families are PMOS,

NMOS, and CMOS._dominates the LSI

field, and-is used extensively where

lowest power consumption is necessary.

5. (NMOS, CMOS) The 7400 series, also called stan¬

dard TTL, contains a variety of SSI and_

chips that allow us to build all kinds of digital

circuits and systems. Standard TTL has a multiple-

emitter input transistor and a_output.

The totem-pole output produces a low output

impedance in either state.

6. (MSI, totem-pole) Besides standard TTL, there is

high-speed TTL, low-power TTL, Schottky TTL,

and low-power-TTL. Standard TTL and

low-power-TTL have become the favor¬

ites of digital designers, used more than any other
bipolar families.

7. (Schottky, Schottky) 7400-series devices are guaran¬

teed to work reliably over a_range of 0

to 70°C and over a voltage range of 4.75 to 5.25 V.

A floating TTL input has the same effect as a

_input.

8. (temperature, high) A_TTL device can

sink up to 16 mA and can source up to 400 jiA.

The maximum number of TTL loads a TTL device

can drive is called the_With standard

TTL, the fanout equals_

9. (standard, fanout, 10) A buffer is a device that

isolates other devices. Typically, a buffer has a high

input impedance and a_output imped¬

ance. In terms of digital ICs, this means a_

input current and a high output current capability.

10. (low, low) A Schmitt trigger is a digital circuit that

produces a-output regardless of the in¬

put waveform. It is used to clean up ragged looking

pulses that have been distorted during transmission

from one place to another.

11. (rectangular) A multiplexer is a circuit with many

inputs but only one output. It is also called a data

selector because data can be steered from one of the

inputs to the output. A 74150 is a 16-to-l multi¬

plexer. With this TTL device you can implement

the logic circuit for any four-variable truth table.

Chapter 4 TTL Circuits 61

PROBLEMS

4-1. In Fig. 4-21 a grounded input means that almost

the entire supply voltage appears across the 4-kfl

resistor. Allowing 0.7 V for the emitter-base volt¬

age of Q1? how much input emitter current is there

with a grounded input? The supply voltage can be

as high as 5.25 V and the 4-kd resistance can be a

low as 3.28 kfl. What is the input emitter current

in this case?

4-2. What is the fanout of a 74S00 device when it

drives low-power TTL loads?

4-3. What is the fanout of a low-power Schottky device

driving standard TTL devices?

4-4. Section 4-4 gave the input and output currents for a

7437 buffer. What is the fanout of a 7437 when it

drives standard TTL loads?

•-Kh*

U
U

d

(a)

Fig. 4-22

4-5. A seven-segment decoder is driving a LED display

like Fig. 4-22a. Which LEDs are on when digit 8

appears? Which LEDs are on when digit 4 ap¬

pears?

4-6. Section 4-7 described the 74150, a 16-to-l multi¬

plexer. Refer to Fig. 4-23 and indicate the values

the D0 to D,5 inputs of a 74150 should have to

reproduce the following truth table: The output is

high when ABCD = 0000, 0100, 0111, 1100,

and 1111; the output is low for all other inputs.

4-7. What is propagation delay?

4-8. Why are 5400 series devices not normally used in

commercial applications?

4-9. What do Schottky devices virtually eliminate

which makes their high switching speeds possi¬

ble?

4-10. What is the noise margin of TTL devices?

62 Digital Computer Electronics

Boolean Algebra and
Karnaugh Maps

This chapter discusses boolean algebra and Karnaugh maps,
topics needed by the digital designer. Digital design usually
begins by specifying a desired output with a truth table.
The question then is how to come up with a logic circuit
that has the same truth table. Boolean algebra and Karnaugh
maps are the tools used to transform a truth table into a

practical logic circuit.

5-1 BOOLEAN RELATIONS

What follows is a discussion of basic relations in boolean
algebra. Many of these relations are the same as in ordinary
algebra, which makes remembering them easy.

Commutative, Associative, and
Distributive Laws

Given a 2-input or gate, you can transpose the input signals
without changing the output (see Fig. 5-1 a). In boolean

terms

A + B = B + A (5-1)

Similarly, you can transpose the input signals to a 2-input
and gate without affecting the output (Fig. 5-1 b). The
boolean equivalent of this is

AB = BA (5-2)

The foregoing relations are called commutative laws.
The next group of rules are called the associative laws.

The associative law for ORing is

A + (B + C) = (A + B) 4- C (5-3)

(e)

Fig. 5-1 Commutative, associative, and distributive laws.

Figure 5-lc illustrates this rule. The idea is that how you
group variables in an ORing operation has no effect on the
output. For either gate in Fig. 5-lc the output is

Y = A + B + C

64

Similarly, the associative law for ANDing is Another boolean relation is

A(BC) = (AB)C (5-4)

Figure 5-1 d illustrates this rule. How you group variables
in ANDing operations has no effect on the output. For either
gate of Fig. 5-1 d the output is

Y = ABC

The distributive law states that

A(B + C) = AB + AC (5-5)

This is easy to remember because it’s identical to ordinary
algebra. Figure 5-\e shows the meaning in terms of gates.

or Operations

The next four boolean relations are about or operations.
Here is the first:

A + 0 = A (5-6)

This says that a variable ORed with 0 equals the variable.
For better grasp of this idea, look at Fig. 5-2a. (The solid
arrow stands for “implies.”) The two cases on the left
imply the case on the right. In other words, if the variable
is 0, the output is 0 (left gate); if the variable is 1, the
output is 1 (middle gate); therefore, a variable ORed with
0 equals the variable (right gate).

A + A = A (5-7)

which is illustrated in Fig. 5-2b. You can see what happens.
If A is 0, the output is 0; if A is 1, the output is 1; therefore,
a variable ORed with itself equals the variable.

Figure 5-2c shows the next boolean rule:

A + 1 = 1 (5-8)

In a nutshell, if one input to an or gate is 1, the output is
1 regardless of the other input.

Finally, we have

^ + A = 1 (5-9)

shown in Fig. 5-2d. In this case, a variable ORed with its

complement equals 1.

and Operations

The first and relation to know about is

A • 1 = A (5-10)

illustrated in Fig. 5-3a. If A is 0, the output is 0; if A is 1,
the output is 1; therefore, a variable ANDed with 1 equals

the variable.

Another relation is

A • A = A (5-11)

o

o
0

0

0

0

1
1

:=D~
Fig. 5-2 or relations.

:=o*

:=£>•

Chapter 5 Boolean Algebra and Karnaugh Maps 6 5

Id)

Fig. 5-3 and relations.

shown in Fig. 5-3b. In this case, a variable ANDed with

itself equals the variable.

Figure 5-3c illustrates this relation

A • 0=0 (5-12)

The rule is clear. If one input to an and gate is 0, the
output is 0 regardless of the other input.

The last and rule is

A •A = 0 (5-13)

As shown in Fig. 5-3d, a variable ANDed with its comple¬

ment produces a 0 output.

Double Inversion and De Morgan's Theorems

The double-inversion rule is

A = A (5-14)

which says that the double complement of a variable equals
the variable. Finally, there are the De Morgan theorems
discussed in Chap. 3:

A = AB _ (5-15)
AB=A+B (5-16)

You should memorize Eqs. 5-1 to 5-16 because they are
used frequently in design work.

Duality Theorem

We state the duality theorem without proof. Starting with
a boolean relation, you can derive another boolean relation

by

1. Changing each or sign to an and sign
2. Changing each and sign to an or sign
3. Complementing each 0 and 1

For instance, Eq. 5-6 says that

A + 0 = A

The dual relation is

A • 1 = A

This is obtained by changing the OR sign to an and sign,
and by complementing the 0 to get a 1.

The duality theorem is useful because it sometimes
produces a new boolean relation. For example, Eq. 5-5

states that

A{B + C) = AB + AC

By changing each or and and operation we get the dual

relation

A + BC = (A + B)(A + C)

This is a new boolean relation, not previously discussed.
(If you want to prove it, construct the truth table for the

66 Digital Computer Electronics

left and right members of the equation. The two truth tables
will be identical.)

Summary

For future reference, here are
their duals:

some boolean relations and

L (' :
A + B = B + A AB = BA

A + (B + C) = (A + B) + C A(BC) = (AB)C
A(B + C) = A + BC =

AB + AC (A + B)(A + C)
A + 0 = A A • 1 = A
A + 1 = 1 A • 0 = 0
A + A = A AA = A
A + A = 1 AA = 0

A = A A = A
A + B = AB AB = A + B

A + AB = A A(A + B) = A
A + AB = A + B A(A + B) = AB

5-2 SUM-OF-PRODUCTS METHOD

Digital design often starts by constructing a truth table with
a desired output (0 or 1) for each input condition. Once
you have this truth table, you transform it into an equivalent
logic circuit. This section discusses the sum-of-products
method, a way of deriving a logic circuit from a truth table.

(a) (b)

*=D— :n>-
(c) (d)

Fig. 5-4 Fundamental products.

Fundamental Products

Figure 5-4 shows the four possible ways to and two input
signals_and their complements. In Fig. 5-4a the inputs are
A and B. Therefore, the output is

Y = AB

The output is high only when A = 0 and B - 0.
Figure 5-Ab shows another possibility. Here the inputs

are A and B; so the output is

Y = AB

TABLE 5-1. TWO VARIABLES

A B Fundamental product

0 0 AB
0 1 AB
1 0 AB
1 1 AB

In this case, the output is 1 only when A = 0 and B = 1.
In Fig. 5-4c the inputs are A and B. The output

Y = AB

is high only when A = 1 and £ = 0. Finally, in Fig.
5-4d the inputs are A and B. The output

Y = AB

is 1 only when A = 1 and 5=1.
Table 5-1 summarizes the four possible ways to and two

signals in complemented or uncomplemented form. The
logical products AB,AB, AB, and AB are called fundamental
products because each produces a high output for its
corresponding input. For instance, AB is a 1 when A is 0
and B is 0, AB is a 1 when A is 0 and B is 1, and so forth.

Three Variables

A similar idea applies to three signals in complemented and
uncomplemented form. Given A, 5, C, and their comple¬
ments, Jhere are eight_fundamental products: ABC, ABC,
ABC, ABC, ABC, ABC, ABC, and ABC. Table 5-2 lists
each input possibility and its fundamental product. Again
notice this property: each fundamental product is high for
the corresponding input. This_means that ABC is a 1 when
A is 0, B is 0, and C is 0; ABC is a 1 when A is 0, B is
0, and C is 1; and so on.

TABLE 5-2. THREE VARIABLES

A B c Fundamental product

0 0 0 ABC
0 0 1 ABC
0 1 0 ABC
0 1 1 ABC
1 0 0 ABC
1 0 1 ABC
1 1 0 ABC
1 1 1 ABC

Chapter 5 Boolean Algebra and Karnaugh Maps 67

Four Variables TABLE 5-4

When there are 4 input variables, there are 16 possible
input conditions, 0000 to 1111. The corresponding funda¬
mental products are from ABCD through ABCD. Here is
a quick way to find the fundamental product for any input
condition. Whenever the input variable is 0, the same
variable is complemented in the fundamental product. For
instance, if the input condition is 0110, the fundamental
product is ABCD. Similarly, if the input is 0100, the
fundamental product is ABCD.

Deriving a Logic Circuit

To get from a truth table to an equivalent logic circuit OR
the fundamental products for each input condition that
produces a high output. For example, suppose you have a
truth table like Table 5-3. The fundamental products are
listed for each high output. By ORing these products you
get the boolean equation

Y = ABC A ABC 4- ABC A ABC (5-17)

This equation implies four and ga.tes driving an or gate.
The first and gate has inputs of A , B, and C; the second
and gate has inputs of A, B, and C; the third and gate has
inputs of A, B, and C; the fourth and gate has inputs of
A, B, and C. Figure 5-5 shows the corresponding logic
circuit. This and-or circuit has the same truth table as
Table 5-3.

As another example of the sum-of-products method, look
at Table 5-4. Find each output 1 and write its fundamental
product. The resulting products are ABCD, ABCD, and
ABCD. This means that the boolean equation is

Y = ABCD A ABCD + ABCD (5-18)

This ^equation implies that three and gates_ are driving an
or gate. The first and gate has inputs of A, B, C, and D\
the second has inputs of A, B, C, and D\ the third has

A a b b c c

TABLE 5-3

A B c Y A B c D Y

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0

0 1 0 1 ^ ABC 0 0 1 0 0

0 1 1 0 0 0 1 1 1

1 0 0 0 0 1 0 0 0
1 0 1 1 ABC 0 1 0 1 0

1 1 0 1 ABC 0 1 1 0 0

1 1 1 1 —* ABC 0 1 1 1 1
1 0 0 0 0
1 0 0 1 1

1 0 1 0 0

1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

A A B B C C D D

inputs of A, B, C, and D. Figure 5-6 is the equivalent logic

circuit.
The sum-of-products method always works. You or the

fundamental products of each high output in the truth table.
This gives an equation which you can transform into an
and-or network that is the circuit equivalent of the truth

table.

5-3 ALGEBRAIC SIMPLIFICATION

After obtaining a sum-of-products equation as described in
the preceding section, the thing to do is to simplify the
circuit if possible. One way to do this is with boolean
algebra. Here is the approach. Starting with the boolean
equation for the sum-of-products circuit, you try to rearrange
and simplify the equation as much as possible using the
boolean rules of Sec. 5-1. The simplified boolean equation
means a simpler logic circuit. This section will give you
examples.

68 Digital Computer Electronics

AABBCCDD

(a)

A A B B C C D D

Gate Leads

A preliminary guide for comparing the simplicity of one
logic circuit with another is to count the number of input
gate leads; the circuit with fewer input gate leads is usually
easier to build. For instance, the and-or circuit of Fig.
5-la has a total of 15 input gate leads (4 on each and gate
and 3 on the or gate). The and-or circuit of Fig. 5-lb,
on the other hand, has a total of 9 input gate leads. The
and-or circuit of Fig. 5-lb is simpler than the and-or

circuit of Fig. 5-la because it has fewer input gate leads.
A bus is a group of wires carrying digital signals. The

8-bit bus of Fig. 5-la transmits variables A, B, C, D and
their complements A, B, C, and D. In the typical micro¬
computer, the microprocessor, memory, and I/O units
exchange data by means of buses.

Factoring to Simplify

One way to reduce the number of input gate leads is to
factor the boolean equation if possible. For instance, the
boolean equation

Y = AB + AB (5-19)

has the equivalent logic circuit shown in Fig. 5-8a. This
circuit has six input gate leads. By factoring Eq. 5-19 we
get

Y = A(B + B)

A A B B

(c)

Fig. 5-8

The equivalent logic circuit for this is shown in Fig. 5-8b;
it has only four input gate leads.

Recall that a variable ORed with its complement always
equals 1; therefore,

Y = A(B + B) = A • 1 = A

To get this output, all we need is a connecting wire from
the input to the output, as shown in Fig. 5-8c. In other
words, we don’t need any gates at all.

Another Example

Here is another example of how factoring can simplify a
boolean equation and its corresponding logic circuit. Sup¬
pose we are given

Y = AB + AC 4- BD + CD (5-20)

In this equation, two variables at a time are being ANDed.

The logical products are then ORed to get the final output.

Figure 5-9a shows the corresponding logic circuit. It has

12 input gate leads.

We can factor and rearrange Eq. 5-20 as

Y = A(B + C) + D(B + C)

Chapter 5 Boolean Algebra and Karnaugh Maps 69

ABCD In general, one approach in digital design is to transform

a truth table into a sum-of-products equation, which you

then simplify as much as possible to get a practical logic

circuit.

5-4 KARNAUGH MAPS

Many engineers and technicians don’t simplify equations

with boolean algebra. Instead, they use a method based on

Karnaugh maps. This section tells you how to construct a

Karnaugh map.

(a) (b) (c)

B B B B

(d) (e)

Fig. 5-10 Two-variable Karnaugh map.

Y = (A + D)(B + C) (5-21)

In this case, the variables are first ORed, then the logical

sums are ANDed. Figure 5-9b illustrates the logic circuit.

Notice it has only six input gate leads and is simpler than

the circuit of Fig. 5-9a.

Pinal Example

In Sec. 5-2 we derived this sum-of-products equation from

a truth table:

Y = ABCD + ABCD + A BCD (5-22)

Figure 5-la shows the sum-of-products circuit. It has 15

input gate leads. We can factor the equation as

Y = ACD(B > 5) + ABCD

or as

Y = ACD + ABCD (5-23)

Figure 5-lb shows the equivalent logic circuit; it has only

nine input gate leads.

Two-Variable Map

Suppose you have a truth table like Table 5-5. Here’s how

to construct the Karnaugh map. Begin by drawing Fig.

5-10a. Note the order of the variables and their complements;

the vertical column has A followed by A, and the horizontal

row has B followed by B.

Next, look for output Is in Table 5-5. The first 1 output

to appear is for the input of A_= 1 and 5 = 0. The

fundamental product for this is AB. Now, enter a 1 on the

Karnaugh map as shown in Fig. 5-10b. This 1 represents

the product AB because the 1 is in the A row and the B

column.

Similarly, Table 5-5 has an output 1 appearing for an

input of A = 1 and 5 = 1. The fundamental product for

this is AB. When you enter a 1 on the Karnaugh map to

represent A5, you get the map of Fig. 5-10c.

The final step in the construction of the Karnaugh map

is to enter 0s in the remaining spaces. Figure 5-10d shows

how the Karnaugh map looks in its final form.

Here’s another example of a two-variable map. In the

truth table of Table 5-6, the fundamental products are AB

and AB. When Is are entered on the Karnaugh map for

these products and 0s for the remaining spaces, the com¬

pleted map looks like Fig. 5-10c.

70 Digital Computer Electronics

TABLE 5-5 TABLE 5-6

c c C C C C

AB AB AB 0 0

AB j AB 1 AB 1 0

AB S AB 1 1 AB 1 1

AB AB AB 0 0

(a) (b) (c)

Fig. 5-11 Three-variable Karnaugh map.

Three-Variable Map

Suppose you have a truth table like Table 5-7. Begin by

drawing Fig. 5-1 la. It is especially important to notice the

order of the variable^and their complements. The vertical

column is labeled AB,AB, AB, and AB. This order is not

a binary progression; instead it follows the order of 00, 01,

11, and 10. The reason for this is explained in the derivation

of the Karnaugh method; briefly, it’s done so that only one

variable changes from complemented to uncomplemented

form (or vice versa).

Next, look for output Is in Table 5-7. The fundamental

products for these 1 outputs are ABC, ABC, and ABC.
Enter these Is on the Karnaugh map (Fig. 5-1 lb). The final

step is to enter Os in the remaining spaces (Fig. 5-1 lc).

This Karnaugh map is useful because it shows the funda¬

mental products needed for the sum-of-products circuit.

TABLE 5-7

A B c Y

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

CD CD CD CD CD CD CD CD

AB AB 1

AB ! AB 1 1

AB AB 1

AB AB

(a) (b)

CD CD CD CD

AB 0 1 0 0

AB 0 0 1 1

AB 0 0 0 1

AB 0 0 0 0

(c)

Fig. 5-12 Four-variable Karnaugh map.

Four-Variable Map

Many MSI circuits process binary words of 4 bits each

(nibbles). For this reason, logic circuits are often designed

to handle four variables (or their complements). This is

why the four-variable map is the most important.

Here’s an example of constructing a four-variable map.

Suppose you have the truth table of Table 5-8. The first

step is to draw the blank map of Fig. 5-12a. Again, notice

the progression. The vertical column is labeled AB, AB,

TABLE 5-8

A B c D Y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Chapter 5 Boolean Algebra and Karnaugh Maps 71

AB, and AB. The horizontal row is labeled CD, CD, CD,

and CD.

In Table 5-8 the output Is have these fundamental

products: AB CD, ABCD, ABCD, andASCD. After entering

Is on the Karnaugh map, you will have Fig. 5-12b. The

final step of filling in Os results in the completed map of

Fig. 5-12c.

5-5 PAIRS, QUADS, AND OCTETS

There is a way of using the Karnaugh map to get simplified

logic circuits. But before you can understand how this is

done, you will have to learn the meaning of pairs, quads,

and octets.

CD CD CD CD CD CD CD CD

(e) (f)

Fig. 5-13 Pairs on a Karnaugh map.

Pairs

The map of Fig. 5-13a contains a pair of Is that are

horizontally adjacent. The first 1 represents the_ product

ABCD; the second 1 stands for the product ABCD. As we

move from the first 1 to the second 1, only one variable

goes from uncomplemented to complemented form (D to

D). The other variables don’t change form (A, S, and C

remain uncomplemented). Whenever this happens, you can

eliminate the variable that changes form.

Algebraic Proof

The sum-of-products equation corresponding to Fig. 5-13a

is

Y = ABCD + ABCD

which factors into

Y = ABC(D F D)

Since D is ORed with D, the equation reduces to

Y = ABC

A pair of adjacent Is is like those of Fig 5-13a always

means that the sum-of-products equation will have a variable

and a complement that drop out.

For easy identification, it is customary to encircle a pair

of adjacent Is, as shown in Fig. 5-13/?. Then when you

look at the map, you can tell at a glance that one variable

and its complement will drop out of the boolean equation.

In other words, an encircled pair of Is like those of Fig.

5-13b no longer stands for the ORing of two separate

products, ABCD and ABCD. The encircled pair should be

visualized instead as representing a single reduced product

ABC.
Here’s another example. Figure 5-13c shows a pair of

Is that are vertically adjacent. These Is correspond to the

product ABCD and ABCD. Notice that only one variable

changes from uncomplemented to complemented form (B
to B)\ all other variables retain their original form. Therefore,

B and B drop out. This means that the encircled pair of

Fig. 5-13c represents ACD.
From now on, whenever you see a pair of adjacent Is,

eliminate the variable that goes from complemented to

uncomplemented form. A glance at Fig. 5-13d indicates

that B changes form; therefore, the pair of Is represents

ACD. Likewise, D changes form in Fig. 5-13c; so the pair

of Is stands for A SC.

If more than one pair exists on a Karnaugh map, you

can or the simplified products to get the boolean equation.

For instance, the lower pair of Fig. 5-13/represents ACD.
The upper pair stands for ABD. The corresponding boolean

equation for this map is

Y = ACD + ABD

The Quad

A quad is a group of four Is that are end tc end, as shown

in Fig. 5-14a, or in the form of a square, as shown in Fig.

72 Digital Computer Electronics

5-14b. When you see a quad, always encircle it because it

leads to a simpler product. In fact, a quad means that two

variables and their complements drop out of the boolean

equation.

Here’s why a quad eliminates two variables. Visualize

the four Is of Fig. 5-14a as two pairs (Fig. 5-14c). The

first pair represents ABC; the second pair stands for ABC.
The boolean equation for these two pairs is

Y = ABC + ABC

This factors into

CD CD CD CD CD CD CD CD

(a) (b)

Fig. 5-15 Octets on a Karnaugh map.

Y = AB(C + C)

which reduces to

Y = AB

So the quad of Fig. 5-14a represents a product where two

variables and their complements drop out.

A similar proof applies to all quads. There’s no need to

go through the algebra again. Merely determine which

variables go from complemented to uncomplemented form;

these are the variables that drop out.

For instance, look at the quad of Fig. 5-14b. Pick any 1

as a starting point. When you move horizontally, D is the

variable that changes form. When you move vertically, B
changes form. Therefore, the simplified equation is

The Octet

An octet is a group of eight adjacent Is like those of Fig.

5-15a. An octet always eliminates three variables and their

complements. Here’s why. Visualize the octet as two quads

(Fig. 5-15b). The equation for these two quads is

Y = AC + AC

Factoring gives

Y = A(C 4- C)

But this reduces to

Y = A

Y = AC

CD CD CD CD

AB 0 0 0 0

AB 0 0 0 0

AB c 1 1 >
AB 0 0 0 0

(a)

CD CD CD CD

(b)

CD CD CD CD

(c)

Fig. 5-14 Quads on a Karnaugh map.

So the octet of Fig. 5-15a means that three variables and

their complements drop out of the corresponding product.

A similar proof applies to any octet. From now on, don’t

bother with the algebra. Just step through the Is of the

octet and determine which three variables change form.

These are the variables that drop out.

5-6 KARNAUGH SIMPLIFICATIONS

You have seen how a pair eliminates one variable, a quad

eliminates two variables, and an octet eliminates three

variables. Because of this, you should encircle the octets

first, the quads second, and the pairs last. In this way, the

greatest simplification takes place.

An Example

Suppose you’ve translated a truth table into the Karnaugh

map shown in Fig. 5-16a. Look for octets first. There are

none. Next, look for quads. There are two. Finally, look

for pairs. There is one. If you do it correctly, you arrive

at Fig. 5-166.

The pair represents the_simplified product ABD, the

lower quad stands for AC, and the quad on the right

Chapter 5 Boolean Algebra and Karnaugh Maps 73

CD CD CD CD CD CD CD CD

AB 0 111

AB 0 0 0 1

AB 1 10 1

AB 1 10 1

Fig. 5-16

represents CD. By ORing these simplified products, you get

the boolean equation for the map

Y = ABD A AC A CD (5-24)

Overlapping Groups

When you encircle groups, you are allowed to use the same

1 more than once. Figure 5-17a illustrates the idea. The

simplified equation for the overlapping groups is

Y = A A BCD (5-25)

It is valid to encircle the Is as shown in Fig. 5-17b, but

then the isolated 1 results in a more complicated equation:

Y = A A ABCD

This requires a more complicated logic circuit than Eq.

5-25. So always overlap groups if possible; that is, use the

Is more than once to get the largest groups you can.

CD CD CD CD CD CD CD CD

(c) (d)

Fig. 5-17 Overlapping and rolling.

Rolling the Map

Another thing to know about is rolling. In Fig. 5-17c, the

pairs result in the equation

Y = BCD A BCD (5-26)

Visualize picking up the Karnaugh map and rolling it so

that the left side touches the right side. If you’re visualizing

correctly, you will realize the two pairs actually form a

quad. To indicate this, draw half circles around each pair,

as shown in Fig. 5-11 d. From this viewpoint, the quad of

Fig. 5-11 d has the equation

Y = BD (5-27)

Why is rolling valid? Because Eq. 5-26 can be simplified

to Eq. 5-27. Here’s the proof. Start with Eq. 5-26:

Y = BCD A BCD

This factors into

Y = BD(C A C)

which reduces to

Y = BD

This final equation represents a rolled quad like Fig. 5-lld.

Therefore, Is on the edges of a Karnaugh map can be

grouped with Is on opposite edges.

CD CD CD CD CD CD CD CD

AB 0 0 0 0 AB 0 0 0 0

AB 0 0 0 AB 0 A 0 0

AB 0 4q£f 0 AB 0 u A 0

AB 0 ° u 0 AB 0 0 u 0

(a) (b)

Fig. 5-18 Redundant group.

Redundant Groups

After you finish encircling groups, there is one more thing

to do before writing the simplified boolean equation:

eliminate any group whose Is are completely overlapped

by other groups. (A group whose Is are all overlapped by

other groups is called a redundant group.)
Here is an example. Suppose you have encircled the

three pairs shown in Fig. 5-18a. The boolean equation then

is

Y = BCD A ABD A ACD

74 Digital Computer Electronics

At this point, you should check to see if there are any

redundant groups. Notice that the Is in the inner pair are

completely overlapped by the outside pairs. Because of

this, the inner pair is a redundant pair and can be eliminated

to get the simpler map of Fig. 5-18b. The equation for this

map is

Y = BCD + ACD

Since this is a simpler equation, it means a simpler logic

circuit. This is why you should eliminate redundant groups

if they exist.

Summary

Here’s a summary of how to use the Karnaugh map to

simplify logic circuits:

1. Enter a 1 on the Karnaugh map for each fundamental

product that corresponds to 1 output in the truth table.

Enter Os elsewhere.

2. Encircle the octets, quads, and pairs. Remember to roll

and overlap to get the largest groups possible.

3. If any isolated Is remain, encircle them.

4. Eliminate redundant groups if they exist.

5. Write the boolean equation by ORing the products

corresponding to the encircled groups.

6. Draw the equivalent logic circuit.

EXAMPLE 5-1

What is the simplified boolean equation for the Karnaugh

map of Fig. 5-19a?

CD CD CD CD CD CD CD CD

AB 0 0 0 0 AB 0 0 0 0

AB 0 0 1 0 AB 0 0 1 0

AB 1 1 1 1 AB <C 1 1

AB 0 1 1 1 AB 0 1 1 1

(a) (b)

CD CD CD CD CD CD CD CD

(c) (d)

Fig. 5-19

SOLUTION

There are no octets, but there is a quad, as shown in Fig.

5-19b. By overlapping we can find two more quads (Fig.

5-19c). Finally, overlapping gives us the pair of Fig.

5-19 d.
The horizontal quad of Fig. 5-19d corresponds to a

simplified product of AB. The square quad on the right

corresponds to AC, while the one on the left stands for AD.
The pair represents BCD. By ORing these products we get

the simplified equation

Y = AB + AC + AD + BCD (5-28)

Figure 5-20 shows the equivalent logic circuit.

A B C D

EXAMPLE 5-2

As you know from Chap. 4, the nand gate is the least

expensive gate in the 7400 series. Because of this, and-

or circuits are usually built as equivalent nand-nand

circuits.

Convert the and-or circuit of Fig. 5-20 to a nand-nand

circuit using 7400-series devices.

SOLUTION

Replace each and gate of Fig. 5-20 by a nand gate and

replace the final or gate by a nand gate. Figure 5-21 is

the De Morgan equivalent of Fig. 5-20. As shown, we can

build the circuit with a 7400, a 7410, and a 7420.

5-7 DON’T-CARE CONDITIONS

Sometimes, it doesn’t matter what the output is for a given

input word. To indicate this, we use an X in the truth table

instead of a 0 or a 1. For instance, look at Table 5-9. The

Chapter 5 Boolean Algebra and Karnaugh Maps 7 5

CD CD CD CD CD CD CD CD

AB 1 0 1 0 AB A 0 A 0

AB 1 1 1 0 AB i ' r rv 0

AB X X X X AB
i x J

xj X

AB X X X X AB V X \xj X

(a) (b)

AABBCCDL

I I I I 7410

Fig. 5-21 nand-nand circuit using TTL gates.

output is an X for any input word from 1000 through 1111.

The X’s are called don't cares because they can be treated

either as Os or Is, whichever leads to a simpler circuit.

Figure 5-22a shows_the Karnaugh map for Table 5-9.

X’s_are used_for ABCD, ABCDy ABCD, ABCD, ABCD,

ABCD, ABCD, and ABCD because these are don’t cares

in the truth table. Figure 5-22b shows the most efficient

way to encircle the groups. Notice two crucial ideas. First,

we visualize all X’s as Is and try to form the largest groups

that include the real Is. This gives us three quads. Second,

we visualize all remaining X’s as Os. In this way, the X’s

are used to the best advantage. We are free to do this

because the don’t cares can be either Os or Is, whichever

we prefer.

TABLE 5-9

A B c D Y

0 0 0 0 1
0 0 0 1 1 0
0 0 1 0 ! 0
0 0 1 1 | 1

0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1

1 0 0 0 X

1 0 0 1 X

1 0 1 0 X

1 0 I 1 X

1 1 0 0 ; X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

(c)

Fig. 5-22 Don’t cares.

Figure 5-22b implies the simplified boolean equation

Y = BD + CD + CD

Figure 5-22c is the simplified logic circuit. This and-or

network has nine input gate leads.

EXAMPLE 5-3

Recall that BCD numbers express each decimal digit as a

nibble: 0 to 9 are encoded as 0000 to 1001. Especially

important, nibbles 1010 to 1111 are never used in a BCD

system.

Table 5-10 shows a truth table for use in a BCD system.

As you see, don’t cares appear for 1010 through 1111.

Construct the Karnaugh map and show the simplified logic
circuit.

SOLUTION

Figure 5-23a illustrates the Karnaugh map. The largest

group we can form is the pair shown in Fig. 5-23b. The

boolean equation is

Y = BCD

Figure 5-23c is the simplified logic circuit.

76 Digital Computer Electronics

TABLE 5-10

A B c D Y

0 0 0 0 0
0 0 0 1 0
0 0 I 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0

-1 0 1 0 X

1 0 l 1 X

1 1 0 0 X

1 1 0 r X

1 1 1 0 X

1 1 1 1 X

v :>

CD CD CD CD

AB 0 0 0 0

AB 0 0 10

AB X X X X

45 0 0 X X

CD CD CD CD

AABBCCDD

Fig. 5-23 Don’t cares in a BCD system.

GLOSSARY

bus A group of wires carrying digital signals.

don’t care An output that may be either low or high

without affecting the operation of the system.

fundamental product The logical product of variables and

complements that produces a high output for a given input

condition.

Karnaugh map A graphical display of the fundamental

products in a truth table.

octet A group of eight adjacent Is on a Karnaugh map.

pair A group of two adjacent Is on a Karnaugh map.

These Is may be horizontally or vertically aligned.

quad A group of four adjacent Is on a Karnaugh map.

redundant group A group of Is on a Karnaugh map all

of which are overlapped by other groups.

sum-of-products circuit An and-or circuit obtained by

ORing the fundamental products that produce output Is in

a truth table.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Digital design often starts by constructing a_

table. By ORing the_products, you get a

sum-of-products equation.

2. (truth, fundamental) A preliminary guide for compar¬

ing the simplicity of logic circuits is to count the

number of input_leads.

3. (gate) A bus is a group of_carrying

digital signals. In the typical microcomputer, the mi¬

croprocessor, memory, and I/O units communicate

via buses.

4. (wires) One way to simplify the sum-of-products

equation is to use boolean algebra. Another way is

the_map.

5. (Karnaugh) A pair eliminates one variable, a

_eliminates two variables, and an octet

eliminates_variables. Because of this,

you should encircle the_first, the quads

next, and the pairs last.

6. (quad, three, octets) nand-nand circuits are equiva¬

lent to and-or circuits. This is important because

_gates are the least expensive gates in the

7400 series.

7. (nand) When a truth table has don’t cares, we enter

X’s on the Karnaugh map. These can be treated as 0s

or Is, whichever leads to a simpler logic circuit.

Chapter 5 Boolean Algebra and Karnaugh Maps 77

PROBLEMS

5-1. What are the fundamental products for each of the

inputs words ABCD = 0010, ABCD = 1101,

ABCD = 1110?

5-2. A truth table has output Is for each of these

inputs:

a. ABCD = 0011

b. ABCD = 0101

c. ABCD = 1000

d. ABCD = 1101

What are the fundamental products?

5-3. Draw the logic circuit for this boolean equation:

Y = ABCD + ABCD + ABCD + ABCD

5-4. Output Is appear in the truth table for these input

conditions: ABCD = 0001, ABCD = 0110, and

ABCD = 1110. What is the sum-of-products

equation?

5-5. Draw the and-or circuit for

Y = ABCD + ABCD + ABCD

How many input gate leads does this circuit have?

5-6. A truth table has output Is for these inputs:

ABCD = 0011, ABCD = 0110, ABCD =

1001, and ABCD = 1110. Draw the Karnaugh

map showing the fundamental products.

5-7. A truth table has four input variables. The first

eight outputs are 0s, and the last eight outputs are

Is. Draw the Karnaugh map.

5-8. Draw the Karnaugh map for the Y3 output of

Table 5-11. Simplify as much as possible; then

draw the logic circuit.

5-9. Use the Karnaugh map to work out the simplified

logic circuit for the Y2 output of Table 5-11.

5-10. Repeat Prob. 5-9 for the Y} output.

5-11. Repeat Prob. 5-9 for the Y0 output.

5-12. Use the Karnaugh map to work out the simplified

logic circuit for the Y3 output of Table 5-12.

5-13. Repeat Prob. 5-12 for the Y2 output.

5-14. Repeat Prob. 5-12 for the Yx output.

5-15. Repeat Prob. 5-12 for Y0 output.

5-16. A + 0 = ?
5_17. A • 1 = ?

5-18. A + 1 = ?

5-19. A • 0 = ?

5-20. Use the duality theorem to derive another boolean

relation from:

A + AB = A + B

5.21. Use the commutative law to complete the follow¬

ing equations.

a. A + B =

b. AB =

5.22 Use the associative law to complete the following

equations.

a. A + (B + C) =
b. A(BC) =

5.23 Use the distributive law to complete the equation

A(B + C) =

TABLE 5-11

A B c D y3 Y2 Yx n

0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 1
0 0 1 1 1 0 0 1
0 1 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 1 1 0
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 1 0 1 1
1 0 1 1 0 1 0 0
1 1 0 0 0 1 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 0
1 1 1 1 1 1 0 1

TABLE 5-12

A B c D Y3 Y2 Yo

0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 1
0 0 1 1 1 0 0 1
0 1 0 0 0 0 1 1
0 1 0 1 1 0 0 0
u 1 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

78 Digital Computer Electronics

Arithmetic-Logic Units

The arithmetic-logic unit (ALU) is the number-crunching

part of a computer. This means not only arithmetic opera¬

tions but logic as well (or, and, not, and so forth). In

this chapter you will learn how the ALU adds and subtracts

binary numbers. Later chapters will discuss the logic

operations.

6-1 BINARY ADDITION

ALUs don’t process decimal numbers; they process binary

numbers. Before you can understand the circuits inside an

ALU, you must learn how to add binary numbers. There

are five basic cases that must be understood before going

on.

Case 1

When no pebbles are added to no pebbles, the total is no

pebbles. As a word equation,

None + none = none

With binary numbers, this equation is written as

0 + 0 = 0

&

Case 2

If no pebbles are added to one pebble, the total is one

pebble:

None + • = 0

In terms of binary numbers,

0+1 = 1

Case 3

Addition is commutative. This means you can transpose

the numbers of the preceding case to get

9 + none = 9

or

1+0=1

Case 4

Next, one pebble added to one pebble gives two pebbles:

9 + 9 = 99

As a binary equation,

1 + 1 = 10

To avoid confusion with decimal numbers, read this as

“one plus one equals one-zero.” An alternative way of

reading the equation is “one plus one equals zero, carry

one.”

Case 5

One pebble plus one pebble plus one pebble gives a total

of three pebbles:

9 + 9 + 9 = 999

The binary equation is

1 + 1 + 1 = 11

Read this as “one plus one plus one equals one-one.”

Alternatively, “one plus one plus one equals one, carry

one.”

79

Rules to Remember
EXAMPLE 6-1

The foregoing cases are all you need for more complicated
binary addition. Therefore, memorize these five rules: binary numbers 01010111 and 00110101.

0 + 0 = 0 (6-1)
0 + 1 = 1 (6-2)

1 + 0 = 1 (6-3)
1 + 1 = 10 (6-4)

1 + 1 + 1 = 11 (6-5)

Larger Binary Numbers

Column-by-column addition applies to binary numbers as

well as decimal. For example, suppose you have this

problem in binary addition:

11100

+ 11010
7

Start with the least significant column to get

11100

+ 11010

0

Here, 0 + 0 gives 0.

Next, add the bits of the second column as follows:

11100
+ 11010

10

This time, 0 + 1 results in 1.

The third column gives

11100
+ 11010

110

In this case, 1 + 0 produces 1.

The fourth column results in

11100
+ 11010

0110 (carry 1)

As you see, 1 + 1 equals 0 with a carry of 1.

Finally, the last column gives

11100

+ 11010

110110

Here, 1 + 1 + 1 (carry) produces 11, recorded as 1 with

a carry to the next higher column.

SOLUTION

This is the problem:

01010111
+ 00110101

7

If you add the bits column by column as previously

demonstrated, you will get

01010111

+ 00110101
10001100

Expressed in hexadecimal numbers, the foregoing addi¬

tion is

57

+ 35

8C

For clarity, we can use subscripts:

+ 35t6

8C16

In microprocessor work, it is more convenient to use the

letter H to signify hexadecimal numbers. In other words,

the usual way to express the foregoing addition is

57H

+ 35H

8CH

6-2 BINARY SUBTRACTION

To subtract binary numbers, we need to discuss four cases.

Case 1: 0-0 = 0

Case 2: 1-0=1

Case 3: 1-1=0

Case 4: 10-1 = 1

The last result represents

••• = •
which makes sense.

80 Digital Computer Electronics

To subtract larger binary numbers, subtract column by

column, borrowing from the next higher column when

necessary. For instance, in subtracting 101 from 111,

proceed like this:

7 111

- 5 - 101

2 010

TABLE 6-1. HALF-ADDER

A B CARRY SUM

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Starting on the right, 1 - 1 gives 0; then, 1 - 0 is 1;

finally, 1 — 1 is 0.

Here is another example: subtract 1010 from 1101.

13 1101

- 10 - 1010
3 0011

In the least significant column, 1 — 0 is 1. In the second

column, we have to borrow from the next higher column;

then, 10 — 1 is 1. In the third column, 0 (after borrow)

— 0 is 0. In the fourth column, 1 — 1=0.

Direct subtraction like the foregoing has been used in

computers; however, it is possible to subtract in a different

way. Later sections of this chapter will show you how.

6-3 HALF-ADDERS

Figure 6-1 is a half-adder, a logic circuit that adds 2 bits.

Notice the outputs: SUM and CARRY. The boolean equations

for these outputs are

SUM = A © B (6-6)

CARRY = AB (6-7)

The SUM output is A xor B\ the CARRY output is A and

B. Therefore, SUM is a 1 when A and B are different;

CARRY is a 1 when A and B are Is.

Table 6-1 summarizes the operation. When A and B are

0s, the SUM is 0 with a CARRY of 0. When A is 0 and B
is 1, the SUM is 1 with a CARRY of 0. When A is 1 and

B is 0, the SUM equals 1 with a CARRY of 0. Finally,

when A is 1 and B is 1, the SUM is 0 with a CARRY of L

The logic circuit of Fig. 6-1 does electronically what we

do mentally when we add 2 bits. Applications for the half¬

adder are limited. What we need is a circuit that can add

3 bits at a time.

A B

Fig. 6-1 Half-adder.

6-4 FULL ADDERS

Figure 6-2 shows di full adder, a logic circuit that can add

3 bits. Again there are two outputs, SUM and CARRY. The

boolean equations are

SUM = A © B 0 C (6-8)

CARRY = AB + AC 4- BC (6-9)

ABC

Fig. 6-2 Full adder.

In this case, SUM equals A xor B xor C; CARRY equals

AB or AC or BC. Therefore, SUM is 1 when the number

of input Is is odd; CARRY is a 1 when two or more inputs

are Is.

Table 6-2 summarizes the circuit action. A, B, and C

are the bits being added. If you check each entry, you will

see that the circuit adds 3 bits at a time and comes up with

the correct answer.

TABLE 6-2. FULL ADDER

A B c CARRY SUM

0 0 0 0 0
0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1
1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Chapter 6 Arithmetic-Logic Units 81

Here’s the point. The circuit of Fig. 6-2 does electronically

what we do mentally when we add 3 bits. The full adder

can be cascaded to add large binary numbers. The next

section tells you how.

6-5 BINARY ADDERS

Figure 6-3 shows a binary adder, a logic circuit that can

add two binary numbers. The block on the right (labeled

HA) represents a half-adder. The inputs are A0 and B0\ the

outputs are S0 (SUM) and Cx (CARRY). All other blocks

are full adders (abbreviated FA). Each of these full adders

has three inputs (A„, Bn, and C„) and two outputs.

The circuit adds two binary numbers. In other words, it

carries out the following addition:

A3A2A1A0

T B3B2B1B0

C4S3 S2S1 So

Here’s an example. Suppose A = 1100 and B = 1001.

Then the problem is

1100

+ 1001
?

Figure 6-4 shows the binary adder with the same inputs,

1100 and 1001. The half-adder produces a sum of 1 and

carry of 0, the first full adder produces a sum of 0 and a

carry of 0, the second full adder produces a sum of 1 and

a carry of 0, and the third full adder produces a sum of 0

and a carry of 1. The overall output is 10101, the same

answer we would get with pencil and paper.

By using more full adders, we can build binary adders

of any length. For example, to add 16-bit numbers, we

need 1 half-adder and 15 full adders. From now on, we

will use the abbreviated symbol of Fig. 6-5 to represent a

binary adder of any length. Notice the solid arrows, the

standard way to indicate words in motion. In Fig. 6-5,

words A and B are added to get a sum of S plus a final

CARRY.

A B

S

Fig. 6-5 Symbol for binary adder.

EXAMPLE 6-2

Find the output in Fig. 6-5 if the two input words are

A = 0000 0001 0000 1100

B = 0000 0000 0100 1001

Fig. 6-4 Adding 12 and 9 to get 21.

82 Digital Computer Electronics

SOLUTION

The binary adder adds the two inputs to get

0000 0001 0000 1100
+ 0000 0000 0100 1001

0000 0001 0101 0101

In hexadecimal form, the foregoing addition is

010CH

+ 0049H

0155H

6-6 SIGNED BINARY NUMBERS

The negative decimal numbers are —1, — 2, —3, and so

on. One way to code these as binary numbers is to convert

the magnitude (1, 2, 3, . . .) to its binary equivalent and

prefix the sign. With this approach, —1, —2, and —3

becomes —001, —010, and —Oil. It’s customary to use

0 for the + sign and 1 for the — sign. Therefore, —001,

-010, and -Oil are coded as 1001, 1010, and 1011.

The foregoing numbers have the sign bit followed by the

magnitude bits. Numbers in this form are called signed
binary numbers or sign-magnitude numbers. For larger

decimal numbers you need more than 4 bits. But the idea

is still the same: the leading bit represents the sign and the

remaining bits stand for the magnitude.

EXAMPLE 6-3

Express each of the following as 16-bit signed binary

numbers.

a. + 7

b. -7

c. +25

d. -25

SOLUTION

a. +7 = 0000 0000 0000 0111

b. -7 = 1000 0000 0000 0111

c. +25 = 0000 0000 0001 1001

d. -25 = 1000 0000 0001 1001

No subscripts are used in these equations because it’s clear

from the context that decimal numbers are being expressed

in binary form. Nevertheless, you can use subscripts if you

prefer. The first equation can be written as

+ 710 = 0000 0000 0000 01112

the next equation as

-710 = 1000 0000 0000 01112

and so forth.

EXAMPLE 6-4

Convert the following signed binary numbers to decimal

numbers:

a. 0000 0000 0000 1001

b. 1000 0000 0000 1111

c. 1000 0000 0011 0000

d. 0000 0000 1010 0101

SOLUTION

As usual, the leading bit gives the sign and the remaining

bits give the magnitude.

a. 0000 0000 0000 1001 = +9

b. 1000 0000 0000 1111 = -15

c. 1000 0000 0011 0000 = -48

d. 0000 0000 1010 0101 = +165

6-7 2’s COMPLEMENT

Sign-magnitude numbers are easy to understand, but they

require too much hardware for addition and subtraction.

This has led to the widespread use of complements for

binary arithmetic.

Definition

Recall that a high invert signal to a controlled inverter

produces the l’s complement. For instance, if

A = 0111 (6-10a)

the l’s complement is

A = 1000 (6-10/7)

The 2’s complement is defined as the new word obtained

by adding 1 to l’s complement. As an equation,

A' = A + 1 (6-11)

where A' = 2’s complement

A = l’s complement

Here are some examples. If

A = 0111

Chapter 6 Arithmetic-Logic Units S3

the l’s complement is Back to the Odometer

A = 1000

and the 2’s complement is

A' = 1001

In terms of a binary odometer, the 2’s complement is the

next reading after the l’s complement.

Another example. If

then

A = 0000 1000

and

A = 1111 0111

A' = mi iooo

Double Complement

If you take the 2’s complement twice, you get the original

word back. For instance, if

A = 0111

the 2’s complement is

A' = 1001

If you take the 2’s complement of this, you get

A" = 0111

which is the original word.

In general, this means that

Chapter 1 used an odometer to introduce binary numbers.

The discussion was about positive numbers only. But

odometer readings can also indicate negative numbers.

Here’s how.

If a car has a binary odometer, all bits eventually reset

to 0s. A few readings before and after a complete reset

look like this:

1101
1110
1111
0000 (reset)

0001
0010
0011

1101 is the reading 3 miles before reset, 1110 occurs 2

miles before reset, and 1111 indicates 1 mile before reset.

Then, 0001 is the reading 1 mile after reset, 0010 occurs

2 miles after reset, and 0011 indicates 3 miles after reset.

“Before” and “after” are synonymous with “negative”

and “positive.” Figure 6-6 illustrates this idea with the

number line learned in basic algebra: 0 marks the origin,

positive decimal numbers are on the right, and negative

decimal numbers are on the left. The odometer readings

are the binary equivalent of positive and negative decimal

numbers: 1101 is the binary equivalent of - 3, 1110 stands

for -2, 1111 for - 1; 0000 for 0; 0001 for + 1; 0010 for

+ 2, and 0011 for +3.

The odometer readings of Fig. 6-6 demonstrate how

positive and negative numbers are stored in a typical

microcomputer. Positive decimal numbers are expressed in

sign-magnitude form, but negative decimal numbers are

represented as 2’s complements. As before, positive num¬

bers have a leading sign bit of 0, and negative numbers

have a leading sign bit of 1.

A" = A (6-12)

Read this as “the double complement of A equals A.”

Because of this property, the 2’s complement of a binary

number is equivalent to the negative of a decimal number.

This idea is explained in the following discussion.

2’s Complement Same as Decimal Sign Change

Taking the 2’s complement of a binary number is the same

as changing the sign of the equivalent decimal number. For

example, if

A = 0001 (-hi in Fig. 6-6)

1101 mo 1111 0000 0001 0010 0011
-•-• •-•--•-•-#-

-3 -2 -1 0 +1 +2 +3

Fig. 6-6 Decimal numbers and odometer readings.

84 Digital Computer Electronics

taking the 2’s complement gives SOLUTION

A' - 1111 (-1 in Fig. 6-6) Decimal + 5 is expressed in sign-magnitude form:

Similarly, if + 5 = 0000 0101

A - 0010 (+ 2 in Fig. 6-6) On the other hand, —5 appears as the 2’s complement:

then the 2’s complement is

A' = 1110 (-2 in Fig. 6-6)

Again, if

A = 0011 (+ 3 in Fig. 6-6)

the 2’s complement is

A' = 1101 (-3 in Fig. 6-6)

The same principle applies to binary numbers of any

length: taking the 2’s complement of any binary number is

the same as changing the sign of the equivalent decimal

number. As will be shown later, this property allows us to

use a binary adder for both addition and subtraction.

-5 = 1111 1011

EXAMPLE 6-7

What is the 2’s-complement representation of —24 in a

16-bit microcomputer?

SOLUTION

Start with the positive form:

+ 24 = 0000 0000 0001 1000

Then take the 2’s complement to get the negative form:

-24 = mi ini mo iooo

Summary

Here are the main things to remember about 2’s complement

representation:

1. The leading bit is the sign bit; 0 for plus, 1 for minus.

2. Positive decimal numbers are in sign-magnitude form.

3. Negative decimal numbers are in 2’s-complement form.

EXAMPLE 6-5

What is the 2’s complement of this word?

A = 0011 0101 1001 1100

SOLUTION

The 2’s complement is

A' = 1100 1010 0110 0100

EXAMPLE 6-6

What is the binary form of +5 and -5 in 2’s-complement

representation? Express the answers as 8-bit numbers.

EXAMPLE 6-8

What decimal number does this represent in 2’s-complement

representation?

mi oooi

SOLUTION

Start by taking the 2’s complement to get

0000 1111

This represents +15. Therefore, the original number is

1111 0001= -15

6-8 2’s-COMPLEMENT ADDER-
SUBTRACTER

Early computers used signed binary for both positive and

negative numbers. This led to complicated arithmetic cir¬

cuits. Then, engineers discovered that the 2’s-complement

representation could greatly simplify arithmetic hardware.

Chapter 6 Arithmetic-Logic Units 8 5

This is why 2’s-complement adder-subtracters are now the

most widely used arithmetic circuits.

Addition

Figure 6-7 shows a 2’s-complement adder-subtracter, a

logic circuit that can add or subtract binary numbers. Here’s

how it works. When SUB is low, the B bits pass through

the controlled inverter without inversion. Therefore, the

full adders produce the sum

S = A + B (6-13)

Incidentally, as indicated in Fig. 6-7, the final CARRY
is not used. This is because S3 is the sign bit and S2 to 50

are the numerical bits. The final CARRY therefore has no

significance at this time.

Subtraction

When SUB is high, the controlled inverter produces the l’s

complement. Furthermore, the high SUB adds a 1 to the

first full adder. This addition of 1 to the l’s complement

forms the 2’s complement_of B. In other words, the

controlled inverter produces B, and adding 1 results in B\
The output of the full adders is

S = A + B' (6-14)

which is equivalent to

S = A - B (6-15)

because the 2’s complement is equivalent to a sign change.

EXAMPLE 6-9

A 7483 is a TTL circuit with four full adders. This means

that it can add nibbles (4-bit numbers).

Figure 6-8 shows a TTL adder-subtracter. The CARRY
out (pin 14) of the least significant nibble is used as the

CARRY in (pin 13) for the most significant nibble. This

allows the two 7483s to add 8-bit numbers. Two 7486s

form the controlled inverter needed for subtraction.

Fig. 6-8 TTL adder-subtracter.

86 Digital Computer Electronics

Suppose the circuit has these inputs:

A = 0001 1000

B = 0001 0000

If SUB = 0, what is the output of the adder-subtracter?

SOLUTION

When SUB is 0, the adder-subtracter adds the two inputs

as follows:

0001 1000

+ 0001 0000

0010 1000

Therefore, the output is 0010 1000. Notice that the decimal

equivalent of the foregoing addition is

24

+ 16

40

EXAMPLE 6-10

Repeat the preceding example for SUB = 1.

SOLUTION

When SUB is 1, the adder-subtracter subtracts the inputs

by adding the 2’s complement as follows:

The decimal equivalent is

24

+ -16

8

EXAMPLE 6-11

In Fig. 6-8, what are the largest positive and negative sums

we can get?

SOLUTION

The largest positive output is

0111 1111

which represents decimal +127. The largest negative output

is

1000 0000

which represents — 128. With 8 bits, therefore, all answers

must lie between —128 and +127. If you try to add

numbers with a sum outside this range, you get an overflow
into the sign-bit position, causing an error.

Chapter 12 discusses the overflow problem in more detail.

All you have to remember for now is that an overflow or

error will occur if the true sum lies outside the range of

-128 to +127.

0001 1000
+ 1111 0000

0000 1000

GLOSSARY

ALU Arithmetic-logic unit. The ALU carries out arith¬

metic and logic operations.

binary adder A logic circuit that can add two binary

numbers.

full adder A logic circiut that can add 3 bits.

half-adder A logic circuit that adds 2 bits.

overflow In 2’s-complement representation, a carry into

the sign-bit position, which results in an error. For an 8-

bit adder-substracter, the true sum must lie between —128

and +127 to avoid overflow.

signed binary A system in which the leading bit represents

the sign and the remaining bits the magnitude of the number.

Also called sign magnitude.

2’s complement The new number you get when you take

the Fs complement and then add 1.

Chapter 6 Arithmetic-Logic Units 87

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. The ALU carries out arithmetic and_op¬

erations (or, and, not, etc.). It processes_

numbers rather than decimal numbers.

2. {logic, binary) A half-adder adds-bits. A

full adder adds_bits, producing a SUM

and a_

3. (two, three, CARRY) A binary adder is a logic cicuit

that can add_binary numbers at a time.

The 7483 is a TTL binary adder. It can add two 4-bit

binary numbers.

4. (two) With signed binary numbers, also known as

sign-magnitude numbers, the leading bit stands for

the_and the remaining bits for the

5. (sign, magnitude) Signed binary numbers require too

much hardware. This has led to the use of_

complements to represent negative numbers. To get

the 2’s complement of a binary number, you first

take the complement, then add

6. (2*sy Vs, 1) If you take the 2’s complement twice,

you get the original binary number back. Because of

this property, taking the-complement of

a binary number is equivalent to changing the sign of

a decimal number.

7. (2’s) In a microcomputer positive numbers are repre¬

sented in_form and negative numbers in

2’s-complement form. The leading bit still represents

the_

8. (sign-magnitude, sign) A 2’s-complement adder-sub¬

tracter can add or subtract binary numbers. Sign-

magnitude numbers represent-decimal

numbers, and 2’s complements stand for-

decimal numbers. You can tell one from the other by

the leading bit, which represents the-

9. (positive, negative, sign) With 2’s-complement repre¬

sentation and an 8-bit adder-subtracter no overflow is

possible if the true sum is between — 128 and +127.

PROBLEMS

6-L Add these 8-bit numbers:

a. 0001 0000 and 0000 1000

b. 0001 1000 and 0000 1100

c. 0001 1100 and 0000 1110

d. 0010 1000 and 0011 1011

After you have each binary sum, convert it to

hexadecimal form.

6-2. Add these 16-bit numbers:

1000 0001 1100 1001

+ 0011 0011 0001 0111

Express the answer in hexadecimal form.

6-3. In each of the following, convert to binary to do

the addition, then convert the answer back to

hexadecimal:

a. 2CH + 4FH = ?

b. 5EH + 1AH = ?

c. 3BH + 6DH = ?

d. A5H + 2CH = ?

6-4. Convert each of the following decimal numbers to

an 8-bit sign-magnitude number:

a. +27

b. -27

c. + 80

d. -80

After you have the sign-magnitude numbers, convert

them to hexadecimal form.

88 Digital Computer Electronics

6-5. Convert each of these sign-magnitude numbers to

its decimal equivalent:

a. 0001 1110

b. 1000 0111

c. 1001 1100

d. 0011 0001

6-6. The following hexadecimal numbers represent

sign-magnitude numbers. Convert each to its deci

mal equivalent.

a. 8FH

b. 3AH

c. 7FH

d. FFH

6-7. Find the 2’s complements:

a. 0000 0111

b. mi mi

c. nn noi
d. 1110 0001

Express your answers in hexadecimal form.

6-8. Convert each of the following to binary. Then

take the 2’s complement:

a. 4CH

b. 8DH

c. CBH

d. FFH

Fig. 6-9

After you have the 2’s complements, convert them

to hexadecimal form.

6-9. An 8-bit microprocessor uses 2’s-complement rep¬

resentation. How do the following decimal num¬

bers appear:

a. -19

b. -48

c. +37

d. -33

Express your answers in binary and hexadecimal

form.
6-10. The output of an ALU is EEH. What decimal

number does this represent in 2’s-complement

representation?

6-11. Suppose the inputs to Fig. 6-9 are A = 3CH and

B = 5FH. What is the output for a low SUB? A

high SUB? Express your final answers in hexa¬

decimal form.

6-12. In Fig. 6-9 which of the following inputs cause an

overflow when SUB is low?

a. 2DH and 4BH

b. 8FH and C3H

c. 5EH and B8H

d. 23H and 14H
6-13. Why are applications for the half-adder limited,

what does the full adder do which makes it more

useful than the half-adder, and what can be done

with a full adder as a result of this feature?

6-14. Since sign-magnitude numbers are fairly easy to

understand, why has the 2’s-complement system

become so widespread?

Chapter 6 Arithmetic-Logic Units 83

Flip-Flops
Gates are decision-making elements. As shown in the

preceding chapter, they can perform binary addition and

subtraction. But decision-making elements are not enough.

A computer also needs memory elements, devices that can

store a binary digit. This chapter is about memory elements

called flip-flops.

7-1 RS LATCHES

A flip-flop is a device with two stable states; it remains in

one of these states until triggered into the other. The RS
latch, discussed in this section, is one of the simplest flip-

flops.

Transistor Latch

In Fig. 7-la each collector drives the opposite base through

a 100-kH resisitor. In a circuit like this, one of the transistors

is saturated and the other is cut off.

For instance, if the right transistor is saturated, its collector

voltage is approximately 0 V. This means that there is no

base drive for the left transistor, so it cuts off and its

collector voltage approaches +5 V. This high voltage

produces enough base current in the right transistor to

sustain its saturation. The overall circuit is latched with the

left transistor cut off (dark shading) and the right transistor

saturated. Q is approximately 0 V.

By a similar argument, if the left transistor is saturated,

the right transistor is cut off. Figure l-\b illustrates this

other state. Q is approximately 5 V for this condition.

Output Q can be low or high, binary 0 or 1. If latched

as shown in Fig. 7-la, the circuit is storing a binary 0

because

Q = 0

On the other hand, when latched as shown in Fig. 1-lb,

the circuit stores a binary 1 because

0 - 1

Control Inputs

To control the bit stored in the latch, we can add the inputs

shown in Fig. 7-lc. These control inputs will be either low

(0 V) or high (+ 5 V). A high set input S forces the left

transistor to saturate. As soon as the left transistor saturates,

the overall circuit latches and

Q = 1

Once set, the output will remain a 1 even though the S
input goes back to 0 V.

A high reset input R drives the right transistor into

saturation. Once this happens, the circuit latches and

0 = 0

The output stays latched in the 0 state, even though the R
input returns to a low.

In Fig. 7-lc, Q represents the stored bit. A complementary

output Q is available from the collector of the left transistor.

This may or may not be used, depending on the application.

Truth Table

Table 7-1 summarizes the operation of the transistor latch.

With both control inputs low, no change can occur in the

output and the circuit remains latched in its last state. This

condition is called the inactive state because nothing

changes.

TABLE 7-1. TRANSISTOR
LATCH

R s Q Comments

0 0 NC No change

0 1 1 Set

1 0 0 Reset

1 1 * Race

90

+5 V +5 V

+5 V

(c)
Fig. 7-1 (a) Latched state; (b) alternative state; (c) trigger inputs.

When R is low and S is high, the circuit sets the Q output

to a high. On the other hand, if R is high and S is low, the

Q output resets to a low.

Race Condition

Look at the last entry in Table 7-1. R and S are high

simultaneously. This is called a race condition; it is never

used because it leads to unpredictable operation.

Here’s why. If both control inputs are high, both tran¬

sistors saturate. When the R and S inputs return to low,

both transistors try to come out of saturation. It is a race

between the transistors to see which one desaturates first.

The faster transistor (the one with the shorter saturation

delay time) will win the race and latch the circuit. If the

faster transistor is on the left side of Fig. 7-lc, the Q output

will be low. If the faster transistor is on the right side, the

Q output will go high. In mass production, either transistor

can be faster; therefore, the Q output is unpredictable. This

is why the race condition must be avoided.

Here’s how to recognize a race condition. If simultane¬

ously changing both inputs to a memory element leads to

an unpredictable output, you’ve got a race condition. With

the transistor latch, R = 1 and S = 1 is a race condition

because simultaneously returning R and S to 0 forces Q
into a random state.

From now on, an asterisk in a truth table (see Table

7-1) indicates a race condition, sometimes called a forbidden

or invalid state.

nor Latches

A discrete circuit like Fig. 7-lc is rarely used because we

are in the age of integrated circuits. Nowadays, you build

RS latches with nor gates or nand gates.

Figure l-2a shows how it’s done with nor gates. Figure

l-2b is the De Morgan equivalent. As shown in Table

7-2, a low R and a low S give us the inactive state; the

circuit stores or remembers. A low R and a high S represent

the set state, while a high R and a low S give the reset

state. Finally, a high R and a high S produce a race

condition; therefore, we must avoid R = 1 and S = 1

when using a NOR latch.

Figure 7-2c is a timing diagram; it shows how the input

signals interact to produce the output signal. As you see,

the Q output goes high when S goes high. Q remains high

after S goes low. Q returns to low when R goes high, and

stays low after R returns to low.

Chapter 7 Flip-Flops 91

TABLE 7-2. nor LATCH TABLE 7-3. nand LATCH

R 5 Q Comment

0 NC No change

0 1 1 Set

1 0 Reset

1 1 * Race

R s Q Comment

0 0 * Race

0 1 1 Set

1 0 0 Reset

1 1 NC No change

(a)

(b)

R

s_I
I

Q

(c)

Fig. 7-2 (a) nor latch; (b) De Morgan equivalent; (c) timing

diagram.

nand Latches

If you prefer using nand gates, you can build an RS latch

as shown in Fig. 7-3a. Sometimes it is convenient to draw

the De Morgan equivalent shown in Fig. 7-3/?. In either

case, a low R and a high 5 set Q to high; a high R and a

low 5 reset Q to low.

Because of the NAND-gate inversion, the inactive and

race conditions are reversed. In other words, R = 1 and 5

= 1 becomes the inactive state; R = 0 and 5 = 0 becomes

the race condition (see Table 7-3). Therefore, whenever

you use a nand latch, you must avoid having both inputs

low at the same time. (To remember the race condition for

a nand latch, glance at Fig. 7-3/?. If R = 0 and 5 = 0,

then Q — 1 and 0=1; both outputs are the same,

indicating an invalid condition.)

R
1_1 1_1

1
1
1

(c)

Fig. 7-3 (a) nand latch; (/?) De Morgan equivalent; (c) timing

diagram.

Figure'7-3c shows the timing diagram for a nand latch.

R and 5 are normally high to avoid the race condition. Only

one of them goes low at any time. As you see, the Q output

goes high whenever R goes low; the Q output goes low

whenever 5 goes low.

Switch Debouncers

RS latches are often used as switch debouncers. Whenever

you throw a switch from the open to the closed position,

the contacts bounce and the switch alternately makes and

breaks for a few milliseconds before finally settling in the

closed position. One way to eliminate the effects of contact

bounce is to use an RS latch in conjunction with the switch.

The following example explains the idea.

92 Digital Computer Electronics

Fig. 7-4 Switch debouncer.

EXAMPLE 7-1

Figure 1-Aa shows a switch debouncer. What does it do?

SOLUTION

As discussed in Chap. 4, floating TTL inputs are equivalent

to high inputs. With the switch in the START position, pin

1 is low and pin 5 is high; therefore, CLR is high and CLR
is low. When the switch is thrown to the clear position,

pin 1 goes high, as shown in Fig. 1-Ab. Because of contact

bounce, pin 5 goes alternately low and high for a few

milliseconds before settling in the low state, symbolized

by the ideal pulses of Fig. 7-4b.The first time pin 5 goes

low, the latch sets, CLR going high and CLR going low.

Subsequent bounces have no effect on CLR and CLR because

the latch stays set.

Similarly, when the switch is thrown back to start, pin

1 bounces low and high for a while. The first time pin 1

goes low, CLR goes back to low and CLR to high. Later

bounces have no effect on CLR and CLR.
Registers need clean signals like CLR and CLR of Fig.

1-Ab to operate properly. If the bouncing signals on pins 1

and 5 drove the registers, the operation would be erratic.

This is why you often see RS latches used as switch

debouncers.

7-2 LEVEL CLOCKING

Computers use thousands of flip-flops. To coordinate the

overall action, a square-wave signal called the clock is sent

to each flip-flop. This signal prevents the flip-flops from

changing states until the right time.

Clocked Latch

In Fig. l-5a a pair of nand gates drive a nand latch. S
and R signals drive the input gates. To avoid confusion,

the inner control signals are labeled R' and S'. The nand

latch works as previously described; a low R' and a high

S' set Q to 1, whereas a high R' and a low S' reset Q to

0. Furthermore, a low R' and S' represent the race condition;

therefore, R' and S' are normally high when the latch is

inactive. Because of the inversion through the input nand

gates, the S input has to drive the upper nand input and

the R input must drive the lower nand input.

Double Inversions Cancel

When analyzing the operation of this and similar circuits,

remember that a double inversion (two bubbles in a series

path) cancels out; this makes it appear as though two and

gates drove or gates, as shown in Fig. 7-5b. In this way,

you can see at a glance that a high S and high CLK force

Chapter 7 Flip-Flops S3

(c)

Fig. 7-5 (a) Clocked latch; (b) equivalent circuit; (c) timing

diagram.

Q to go high. In other words, even though you are looking

at Fig. 7-5a, in your mind you should see Fig. l-5b.

Positive Clocking

In Fig. l-5a the clock is a square-wave signal. Because the

clock (abbreviated CLK) drives both nand gates, a low

CLK prevents S and R from controlling the latch. If a high

S and a low R drive the gate inputs, the latch must wait

until the clock goes high before Q can be set to 1. Similarly,

given a low S and a high R7 the latch must wait for a high

CLK before Q can reset to 0. This is an example of positive
clocking, making a latch wait until the clock signal is high

before the output can change.

Negative clocking is similar. Visualize an inverter be¬

tween CLK and the input gates of Fig. 7-5a. In this case,

the latch must wait until CLK is low before the output can

change.

Positive and negative clocking are often called level
clocking because the flip-flop responds to the level (high

or low) of the clock signal. Level clocking is the simplest

way to control flip-flops with a clock. Later, we will discuss

more advanced methods called edge triggering and master-

slave clocking.

Race Condition

What about the race condition? When the clock is low in

Fig. 7-5n, Rf and S' are high, which is a stable condition.

The only way to get a race condition is to have a high

CLK, high R, and high S. Therefore, normal operation of

this circuit requires that R and S never both be high when

the clock goes high.

Timing Diagram and Truth Table

Figure 7-5c shows the timing diagram. Q goes high when

S is high and CLK goes high. Q returns to the low state

when R is high and CLK goes high. Using a common CLK
signal to drive many flip-flops allows us to synchronize the

operation of the different sections of a computer.

Table 7-4 summarizes the operation of the clocked nand

latch. When the clock is low, the output is latched in its

last state. When the clock goes high, the circuit will set if

S is high or reset if R is high. CLK, R, and S all high is a

race condition, which is never used deliberately.

TABLE 7-4. CLOCKED
nand LATCH

CLK R s Q

0 0 0 NC

0 0 1 NC

0 1 0 NC

0 1 1 NC

1 0 0 NC

1 0 1 1

1 1 0 0

1 1 1 *

94 Digital Computer Electronics

7-3 D LATCHES

Since the RS flip-flop is susceptible to a race condition, we

will modify the design to eliminate the possibility of a race

condition. The result is a new kind of flip-flop known as a

D latch.

Unclocked

Figure 7-6 shows one way to build a D latch. Because of

the inverter, data bit D_drives the S input of a nand latch

and the complement D drives the R input. Therefore, a

high D sets the latch, and a low D resets it. Table 7-5

summarizes the operation of the D latch. Especially im¬

portant, there is no race condition in this truth table. The

inverter guarantees that S and R will always be in opposite

states; therefore, it’s impossible to set up a race condition

in the D latch.

The D latch of Fig. 7-6 is unclocked; it will set or reset

as soon as D goes high or low. An unclocked flip-flop like

this is almost never used.

TABLE 7-5.

UNCLOCKED

DLATCH

~j> Q

0 0
1 1

Clocked

Figure 1-1 a is level-clocked. A low CLK disables the input

gates and prevents the latch from changing states. In other

words, while CLK is low, the latch is in the inactive state

and the circuit stores or remembers. When CLK is high, D

controls the output. A high D sets the latch, while a low

D resets it.

Table 7-6 summarizes the operation. X represents a don’t-

care condition; it stands for either 0 or 1. While CLK is

low, the output cannot change, no matter what D is. When

CLK is high, however, the output equals the input

Q = D

Figure 1-lb shows a timing diagram. If the clock is low,

the circuit is latched and the Q output cannot be changed.

While the clock is high, however, Q equals D; when D

goes high, Q goes high; when D goes low, Q goes low.

The latch is transparent, meaning that the output follows

the value of D while the clock is high.

TABLE 7-6.

CLOCKED

DLATCH

CLK D Q

0 X NC

1 0 0

1 1 1

Chapter 7 Flip-Flops 95

Disadvantage

Because the D latch is level-clocked, it has a serious

disadvantage. While the clock is high, the output follows

the value of D. Transparent latches may be all right in

some applications but not in the computer circuits we will

be discussing. To be truly useful, the circuit of Fig. 1-1 a
needs a slight modification.

7-4 EDGE-TRIGGERED
D FLIP-FLOPS

Now we’re ready to talk about the most common type of

D flip-flop. What a practical computer needs is a D flip-

flop that samples the data bit at a unique instant.

Edge Triggering

Figure 1-Sa shows an RC circuit at the input of a D flip-

flop. By deliberate design, the RC time constant is much

smaller than the clock’s pulse width. Because of this, the

capacitor can charge fully when CLK goes high; this

exponential charging produces a narrow positive voltage

spike across the resistor. Later, the trailing edge of the

clock pulse results in a narrow negative spike.

The narrow positive spike enables the input gates for an

instant; the narrow negative spike does nothing. The effect

is to activate the input gates during the positive spike,

equivalent to sampling the value of D for an instant. At

this unique time, D and its complement hit the flip-flop

inputs, forcing Q to set or reset.

TABLE 7-7.

EDGE-

TRIGGERED

D FLIP-FLOP

CLK D Q

0 X NC

1 X NC

i X NC

t 0 0

t 1 1

This kind of operation is called edge triggering because

the flip-flop responds only when the clock is changing

states. The triggering in Fig. 7-8a occurs on the positive¬

going edge of the clock; this is why it’s referred to as

positive-edge triggering.
Figure 7-8b illustrates the action. The crucial idea is that

the output changes only on the rising edge of the clock. In

other words, data is stored only on the positive-going edge.

Table 7-7 summarizes the operation of the positive-edge-

triggered D flip-flop. The up and down arrows represent

the rising and falling edges of the clock. The first three

entries indicate that there’s no output change when the

clock is low, high, or on its negative edge. The last two

entries indicate an output change on the positive edge of

the clock. In other words, input data D is stored only on

the positive-going edge of the clock.

(b)

Fig. 7-8 Edge-triggered D flip-flop.

96 Digital Computer Electronics

Edge Triggering versus Level Clocking

When a circuit is edge-triggered, the output can change

only on the rising (or falling) edge of the clock. But when

the circuit is level-clocked, the output can change while

the clock is high (or low). With edge triggering, the output

can change only at one instant during the clock cycle; with

level clocking, the output can change during an entire half

cycle of the clock.

Preset and Clear

When power is first applied, flip-flops come up in random

states. To get some computers started, an operator has to

push a master reset button. This sends a clear (reset) signal

to all flip-flops. Also, it is necessary in some computers to

preset (synonymous with “set”) certain flip-flops before a

computer run.

Figure 7-9 shows how to include both functions in a D
flip-flop. The edge triggering is the same as previously

described. In addition, the and gates allow us to slip in a

low PRESET or low CLEAR when desired. A low PRESET
forces Q to equal 1; a low CLEAR resets Q to 0.

Table 7-8 summarizes the circuit action. When PRESET
and CLEAR are both low, we get a race condition; therefore,

PRESET and CLEAR should be kept high when inactive.

Take PRESET low by itself and you set the flip-flop; take

CLEAR low by itself and you reset the flip-flop. As shown

in the remaining entries, the output changes only on the

positive-going edge of the clock.

Preset is sometimes called direct set, and clear is some¬

times called direct reset. The word “direct” means un¬

clocked. For instance, the clear signal may come from a

push button; regardless of what the clock is doing, the

output will reset when the operator pushes the clear button.

The preset and clear inputs override the other inputs;

they have first priority. For example, when PRESET goes

low, the Q output goes high and stays there no matter what

the D and CLK inputs are doing. The output will remain

high as long as PRESET is low. Therefore, the normal

procedure in presetting is to take the PRESET low tempo-

Fig. 7-9 Edge-triggered D flip-flop with preset and clear.

TABLE 7-8. D FLIP-FLOP WITH

PRESET AND CLEAR

PRESET CLEAR CLK D Q

0 0 X X *

0 1 X X 1

1 0 X X 0

1 1 0 X NC

1 1 1 X NC

1 1 1 X NC

1 1 t 0 0

1 1 t 1 1

rarily, then return it to high. Similarly, for the clear function:

take CLEAR low briefly to reset the flip-flop, then take

it back to high to allow the circuit to operate.

Direct-Coupled Edge-Triggered D Flip-Flop

Integrated D flip-flops do not use RC circuits to get narrow

spikes because capacitors are difficult to fabricate on a

chip. Instead, a variety of direct-coupled designs is used.

As an example, Fig. 7-10 shows a positive-edge-triggered

D flip-flop. This direct-coupled circuit has no capacitors,

only nand gates. The analysis is too long and complicated

to go into here, but the idea is the same as previously

discussed. The circuit responds only during the brief instant

the clock switches from low to high. That is, data bit D is

stored only on the positive-going edge of the clock.

Logic Symbol

Figure 7-11 is the symbol of a positive-edge-triggered D
flip-flop. The CLK input has a small triangle, a reminder

of the edge triggering. When you see this schematic symbol,

remember what it means: the D input is stored on the rising

edge of the clock.

PRESET

Chapter 7 Flip-Flops 97

Fig. 7-10 Direct-coupled edge-triggered D flip-flop.

Fig. 7-11 Logic symbol for edge-triggered D flip-flop.

Figure 7-11 also includes preset (PR) and clear (CLR)

inputs. The bubbles indicate an active low state. In other

words, the preset and clear inputs are high when inactive.

To preset the flip-flop, the preset input must go low

temporarily and then be returned to high. Similarly, to reset

the flip-flop, the clear input must go low, then back to

high.

The same idea applies to circuits discussed later. A

bubble at an input means an active low state: the input has

to go low to produce an effect. When no bubble is present,

the input has to go high to have an effect.

Propagation Delay Time

Diodes and transistors cannot switch states instantaneously.

It always takes a small amount of time to turn a diode on

or off. Likewise, it takes a time for a transistor to switch

from saturation to cutoff or vice versa. For bipolar diodes

and transistors, switching time is in the nanosecond region.

Switching time is the main cause of propagation delay
time tp. This represents the amount of time it takes for the

output of a gate or flip-flop to change states. For instance,

if the data sheet of a D flip-flop indicates a tp of 10 ns, it

takes approximately 10 ns for Q to change states after D
has been sampled by the clock edge.

Propagation delay time is so small that it’s negligible in

many applications, but in high-speed circuits you have to

take it into account. If a flip-flop has a tp of 10 ns, this

means that you have to wait 10 ns before the output can

trigger another circuit.

Setup Time

Stray capacitance at the D input (plus other factors) makes

it necessary for data bit D to be at the input before the CLK
edge arrives. The setup time fsetup is the minimum length

of time the data bit must be present before the CLK edge

hits.

For instance, if the data sheet of a D flip-flop indicates

a tsetup of 15 ns, the data bit to be stored must be at the D
input at least 15 ns before the CLK edge arrives; otherwise,

the IC manufacturer does not guarantee correct sampling

and storing.

Hold Time

Furthermore, data bit D has to be held long enough for the

internal transistors to switch states. Only after the transition

is assured can we allow data bit D to change. Hold time
thold is the minimum length of time the data bit must be

present after the CLK edge has struck.

For example, if rsetup is 15 ns and rhold is 5 ns, the data

bit has to be at the D input at least 15 ns before the CLK
edge arrives and held at least 5 ns after the CLK edge hits.

98 Digital Computer Electronics

7-5 EDGE-TRIGGERED
JK FLIP-FLOPS

The next chapter shows you how to build a counter, the

electronic equivalent of a binary odometer. When it comes

to circuits that count, the JK flip-flop is the ideal memory

element to use.

Circuit

Figure l-\2a shows one way to build a JK flip-flop. As

before, an RC circuit with a short time constant converts

the rectangular CLK pulse to narrow spikes. Because of the

double inversion through the nand gates, the circuit is

positive-edge-triggered. In other words, the input gates are

enabled only on the rising edge of the clock.

Inactive

The J and K inputs are control inputs; they determine what

the circuit will do on the positive clock edge. When J and

K are low, both input gates are disabled and the circuit is

inactive at all times including the rising edge of the clock.

Reset

When J is low and K is high, the upper gate is disabled;

so there’s no way to set the flip-flop. The only possibility

is reset. When Q is high, the lower gate passes a reset

trigger as soon as the positive clock edge arrives. This

forces Q to become low. Therefore, 7 = 0 and K = 1

means that a rising clock edge resets the flip-flop.

Set

When 7 is high and K is low, the lower gate is disabled;

so it’s impossible to reset the flip-flop_But you can set the

flip-flop as follows. When Q is low, Q is high; therefore,

the upper gate passes a set trigger on the positive clock

edge. This drives Q into the high state. That is, 7 = 1 and

K = 0 means that the next positive clock edge sets the

flip-flop.

Toggle

When 7 and K are both high, it is possible to set or reset

the flip-flop, depending on the current state of the output.

If Q is high, the lower gate passes a reset trigger on the

(b)

Fig. 7-12 (a) Edge-triggered JK flip-flop; (b) timing diagram.

Chapter 7 Flip-Flops 99

TABLE 7-9. POSITIVE-

EDGE-TRIGGERED

JK FLIP-FLOP

CLK J K Q

0 X X NC

1 X X NC

1 X X NC

X 0 0 NC

t 0 1 0

t 1 0 1

t 1 1 Toggle

next positive clock edge. On the other hand, when Q is

low, the upper gate passes a set trigger on the next positive

clock edge. Either way, Q changes to the complement of

the last state. Therefore, J = 1 and K = 1 means that the

flip-flop will toggle on the next positive clock edge.

(“Toggle” means switch to opposite state.)

Timing Diagram

The timing diagram of Fig. l-\2b is a visual summary of

the action. When J is high and K is low, the rising clock

edge sets Q to high. On the other hand, when J is low and

K is high, the rising clock edge resets Q to low. When J
and K are high simultaneously, the output toggles on each

rising clock edge.

Truth Table

Table 7-9 summarizes the operation. The circuit is inactive

when the clock is low, high, or on its negative edge.

Likewise, the circuit is inactive when J and K are both

low. Output changes occur only on the rising edge of the

clock, as indicated by the last three entries of the table.

The output either resets, sets, or toggles.

Racing

The JK flip-flop shown in Fig. 7-12a has to be edge-

triggered to avoid oscillations. Why? Assume that the circuit

is level-clocked. In other words, assume that we remove

the RC circuit and run the clock straight into the gates.

With a high /, high K, and high CLK, the output will

toggle. New outputs are then fed back to the input gates.

After two propagation times (input and output gates), the

output toggles again. And once more, new outputs return

to the input gates. In this way, the output can toggle

repeatedly as long as the clock is high. That is, we get

oscillations during the positive half cycle of the clock.

Toggling more than once during a clock cycle is called
racing.

Now assume that we put the RC circuit back in and

return to edge triggering. Propagation delay time prevents

the JK flip-flop from racing. Here’s why. In Fig. 7-12cz the

outputs change after the positive clock edge has struck. By

the time the new Q and Q signals return to the input gates,

the positive spikes have decayed to zero. This is why we

get only one toggle during each clock cycle.

For instance, if the total propagation delay time from

input to output is 20 ns, the outputs change approximately

20 ns after the rising edge of the clock. If the spikes are

narrower than 20 ns, the returning Q and Q arrive too late

to cause false triggering.

Symbols

As previously mentioned, capacitors are too difficult to

fabricate on a chip. This is why manufacturers prefer direct-

coupled designs for edge-triggered JK flip-flops. Such

designs are too complicated to reproduce here, but you can

find them in manufacturers’ IC data books.

Figure 7-13a is the standard symbol for a positive-edge-

triggered JK flip-flop of any design.

Figure 7-13/? is the symbol for a JK flip-flop with the

preset and clear functions. As usual, PR and CLR have

active low states. This means that they are normally high

and taken low temporarily to preset or clear the circuit.

Figure 7-13c is another commercially available JK flip-

flop. The bubble on the clock input is the standard way to

indicate negative-edge triggering. As shown in Table 7-10,

the output can change only on tht falling edge of the clock.

The timing diagram of Fig. 7-13d emphasizes this negative-

edge triggering.

7-6 JK MASTER-SLAVE FLIP-FLOP

Figure 7-14 shows a JK master-slave flip-flop, another way

to avoid racing. A master-slave flip-flop is a combination

of two clocked latches; the first is called the master, and

the second is the slave. Notice that the master is positively

TABLE 7-10. NEGATIVE-

EDGE-TRIGGERED

JK FLIP-FLOP

CLK J K Q

0 X X NC

1 X X NC

t X X NC

X 0 0 NC

1 0 1 0

1 1 0 1

1 1 1 Toggle

1OO Digital Computer Electronics

(a) (b) (c)

J

K

Q

(d)

Fig. 7-13 (a) Positive-edge triggering; (b) active low preset and
clear; (c) negative-edge triggering; (d) timing diagram.

Fig. 7-14 Master-slave JK flip-flop.

clocked but the slave is negatively clocked. This implies

the following:

1. While the clock is high, the master is active and the

slave is inactive.

2. While the clock is low, the master is inactive and the

slave is active.

Set

To start the analysis, let’s assume low Q and high Q. For

an input condition of high J, low K, and high CLK, the

master goes into the set state, producing high S and low R.

Nothing happens to the Q and Q outputs because the slave

is inactive while the clock is high. When the clock goes

low, however, the high S and low R force the slave into

the set state, producing a high Q and a low Q.
There are two distinct steps in setting the final Q output.

First, the master is set while the clock is high. Second, the

slave is set while the clock is low. This action is sometimes

called cocking and triggering. You cock the master during

the positive half cycle of the clock, and you trigger the

slave during the negative half cycle of the clock.

Chapter 7 Flip-Flops 101

Reset

When the slave is set, Q is high and Q is low. For the

input condition of low 7, high K, and high CLK, the master

will reset, forcing S to go low and R to go high. Again,

no changes can occur in Q and Q because the slave is

inactive while the clock is high. When the clock returns to

the low state, the low S and high R force the slave to reset;

this forces Q to go low and Q to go high.

Again, notice the cocking and triggering. This is the key

idea behind the master-slave flip-flop. Every action of the

master with a high CLK is copied by the slave when the

clock goes low.

Toggle

If the 7 and K inputs are both high, the master toggles once

while the clock is high; the slave then toggles once when

the clock goes low. No matter what the master does, the

slave copies it. If the master toggles into the set state, the

slave toggles into the set state. If the master toggles into

the reset state, the slave toggles into the reset state.

Level Clocking

The master-slave flip-flop is level-clocked in Fig. 7-14.

While the clock is high, therefore, any changes in 7 and K
can affect the S and R outputs. For this reason, you normally

keep J and K constant during the positive half cycle of the

clock. After the clock goes low, the master becomes inactive

and you can allow 7 and K to change.

Fig. 7-15 Symbol for master-slave JK flip-flop.

Symbol

Figure 7-15 shows the symbol for a JK master-slave flip-

flop with preset and clear functions. The bubble on the

CLK input reminds us that the output changes when the

clock goes low.

Truth Table

Table 7-11 summarizes the operation of a JK master-slave

flip-flop. A low PR and low CLR produces a race condition;

therefore, PR and CLR are normally kept at a high voltage

102 Digital Computer Electronics

TABLE 7-11. MASTER-SLAVE FLIP-FLOP

PR CLR CLK j K Q

0 0 X X X *

0 1 X X X 1

1 0 X X X 0

1 1 X 0 0 NC

1 1 __n_ 0 1 0

1 1 1 0 1

1 1 1 1 Toggle

when inactive. To clear, you take CLR low; to preset, you

take PR low. In either case, you return them to high when

ready to run.

As before, low J and low K produce an inactive state,

regardless of the what the clock is doing. If K goes high

by itself, the next clock pulse resets the flip-flop. If J goes

high by itself, the next clock pulse sets the flip-flop. When

J and K are both high, each clock pulse produces one

toggle.

EXAMPLE 7-2

Figure 7-16a shows a clock generator. What does it do

when HLT is high?

SOLUTION

To begin with, the 555 is an IC that can generate a

rectangular output when connected as shown in Fig. 7-16a.

The frequency of the output is

1.44

; (Ra + 2 Rb)C

The duty cycle (ratio of high state to period) is

Q - + RB
Ra + 2 Rb

With the values shown in Fig. 7-16a the frequency of

the output is

/ =
L44

(36 kfl + 36 kfl)(0.01 fxF)
= 2 kHz

and the duty cycle is

36 kfl + 18 kfl

36 kfl + 36 kfl
0.75

which is equivalent to 75 percent.

nnnnnn
u 500 /us

p— 375 jus

(b)

Fig. 7-16 Clock generator: (a) circuit; (b) 555 output; (c) JK flip-
flop output.

_n j “1 | |
-J — 1 ms

— 0.5 ms

(c)

Figure 7-166 illustrates how the output (pin 3) of the 555

looks. Note how the signal is high for 75 percent of the

cycle. This unsymmetrical output drives the clock input of

a JK master-slave flip-flop.

The JK master-slave flip-flop toggles once per input

cycle; therefore, its output has a frequency of 1 kHz and a

duty cycle of 50 percent. One of the reasons for using the

flip-flop is to get the symmetrical output shown in Fig.

7-16c.

Another reason for using the flip-flop is to control the

starting phase of the clock. A computer run starts with

CLR going momentarily low, then back to high. This resets

the flip-flop, forcing CLK to go low. Therefore, the starting

phase of the CLK signal is always low. You will see the

clock generator of Fig. 7-16a again in Chap. 10; remember

that the CLK signal has a frequency of 1 kHz, a duty cycle

of 50 percent, and starting phase of low.

GLOSSARY

contact bounce The making and breaking of contacts for

a few milliseconds after a switch closes.

edge triggering Changing the output state of a flip-flop

on the rising or falling edge of a clock pulse.

flip-flop A two-state circuit that can remain in either state

indefinitely. Also called a bistable multivibrator. An external

trigger can change the output state.

hold time The minimum amount of time the input signals

must be held constant after the clock edge has struck. After

a clock edge strikes a flip-flop, the internal transistors need

time to change from one state to another. The input control

signals (D, or J and K) must be held constant while these

internal transistors are switching over.

latch The simplest type of flip-flop, consisting of two

cross-coupled nand or nor latches.

level clocking A type of triggering in which the output

of a flip-flop responds to the level (high or low) of the

clock signal. With positive level clocking, for example, the

output can change at any time during the positive half cycle.

master-slave triggering A type of triggering using two

cascaded latches called the master and the slave. The master

is cocked during the positive half cycle of the clock, and

the slave is triggered during the negative half cycle.

propagation delay time The time it takes for the output

of a gate or flip-flop to change after the inputs have changed.

race condition An undesirable condition which may exist

in a system when two or more inputs change simultaneously.

If the final output depends on which input changes first, a

race condition exists.

setup time The minimum amount of time the inputs to a

flip-flop must be present before the clock edge arrives.

toggle Change of the output to the opposite state in a JK

flip-flop.

Chapter 7 Flip-Flops 103

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. A flip-flop is a_element that stores a

binary digit as a low or high voltage. With an RS
latch a high S and a low R sets the output to

_; a low S and a high R_the

output to low.

2. (memory, high, reset) With a nand latch a low R
and a low S produce a___condition. This is

why R and S are kept high when inactive. One use

for latches is switch debouncers; they eliminate the

effects of_bounce.

3. (race, contact) Computers use thousands of flip-

flops. To coordinate the overall action, a common

signal called the_is sent to each flip-flop.

With positive clocking the clock signal must be

-for the flip-flop to respond. Positive and

negative clocking are also called level clocking be¬

cause the flip-flop responds to the_of the

clock, either high or low.

4. (clock, high, level) In a D latch, data bit D drives the

S input of a latch, and the complement D drives the

R input; therefore, a high D_the latch

and a low D resets it. Since R and S are always in

opposite states in a D latch, the_condi¬

tion is impossible.

5. (sets, race) With a positive-edge-triggered D flip-

flop, the data bit is sampled and stored on the

_edge of the clock pulse. Preset and clear

inputs are often called_set and_

reset. These inputs override the other inputs; they

have first priority. When preset goes low, the Q
output goes_and stays there no matter

what the D and CLK inputs are doing.

6. (rising, direct, direct, high) In a flip-flop, propaga¬

tion delay time is the amount of time it takes for the

_to change after the clock edge has

struck. Setup time is the amount of time an input

signal must be present_the clock edge

strikes. Hold time is the amount of time an input

signal must be present_the clock edge

strikes.

7. (output, before, after) In a positive-edge-triggered JK
flip-flop, a low J and a low K produce the

_state. A high J and a high K mean that

the output will_on the rising edge of the

clock.

8. (inactive, toggle) With a JK master-slave flip-flop the

master is cocked when the clock is_, and

the slave is triggered when the clock is_

This type of flip-flop is usually level-clocked instead

of edge-triggered. For this reason, J and K are nor¬

mally kept_while the clock is high.

9. (high, low, constant) Since capacitors are too diffi¬

cult to fabricate on an IC chip, manufacturers rely on

various direct-coupled designs for D flip-flops and JK
flip-flops.

PROBLEMS

7-1. The waveforms of Fig. 7-17 drive a clocked RS
latch (Fig. 7-5a). If Q is low before time A,
a. At what point does Q become a 1?

b. When does Q reset to 0?

CLK

s

R —

Fig. 7-17

7-2. A D flip-flop has these specifications:

^setup i 0 US

Wd = 3 ns

tp = 30 ns

a. How far ahead of the rising clock edge must the

data bit be applied to the D input to ensure

correct storage?

b. After the rising clock edge, how long must you

wait before letting the data bit change?

c. How long after the rising clock edge will Q
change?

104 Digital Computer Electronics

s

°3 °3

<

°2 °2

<

Q^

<

-LOAD

Q0 D0

<

Fig. 7-18

CLK

+5 V

/ n J U

CLK- -C

K Q

Fig. 7-19

+5 V

Fig. 7-20

7-3. In Fig. 7-18, the data word to be stored is

S = 1001

a. If LOAD is low, what does Q equal after the

positive clock edge?

b. If LOAD is high, what does Q equal after the

positive clock edge.

7-4. The clock of Fig. 7-19 has a frequency of 1 MHz,

and the flip-flop has a propagation delay time of 25

ns.

a. What is the period of the clock?

b. The frequency of the Q output? Its period?

c. How long after the negative clock edge does the

Q output change?

7-5. The clock has a frequency of 6 MHz in Fig. 7-19.

What is the frequency of the Q output ? This circuit

is sometimes called a divide-by-2 circuit. Explain

why.

7-6. In Fig. 7-20, CLR is taken low temporarily, then

high. Draw the timing diagram. If the clock has a

frequency of 1 MHz, what is the frequency of the

Q output? Is this a divide-by-2 circuit?

7-7. Figure 7-21 shows a nand latch used as a switch

debouncer. With the switch in the stop position,

what do Q and Y equal? If the switch is thrown to

the start position, what do Q and Y equal?

7-8. The clock has a frequency of 1 MHz in Fig. 7-22.

With the switch in the off position, what is the

frequency of the Q output? If the switch is thrown

to the on position, what is the frequency of the Q
output?

Chapter 7 Flip-Flops 105

8

Registers and Counters
A register is a group of memory elements that work together

as a unit. The simplest registers do nothing more than store

a binary word; others modify the stored word by shifting

its bits left or right or by performing other operations to be

discussed in this chapter. A counter is a special kind of

register, designed to count the number of clock pulses

arriving at its input. This chapter discusses some basic

registers and counters used in microcomputers.

8-1 BUFFER REGISTERS

A buffer register is the simplest kind of register; all it does

is store a digital word.

Basic Idea

Figure 8-1 shows a buffer register built with positive-edge-

triggered D flip-flops. The X bits set up the flip-flops for

loading. Therefore, when the first positive clock edge

arrives, the stored word becomes Q3Q2Q1Q0 = X^XjXq.
In chunked notation,

Q = X

The circuit is too primitive to be of any use. What it

needs is some control over the X bits, some way of holding

them off until we’re ready to store them.

Controlled

Figure 8-2 is more like it. This is a controlled buffer register

with an active-high CLR. Therefore, when CLR goes high,

all flip-flops reset and the stored word becomes

Q = 0000

When CLR returns low, the register is ready for action.

LOAD is a control input; it determines what the circuit

does. When LOAD is low, the X bits cannot reach the flip-

flops. At the same time, the inverted signal LOAD is high;

this forces each flip-flop output to feed back to its data

input. When each rising clock edge arrives, data is circulated

or retained. In other words, the register contents are

unchanged when LOAD is low.

When LOAD goes high, the X bits are transmitted to the

data inputs. After a short setup time, the flip-flops are ready

for loading. With the arrival of the positive clock edge, the

X bits are loaded and the stored word becomes

Q3Q2Q1Q0 = X3X2X j X0

If LOAD returns to low, the foregoing word is stored

indefinitely; this means that the X bits can change without

affecting the stored word.

EXAMPLE 8 1

Chapter 10 discusses the SAP (simple-as-possible) com¬

puter. This educational computer has three generations,

SAP-1, SAP-2, and SAP-3. Figure 8-3 shows the output

register of the SAP-1 computer. The 74LS173 chips are

controlled buffer registers, similar to Fig. 8-2. What does

the circuit do?

SOLUTION

To begin with, it is an 8-bit buffer register built with TTL

chips. Each chip handles 4 bits of input word X. The upper

nibble X7X6X5X4 goes to pins 14, 13, 12, and 11 of C22;

the lower nibble X3X2X1X0 goes to pins 14, 13, 12, and

11 of the C23.

Output word Q drives an 8-bit LED display. The upper

nibble Q7Q6Q5Q4 comes out of pins 3, 4, 5, and 6 of C22;

the lower nibble Q3Q2QiQo comes out of pins 3, 4, 5, and

6 of C23. The typical high-state output of a 74LS173 is

3.5 V, and the typical LED drop is 1.5 V. Since each

current-limiting resistance is 1 kfl, the high-state current

is approximately 2 mA for each output pin.

106 Digital Computer Electronics

*2 X1 *0

_I I_I 1_I I_
Fig. 8-1 Buffer register.

X-f x6 x5 x4 x3 X2 X, x0

Note: All resistors are 1 kf2.

Fig. 8-3 SAP-1 output register.

The 74LS173 requires a 5-V supply for pin 16 and a

ground return on pin 8. The SAP-1 output register never

needs clearing; this is why the CLR input (pin 15) is made

inactive by tying it to ground. In a 74LS173, pins 9 and

10 are separate LOAD controls. Because SAP-1 needs only

a single LOAD control, pins 9 and 10 are tied together.

The bubbles on pins 9 and 10 indicate an active low state;

this means that LOAD must be low for the positive clock

edge to store the input word. See Appendix 4 for a more

detailed description of the 74LS173.

The action of the circuit is straightforward. While LOAD
is high, the register contents are unchanged even though

the clock is running. To change the stored word, LOAD
must go low. Then the next rising clock edge loads the X
bits into the register. As soon as this happens, the LED

display shows the new contents.

Chapter 8 Registers and Counters 107

8-2 SHIFT REGISTERS

A shift register moves the stored bits left or right. This bit

shifting is essential for certain arithmetic and logic opera¬

tions used in microcomputers.

Shift Left

Figure 8-4 is a shift-left register. As shown, Dm sets up the

right flip-flop, Q0 sets up the second flip-flop, Qx the third,

and so on. When the next positive clock edge strikes,

therefore, the stored bits move one position to the left.

As an example, here’s what happens with Din = 1 and

Q - 0000

All data inputs except the one on the right are Os. The

arrival of the first rising clock edge sets the right flip-flop,

and the stored word becomes

Q = 0001

This new word means Dx now equals 1, as well as D0.

When the next positive clock edge hits, the Qx flip-flop sets

and the register contents become

Q = 0011

The third positive clock edge results in

Q - 0111

and the fourth rising clock edge gives

q = mi

Hereafter, the stored word is unchanged as long as

An = 1.

Suppose Dm is now changed to 0. Then, successive clock

pulses produce these register contents:

Q = 1110

Q = 1100

Q = 1000

Q = 0000

As long as Dm = 0, subsequent clock pulses have no
further effect.

The timing diagram of Fig. 8-5 summarizes the foregoing

discussion.

Shift Right

Figure 8-6 is a shift-right register. As shown, each Q output

sets up the D input of the preceding flip-flop. When the

108 Digital Computer Electronics

rising clock edge arrives, the stored bits move one position

to the right.

Here’s an example with Din = 1 and

Q = 0000

All data inputs except the one on the left are 0s. The first

positive clock edge sets the left flip-flop and the stored

word becomes

Q = 1000

With the appearance of this word, D3 and D2 are Is. The

second rising clock edge gives

Q = 1100

The third clock pulse gives

Q = 1110

and the fourth clock pulse gives

q = mi

8-3 CONTROLLED SHIFT
REGISTERS

A controlled shift register has control inputs that determine

what it does on the next clock pulse.

SHL Control

Figure 8-7 shows how the shift-left operation can be

controlled. SHL is the control signal. When SHL is low,

the inverted signal SHL is high. This forces each flip-flop

output to feed back to its data input. Therefore, the data is

retained in each flip-flop as the clock pulses arrive. In this

way, a digital word can be stored indefinitely.

When SHL goes high, Dm sets up the right flip-flop, Q0
sets up the second flip-flop, Qx the third flip-flop, and so

on. In this mode, the circuit acts like a shift-left register.

Each positive clock edge shifts the stored bits one position
to the left.

Serial Loading

Serial loading means storing a word in the shift register by

entering 1 bit per clock pulse. To store a 4-bit word, we

need four clock pulses. For instance, here’s how to serially

store the word

X = 1010

With SHL high in Fig. 8-7, make Din = 1 for the first

clock pulse, Din = 0 for the second clock pulse, Din = 1

for the third clock pulse, and Din = 0 for the fourth clock

pulse. If the register is clear before the first clock pulse,

the successive register contents look like this:

operation can be included. As an example, the 74198 is a

TTL 8-bit bidirectional shift register. It can broadside load,

shift left, or shift right.

Q = 0001

Q = 0010

Q = 0101

Q = 1010

(.Din = 1: first clock pulse)

(Din = 0: second clock pulse)

(Din = 1: third clock pulse)

(Dm = 0: fourth clock pulse)

In this way, data is entered serially into the right end of

the register and shifted left until all 4 bits have been stored.

After the last bit is entered, SHL is taken low to freeze the

register contents.

Parallel Loading

Figure 8-8 is another step in the evolution of shift registers.

The circuit can load X bits directly into the flip-flops, the

same as a buffer register. This kind of entry is called

parallel or broadside loading; it takes only one clock pulse

to store a digital word.

If LOAD and SHL are low, the output of the nor gate

is high and flip-flop outputs return to their data inputs. This

forces the data to be retained in each flip-flop as the positive

clock edges arrive. In other words, the register is inactive

when LOAD and SHL are low, and the contents are stored

indefinitely.

When LOAD is low and SHL is high, the circuit acts like

a shift-left register, as previously described. On the other

hand, when LOAD is high and SHL is low, the circuit acts

like a buffer register because the X bits set up the flip-flops

for broadside loading. (Having LOAD and SHL simulta¬

neously high is forbidden because it’s impossible to do

both operations on a single clock edge.)

By adding more flip-flops we can build a controlled shift

register of any length. And with more gates, the shift-right

8-4 RIPPLE COUNTERS

A counter is a register capable of counting the number of

clock pulses that have arrived at its clock input. In its

simplest form it is the electronic equivalent of a binary

odometer.

The Circuit

Figure 8-9a shows a counter built with JK flip-flops. Since

the J and K inputs are returned to a high voltage, each flip-

flop will toggle when its clock input receives a negative

edge.

Here’s how the counter works. Visualize the Q outputs

as a binary word

Q = Q3Q2Q1Q0

03 is the most significant bit (MSB), and 0O is the least

significant bit (LSB). When CLR goes low; all flip-flops

reset. This results in a digital word of

Q = 0000

When CLR returns to high, the counter is ready to go.

Since the LSB flip-flop receives each clock pulse, Q0 toggles

once per negative clock edge, as shown in the timing

diagram of Fig. 8-9fr. The remaining flip-flops toggle less

often because they receive their negative edges from the

preceding flip-flops.

For instance, when Q0 goes from 1 back to 0, the Qx
flip-flop receives a negative edge and toggles. Likewise,

x3 x2 x, x0

Fig. 8-8 Shift register with broadside load.

110 Digital Computer Electronics

High

Fig. 8-9 (a) Ripple counter; (b) timing diagram.

(b)

when Qx changes from 1 back to 0, the Q2 flip-flop gets a

negative edge and toggles. And when Q2 goes from 1 to

0, the Q3 flip-flop toggles. In other words, whenever a flip-

flop resets to 0, the next higher flip-flop toggles (see Fig.

8-%).
What does this remind you of? Reset and carry! Each

flip-flop acts like a wheel in a binary odometer; whenever

it resets to 0, it sends a carry to the next higher flip-flop.

Therefore, the counter of Fig. 8-9a is the electronic

equivalent of a binary odometer.

Counting

If CLR goes low then high, the register contents of Fig.

8-9a become

Q = 0000

When the first clock pulse hits the LSB flip-flop, Q0 becomes

a 1. So the first output word is

Q = 0001

When the second clock pulse arrives, Q0 resets and carries;

therefore, the next output word is

Q - 0010

The third clock pulse advances Q0 to 1; this gives

Q = 0011

The fourth clock pulse forces the Q0 flip-flop to reset and

carry. In turn, the Qx flip-flop resets and carries. The

resulting output word is

Q = 0100

The fifth clock pulse gives

Q = 0101

The sixth gives

Q = 0110

and the seventh gives

Q = 0111

On the eighth clock pulse, Q0 resets and carries, Qx
resets and carries, Q2 resets and carries, and Q3 advances

to 1. So the output word becomes

Q = 1000

The ninth clock pulse gives

Q = 1001

The tenth gives

O = 1010

and so on.

Chapter 8 Registers and Counters 111

TABLE 8-1. RIPPLE

COUNTER

Count Q3Q2Q1Q0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

The last word is

Q = Till

corresponding to the fifteenth clock pulse. The next clock

pulse resets all flip-flops. Therefore, the counter resets to

Q = 0000

and the cycle repeats.

Table 8-1 summarizes the operation of the counter. Count
represents the number of clock pulses that have arrived. As

you see, the counter output is the binary equivalent of the

decimal count.

Frequency Division

Each flip-flop in Fig. 8-9a divides the clock frequency by

a factor of 2. This is why a flip-flop is sometimes called a

divide-by-2 circuit. Since each flip-flop divides the clock

frequency by 2, n flip-flops divide the clock frequency by

2\

The timing diagram of Fig. 8-9b illustrates the divide-

by-2 action. Q0 is one-half the clock frequency, {9, is one-

fourth the clock frequency, Q2 is one-eighth the clock

frequency, and Q3 is one-sixteenth of the clock frequency.

In other words,

1 flip-flop divides by 2

2 flip-flops divide by 4

3 flip-flops divide by 8

4 flip-flops divide by 16

and

n flip-flops divide by 2"

Ripple Counter

The counter of Fig. 8-9a is known as a ripple counter
because the carry moves through the flip-flops like a ripple

on water. In other words, the Q0 flip-flop must toggle before

the Qx flip-flop, which in turn must toggle before the Q2
flip-flop, which in turn must toggle before the Q3 flip-flop.

The worst case occurs when the stored word changes from

0111 to 1000, or from 1111 to 0000. In either case, the

carry has to move all the way to the MSB flip-flop. Given

a tp of 10 ns per flip-flop, it takes 40 ns for the MSB to

change.

By adding more flip-flops to the left end of Fig. 8-9a we

can build a ripple counter of any length. Eight flip-flops

give an 8-bit ripple counter, twelve flip-flops result in a

12-bit ripple counter, and so on.

Controlled Counter

A controlled counter counts clock pulses only when com¬

manded to do so. Figure 8-10 shows how it’s done. The

COUNT signal can be low or high. Since it conditions the

J and K inputs, COUNT controls the action of the counter,

forcing it to either do nothing or to count clock pulses.

When COUNT is low, the J and K inputs are low;

therefore, all flip-flops remain latched in spite of the clock

pulses driving the counter.

On the other hand, when COUNT is high, the J and K
inputs are high. In this case, the counter works as previously

described; each negative clock edge increments the stored

count by 1.

EXAMPLE 8-2

As mentioned earlier, the program and data are stored in

the memory before a computer run. The program is a list

of instructions telling the computer how to process the data.

COUNT

Fig. 8-10 Controlled ripple counter.

212 Digital Computer Electronics

Fig. 8-11 SAP-1 program counter.

Every microcomputer has a program counter to keep track

of the instruction being executed.

Figure 8-11 shows part of the program counter used in

SAP-1. What does it do?

SOLUTION

To begin with, let’s find out why the CLR and CLK signals

are shown as complements. Signals are often available in

complemented and uncomplemented form. The switch

debouncer of Fig. l-4a has two outputs, CLR and CLR. In

SAP-1 the CLR signal goes to any circuit that uses an active

high clear and the CLR signal to any circuit with an active

low clear. This is why CLR goes to the counter of Fig.

8-11; it has an active low clear. A similar idea applies to

the clock signal.

The 74107 is a dual JK master-slave flip-flop. The SAP-

1 program counter uses two 74107s. Although not shown,

pin 14 ties to the 5-V supply, and pin 7 is the chip ground.

Because master-slave flip-flops are used, a high CLK cocks

the master and a low CLK triggers the slave.

Before a computer run, the operator pushes a clear button

that sends a low CLR to the program counter. This resets

its count to

Q = 0000

When the operator releases the button, CLR goes high and

the computer run begins.

After the first instruction has been fetched from the

memory, COUNT goes high for one clock pulse and the

count becomes

Q = 0001

This count indicates that the first instruction has been

fetched from the memory. (Later you will see how the

computer executes the first instruction.)

After the first instruction has been executed, the computer

fetches the second instruction in the memory. Once again,

COUNT goes high for one clock pulse, producing a new

count of

Q = 0010

The program counter now indicates that the second instruc¬

tion has been fetched from the memory.

Each time a new instruction is fetched from the memory,

the program counter is incremented to produce the next

higher count. In this way, the computer can keep track of

which instruction it’s working on.

8-5 SYNCHRONOUS COUNTERS

When the carry has to propagate through a chain of n flip-

flops, the overall propagation delay time is ntp. For this

reason ripple counters are too slow for some applications.

To get around the ripple-delay problem, we can use a

synchronous counter.

The Circuit

Figure 8-12 shows one way to build a synchronous counter

with positive-edge-triggered flip-flops. This time, clock

pulses drive all flip-flops in parallel. Because of the

simultaneous clocking, the correct binary word appears

after one propagation delay time rather than four.

The least significant flip-flop has its J and K inputs tied

to a high voltage; therefore, it responds to each positive

clock edge. But the remaining flip-flops can respond to the

positive clock edge only under certain conditions. As shown

in Fig. 8-12, the g, flip-flop toggles on the positive clock

edge only when g0 is a 1. The g2 flip-flop toggles only

when Qx and g0 are Is. And the Q3 flip-flop toggles only

when Q2, Qu and g0 are Is. In other words, a flip-flop

toggles on the next positive clock edge if all lower bits are

Is.

Chapter 8 Registers and Counters 113

High

-TLTLTL
CLR

Fig. 8-12 Synchronous counter.

Here’s the counting action. A low CLR resets the counter

to

Q = 0000

When the CLR line goes high, the counter is ready to go.

The first positive clock edge sets Q0 to get

Q = 0001

Since Q0 is now 1, the Qx flip-flop is conditioned to toggle

on the next positive clock edge.

When the second positive clock edge arrives, Qx and (2o

simultaneously toggle and the output word becomes

Q = 0010

The third positive clock edge advances the count by 1:

Q = 0011

Because Qx and Q0 are now Is, the Q2, Qu and Q0 flip-

flops are conditioned to toggle on the next positive clock

edge. When the fourth positive clock edge arrives, Q2, Qi,

and Qg toggle simultaneously, and after one propagation

delay time the output word becomes

Q = 0100

The successive Q words are 0101, 0110, 0111, and so

on up to 1111 (equivalent to decimal 15). The next positive

clock edge resets the counter, and the cycle repeats.

By adding more flip-flops and gates we can build

synchronous counters of any length. The advantage of a

synchronous counter is its speed; it takes only one propa¬

gation delay time for the correct binary count to appear

after the clock edge hits.

Controlled Counter

Figure 8-13 shows how to build a controlled synchronous
counter. A low COUNT disables all flip-flops. When

COUNT is high, the circuit becomes a synchronous counter;

each positive clock edge advances the count by 1.

8-6 RING COUNTERS

Instead of counting with binary numbers, a ring counter
uses words that have only a single high bit.

Circuit

Figure 8-14 is a ring counter built with D flip-flops. The

Q0 output sets up the Dx input, the Qx output sets up the

D2 input, and so on. Therefore, a ring counter resembles a

COUNT

-TLTLTL
CLR

Fig. 8-13 Controlled synchronous counter.

114 Digital Computer Electronics

Fig. 8-14 Ring counter.
CLR

shift-left register because the bits are shifted left one position

per positive clock edge. But the circuit differs because the

final output is fed back to the D0 input. This kind of action

is called rotate left; bits are shifted left and fed back to the

input.

When CLR goes low then back to high, the initial output

word is

Q = 0001

The first positive clock edge shifts the MSB into the LSB

position; the other bits shift left one position. Therefore,

the output word becomes

Q = 0010

The second positive clock edge causes another rotate left

and the output word changes to

Q = 0100

After the third positive clock edge, the output word is

Q = 1000

The fourth positive clock edge starts the cycle over because

the rotate left produces

Q = 0001

The stored 1 bit follows a circular path, moving left

through the flip-flops until the final flip-flop sends it back

to the first flip-flop. This is why the circuit is called a ring

counter.

More Bits

Add more flip-flops and you can build a ring counter of

any length. With six flip-flops we get a 6-bit ring counter.

Again, the CLR signal resets all flip-flops except the LSB

flip-flop. Therefore, the successive ring words are

Q = 000001 (0)

Q = 000010 (1)

Q = 000100 (2)

Q = 001000 (3)

Q = 010000 (4)

Q = 100000 (5)

Each of the foregoing words has only 1 high bit. The

initial word stands for decimal 0 and the final word for

decimal 5. If a ring counter has n flip-flops, therefore, the

final ring word represents decimal n — 1.

Applications

Ring counters cannot compete with ripple and synchronous

counters when it comes to ordinary counting, but they are

invaluable when it’s necessary to control a sequence of

operations. Because each ring word has only 1 high bit,

you can activate one of several devices.

For instance, suppose the six small boxes (A to F) of

Fig. 8-15 are digital circuits that can be turned on by a

high Q bit. When CLR goes low, Q0 goes high and activates

device A. After CLR returns to high, successive clock

pulses turn on each device for a short time. In other words,

as the stored 1 bit shifts left, it turns on B to F in sequence,

and then the cycle starts over.

Many digital circuits participate during a computer run.

To fetch and execute instructions, a computer has to activate

Fig. 8-15 Controlling a sequence of operations

Chapter 8 Registers and Counters 11 5

C36
74107

C37
74107

C38
74107

CLK

CLR

h T4

Note: Pin 14 is connected to +5 V, and pin 7 is grounded.

Fig. 8-16 SAP-1 ring counter.

these circuits at precisely the right time and in the right

sequence. This is where ring counters shine; they produce

the ring words for timing different operations during a

computer run.

EXAMPLE 8-3

Figure 8-16 shows the ring counter used in the SAP-1

computer. T6 to T{ are called timing signals because they

control a sequence of digital operations. What does this

ring counter do?

SOLUTION

The 74107 is a dual JK master-slave flip-flop, previously

used in the SAP-1 program counter (Example 8-2). The

flip-flops are connected in a rotate-left mode. Since the

74107 does not have a preset input, the Q0 flip-flop is

inverted so that its Q output drives the J input of the Q{
flip-flop. In this way, a low CLR produces the initial timing

word

T6T5T4T3T2Tt = 000001

In chunked form

T = 000001

Because of the master-slave action, a complete clock

pulse is needed to produce the next ring word. After CLR
returns high, the successive clock pulses produce the timing

words

T = 000010

T = 000100

T = 001000

T = 010000

T = 100000

Then the cycle repeats.

EXAMPLE 8-4

The clock frequency in Fig. 8-16 is 1 kHz. CLR goes low

then high. Show the timing diagram.

SOLUTION

Figure 8-17 is the timing diagram. Since the clock has a

frequency of 1 kHz, it has a period of 1 ms. This is the

amount of time between successive negative clock edges.

Each negative clock edge produces the next ring word.

When its turn comes, each timing signal goes high for 1

ms.

Notice that the CLK signal of Fig. 8-17 is the input to

the ring counter of Fig. 8-16, whereas the complement

CLK is the input to the program counter of Fig. 8-11. This

half-cycle difference is deliberate. The reason is given in

Chap. 10, which explains how the timing signals of Fig.

8-17 control circuits that fetch and execute each program

instruction.

8-7 OTHER COUNTERS

The modulus of a counter is the number of output states it

has. A 4-bit ripple counter has a modulus of 16 because it

has 16 distinct states numbered from 0000 to 1111. By

changing the design we can produce a counter with any

desired modulus.

Mod-10 Counter

Figure 8-18a shows a way to build a modulus-10 (or mod-

10) counter. The circuit counts from 0000 to 1001, as

before. However, on the tenth clock pulse, the counter

116 Digital Computer Electronics

Fig. 8-17 SAP-1 clock and timing pulses.

generates its own clear signal and the count jumps back to

0000. In other words, the count sequence is

Q = 0000 (0)

Q - 0001 (1)
Q = 0010 (2)

Q = 0011 (3)

Q = 0100 (4)

Q = 0101 (5)

Q = 0110 (6)

Q = 0111 (7)

Q = 1000 (8)

Q = 1001 (9)

Q = 0000 (0)

As you see, the circuit skips states 10 to 15 (1010 through

1111). The counting sequence is summarized by the state
diagram of Fig. 8-18fr.

Why does the counter skip the states from 10 to 15?

Because of the and gate, the counter can be reset by a low

CLR or a low Y. Initially, CLR goes low to produce

Q - 0000

When CLR returns to high, the counter is ready for action.

The output of the nand gate is

y = oiOi

This output is high for the first nine states (0000 to 1001).

Nothing unusual happens when the circuit is counting from

0 to 9. On the tenth clock pulse, however, the Q word

becomes

Q = 1010

Chapter 8 Registers and Counters 11 7

which means that Q3 and Qx are high. Almost immediately,

Y goes low, forcing the counter to reset to

Q = 0000

Y then goes high, and the counter is ready to start over.

Since it takes 10 clock pulses to reset the counter, the

output frequency of the Q3 flip-flop is one-tenth of the clock

frequency. This is why a mod-10 counter is also known as

a divide-by-10 circuit.
A mod-10 counter like Fig. 8-18a is often called a decade

counter. Because it counts from 0 to 9, it is a natural choice

in BCD applications like frequency counters, digital volt¬

meters, and electronic wristwatches.

To get any other modulus, we can use the same basic

idea. For instance, to get a mod-12 counter, we can drive

the nand gate of Fig. 8-18a with Q3 and Q2. Then the

circuit counts from 0 to 11 (0000 to 1011). On the next

clock pulse, Q3 and Q2 are high, which clears the counter.

(What is the modulus if Q3 and go drive the nand gate?)

Down Counter

All the counters discussed so far have counted upward,

toward higher numbers. Figure 8-19 shows a down counter;
it counts from 1111 to 0000. Each flip-flop toggles when

its clock input goes from 1 to 0. This is equivalent to an

uncomplemented output going from 0 to 1. For instance,

the Q\ flip-flop toggles when <2o goes from 1 to 0; this is

equivalent to Q0 going from 0 to 1.

A preset signal generated elsewhere is available in either

uncomplemented or complemented form; PRE goes to all

circuits with an active-high preset; PRE goes to all circuits

with an active-low preset. Initially, the preset signal PRE
goes low in Fig. 8-19, producing an output word of

Q = 1111 (15)

When PRE goes high, the action starts. Notice that Q0
toggles once per clock pulse. In the following discussion,

a positive toggle means a change from 0 to 1, a negative
toggle means a change from 1 to 0.

The first clock pulse produces a negative toggle in Q0;

nothing else happens:

Q = 1110 (14)

The second clock pulse produces a positive toggle in Q0,

which produces a negative toggle in Qx:

Q = 1101 (13)

On the third clock pulse, Q0 toggles negatively, and

Q = 1100 (12)

On the fourth clock pulse, Q0 toggles positively, Q} toggles

positively, and Q2 toggles negatively:

Q - 1011 (11)

You should have the idea by now. The circuit is counting

down, from 15 to 0. When it reaches 0,

Q = 0000

On the next clock pulse, all flip-flops toggle positively to

and the cycle repeats.

Up-Down Counter

Figure 8-20 shows how to build an up-down counter. The

flip-flop outputs are connected to steering networks. An

UP control signal produces either down counting or up

counting. If the UP signal is low, Q2, Qu and Q0 are

transmitted to the clock inputs; this results in a down

counter. On the other hand, when UP is high, Q2, Qu and

Q0 drive the clock inputs and the circuit becomes an up

counter.

Presettable Counter

In a presettable counter, the count starts at a number greater

than zero. Figure 8-2la shows a presettable counter; the

count begins with P3P2P]Po, a number between 0000 and

1111.
To start the analysis, look at the LOAD control line.

When it is low, all nand gates have high outputs; therefore,

118 Digital Computer Electronics

Fig. 8-20 Up-down counter.

Fig. 8-21 Presettable counter.

the preset and clear inputs of all flip-flops are inactive. In counter to P3P2P,P0. As an example, suppose the preset

this case, the circuit counts upward, as previously described. input is

The data inputs P3 to P0 have no effect because the nand P3P2P,P0 = 0110

gates are disabled.

When the LOAD line is high, the data inputs and their Because of the two left nand gates, the low P3 produces

complements pass through the nand gates and preset the a high preset and a low clear for the Q3 flip-flop; this clears

Chapter 8 Registers and Counters 119

Q3 to a 0. By a similar argument, the high P2 sets Q2, the

high Px sets Qu and the low P0 clears Q0. Therefore, the

counter is preset to

Q = 0110

When LOAD returns to low, the circuit reverts to a

counter. Successive clock pulses produce

Q = 0111

Q = 1000

Q = 1001

up to a maximum count of

Q = 1111

The next clock pulse resets the counter to

Q = 0000

In summary,

1. When LOAD is low, the circuit counts.

2. When LOAD is high, the counter presets to P3P2PiP0.

Programmable Modulus

The most important use of a presettable counter is pro¬

gramming a modulus. Here’s the idea. Let’s add the nor

gate of Fig. 8-216 to the presettable counter of Fig. 8-21 a.

Then the Q outputs drive the nor gate, and the nor gate

controls the LOAD line of the presettable counter. Because

a nor gate recognizes a word with all 0s and disregards all

others, LOAD is high for Q = 0000 and low for all other

words. This means that the circuit presets when Q = 0000

and counts when Q is 0001 to 1111.

If the preset input is 0110, successive clock pulses

produce 0111, 1000, 1001, . . . , reaching a maximum

value of

Q = 1111

The next clock pulse resets the count to

Q = 0000

Almost immediately, however, the NOR-gate outputs goes

high, and the data inputs preset the counter to

Q = 0110

In other words, the counter effectively skips states 0 to 5,

illustrated by the state diagram of Fig. 8-2 lc.

Figure 8-21c shows 10 distinct states; by presetting 0110,

we have programmed the counter to become a mod-10

counter. If we change the preset input, we get a different

modulus. In general,

M = N - P (8-1)

where M = modulus of preset counter

N — natural modulus

P = preset count

The natural modulus equals 2" where n is the number of

flip-flops in the counter. So four flip-flops give a natural

modulus of 16, eight give a natural modulus of 256, and

so on.

As an example, if you preset 82 into a preset counter

with eight flip-flops, the modulus is

M = 256 - 82 = 174

In other words, this preset counter is equivalent to a divide-

by-174 circuit.

TTL Counters

Table 8-2 lists some TTL counters. The 7490 is an industry

standard, a widely used decade counter. This ripple counter

has two sections, a divide-by-2 and a divide-by-5. This

allows you to divide by 2, to divide by 5, or to cascade

both sections to divide by 10.

The 7492 is a mod-12 ripple counter, organized in two

sections by divide-by-2 and divide-by-6. This allows you

to divide by 2, divide by 6, or cascade to divide by 12.

The 7493 is a mod-16 ripple counter, with two sections of

divide-by-2 and divide-by-8.

The 74160 and 74161 are presettable synchronous counters,

the first being a decade counter and the second a divide-

by-16 counter. Finally, the 74190 and 74191 are up-down

presettable counters.

This is a sample of basic TTL counters; others are listed

in Appendix 3.

TABLE 8-2. TTL COUNTERS

Number Type

7490 Decade

7492 Divide-by-12

7493 Divide-by-16

74160 Presettable decade

74161 Presettable divide-by-16

74190 Up-down presettable decade
74191 Up-down presettable divide-by-16

120 Digital Computer Electronics

8-8 THREE-STATE REGISTERS TABLE 8-3. NORMALLY
OPEN

The three-state switch, a development of the early 1970s,

has greatly simplified computer wiring and design because

it’s ideal for bus-organized computers (the common type

nowadays).

+ 5 v

ENABLE

(a)

D
in

D
out

(bj

D
in

D
out

fc)

Fig. 8-22 (a) Three-state switch; (b) floating or high-impedance
state; (c) output equals input.

Three-State Switch

Figure 8-22a is an example of a three-state switch. The

ENABLE input can be low or high. When it’s low, transistor

A cuts off and transistor B saturates. This pulls the base of

transistor C down to ground, opening its base-emitter diode.

As a result, Dout floats. This floating state is equivalent to

an open switch (Fig. 8-22b).

On the other hand, when ENABLE is high, transistor A

saturates and transistor B cuts off. Now, the transistor C

acts like an emitter follower, and the overall circuit is

equivalent to a closed switch (Fig. 8-22c). In this case,

flout = Din

This means that Dout is low or high, the same as Dm.
Table 8-3 summarizes the action. When ENABLE is low,

Dm is a don’t care and Doul is open or floating. When

ENABLE is high, the circuit acts like a noninverting buffer
because Dout equals Dm.

ENABLE Dm flout

0 X Open
1 0 0
1 1 1

Commercial three-state switches are much more compli¬

cated than Fig. 8-22a (a totem-pole output and other

enhancements are added). But simple as it is, Fig. 8-22a
captures the key idea of a three-state switch; the output can

be in any of three states: low, high, or floating (sometimes

called the high-impedance state because the Thevenin

impedance is high).

Three-state switches are also known as Tri-state switches.
(Tri-state is a trademark name used by National Semicon¬

ductor, the originator of three-state TTL logic.)

(b)

Fig. 8-23 (a) Normally open switch; (b) normally closed switch.

Normally Open Switch

Figure 8-23a is the symbol for a three-state noninverting

buffer. When you see this symbol, remember the action: a

low ENABLE means that the output is floating; a high

ENABLE means that the output is 0 or 1, the same as the

input. Think of this switch as normally open; to close it,

you have to apply a high ENABLE.
In the 7400 series, the 74126 is a quad three-state

normally open switch. This means four switches like Fig.

8-23a in one package. The SAP-1 computer uses five
74126s.

Normally Closed Switch

Figure 8-23b is different. This is the symbol for a normally
closed switch because the control input DISABLE is active

low. In other words, the switch is closed when DISABLE
is low, and open when DISABLE is high. Table 8-4

summarizes the operation.

The 74125 is a quad three-state normally closed switch

(four switches like Fig. 8-23b in one package).

Chapter 8 Registers and Counters 121

TABLE 8-4. NORMALLY

CLOSED

DISABLE Dm Dout

0 0 0

0 1 1

1 X Open

Three-State Buffer Register

The main application of three-state switches is to convert

the two-state output of a register to a three-state output.

For instance, Fig. 8-24 shows a three-state buffer register,

so called because of the three-state switches on the output

lines. When ENABLE is low, the Y outputs float. But when

ENABLE is high, the Y outputs equal the Q outputs;

therefore,

Y = Q

You already know how the rest of the circuit works; it’s

the controlled buffer register discussed earlier. When LOAD
is low, the contents of the register are unchanged. When

LOAD is high, the next positive clock edge loads X3X2X1X0

into the register.

8-9 BUS-ORGANIZED COMPUTERS

A bus is a group of wires that transmit a binary word. In

Fig. 8-25, vertical wires W3, W2, Wl9 and W0 are a bus;

these wires are a common transmission path between the

three-state registers. The input data bits for register A come

from the W bus; at the same time, the three-state output of

register A connects back to the W bus. Similarly, the other

registers have their inputs and outputs connected to the W

bus.

In Fig. 8-25 all control signals are in uncomplemented

form; this means that the registers have active high inputs.

In other words, a load input (LA to LD) must be high to set

up for loading, and an enable signal (EA to ED) must be

high to connect an output to the bus.

Register Transfers

The beauty of bus organization is the ease of transferring

a word from one register to another. To begin with, the

same clock signal drives all registers, but nothing happens

until you apply high control inputs. In other words, as long

as all LOAD and ENABLE inputs are low, the registers are

isolated from the bus.

To transfer a word from one register to another, make

the appropriate control inputs high. For instance, here’s

how to transfer the contents of register A to the register D.

Make EA and LD high; then the contents of register A appear

on the bus and register D is set up for loading. When the

next positive clock edge arrives, word A is stored in register

D.
Here is another example. Suppose the following words

are stored in the registers:

A = 0011

B = 0110

C - 1001

D = 1100

Fig. 8-24 Three-state buffer register.

122 Digital Computer Electronics

W bus

Fig. 8-25 Registers connected to bus.

To transfer word C into register B, make Ec and LB high.

The high Ec closes the three-state switches of register C,

placing word C on the bus. The high LB sets up register B

for loading. When the next positive clock edge arrives,

word C is stored in register B, and the new words are

A = 0011

B = 1001

C = 1001

D = 1100

The whole point of bus organization (connecting the

registers to a common word path) is to simplify the wiring

and operation of computers. As you will see in Chap. 10,

SAP-1 is a bus-organized computer of incredible simplicity

made possible by the three-state switch.

Simplified Drawings

Figure 8-25 shows a 4-bit bus. The same idea applies to

any number of bits. For example, a 16-bit bus has 16 wires,

each carrying 1 bit of a word. By connecting the inputs

and outputs of 16-bit registers to this bus, we can transfer

16-bit words from one register to another.

Drawings get very messy unless we simplify the appear¬

ance of the bus. Figure 8-26 shows an abbreviated form of

Fig. 8-25. The solid arrows represents words going into

and out of registers. The solid bar represents the W bus.

EXAMPLE 8-5

Figure 8-27 shows part of the SAP-1 computer. Describe

the circuitry.

Chapter 8 Registers and Counters 123

13

SOLUTION SOLUTION

As discussed in Sec. 6-8, the 7483 is a 4-bit adder. The

two 7483s of Fig. 8-27 are the ALU of the SAP-1 computer.

The inputs to this ALU are the words

A = A7A5A5 A4A3A2A] Aq

B = ByBgBjB^jB.BiBo

A pair of 7486s allow us to complement the B input for

subtraction.

The sum (Su low) or difference (Sy high) appears at the

output (pins 15, 2, 6, 9 of C16 and pins 15, 2, 6, 9 of

Cl7). Three-state switches (Cl8 and Cl9) connect the ALU

output to the W bus when Ev is high. If Ev is low, the

74126s are open and the ALU output is isolated from the
bus.

EXAMPLE 8-6

Figure 8-28 shows the instruction register (C8 and C9) of

the SAP-1 computer. What does this 8-bit register do?

Example 8-1 introduced the 74LS173. As you may recall,

pins 9 and 10 are tied together and control the LOAD
function. Because of the bubble, a low L, is needed to set

up the registers for loading. When L, is low, the next

positive clock edge loads the data on the bus into the

instruction register.

The output of the instruction register is split; the upper

nibble I7I6I5I4 goes to the instruction decoder, a circuit that

will be discussed in Chap. 10. The lower nibble out of the

instruction register goes back to the W bus.

The 74LS173 is a 4-bit three-state buffer register; it has

internal three-state switches controlled by pins 1 and 2.

The bubbles on pins 1 and 2 indicate active-low inputs;

therefore, the output of C9 is connected to the bus when

E, is low and disconnected when E, is high.

Notice that pins 1 and 2 of C8 are grounded; this means

that the upper nibble is always a two-state output. In other

words, the 74LS173 can be used as an ordinary two-state

register by grounding pins 1 and 2. (This was done in

Example 8-1, where we used two 74LS173s for the output

register to drive an 8-bit LED display.)

W bus

Fig. 8-28 SAP-1 instruction register.

_GLOSSARY__

buffer register A register that temporarily stores a word modulus The number of stable states a counter has.

during data processing. parallel entry Loading all bits of a word in parallel during

bus A group of wires used as a common word path by one clock pulse. Also called broadside loading,

several registers. presettable counter A counter that allows you to preset a

Chapter 8 Registers and Counters 125

number from which the count begins. Sometimes called a

programmable counter.
register A group of memory elements that store a word.

ring counter A counter producing words with 1 high bit,

which shifts one position per clock pulse.

ripple counter A counter with cascaded flip-flops. This

means that the carry has to propagate in series through the

flip-flops.

serial entry Loading a word into a shift register 1 bit per

clock pulse
shift register A register that can shift the stored bits one

position to the left or right.

synchronous counter A counter in which the clock drives

each flip-flop to eliminate the ripple delay.

three-state switch A noninverting buffer that can be closed

or opened by a control signal. Also called a Tri-state switch.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. When the LOAD input of a buffer register is active,

the input word is stored on the next positive-

edge. If LOAD then becomes inactive, the input

word can change without effecting the-

word.

2. (clock, stored) A shift register moves the-

left or right. Serial loading means storing a word in a

shift register by entering-bit per clock

pulse. With parallel or broadside loading, it takes

only one_pulse to load the input word.

3. (bits, 1, clock) One flip-flop divides the clock fre¬

quency by a factor of-Two flip-flops

divide by 4, three flip-flops by 8, and four flip-flops

by_In general, n flip-flops divide by 2n.

4. (2, 16) In a ripple counter, the carry has to propagate

through all the flip-flops to reach the MSB flip-flop.

The overall propagation delay time is-A

controlled counter counts-pulses only

when the COUNT signal is active. The clock signal

drives each flip-flop of a-counter.

5. (ntp, clock, synchronous) Instead of counting with

binary numbers, a ring counter uses words that have

a single high_A ring counter is ideal for

timing a sequence of digital operations.

6. (bit) The modulus of a counter is the number of

stable output_it has. A mod-10 counter

can divide the clock frequency by a factor of-

7. (states, 10) An up-down counter can count up or

down. A presettable counter starts the count from a

_number. This allows us to program the

_If the modulus is M, a presettable

counter is equivalent to a divide-by-M circuit.

8. (preset, modulus) A three-state switch has an output

that is either low, high, or-Two types

are available; normally open and normally closed.

The main use of three-state switches is to convert the

_output of a register to a three-state out¬

put.

9. (floating, two-state) A bus is a group of wires used

by three-state registers as a common word path. Bus-

organized computers, the common type nowadays,

have several registers connected to one or more

buses. Instructions and data travel along these buses

as they move from one register to another.

PROBLEMS

8-1. Figure 8-29 shows an output register. Before time

A the data word to be loaded is

X = 1000 1101

and the LED display is

Q = 0001 0111

a. What is the LED display at time D?

b. What is the LED display at time F?

8-2. The data sheet of a 74173 gives these values:

^setup = 17 ns (L0 input)

tsetup = 10 ns (Data)

rhold = 2 ns (L0 input)

4oid = 10 ns (Data)

a. In Fig. 8-29, how far ahead of point E must

the X bits be applied to ensure accurate loading?

b. Suppose the clock has a frequency of 1 MHz

126 Digital Computer Electronics

Fig. 8-29

Note: All resistors are 1 kH.

and the X bits are applied at the point D. Is the

setup time sufficient for the data inputs?

c. How long must you wait after point E before

removing the X bits or letting them change?

8-3. Each output pin of a 74173 can source up to 5.2

mA. In Fig. 8-29 suppose the high output voltage

is 3.5 V and the LED drop is 1.5 V. To get more

light out of the LEDs, we want to reduce the

current-limiting resistors. What is the minimum

allowable resistance?

Fig. 8-30

8-4. A 74199 is an 8-bit shift-left register with a single

control signal, as shown in Fig. 8-30. When

SHIFT I LOAD is low, the circuit loads the X word

on the next positive clock edge. When SHIFTI
LOAD is high, the register shifts the bits to the

left.

a. To clear the register, should CLR be low or

high? When you are ready to run, what should

CLR be?

b. Is the X word loaded on the positive or negative

edge of the clock?

c. IfX = 0100 1011, Din = 0, and SHIFT/LOAD
= 0, what does the Q output word equal after

two positive clock edges?

d. If X = 0100 1011, Din = 0, and SHIFTi
LOAD = 1, what does the Q output word

equal after two positive clock edges?

8-5. The clock frequency is 2 MHz. How long will it

take to serially load the shift register of Fig.

8-30?

8-6. In Fig. 8-30, Q = 0001 0110. If SHIFTlLOAD is

high and Dm is high, what does Q equal after

three clock pulses?

8-7. Data from a satellite is received in serial form (1

bit after another). If this data is coming at a

5-MHz rate and if the clock frequency is 5 MHz,

how long will it take to serially load a word in a

32-bit shift register?

8-8. A ripple counter has 16 flip-flops, each with a

propagation delay time of 25 ns. If the count is

q = oin mi mi mi

how long after the next active clock edge before

Q = 1000 0000 0000 0000

8-9. What is the maximum decimal count for the

counter of the preceding problem?

8-10. When pins 1 and 12 of a 7490 are tied together as

shown in Fig. 8-31, the divide-by-2 and divide-

by-5 sections are cascaded to get a mod-10

counter. Pin 14 is the input and pin 11 is the

output of each 7490. As a result, each 7490 acts

like a divide-by-10 circuit and the overall circuit

divides by 1,000.

Chapter 8 Registers and Counters 127

+5 V +5 V +5 V

Fig. 8-31

A B C

If the clock has a frequency of 5 MHz, what is

the frequency of A? Of 5? Of Cl
8-11. The clock signal driving a 6-bit ring counter has a

frequency of 1 MHz. How long is each timing bit

high? How long does it take to cycle through all

the ring words?

It-

— -[—\
—

O -=1
_r

_J 0
r >-- . 1_

_)

^_ J2
_

1 _

-1

_
_)

T
9- .__

_)

A T
i-

LJ—4

I A T
<

i >-

_
LJ 5

[A_T 1 >-
< -L__

9
—

_
\) 6

1 ^ T
(>

< ►
< t- 1 —

_)

"LTLTL

rz

q2 q2 a, 0, o0 a

Synchronous counter

0

-r

-CLR

Fig. 8-32

8-12. Figure 8-32 shows another way to produce ring

words. After the circuit is cleared,

Q = Q2Q1Q0 = 000

Since the and gates are a l-of-8 decoder,

the first timing word is

T = 0000 0001

What does T equal for each of the follow¬

ing:

a. Q = 001

b. Q = 010

c. Q = 101

d. Q = 111
8-13. If the clock frequency is 5 MHz in Fig. 8-32,

how long does it take to produce all the ring

words? How long is each timing bit high?

60 Hz

S M H

Fig. 8-33

8-14. In a digital clock, the 60-Hz line frequency is

divided down to lower frequencies, as shown in

Fig. 8-33. What are the frequency and period of

the S output? Of the M output? Of the H output?

8-15. You have an unlimited number of the following

ICs to work with: 7490, 7492, and 7493. Which

of these would you use to build the divide-by-60

circuits of Fig. 8-33?

8-16. A presettable counter has eight flip-flops. If the

preset number is 125, what is the modulus?

8-17. Given a presettable 8-bit counter, what number

would you preset to get a divide-by-120 circuit?

8-18. In Fig. 8-34, we want to transfer the contents of

register D to register C. Which are the ENABLE
and LOAD inputs you should make high?

8-19. Look at Fig. 8-35 and answer each of these ques¬

tions.

a. To add the inputs and put the answer on the

bus, what should Sv and Ev be?

b. To subtract the inputs and put the answer on

the bus, what should Sv and Ev be?

c. To isolate the ALU from the bus, what should

Ev be?

128 Digital Computer Electronics

Memories
The memory of a computer is where the program and data

are stored before the calculations begin. During a computer

run, the control section may store partial answers in the

memory, similar to the way we use paper to record our

work. The memory is therefore one of the most active parts

of a computer, storing not only the program and data but

processed data as well.
The memory is equivalent to thousands of registers, each

storing a binary word. The latest generation of computers

relies on semiconductor memories because they are less

expensive and easier to work with than core memories. A

typical microcomputer has a semiconductor memory with

up to 655,360 memory locations, each capable of storing

l byte of information.

9-1 ROMS

A read-only memory (ROM) is the simplest kind of memory.

It is equivalent to a group of registers, each permanently

storing a word. By applying control signals, we can read
the word in any memory location. (“Read” means to make

the contents of the memory location appear at the output

terminals of the ROM.)

Diode ROM

Figure 9-1 shows one way to build a ROM. Each horizontal

row is a register or memory location. The R0 register

Fig. 9-1 Simple diode ROM.

130

TABLE 9-1. DIODE ROM

Register Address Word

Ro 0 0111

R. 1 1000

r2 2 1011

r3 3 1100

r4 4 0110

r5 5 1001

r6 6 0011

r7 7 1110

contains three diodes, the R, register has one diode, and

so on. The output of the ROM is the word

D= D3D2D,D0

In switch position 0, a high voltage turns on the diodes

in the R0 register; all other diodes are off. This means that

a high output appears at D2, D,, and D0. Therefore, the

word stored at memory location 0 is

D = 0111

What happens if the switch is moved to position 1 ? The

diode in the R, register conducts, forcing D, to go high.

Because all other diodes are off, the output from the ROM

becomes

D = 1000

So the contents of memory location 1 are 1000.

As you move the switch to other positions, you will read

the contents of the other memory locations. Table 9-1

shows these contents, which you can check by analyzing
Fig. 9-1.

With discrete circuits we can change the contents of a

memory location by adding or removing diodes. With

integrated circuits, the manufacturer stores the words at the

time of fabrication. In either case, the words are permanently

stored once the diodes are wired in place.

Addresses

The address and contents of a memory location are two

different things. As shown in Table 9-1, the address of a

memory location is the same as the subscript of the register

storing the word. This is why register 0 has an address of

0 and contents of 0111; register 1 has an address of 1 and

contents of 1000; register 2 has an address of 2 and contents

of 1011; and so on.

The idea of addresses applies to ROMs of any size. For

example, a ROM with 256 memory locations has decimal

addresses running from 0 to 255. A ROM with 1,024

memory locations has decimal addresses from 0 to 1,023.

On-Chip Decoding

Rather than switch-select the memory location, as shown

in Fig. 9-1, IC manufacturers use on-chip decoding. Figure

9-2 gives you the idea. The three input pins (A2, Als and

A0) supply the binary address of the stored word. Then a

1 -of-8 decoder produces a high output to one of the registers.

For instance, if

ADDRESS = A2A,A0 = 100

the l-of-8 decoder applies a high voltage to the R4 register,

and the ROM output is

D = 0110

If you change the address word to

ADDRESS =110

you will read the contents of memory location 6, which is

D = 0011

The circuit of Fig. 9-2 is a 32-bit ROM organized as 8

words of 4 bits each. It has three address (input) lines and

four data (output) lines. This is a very small ROM compared

with commercially available ROMs.

Number of Address Lines

With on-chip decoding, n address lines can select 2" memory

locations. For instance, we need 3 address lines in Fig.9-2

to access 8 memory locations. Similarly, 4 address lines

can access 16 memory locations, 8 address lines can access

256 memory locations, and so on.

9-2 PROMS AND EPROMS

With a ROM, you have to send a list of data to be stored

in the different memory locations to the manufacturer, who

then produces a mask (a photographic template of the

circuit) used in mass production of your ROMs. In fabri¬

cating ROMs the manufacturer may use bipolar transistors

or MOSFETs. But the idea is still basically the same; the

transistors or MOSFETs act like the diodes of Fig. 9-2.

Programmable

A programmable ROM (PROM) is different. It allows the

user to store the data. An instrument called a PROM
programmer does the storing by “burning in.” (Fusible

links at the bit locations can be burned open by high

currents.) With a PROM programmer, the user can burn in

the program and data. Once this has been done, the

programming is permanent. In other words, the stored

contents cannot be erased.

Chapter 9 Memories 131

Fig. 9-2 ROM with on-chip decoding.

Erasable other words, the EPROM is ultraviolet-light-erasable and

The erasable PROM (EPROM) uses MOSFETs. Data is electrically reprogrammable.

stored with a PROM programmer. Later, data can be erased The EPROM is helpful in design and development. The

with ultraviolet light. The light passes through a window user can erase and store until the program and data are

in the IC package to the chip, where it releases stored perfected. Then the program and data can be sent to an IC

charges. The effect is to wipe out the stored contents. In manufacturer who makes a ROM mask for mass production.

132 Digital Computer Electronics

EEPROM

Another type of reprogrammable ROM device is the

EEPROM (Electrically Erasable Programmable Read Only

Memory), which is nonvolatile like EPROM but does not

require ultraviolet light to be erased. It can be completely

erased or have certain bytes changed, using electrical pulses.

Individual bytes (or any number of bytes) can be changed

using a programmer designed for use with EEPROMs.

Individual bytes can also be changed by the host circuit

after the EEPROM has been installed.

EEPROM is useful when data being gathered by the

circuit must be stored by the system. Writing to EEPROM

is slower than writing to RAM, so it cannot be used in

high-speed circuits.

Unlimited READ cycles are possible; however, EEPROM

will eventually wear out from repeated ERASE cycles.

Since the life of typical EEPROMS allows thousands of

erase cycles, this is usually not a problem.

There are matching EEPROM replacements for most

EPROMs. The EEPROM uses an 8 digit in the part number

whereas EPROM uses a 7 digit. For example, the 2816

EEPROM can replace the 2716 EPROM.

Manufactured Devices

With large-scale integration, manufacturers can fabricate

ROMs, PROMs, and EPROMs that store thousands of

words. For instance, the 8355 is a 16,384-bit ROM orga¬

nized as 2,048 words of 8 bits each. It has 11 address lines

and 8 data lines.

As another example, the 2764 is 65,536-bit EPROM

organized as 8,192 words of 8 bits each. It has 13 address
lines and 8 data lines.

Access Time

The access time of a memory is the time it takes to read a

stored word after applying address bits. Since bipolar

transistors are faster than MOSFETs, bipolar memories

have faster access times than MOS memories. For instance,

the 3636 is a bipolar PROM with an access time of 80 ns;

the 2716 is a MOS EPROM with an access time of 450 ns.

You have to pay for the speed; a bipolar memory is more

expensive than a MOS memory, so it’s up to the designer

to decide which type to use in a specific application.

Three-State Memories

By adding three-state switches to the data lines of a memory

we can get a three-state output. As an example, Fig. 9-3

shows a 16,384-bit ROM organized as 2,048 words of 8

bits each. It has 11 address lines and 8 data lines. A low

ENABLE opens all switches and floats the output lines. On

the other hand, a high ENABLE allows the addressed word
to reach the final output.

Most of the commercially available ROMs, PROMs, and

EPROMs have three-state outputs. In other words, they

have built-in three-state switches that allow you to connect

or disconnect the output lines from a data bus. More will
be said about this later.

Nonvolatile Memory

ROMs, PROMs, and EPROMs are nonvolatile memories.

This means that they retain the stored data even when the

power to the device is shut off. Not all memories are like

this, as will be explained in Sec. 9-3.

EXAMPLE 9-1

A 16 X 8 ROM stores these words in its first four locations:

R0 = 1110 0010 R: = 0011 1100
R, = 0101 0111 R, = ion mi

Express the stored contents in hexadecimal notation.

SOLUTION

In hexadecimal shorthand, the stored contents are

R0 = E2H R: = 3CH

R, = 57H R, = BFH

9-3 RAMS

A random-access memory (RAM), or a read-write memory,

is equal to a group of addressable registers. After supplying

an address, you can read the stored contents of the memory

location or write new contents into the memory location.

Core RAMs

The core RAM was the workhorse of earlier computers. It

has the advantage of being nonvolatile; even though you

shut off the power, a core RAM continues to store data.

The disadvantage of core RAMs is that they are expensive

and harder to work with than semiconductor memories.

Semiconductor RAMs

Semiconductor RAMs may be static or dynamic. The static

RAM uses bipolar or MOS flip-flops; data is retained

indefinitely as long as power is applied to the flip-flops.

On the other hand, a dynamic RAM uses MOSFETs and

capacitors that store data. Because the capacitor charge

leaks off, the stored data must be refreshed (recharged)

every few milliseconds. In either case, the RAMs are

volatile; turn off the power and you lose the stored data.

Chapter 9 Memories 133

Sense

line

Control

line
-A_

X
I

Storage

capacitor

(b)

Fig. 9-4 (a) Static cell; (b) dynamic cell.

RAMs than dynamic RAMs. The remainder of this book

emphasizes static RAMs.

Three-State RAMs

Many of the commercially available RAMs, either static or

dynamic, have three-state outputs. In other words, the

manufacturer includes three-state switches on the chip so

that you can connect or disconnect the output lines of the

RAM from a data bus.

Fig. 9-5 Static RAM with inverted control inputs.

Static RAM

Figure 9-4a shows one of the flip-flops used in a static

MOS RAM. Qx and Q2 act like switches. Q3 and Q4 are

active loads, meaning that they behave like resistors. The

circuit action is similar to the transistor latch discussed in

Sec. 7-1. Either gi conducts and Q2 is cut off or vice versa.

A static RAM will contain thousands of flip-flops like this,

one for each stored bit. As long as power is applied, the

flip-flop remains latched and can store the bit indefinitely.

Dynamic RAM

Figure 9-4b shows one of the memory elements (called

cells) in a dynamic RAM. When the sense and control lines

go high, the MOSFET conducts and charges the capacitor.

When the sense and control lines go low, the MOSFET

opens and the capacitor retains its charge. In this way, it

can store 1 bit. A dynamic RAM may contain thousands

of memory cells like Fig. 9-46. Since only a single MOSFET

and capacitor are needed, the dynamic RAM contains more

memory cells than a comparable static RAM, In other

words, a dynamic RAM has more memory locations than

a static RAM of the same physical size.

The disadvantage of the dynamic RAM is the need to

refresh the capacitor charge every few milliseconds. This

complicates the design problem because more circuitry is

needed. In short, it’s much simpler to work with static

Figure 9-5 shows a static RAM and typical input signals.

The ADDRESS bits select the memory location; control

signals WE and CE select a write, read, or do nothing

operation. WE is known as the write-enable signal, and CE

is called the chip-enable signal. Notice that the control

inputs are active low.

Table 9-2 summarizes the operation of the static RAM.

Here’s what happens. A low CE and low WE produce a

write operation. This means that the input data Dinis stored

in the addressed memory location. The three-state output

data lines are floating during this write operation.

When CE is low and WE is high, we get a read operation.

The contents of the addressed memory location appear on

the data output lines because the internal three-state switches

are closed at this time. _

The final possibility is CE high. This is a holding pattern

where nothing happens. Internal data at all memory locations

is frozen or unchanged. Notice that the output data lines

are floating.

TABLE 9-2. STATIC RAM

CE WE Operation Output

0 0 Write Floating

0 1 Read Connected

1 X Hold Floating

134 Digital Computer Electronics

Bubble Memories

A bubble memoiy sandwiches a thin film of magnetic

material between two permanent bias magnets. Logical Is

and Os are represented by magnetic bubbles in this thin

film. The details of how a bubble memory works are too

complicated to go into here. What is worth knowing is that

bubble memories are nonvolatile and capable of storing

huge amounts of data. For instance, the INTEL 7110 is a

bubble memory that can store approximately 1 million bits.

One disadvantage is they have slow access times.

EXAMPLE 9-2

Figure 9-6 shows the pin configuration of a 74189, a

Schottky TTL static RAM with three-state outputs. This

64-bit RAM is organized as 16 words of 4 bits each. It has

an access time of 35 ns. What are the different pin functions?

3 Ycc
□ a2

□ >4,
□ 40

□ D0

□ Dq

3 D}

3 D,

Fig. 9-6 Pinout for 74189.

GND □

SOLUTION

To begin with, 4 address bits can access 24 = 16 words.

This is why the 74189 needs 4 address bits to select the

desired memory location.

The ADDRESS bits go to pin 1 (A3), pin 15 (A2), pin

14 (Aj), and pin 13 (A0). The data inputs are pin 4 (Z)3),

pin 6 (D2), pin 10 (D{), and pin 12 (D0). Because of the

TTL design, the data is stored as the complement of the

input bits. Thisjs why the data outputs are pin 5 (Z)3), pin

7 (D2), pin 9 (D)), and pin 11 (D0).

The chip enable is pin 2, and the write enable is pin 3.

These control signals work as previously described. CZf and

WE must be low for a write operation; C£ must be low

and WE high for a read, and CE must be high to do nothing.

Pin 16 gets the supply voltage, which is +5 V, and pin

8 is grounded.

memory. This means that we can store 16 words of 8 bits

each. The bubbles on the output data pins (pins 5, 7, 9,

11) remind us that the stored data bits are the complements

of the input data bits.

Addressing the Memoiy

The address bits come from an address-switch register (A3,

A2, Au A0). By setting the switches we can input any

address from 0000 to 1111. As noted at the bottom of Fig.

9-7, an up address switch is equal to a 1. Therefore, the

address with all switches up is 1111.

Setting Up Data

The data inputs come from the two other switch registers.

The upper input nibble is Z)7, D6, D5, and D4. The lower

input nibble is D3, Z)2, Du and D0. By setting the data

switches we can input any data word from 0000 0000 to

1111 1111, equivalent to 00H to FFH. The note at the

bottom of Fig. 9-7 indicates that an up data switch produces

an input 0 or an output 1. In other words, a data switch

must be up to store a 1.

Programming the Memory

To program the memory (this means to store instruction

and data words), the run-prog switch must be in the prog

position. This grounds pin 2 (CE) of each 74189. When

the read-write switch is thrown to write, pin 3 (WE) is

grounded and the complement of the input data word is

written into the addressed memory location.

For instance, suppose we want to store the following

words:

Address Data

0000 0000 1111

0001 0010 1110

0010 0001 1101
0011 1110 1000

Begin by placing the run-prog switch in the prog position.

To store the first data word at address 0000, set the switches
as follows:

Address Data

DDDD DDDD UUUU

9-4 A SMALL TTL MEMORY

Figure 9-7 shows a modified version of the SAP-1 memory.

Two 74189s (see Appendix 4) are used to get a 16 X 8

where D stands for down and U for up. When the read-

write switch is thrown to write, 0000 1111 is written into

memory location 0000. The read-write switch is then

returned to read in preparation for the next write operation.

Chapter 9 Memories 13 5

W bus

Fig. 9-7 Modified SAP-1 read-write memory.

To load the second word at address 0001, set the address

and data switches as follows:

Address Data

DDDU DDUD UUUD

When the read-write switch is thrown to write, the data

word 0010 1110 is stored at memory location 0001.

Continuing like this, we can program the memory with

the remaining words.

The SAP-1 memory is slightly different from Fig. 9-7

and will be discussed in Chap. 10. What we have discussed

here, however, gives you an example of how a program

and data can be entered into a memory before a computer

run.

9-5 HEXADECIMAL ADDRESSES

During a computer run, the CPU sends binary addresses to

the memory, where read or write operations occur. These

address words may contain 16 or more bits. There’s no

need for us to get bogged down with long strings of binary

numbers. We can chunk those 0s and Is into neat strings

of hexadecimal numbers. Using hexadecimal shorthand is

standard in microprocessor work.

Typical microcomputers have an address bus with 16

address lines. The words on this bus have the binary format

of

ADDRESS = XXXX XXXX XXXX XXXX

For convenience, we can chunk this into its equivalent

hexadecimal form. For instance, instead of writing

ADDRESS = 0101 1110 0111 1100

we can write

ADDRESS = 5E7CH

The 16 address lines can access 216 memory locations,

equivalent to 65,536 words. The hexadecimal addresses are

from 0000H to FFFFH. In microcomputers using 8-bit

microprocessors, 1 byte is stored in each memory location.

Figure 9-8 illustrates how to visualize such a memory. The

first memory location has an address of 0000H, the second

memory location an address of 0001H, the third an address

136 Digital Computer Electronics

of 0002H, and so on. Moving toward higher memory, we

eventually reach FFFDH, FFFEH, and FFFFH.

Notice that 1 byte is stored in each memory location.

This is common in products using an 8-bit microprocessor

like the Z80 and 6808. In other words, it is common for

8-bit microprocessor—based products to have a maximum

memory of 64K (IK = 1,024 bytes).

0000H

0001H

0002H

FFFDH

FFFEH

FFFFH

Fig. 9-8 Memory layout.

byte

byte

byte

byte

byte

byte

GLOSSARY

access time The time it takes to read the contents of a

memory location after it has been addressed.

address A way of specifying the location of data in

memory, similar to a house address.

dynamic memory A memory that relies on a MOSFET

switch to charge a capacitor. This memory is highly volatile

because not only must the power be kept on, but the

capacitor charge must also be refreshed every few milli¬

seconds.

EPROM Erasable programmable read-only memory, a

device that is ultraviolet-erasable and electrically repro¬

grammable.

nonvolatile A type of memory in which the stored data

is not lost when the power is turned off.

PROM Programmable read-only memory. With a PROM

programmer, you can burn in your own programs and data.

RAM Random-access memory. It is also called a read-

write memory because you can read the contents of a

memory location or write new contents into it.

ROM Read-only memory. (ROM rhymes with Mom.)

This device provides nonvolatile storage of programs and

data. You can access any memory location by supplying
its address.

static RAM A volatile memory using bipolar or MOSFET

flip-flops. It is easy to work with. Refreshing data is

unnecessary. You simply supply address and control bits

for a read or write operation.

volatile A type of memory in which data stored in the

memory is lost when the power is turned off.

SELF TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. The memory of a computer is where the_

and-are stored before the calculations

begin. During a computer run, partial answers may

also be stored in the_

2. {program. data, memory) A read-only memory or

-is equivalent to a group of memory

locations, each permanently storing a word. The

-is the only one who can store programs
and data in a ROM.

3. (ROM, manufacturer) The_and contents

of a memory location are two different things. Be¬

cause the address is in binary form, the manufac¬

turer uses on-chip decoding to access the memory

location. With on-chip decoding, n address lines

can access_memory locations.

4. (address, 2n) The PROM allows users to store their

own programs and data. An instrument called a

PROM-does the storing or burning in.

Once this is done, the programming is permanent.

5. (programmer) The_is ultraviolet-light-

erasable and electrically programmable. This allows

the user to erase and store until programs and data

are perfected.

6. (EPROM) The-time of a memory is the

Chapter 9 Memories 137

time it takes to read the contents of a memory

location. Bipolar memories are faster than-

memories but more expensive.

7. (access, MOS) ROMs, PROMs, and EPROMs are

_memories. This means that they retain

stored data even though the power is turned off.

Core RAMs are also_, but they are be¬

coming obsolete.

8. (nonvolatile, nonvolatile) Semiconductor RAM

memories may be static or-Both are

volatile. The first type uses bipolar or MOS flip-

flops, which means that data is stored as long as

power is applied. The second type uses MOSFETs

and capacitors to store data, which must be

_every few milliseconds.

9. (dynamic, refreshed) The memory cell of a dynamic

RAM is simpler and smaller than the memory cell

of a_RAM. Because of this, the dy¬

namic RAM can contains more memory cells than a

_RAM of the same chip size.

10. (static, static) The_bits of a static RAM

select the memory location. The write enable (WE)

and chip enable (CE) select a write, read, or do-

nothing. When WE and CE are both low, you_get a

_operation. When WE is high and CE is

low, you get a_operation. CE high is

the inactive state.

11. (address, write, read) During a computer run, the

CPU sends binary addresses to the-,

where read or write operations occur. Typical mi¬

crocomputers have an address bus with-

bits.

12. (memory, 16) An address bus with 16 bits can

access a maximum of 65,536 memory locations.

The hexadecimal addresses of these memory loca¬

tions are from 0000H to FFFFH. First-generation

microcomputers store 1 byte in each memory loca¬

tion, which implies a maximum memory of 64K.

PROBLEMS

9-1. How many memory locations can 14 address bits

access?

9-2. The 2708 is an 8,192-bit EPROM organized as a

1,024 x 8 memory. How many address pins does

it have?

9-3. The 2732 is a 4,096 X 8 EPROM. How many

address lines does it have?

9-4. An 8156 is a 2,048-bit static RAM with 256

words of 8 bits each. How many address lines

does this RAM have?

9-5. Use U (up) and D (down) to program the TTL

memory of Fig. 9-9 with the following data:

Address Data

0000 1000 1001

0001 0111 1100

0010 0011 0110

0011 0010 0011

0100 0001 0111

0101 oioi mi
0110 1110 1101

0111 mi iooo

Show your answer by converting each 0 to a D

and each 1 to a U.

9-6. The following data is to be programmed into the

TTL memory of Fig. 9-9:

Address Data

OH EEH

1H 5CH

2H 26H

3H 6AH

4H FDH

5H 15H

6H 94H

7H C3H

Convert these hexadecimal addresses and contents

to ups (U) and downs (D) as described in Sec.

9-4.

9-7. Address 2000H contains the byte 3FH. What is

the decimal equivalent of 3FH?

9-8. In a 32K memory, the hexadecimal addresses are

from 0000H to 7FFFH. What is the decimal

equivalent of the highest address?

9-9. What is the highest address in a 48K memory?

Express the answer in hexadecimal and decimal

form.

9-10. A byte is stored at hexadecimal location 6F9EH.

What is the decimal address? (Use Appendix 2.)

138 Digital Computer Electronics

W bus

10

12

10 kEL

+5 V-

10 kft

+5 V-V\Ar

WRITE

15 14 13

C6

74189

WE CE

16
-+5 V

8

n

V ^ V ^

X
READ

11

10

12

10 kil

+5 V •

AAA/—f— +5 V

-AAAr-*

“f-WV—f

15 14

10

13

C7

74189

WE CE

V V P 9

16
■ +5 V

11 i

* RUN

PROG

Notes: 1. Address switches: Up = 1

2. Data switches: Up = Input 0 = Output 1

Fig. 9-9

9-11. Here is some data stored in a memory:

Address Data

8E00H 2FH

8E01H D4H

8E02H CFH

8E03H 6EH

8E04H 53H

8E05H 7AH

a. What is the decimal equivalent of each stored

byte? (Use Appendix 2.)

b. What is the decimal equivalent of the highest

address?

9-12. Suppose there are four different memories with

the following capacities:

Memory A = 16K

Memory B = 32K

Memory C = 48K

Memory D = 64K

a. How many bytes can memory C store? Express

the answer in decimal.

b. What is the highest decimal address in memory

A?

c. We want to store a byte at address C300H.

Which memory must we use?

d. What is the highest hexadecimal address for

each memory?

9-13. What kind of memory can be programmed and

then erased with ultraviolet light, so that it can be

reprogrammed?

9-14. What kind of memory can be programmed and

then erased with electrical pulses, so that it can be

reprogrammed?

9-15. What kind of nonvolatile memory can have indi¬

vidual bytes reprogrammed without erasing the

entire chip?

All memories start with hexadecimal address

0000H.

Chapter 9 Memories 139

PART 2
SAP

(SIMPLE-AS-POSSIBLE) COMPUTERS

SAP-1
The SAP (Simple-As-Possible) computer has been designed

for you, the beginner. The main purpose of SAP is to

introduce all the crucial ideas behind computer operation

without burying you in unnecessary detail. But even a

simple computer like SAP covers many advanced concepts.

To avoid bombarding you with too much all at once, we

will examine three different generations of the SAP com¬

puter.

SAP-1 is the first stage in the evolution toward modem

computers. Although primitive, SAP-1 is a big step for a

beginner. So, dig into this chapter; master SAP-1, its

architecture, its programming, and its circuits. Then you

will be ready for SAP-2.

10-1 ARCHITECTURE

Figure 10-1 shows the architecture (structure) of SAP-1, a

bus-organized computer. All register outputs to the W bus

are three-state; this allows orderly transfer of data. All other

register outputs are two-state; these outputs continuously

drive the boxes they are connected to.

The layout of Fig. 10-1 emphasizes the registers used in

SAP-1. For this reason, no attempt has been made to keep

all control circuits in one block called the control unit, all

input-output circuits in another block called the I/O unit,

etc.

Many of the registers of Fig. 10-1 are already familiar

from earlier examples and discussions. What follows is a

brief description of each box; detailed explanations come

later.

Program Counter

The program is stored at the beginning of the memory with

the first instruction at binary address 0000, the second

instruction at address 0001, the third at address 0010, and

so on. The program counter, which is part of the control

unit, counts from 0000 to 1111. Its job is to send to the

memory the address of the next instruction to be fetched

and executed. It does this as follows.

The program counter is reset to 0000 before each computer

run. When the computer run begins, the program counter

sends address 0000 to the memory. The program counter

is then incremented to get 0001. After the first instruction

is fetched and executed, the program counter sends address

0001 to the memory. Again the program counter is incre¬

mented. After the second instruction is fetched and executed,

the program counter sends address 0010 to the memory. In

this way, the program counter is keeping track of the next

instruction to be fetched and executed.

The program counter is like someone pointing a finger

at a list of instructions, saying do this first, do this second,

do this third, etc. This is why the program counter is

sometimes called a pointer; it points to an address in

memory where something important is being stored.

Input and MAR

Below the program counter is the input and MAR block. It

includes the address and data switch registers discussed in

Sec. 9-4. These switch registers, which are part of the input

unit, allow you to send 4 address bits and 8 data bits to

the RAM. As you recall, instruction and data words are

written into the RAM before a computer run.

The memory address register (MAR) is part of the SAP-

1 memory. During a computer run, the address in the

program counter is latched into the MAR. A bit later, the

MAR applies this 4-bit address to the RAM, where a read

operation is performed.

The RAM

The RAM is a 16 x 8 static TTL RAM. As discussed

in Sec. 9-4, you can program the RAM by means of the

address and data switch registers. This allows you to store

a program and data in the memory before a computer run.

During a computer run, the RAM receives 4-bit addresses

from the MAR and a read operation is performed. In this way,

the instruction or data word stored in the RAM is placed

on the W bus for use in some other part of the computer.

140

W bus

CpEpLM CE L,E,LaEa SyEyLgL^

Fig. 10-1 SAP -1 architecture.

Instruction Register

The instruction register is part of the control unit. To fetch

an instruction from the memory the computer does a memory

read operation. This places the contents of the addressed

memory location on the W bus. At the same time, the

instruction register is set up for loading on the next positive

clock edge.

The contents of the instruction register are split into two

nibbles. The upper nibble is a two-state output that goes

directly to the block labeled "‘Controller-sequencer.” The

lower nibble is a three-state output that is read onto the W

bus when needed.

Controller-Sequencer

The lower left block contains the controller-sequencer.

Before each computer run, a CLR signal is sent to the

program counter and a CLR signal to the instruction register.

This resets the program counter to 0000 and wipes out the

last instruction in the instruction register.

A clock signal CLK is sent to all buffer registers; this

synchronizes the operation of the computer, ensuring that

things happen when they are supposed to happen. In other

words, all register transfers occur on the positive edge of

a common CLK signal. Notice that a CLK signal also goes
to the program counter.

The 12 bits that come out of the controller-sequencer

form a word controlling the rest of the computer (like a

supervisor telling others what to do.) The 12 wires carrying

the control word are called the control bus.

The control word has the format of

CON = CpEpLmCE LjE^Ea S^Lo

This word determines how the registers will react to the

next positive CLK edge. For instance, a high EP and a low

Chapter 10 SAP-1 141

Lm mean that the contents of the program counter are latched

into the MAR on the next positive clock edge. As another
example, a low CE and a low LA mean that the addressed

RAM word will be transferred to the accumulator on the

next positive clock edge. Later, we will examine the timing

diagrams to see exactly when and how these data transfers

take place.

Accumulator

The accumulator (A) is a buffer register that stores inter¬

mediate answers during a computer run. In Fig. 10-1 the

accumulator has two outputs. The two-state output goes

directly to the adder-subtracter. The three-state output goes

to the W bus. Therefore, the 8-bit accumulator word

continuously drives the adder-subtracter; the same word

appears on the W bus when EA is high.

The Adder-Subtracter

SAP-1 uses a 2’s-complement adder-subtracter. When Sv

is low in Fig. 10-1, the sum out of the adder-subtracter is

S = A + B

When Sv is high, the difference appears:

A = A + B

(Recall that the 2’s complement is equivalent to a decimal

sign change.)

The adder-subtracter is asynchronous (unclocked); this

means that its contents can change as soon as the input

words change. When Ev is high, these contents appear on

the W bus.

B Register

The B register is another buffer register. It is used in

arithmetic operations. A low LB and positive clock edge

load the word on the W bus into the B register. The two-

state output of the B register drives the adder-subtracter,

supplying the number to be added or subtracted from the

contents of the accumulator.

Output Register

Example 8-1 discussed the output register. At the end of a

computer run, the accumulator contains the answer to the

problem being solved. At this point, we need to transfer

the answer to the outside world. This is where the output

register is used. When EA is high and L0 is low, the next

positive clock edge loads the accumulator word into the

output register.

The output register is often called an output port because
processed data can leave the computer through this register.

In microcomputers the output ports are connected to inter¬

face circuits that drive peripheral devices like printers,
cathode-ray tubes, teletypewriters, and so forth. (An inter¬

face circuit prepares the data to drive each device.)

Binary Display

The binary display is a row of eight light-emitting diodes

(LEDs). Because each LED connects to one flip-flop of the

output port, the binary display shows us the contents of the

output port. Therefore, after we’ve transferred an answer

from the accumulator to the output port, we can see the

answer in binary form.

Summary

The SAP-1 control unit consists of the program counter,

the instruction register, and the controller-sequencer that

produces the control word, the clear signals, and the clock

signals. The SAP-1 ALU consists of an accumulator, an

adder-subtracter, and a B register. The SAP-1 memory has

the MAR and a 16 x 8 RAM. The I/O unit includes the

input programming switches, the output port, and the binary

display.

10-2 INSTRUCTION SET

A computer is a useless pile of hardware until someone

programs it. This means loading step-by-step instructions

into the memory before the start of a computer run. Before

you can program a computer, however, you must learn its

instruction set, the basic operations it can perform. The

SAP-1 instruction set follows.

LDA

As described in Chap. 9, the words in the memory can be

symbolized by R0, R}, R2, etc. This means that R0 is stored

at address OH, R, at address 1H, R2 at address 2H, and so

on.

LDA stands for “load the accumulator.” A complete

LDA instruction includes the hexadecimal address of the

data to be loaded. LDA 8H, for example, means “load the

accumulator with the contents of memory location 8H.”

Therefore, given

r8 = mi oooo

the execution of LDA 8H results in

a= mi oooo

Similarly, LDA AH means “load the accumulator with

the contents of memory location AH,” LDA FH means

“load the accumulator with the contents of memory location

FH,” and so on.

142 Digital Computer Electronics

ADD

ADD is another SAP-1 instruction, A complete ADD

instruction includes the address of the word to be added.

For instance, ADD 9H means “add the contents of memory

location 9H to the accumulator contents”; the sum replaces

the original contents of the accumulator.

Here’s an example. Suppose decimal 2 is in the accu¬

mulator and decimal 3 is in memory location 9H. Then

A = 0000 0010

R9 = 0000 0011

During the execution of ADD 9H, the following things

happen. First, R9 is loaded into the B register to get

B = 0000 0011

and almost instantly the adder-subtracter forms the sum of

A and B

SUM = 0000 0101

Second, this sum is loaded into the accumulator to get

A = 0000 0101

The foregoing routine is used for all ADD instructions;

the addressed RAM word goes to the B register and the

adder-subtracter output to the accumulator. This is why the

execution of ADD 9H adds R9 to the accumulator contents,

the execution of ADD FH adds RF to the accumulator

contents, and so on.

SUB

SUB is another SAP-1 instruction. A complete SUB in¬

struction includes the address of the word to be subtracted.

For example, SUB CH means “subtract the contents of

memory location CH from the contents of the accumulator”;

the difference out of the adder-subtracter then replaces the

original contents of the accumulator.

For a concrete example, assume that decimal 7 is in the

accumulator and decimal 3 is in memory location CH. Then

A = 0000 0111

Rc = 0000 0011

The execution of SUB CH takes place as follows. First,

Rc is loaded into the B register to get

B = 0000 0011

and almost instantly the adder-subtracter forms the differ¬

ence of A and B:

DIFF = 0000 0100

Second, this difference is loaded into the accumulator and

A = 0000 0100

The foregoing routine applies to all SUB instructions;

the addressed RAM word goes to the B register and the

adder-subtracter output to the accumulator. This is why the

execution of SUB CH subtracts Rc from the contents of

the accumulator, the execution of SUB EH subtracts RE
from the accumulator, and so on.

OUT

The instruction OUT tells the SAP-1 computer to transfer

the accumulator contents to the output port. After OUT has

been executed, you can see the answer to the problem being

solved.

OUT is complete by itself; that is, you do not have to

include an address when using OUT because the instruction

does not involve data in the memory.

HLT

HLT stands for halt. This instruction tells the computer to

stop processing data. HLT marks the end of a program,

similar to the way a period marks the end of a sentence.

You must use a HLT instruction at the end of every SAP-

1 program; otherwise, you get computer trash (meaningless

answers caused by runaway processing).

HLT is complete by itself; you do not have to include a

RAM word when using HLT because this instruction does

not involve the memory.

Memory-Reference Instructions

LDA, ADD, and SUB are called memory-reference instruc¬

tions because they use data stored in the memory. OUT

and HLT, on the other hand, are not memory-reference

instructions because they do not involve data stored in the
memory.

Mnemonics

LDA, ADD, SUB, OUT, and HLT are the instruction set

for SAP-1. Abbreviated instructions like these are called

mnemonics (memory aids). Mnemonics are popular in

computer work because they remind you of the operation

that will take place when the instruction is executed. Table

10-1 summarizes the SAP-1 instruction set.

The 8080 and 8085

The 8080 was the first widely used microprocessor. It has

72 instructions. The 8085 is an enhanced version of the

8080 with essentially the same instruction set. To make

SAP practical, the SAP instructions will be upward com-

Chapter 10 SAP-1 143

TABLE 10-1. SAP-1 INSTRUCTION SET the contents of memory location 9H, and so the accumulator

contents become

Mnemonic Operation

LDA Load RAM data into accumulator

ADD Add RAM data to accumulator

SUB Subtract RAM data from accumulator

OUT Load accumulator data into output

register

HLT Stop processing

patible with the 8080/8085 instruction set. In other words,

the SAP-1 instructions LDA, ADD, SUB, OUT, and HLT

are 8080/8085 instructions. Likewise, the SAP-2 and SAP-

3 instructions will be part of the 8080/8085 instruction set.

Learning SAP instructions is getting you ready for the 8080

and 8085, two widely used microprocessors.

EXAMPLE 10-1

Here’s a SAP-1 program in mnemonic form:

Address Mnemonics

OH LDA 9H

1H ADD AH

2H ADD BH

3H SUB CH

4H OUT

5H HLT

The data in higher memory is

Address Data

6H FFH

7H FFH

8H FFH

9H 01H

AH 02H

BH 03H

CH 04H

DH FFH

EH FFH

FH FFH

What does each instruction do?

SOLUTION

The program is in the low memory, located at addresses

OH to 5H. The first instruction loads the accumulator with

A = 01H

The second instruction adds the contents of memory location

AH to the accumulator contents to get a new accumulator

total of

A = 01H + 02H = 03H

Similarly, the third instruction add the contents of memory

location BH

A = 03H + 03H = 06H

The SUB instruction subtracts the contents of memory

location CH to get

A = 06H — 04H = 02H

The OUT instruction loads the accumulator contents into

the output port: therefore, the binary display shows

0000 0010

The HLT instruction stops the data processing.

10-3 PROGRAMMING SAP-1

To load instruction and data words into the SAP-1 memory

we have to use some kind of code that the computer can

interpret. Table 10-2 shows the code used in SAP-1. The

number 0000 stands for LDA, 0001 for ADD, 0010 for

SUB, 1110 for OUT, and 1111 for HLT. Because this code

tells the computer which operation to perform, it is called

an operation code (op code).

As discussed earlier, the address and data switches of

Fig. 9-7 allow you to program the SAP-1 memory. By

design, these switches produce a 1 in the up position (U)

TABLE 10-2. SAP-1
OP CODE

Mnemonic Op code

LDA 0000

ADD 0001

SUB 0010

OUT 1110

HLT mi

144 Digital Computer Electronics

SOLUTION and a 0 in the down position (D). When programming the

data switches with an instruction, the op code goes into the

upper nibble, and the operand (the rest of the instruction)

into the lower nibble.

For instance, suppose we want to store the following

instructions:

Address Instruction

OH LDA FH

1H ADD EH

2H HLT

First, convert each instruction to binary as follows:

LDA FH = 0000 1111

ADD EH = 0001 1110

HLT = 1111 XXXX

In the first instruction, 0000 is the op code for LDA, and

1111 is the binary equivalent of FH. In the second instruc¬

tion, 0001 is the op code for ADD, and 1110 is the binary

equivalent of EH. In the third instruction, 1111 is the op

code for HLT, and XXXX are don't cares because the HLT

is not a memory-reference instruction.

Next, set up the address and data switches as follows:

Address Data

DDDD DDDD UUUU

DDDU DDDU UUUD

DDUD UUUU XXXX

After each address and data word is set, you press the write

button. Since D stores a binary 0 and U stores a binary 1,

the first three memory locations now have these contents:

Here is the program of Example 10-1:

Address Instruction

OH LDA 9H

1H ADD AH

2H ADD BH

3H SUB CH

4H OUT

5H HLT

This program is in assembly language as it now stands. To

get it into machine language, we translate it to 0s and Is

as follows:

Address Instruction

0000 0000 1001

0001 0001 1010

0010 0001 1011

0011 00101100

0100 1110 XXXX

oioi mi xxxx

Now the program is in machine language.

Any program like the foregoing that’s written in machine

language is called an object program. The original program

with mnemonics is called a source program. In SAP-1 the

operator translates the source program into an object program

when programming the address and data switches.

A final point. The four MSBs of a SAP-1 machine-

language instruction specify the operation, and the four

LSBs give the address. Sometimes we refer to the MSBs

as the instruction field and to the LSBs as the address field.

Symbolically,

Instruction = XXXX XXXX

Address Contents

0000 0000 1111

0001 0001 1110

ooio mi xxxx

A final point. Assembly language involves working with

mnemonics when writing a program. Machine language

involves working with strings of 0s and Is. The following

examples bring out the distinction between the two lan¬

guages.

Instruction field

Address field —

EXAMPLE 10-3

How would you program SAP-1 to solve this arithmetic

problem?

16 + 20 4- 24 - 32

The numbers are in decimal form.

EXAMPLE 10-2

Translate the program of Example 10-1 into SAP-1 machine

language.

SOLUTION

One way is to use the program of the preceding example,

storing the data (16, 20, 24, 32) in memory locations 9H

Chapter 10 SAP-1 145

to CH. With Appendix 2, you can convert the decimal data

into hexadecimal data to get this assembly-language version:

Address Contents

OH LDA 9H

1H ADD AH

2H ADD BH

3H SUB CH

4H OUT

5H HLT

6H XX

7H XX

8H XX

9H 10H

AH 14H

BH 18H

CH 20H

The machine-language version is

Address Contents

0000 0000 1001

0001 0001 1010

0010 0001 1011

0011 0010 1100

0100 1110XXXX

0101 1111 XXXX

0110 XXXX XXXX

0111 XXXX XXXX

1000 XXXX XXXX

1001 0001 0000

1010 0001 0100

1011 0001 1000

1100 0010 0000

Notice that the program is stored ahead of the data. In

other words, the program is in low memory and the data

in high memory. This is essential in SAP-1 because the

program counter points to address 0000 for the first instruc¬

tion, 0001 for the second instruction, and so forth.

EXAMPLE 10-4

Chunk the program and data of the preceding example by

converting to hexadecimal shorthand.

SOLUTION

Address Contents

OH 09H

1H 1AH

2H 1BH

3H 2CH

4H EXH

5H FXH

6H XXH

7H XXH

8H XXH

9H 10H

AH 14H

BH 18H

CH 20H

This version of the program and data is still considered

machine language.

Incidentally, negative data is loaded in 2’s-complement

form. For example, — 03H is entered as FDH.

10-4 FETCH CYCLE

The control unit is the key to a computer’s automatic

operation. The control unit generates the control words that

fetch and execute each instruction. While each instruction

is fetched and executed, the computer passes through

different timing states (T states), periods during which

register contents change. Let’s find out more about these T

states.

Ring Counter

Earlier, we discussed the SAP-1 ring counter (see Fig.

8-16 for the schematic diagram). Figure 10-2a symbolizes

the ring counter, which has an output of

T = T6T5T4T3T2T{

At the beginning of a computer run, the ring word is

T = 000001

Successive clock pulses produce ring words of

T = 000010

T = 000100

T = 001000

T = 010000

T = 100000

Then, the ring counter resets to 000001, and the cycle

repeats. Each ring word represents one T state.

Figure 10-27? shows the timing pulses out of the ring

counter. The initial state Tx starts with a negative clock

edge and ends with the next negative clock edge. During

this T state, the 7\ bit out of the ring counter is high.

During the next state, T2 is high; the following state has

a high T3; then a high 74; and so on. As you can see, the

146 Digital Computer Electronics

(a)

CLK

CLR

r’J I_| L
T2 r '

7-6_

(b)

Fig. 10-2 Ring counter: (a) symbol; (b) clock and timing signals.

ring counter produces six T states. Each instruction is

fetched and executed during these six T states.

Notice that a positive CLK edge occurs midway through

each T state. The importance of this will be brought out

later.

Address State

The Tj state is called the address state because the address

in the program counter (PC) is transferred to the memory

address register (MAR) during this state. Figure 10-3a

shows the computer sections that are active during this state

(active parts are light; inactive parts are dark).

During the address state, EP and LM are active; all other

control bits are inactive. This means that the controller-

sequencer is sending out a control word of

CON = CpEpLmCE LjEjLaEa S^LJlo

= 0 1 0 1 1110 0011

during this state.

Increment State

Figure 10-3b shows the active parts of SAP-1 during the

T2 state. This state is called the increment state because the

program counter is incremented. During the increment state,

the controller-sequencer is producing a control word of

CON = CpEpLmCE LjEjLaEa SuEuLbLq

= 101 1 1110 0011

As you see, the CP bit is active.

Memory State

The r3 state is called the memory state because the addressed

RAM instruction is transferred from the memory to the

instruction register. Figure 10-3c shows the active parts of

SAP-1 during the memory state. The only active control

bits during this state are CE and Lh and the word out of

the controller-sequencer is

CON = CPEPLMCE LtEtLaEa SuEuLbLo

= 0010 0110 0011

Chapter 10 SAP-1 147

Fetch Cycle

The address, increment, and memory states are called the

fetch cycle of SAP-1. During the address state, EP and LM

are active; this means that the program counter sets up the

MAR via the W bus. As shown earlier in Fig. 10-2b, a

positive clock edge occurs midway through the address

state; this loads the MAR with the contents of the PC.

CP is the only active control bit during the increment

state. This sets up the program counter to count positive

clock edges. Halfway through the increment state, a positive

clock edge hits the program counter and advances the count

by 1. _ _
During the memory state, CE and L, are active. Therefore,

the addressed RAM word sets up the instruction register

via the W bus. Midway through the memory state, a positive

clock edge loads the instruction register with the addressed

RAM word.

10-5 EXECUTION CYCLE

The next three states (T4, T5, and T6) are the execution

cycle of SAP-1. The register transfers during the execution

cycle depend on the particular instruction being executed.

For instance, LDA 9H requires different register transfers

than ADD BH. What follows are the control routines for

different SAP-1 instructions.

LDA Routine

For a concrete discussion, let’s assume that the instruction

register has been loaded with LDA 9H:

IR = 0000 1001

During the T4 state, the instruction field 0000 goes to the

controller-sequencer, where it is decoded; the address field

1001 is loaded into the MAR. Figure 10-4a shows the

active parts of SAP-1 during the T4 state. Note that E, and

Lm are active; all other control bits are inactive.

During the Ts state, CE and LA go low. This means that

the addressed data word in the RAM will be loaded into

the accumulator on the next positive clock edge (see Fig.

10-46).
T6 is a no-operation state. During this third execution

state, all registers are inactive (Fig. 10-4c). This means

that the controller-sequencer is sending out a word whose

bits are all inactive. Nop (pronounced no op) stands for

“no operation." The T6 state of the LDA routine is a nop.

Figure 10-5 shows the timing diagram for_the fetch and

LDA routines. During the T] state, EP and LM are active;

the positive clock edge midway through this state will

transfer the address in the program counter to the MAR.

During the T2 state, CP is active and the program counter

is incremented on the positive clock edge. During the T3

state, CE and L, are active; when the positive clock edge

occurs, the addressed RAM word is transferred to the

instruction register. The LDA execution starts with the T4

state, where LM and E, are active; on the positive clock

edge the address field in the instruction register is transferred

to the MAR. During the T5 state, CE and LA are active;

this meahs that the addressed RAM data word is transferred

to the accumulator on the positive clock edge. As you

know, the Tb state of the LDA routine is a nop.

ADD Routine

Suppose at the end of the fetch cycle the instruction register

contains ADD BH:

IR = 0001 1011

During the T4 state the instruction field goes to the controller-

sequencer and the address field to the MAR (see Fig.

10-6a). During this state d and LM are active.

Control bits CE and LB are active during the T5 state.

This allows the addressed RAM word to set up the B

148 Digital Computer Electronics

A

CON CON

(a) (b)

Fig. 10-4 LDA routine: (a) T4 state; (b) T5 state; (c) T6 state.

m ■its
■ i m

lii
1: m me an

s ’
m

I
sm

»mmm- I
1

/'/JL'§1 ff|jj§
CON

(c)

Fig. 10-5 Fetch and LDA timing diagram.

CON CON

<a> (b) (C)
Fig. 10-6 ADD and SUB routines: (a) TA state; (b) Ts state; (c)
T6 state.

Chapter 10 SAP-1 149

register (Fig. 10-66). As usual, loading takes place midway

through the state when the positive clock edge hits the CLK

input of the B register.

During the T6 state, Ev and LA are active; therefore, the

adder-subtracter sets up the accumulator (Fig. 10-6c).

Halfway through this state, the positive clock edge loads

the sum into the accumulator.

Incidentally, setup time and propagation delay time

prevent racing of the accumulator during this final execution

state. When the positive clock edge hits in Fig. 10-6c, the

accumulator contents change, forcing the adder-subtracter

contents to change. The new contents return to the accu¬

mulator input, but the new contents don’t get there until

two propagation delays after the positive clock edge (one

for the accumulator and one for the adder-subtracter). By

then it’s too late to set up the accumulator. This prevents

accumulator racing (loading more than once on the same

clock edge).

Figure 10-7 shows the timing diagram for the fetch and

ADD routines. The fetch routine is the same as before: the

Tx state loads the PC address into the MAR; the T2 state

increments the program counter; the T3 state sends the

addressed instruction to the instruction register.

During the T4 state, Ej and LM are active; on the next

positive clock edge, the address field in the instruction

register goes to the MAR. During the T5 state, CE and LB

are active; therefore, the addressed RAM word is loaded

into the B register midway through the state. During the T6

state, Ejj and LA are active; when the positive clock edge

hits, the sum out of the adder-subtracter is stored in the

accumulator.

SUB Routine

The SUB routine is similar to the ADD routine. Figure

10-6a and b show the active parts of SAP-1 during the T4

and T5 states. During the T6 state, a high Su is sent to the

adder-subtracter of Fig. 10-6c. The timing diagram is almost

identical to Fig. 10-7. Visualize Sv low during the Tx to T5

states and S^high during the T6 state.

OUT Routine

Suppose the instruction register contains the OUT instruction

at the end of a fetch cycle. Then

IR = 1110 XXXX

Fig. 10-7 Fetch and ADD timing diagram.

The instruction field goes to the controller-sequencer for

decoding. Then the controller-sequencer sends out the

control word needed to load the accumulator contents into

the output register.

Figure 10-8 shows the active sections of SAP-1 during

the execution of an OUT instruction. Since EA and L0 are

active, the next positive clock edge loads the accumulator

contents into the output register during the T4 state. The T5

and r6 states are nops.

Figure 10-9 is the timing diagram for the fetch and OUT

routines. Again, the fetch cycle is same: address state,

increment state, and memory state. During the T4 state, EA

and L0 are active; this transfers the accumulator word to

the output register when the positive clock edge occurs.

150 Digital Computer Electronics

CE

L,

Fig. 10-9 Fetch and OUT timing diagram.

HLT

HLT does not require a control routine because no registers

are involved in the execution of an HLT instruction. When

the IR contains

IR = 1111 XXXX

the instruction field 1111 signals the controller-sequencer

to stop processing data. The controller-sequencer stops the

computer by turning off the clock (circuitry discussed later).

Machine Cycle and Instruction Cycle

SAP-1 has six T states (three fetch and three execute).

These six states are called a machine cycle (see Fig.

10-10a). It takes one machine cycle to fetch and execute

each instruction. The SAP-1 clock has a frequency of 1

kHz, equivalent to a period of 1 ms. Therefore, it takes 6

ms for a SAP-1 machine cycle.

SAP-2 is slightly different because some of its instructions

take more than one machine cycle to fetch and execute.

Figure 10-10/? shows the timing for an instruction that

requires two machine cycles. The first three T states are

the fetch cycle; however, the execution cycle requires the

next nine T states. This is because a two-machine-cycle

instruction is more complicated and needs those extra T

states to complete the execution.

The number of T states needed to fetch and execute an

instruction is called the instruction cycle. In SAP-1 the

instruction cycle equals the machine cycle. In SAP-2 and

other microcomputers the instruction cycle may equal two

or more machine cycles, as shown in Fig. 10-10/?.

The instruction cycles for the 8080 and 8085 take from

one to five machine cycles (more on this later).

EXAMPLE 10-5

The 8080/8085 programming manual says that it takes

thirteen T states to fetch and execute the LDA instruction.

(a)

(b)

Fig. 10-10 (a) SAP-1 instruction cycle; (Z?) instruction cycle with
two machine cycles.

Chapter 10 SAP-1 151

If the system clock has a frequency of 2.5 MHz, how long

is an instruction cycle?

SOLUTION

The period of the clock is

T = - =---= 400 ns
/ 2.5 MHz

Therefore, each T state lasts 400 ns. Since it takes thirteen

T states to fetch and execute the LDA instruction, the

instruction cycle lasts for

13 X 400 ns = 5,200 ns = 5.2 p,s

EXAMPLE 10-6

Figure 10-11 shows the six T states of SAP-1. The positive

clock edge occurs halfway through each state. Why is this

important?

SOLUTION

SAP-1 is a bus-organized computer (the common type

nowadays). This allows its registers to communicate via

the W bus. But reliable loading of a register takes place

only when the setup and hold times are satisfied. Waiting

half a cycle before loading the register satisfies the setup

time; waiting half a cycle after loading satisfies the hold

time. This is why the positive clock edge is designed to

strike the registers halfway through each T state (Fig.

10-11).

There’s another reason for waiting half a cycle before

loading a register. When the ENABLE input of the sending

register goes active, the contents of this register are suddenly

dumped on the W bus. Stray capacitance and lead inductance

prevent the bus lines from reaching their correct voltage

levels immediately. In other words, we get transients on

the W bus and have to wait for them to die out to ensure

valid data at the time of loading. The half-cycle delay

before clocking allows the data to settle before loading.

10-6 THE SAP-1 MICROPROGRAM

We will soon be analyzing the schematic diagram of the

SAP-1 computer, but first we need to summarize the

execution of SAP-1 instructions in a neat table called a

microprogram.

Microinstructions

The controller-sequencer sends out control words, one

during each T state or clock cycle. These words are like

directions telling the rest of the computer what to do.

Because it produces a small step in the data processing,

each control word is called a microinstruction. When looking

at the SAP-1 block diagram (Fig. 10-1), we can visualize

a steady stream of microinstructions flowing out of the

controller-sequencer to the other SAP-1 circuits.

Macroinstructions

The instructions we have been programming with (LDA,

ADD, SUB, . . .) are sometimes called macroinstructions

to distinguish them from microinstructions. Each SAP-1

macroinstruction is made up of three microinstructions. For

example, the LDA macroinstruction consists of the mi¬

croinstructions in Table 10-3. To simplify the appearance

of these microinstructions, we can use hexadecimal chunk¬

ing as shown in Table 10-4.

Table 10-5 shows the SAP-1 microprogram, a listing of

each macroinstruction and the microinstructions needed to

carry it out. This table summarizes the execute routines for

the SAP-1 instructions. A similar table can be used with

more advanced instruction sets.

10-7 THE SAP-1 SCHEMATIC
DIAGRAM

In this section we examine the complete schematic diagram

for SAP-1. Figures 10-12 to 10-15 show all the chips,

wires, and signals. You should refer to these figures

throughout the following discussion. Appendix 4 gives

additional details for some of the more complicated chips.

edge + edge + edge

i 1 l
+ edge + edge + edge

1 i i

Fig. 10-11 Positive clock edges occur midway through T states.

1 52 Digital Computer Electronics

TABLE 10-3

Macro State Cp Ep Lm CE Li Ej LaEa SuEuLbLq Active

LDA t4 0 0 0 1 10 10 0 0 11 Lm, Ej

t5 0 0 1 0 110 0 0 0 11 CE, La
t6 0 0 1 1 1110 0 0 11 None

TABLE 10-4

Macro State CON Active

LDA T4 1A3H La/5 Ej

t5 2C3H CE, La

t6 3E3H None

TABLE 10-5. SAP-1 MICROPROGRAMf

Macro State CON Active

LDA ta 1A3H Lm, Ei

t5 2C3H CE, La

t6 3E3H None
ADD t4 1A3H Lm, Ej

t5 2E1H CE, Lb

t6 3C7H Ea9 E(J

SUB t4 1A3H LM, Ej

Ts 2E1H CE, Lb

t6 3CFH LA9 Sv, Ejj
OUT t4 3F2H Ea* Eq

Ts 3E3H None

T6 3E3H None

+ CON = CpEpLmCE l,e,laea SuEuLbLo.

Program Counter

Chips Cl, C2, and C3 of Fig. 10-12 are the program

counter. Chip Cl, a 74LS107, is a dual JK master-slave

flip-flop, that produces the upper 2 address bits. Chip C2,

another 74LS107, produces the lower 2 address bits. Chip

C3 is a 74LS126, a quad three-state normally open switch;

it gives the program counter a three-state output.

At the start of a computer run, a low CLR resets the

program counter to 0000. During the T} state, a high EP

places the address on the W bus. During the T2 state, a

high CP is applied to the program counter; midway through

this state, the negative CLK edge (equivalent to positive

CLK edge) increments the program counter.

The program counter is inactive during the T3 to T6 states.

MAR

Chip C4, a 74LS173, is a 4-bit buffer register; it serves as

the MAR. Notice that pins 1 and 2 are grounded; this

converts the three-state output to a two-state output. In

other words, the output of the MAR is not connected to

the W bus, and so there’s no need to use the three-state
output.

2-to-l Multiplexer

Chip C5 is a 74LS157, a 2-to-l nibble multiplexer. The

left nibble (pins 14, 11, 5, 2) comes from the address

switch register (SO- The right nibble (pins 13, 10, 6, 3)

comes from the MAR. The run-prog switch (S2) selects

the nibble to reach to the output of C5. When S2 is in the

prog position, the nibble out of the address switch register

is selected. On the other hand, when S2 is the run position,

the output of the MAR is selected.

16 x 8 RAM

Chips C6 and C7 are 74189s. Each chip is a 16 x 4 static

RAM. Together, they give us a 16 X 8 read-write memory;.

S3 is the data switch register (8 bits), and S4 is the read-

write switch (a push-button switch). To program the mem¬

ory, S2 is put in the prog position; this takes the CE input

low (pin 2). The address and data switches are then set to

the correct address and data words. A momentary push of

the read-write switch takes WE low (pin 3) and loads the
memory.

After the program and data are in memory, the run-

prog switch (S2) is put in the run position in preparation
for the computer run.

Instruction Register

Chips C8 and C9 are 74LS173s. Each chip is a 4-bit three-

state buffer register. The two chips are the instruction

register. Grounding pins 1 and 2 of C8 converts the three-

state output to a two-state output, I7I6I5I4. This nibble goes

to the instruction decoder in the controller-sequencer. Signal

Ej controls the output of C9, the lower nibble in the

instruction register. When Ej is low, this nibble is placed

on the W bus.

Chapter 10 SAP-1 153

74
L

S
10

7
7

4
L

S
1

0
7

I_I

154 Digital Computer Electronics

Chapter 10 SAP-1 155

Fi
g.

10
-1

2
S

A
P

-1

pr
og

ra
m

co
u

n
te

r,

m
em

o
ry

,
an

d
in

st
ru

ct
io

n
re

g
is

te
r.

W
 b

u
s

156 Digital Computer Electronics

Chapter 10 SAP-1 157

Fi
g.

 1
0-

13
 A

 a
nd

 B
 r

eg
is

te
rs

,
ad

de
r-

su
bt

ra
ct

er
,

an
d

ou
tp

ut
 c

ir
cu

it
s.

Accumulator

Chips CIO and Cll, 74LS173s, are the accumulator (see

Fig. 10-13). Pins 1 and 2 are grounded on both chips to

produce a two-state output for the adder-subtracter. Chips

C12 and Cl3 are 74LS126s; these three-state switches place

the accumulator contents on the W bus when EA is high.

Adder-subtracter

Chips C14 and C15 are 74LS86s. These exclusive-or
gates are a controlled inverter. When Sy is low, the contents

of the B register are transmitted. When Sv is high, the l’s

complement is transmitted and a 1 is added to the LSB to

form the 2’s complement.

Chips C16 and C17 are 74LS83s. These 4-bit full adders

combine to produce an 8-bit sum or difference. Chips C18

and C19, which are 74LS126s, convert this 8-bit answer

into a three-state output for driving the W bus.

B Register and Output Register

Chips C20 and C21, which are 74LS173s, form the B

register. It contains the data to be added or subtracted from

the accumulator. Grounding pins 1 and 2 of both chips

produces a two-state output for the adder-subtracter.

Chips C22 and C23 are 74LS173s and form the output

register. It drives the binary display and lets us see the

processed data.

Clear-Start Debouncer

In Fig. 10-14, the clear-start debouncer produces two

outputs: CLR for the instruction register and CLR for the

program counter and ring counter. CLR also goes to C29,

the clock-start flip-flop. S5 is a push-button switch. When

depressed, it goes to the clear position, generating a high

CLR and a low CLR. When S5 is released, it returns to the

start position, producing a low CLR and a high CLR.

Notice that half of C24 is used for the dear-start debouncer

and the other half for the single-step debouncer. Chip C24

is a 7400, a quad 2-input nand gate.

Single-Step Debouncer

SAP-1 can run in either of two modes, manual or automatic.

In the manual mode, you press and release S6 to generate

one clock pulse. When S6 is depressed, CLK is high; when

released, CLK is low. In other words, the single-step

debouncer of Fig. 10-14 generates the T states one at a

time as you press and release the button. This allows you

to step through the different T states while troubleshooting

or debugging. (Debugging means looking for errors in your

program. You troubleshoot hardware and debug software.)

Manual-Auto Debouncer

Switch S7 is a single-pole double-throw (SPDT) switch that

can remain in either the manual position or the auto

position. When in manual, the single-step button is active.

When in auto, the computer runs automatically. Two of

the nand gates in C26 are used to debounce the manual-

auto switch. The other two nand C26 gates are part of a

nand-nand network that steers the single-step clock or the

automatic clock to the final CLK and CLK outputs.

Clock Buffers

The output of pin 11, C26, drives the clock buffers. As

you see in Fig. 10-14, two inverters are used to produce

the final CLK output and one inverter to produce the CLK

output. Unlike most of the other chips, C27 is standard

TTL rather than a low-power Schottky (see SAP-1 Parts

List, Appendix 5). Standard TTL is used because it can

drive 20 low-power Schottky TTL loads, as indicated in

Table 4-5.
If you check the data sheets of the 74LS107 and 74LS173

for input currents, you will be able to count the following

low-power Schottky (LS) TTL loads on the clock and clear

signals:

CLK = 19 LS loads

CLK = 2 LS loads

CLR = 1 LS load

CLR = 20 LS loads

This means that the CLK and CLK signals out of C27

(standard TTL) are adequate to drive the low-power Schottky

TTL loads. Also, the CLR and CLR signals out of C24

(standard TTL) can drive their loads.

Clock Circuits and Power Supply

Chip C28 is a 555 timer. This IC produces a rectangular

2-kHz output with a 75 percent duty cycle. As previously

discussed, a start-the-clockflip-flop (C29) divides the signal

down to 1 kHz and at the same time produces a 50 percent

duty cycle.

The power supply consists of a full-wave bridge rectifier

working into a capacitor-input filter. The dc voltage across

the 1,000-jJiF capacitor is approximately 20 V. Chip C30,

an LM340T-5, is a voltage regulator that produces a stable

output of +5 V.

Instruction Decoder

Chip C31, a hex inverter, produces complements of the

op-code bits, I7I6I5l4 (see Fig. 10-15). Then chips C32,

C33, and C34 decode the op code to produce five output

signals: LDA, ADD, SUB, OUT, and HLT. Remember:

158 Digital Computer Electronics

only one of these is active at a time. (HLT is active low;

all the others are active high.)

When the HLT instruction is in the instruction register,

bits I7I6I5I4 are 1111 and HLT is low. This signal returns

to C25 (single-step clock) and C29 (automatic clock). In

either manual or AUTO mode, the clock stops and the
computer run ends.

Ring Counter

The ring counter, sometimes called a state counter, consists

of three chips, C36, C37, and C38. Each of these chips is

a 74LS107, a dual JK master-slave flip-flop. This counter

is reset when the clear-start button (S5) is pressed. The Q0

flip-flop is inverted so that its Q output (pin 6, C38) drives

Chapter 10 SAP-1 159

R
IN

G
 C

O
U

N
T

E
R

160 Digital Computer Electronics

F
ig

.
10

-1
5

In
st

ru
ct

io
n

d
ec

o
d
er

,
ri

ng

co
u
n
te

r,

an
d

co
n
tr

o
l

m
at

ri
x.

the J input of the Qx flip-flop (pin 1, C38). Because of this,

the Tx output is initially high.

The CLK signal drives an active low input. This means

that the negative edge of the CLK signal initiates each T

state. Half a cycle later, the positive edge of the CLK signal

produces register loading, as previously described.

Control Matrix

The LDA, ADD, SUB, and OUT signals from the instruction

decoder drive the control matrix, C39 to C48. At the same

time, the ring-counter signals, T, to T6, are driving the

matrix (a circuit receiving two groups of bits from different

sources). The matrix produces CON, a 12-bit microinstruc¬

tion that tells the rest of the computer what to do.

In Fig. 10-15, T, goes high, then T2, then T3, and so on.

Analyze the control matrix and here is what you will find.

A high T} produces a high EP and a low LM (address state);

a high T2 results in ahigh CP (increment state); and a high

T3 produces a low CE and a low Lj (memory state). The

first three T states, therefore, are always the fetch cycle in

SAP-1. In chunked notation, the CON words for the fetch

cycle are

State CON Active Bits

r, 5E3H Epi Lm

t2 BE3H CP

t3 263H CE, Lj

During the execution states, TA through Te go high in

succession. At the same time, only one of the decoded

signals (LDA through OUT) is high. Because of this, the

matrix automatically steers active bits to the correct output
control lines.

For instance, when LDA is high, the only enabled 2-

input nand gates are the first, fourth, seventh, and tenth.

When J4 is high, it activates the first and seventh nand

gates, resulting in low LM and low % (load MAR with

address field). When T5 is high, it activates the fourth and

tenth nand gates, producing a low CE and a low LA (load

RAM data into accumulator). When T6 goes high, none of

the control bits are active (nop).

You should analyze the action of the control matrix

during the execution states of the remaining possibilities:

high ADD, high SUB, and high OUT. Then you will agree

the control matrix can generate the ADD, SUB, and OUT

microinstructions shown in Table 10-5 (SAP-1 micropro¬
gram).

Operation

Before each computer run, the operator enters the program

and data into the SAP-1 memory. With the program in low

memory and the data in high memory, the operator presses

and releases the clear button. The CLK and CLK signals

drive the registers and counters. The microinstruction out

of the controller-sequencer determines what happens on
each positive CLK edge.

Each SAP-1 machine cycle begins with a fetch cycle. T,

is the address state, T2 is the increment state, and T3 is the

memory state. At the end of the fetch cycle, the instruction

is stored in the instruction register. After the instruction

field has been decoded, the control matrix automatically

generates the correct execution routine. Upon completion

of the execution cycle, the ring counter resets and the next
machine cycle begins.

The data processing ends when a HLT instruction is

loaded into the instruction register.

10-8 MICROPROGRAMMING

The control matrix of Fig. 10-15 is one way to generate

the microinstructions needed for each execution cycle. With

larger instruction sets, the control matrix becomes very

complicated and requires hundreds or even thousands of

gates. This is why hardwired control (matrix gates soldered

together) forced designers to look for an alternative way to

produce the control words that run a computer.

Microprogramming is the alternative. The basic idea is

to store microinstructions in a ROM rather than produce

them with a control matrix. This approach simplifies the

problem of building a controller-sequencer.

Storing the Microprogram

By assigning addresses and including the fetch routine, we

can come up with the SAP-1 microinstructions shown in

Table 10-6. These microinstructions can be stored in a

control ROM with the fetch routine at addresses OH to 2H,

the LDA routine at addresses 3H to 5H, the ADD routine

at 6H to 8H, the SUB routine at 9H to BH, and the OUT
routine at CH to EH.

To access any routine, we need to supply the correct

addresses. For instance, to get the ADD routine, we need

to supply addresses 6H, 7H, and 8H. To get the OUT

routine, we supply addresses CH, DH, and EH. Therefore,

accessing any routine requires three steps:

1. Knowing the starting address of the routine

2. Stepping through the routine addresses

3. Applying the addresses to the control ROM.

Address ROM

Figure 10-16 shows how to microprogram the SAP-1

computer. It has an address ROM, a presettable counter,

and a control ROM. The address ROM contains the starting

addresses of each routine in Table 10-6. In other words,

Chapter 10 SAP-1 161

TABLE 10-6. SAP-1 CONTROL ROM

Address Contents! Routine Active

OH 5E3H Fetch EP, Lm

1H BE3H CP
2H 263H CE, L,

3H 1A3H LDA Lm 9 Ei
4H 2C3H CE, La

5H 3E3H None

6H 1A3H ADD Lm , Ei
7H 2E1H ce,lb

8H 3C7H La, Ejj

9H 1A3H SUB Lm> Ej
AH 2E1H CE, Lq

BH 3CFH La, $u, Eu

CH 3F2H OUT ea, l0
DH 3E3H None

EH 3E3H None

FH X X Not used

f CON = CpEPLMCE LjELaEa „ SuEuLbLq.

t~j ^6 ^5 ^4

Microinstruction

Fig. 10-16 Microprogrammed control of SAP-1.

the address ROM contains the data listed in Table 10-7.

As shown, the starting address of the LDA routine is 0011,

the starting address of the ADD routine is 0110, and so on.

When the op-code bits I7I6I5I4 drive the address ROM,

the starting address is generated. For instance, if the ADD

TABLE 10-7. ADDRESS ROM

Address Contents Routine

0000 oou LDA

0001 0110 ADD

0010 1001 SUB
0011 xxxx None

0100 xxxx None

0101 xxxx None

0110 xxxx None

0111 xxxx None

1000 xxxx None

1001 xxxx None

1010 xxxx None

1011 xxxx None

1100 xxxx None

1101 xxxx None

1110 1100 OUT
1111 xxxx None

instruction is being executed, I7I6I5l4 is 0001. This is the

input to the address ROM; the output of this ROM is 0110.

Presettable Counter

When T3 is high, the load input of the presettable counter

is high and the counter loads the starting address from the

address ROM. During the other T states, the counter counts.

Initially, a high CLR signal from the dear-start debouncer

is differentiated to get a narrow positive spike. This resets

the counter. When the computer run begins, the counter

output is 0000 during the Tx state, 0001 during the T2 state,

and 0010 during the T3 state. Every fetch cycle is the same

because 0000, 0001, and 0010 come out of the counter

during states TX9 T2, and T3.

The op code in the instruction register controls the

execution cycle. If an ADD instruction has been fetched,

the I7I6I5I4 bits are 0001. These op-code bits drive the

address ROM, producing an output of 0110 (Table 10-7).

This starting address is the input to the presettable counter.

When T3 is high, the next negative clock edge loads 0110

into the presettable counter. The counter is now preset, and

counting can resume at the starting address of the ADD

routine. The counter output is 0110 during the TA state,

0111 during the Ts state, and 1000 during the T6 state.

When the Tx state begins, the leading edge of the Tx

signal is differentiated to produce a narrow positive spike

which resets the counter to 0000, the starting address of

the fetch routine. A new machine cycle then begins.

162 Digital Computer Electronics

Control ROM

The control ROM stores the SAP-1 microinstructions.

During the fetch cycle, it receives addresses 0000, 0001,

and 0010. Therefore, its outputs are

5E3H

BE3H

263H

These microinstructions, listed in Table 10-6, produce the

address state, increment state, and memory state.

If an ADD instruction is being executed, the control

ROM receives addresses 0110, 0111, and 1000 during the

execution cycle. Its outputs are

1A3H

2E1H

3C7H

These microinstructions carry out the addition as previously

discussed.

For another example, suppose the OUT instruction is

being executed. Then the op code is 1110 and the starting

address is 1100 (Table 10-7). During the execution cycle,

the counter output is 1100, 1101, and 1110. The output of

the control ROM is 3F2H, 3E3H, and 3E3H (Table 10-6).

This routine transfers the accumulator contents to the output

port.

Variable Machine Cycle

The microinstruction 3E3H in Table 10-6 is a nop. It occurs

once in the LDA routine and twice in the OUT routine.

These nops are used in SAP-1 to get a fixed machine cycle

for all instructions. In other words, each machine cycle

takes exactly six T states, no matter what the instruction.

In some computers a fixed machine cycle is an advantage.

But when speed is important, the nops are a waste of time

and can be eliminated.

One way to speed up the operation of SAP-1 is to skip

any T state with a nop. By redesigning the circuit of Fig.

10-16 we can eliminate the nop states. This will shorten

the machine cycle of the LDA instruction to five states (Tx,

T2, T3, r4, and F5). It also shortens the machine cycle of

the OUT instruction to four T states (Tu T2, T3, and T4).

Figure 10-17 shows one way to get a variable machine

cycle. With an LDA instruction, the action is the same as

before during the Tx to T5 states. When the T6 state begins,

the control ROM produces an output of 3E3H (the nop

microinstruction). The nand gate detects this nop instantly

and produces a low output signal NOP. NOP is fed back

to the ring counter through an and gate, as shown in Fig.

10-18. This resets the ring counter to the T} state, and a

new machine cycle begins. This reduces the machine cycle

of the LDA instruction from six states to five.

Microinstruction

Fig. 10-17 Variable machine cycle.

Fig. 10-18

With the OUT instruction, the first nop occurs in the T5

state. In this case, just after the T5 state begins, the control

ROM produces an output of 3E3H, which is detected by

the nand gate. The low NOP signal then resets the ring

counter to the Tx state. In this way, we have reduced the

machine cycle of the OUT instruction from six states to
four.

Chapter 10 SAP-1 163

Variable machine cycles are commonly used with micro¬

processors. In the 8085, for example, the machine cycles

take from two to six T states because all unwanted nop

states are ignored.

Advantages

One advantage of microprogramming is the elimination of

the instruction decoder and control matrix; both of these

become very complicated for larger instruction sets. In

other words, it’s a lot easier to store microinstructions in a

ROM than it is to wire an instruction decoder and control

matrix.
Furthermore, once you wire an instruction decoder and

control matrix, the only way you can change the instruction

set is by disconnecting and rewiring. This is not necessary

with microprogrammed control; all you have to do is change

the control ROM and the starting-address ROM. This is a

big advantage if you are trying to upgrade equipment sold

earlier.

Summary

In conclusion, most modem microprocessors use micropro¬

grammed control instead of hardwired control. The micro¬

programming tables and circuits are more complicated than

those for SAP-1, but the idea is the same. Microinstructions

are stored in a control ROM and accessed by applying the

address of the desired microinstruction.

GLOSSARY

address state The Tx state. During this state, the address

in the program counter is transferred to the MAR.

accumulator The place where answers to arithmetic and

logic operations are accumulated. Sometimes called the A

register.

assembly language The mnemonics used in writing a

program.

B register An auxiliary register that stores the data to be

added or subtracted from the accumulator.

fetch cycle The first part of the instruction cycle. During

the fetch cycle, the address is sent to the memory, the

program counter is incremented, and the instruction is

transferred from the memory to the instruction register.

increment state The T2 state. During this state, the pro¬

gram counter is incremented.

instruction cycle All the states needed to fetch and execute

an instruction.

instruction register The register that receives the instruc¬

tion from the memory.

instruction set The instructions a computer responds to.

LDA Mnemonic for load the accumulator.

machine cycle All the states generated by the ring counter.

machine language The strings of Os and Is used in a

program.

macroinstruction One of the instructions in the instruction

set.

MAR Memory address register. This register receives the

address of the data to be accessed in memory. The MAR

supplies this address to the memory.

memory-reference instruction An instruction that calls

for a second memory operation to access data.

memory state The T3 state. During this state, the instruc¬

tion in the memory is transferred to the instruction register.

microinstruction . A control word out of the controller-

sequencer. The smallest step in the data processing.

nop No operation. A state during which nothing happens.

output register The register that receives processed data

from the accumulator and drives the output display of SAP-

1. Also called an output port.

object program A program written in machine language.

op code Operation code. That part of the instruction which

tells the computer what operation to perform.

program counter A register that counts in binary. Its

contents are the address of the next instruction to be fetched

from the memory.

RAM Random-access memory. A better name is read-

write memory. The RAM stores the program and data

needed for a computer run.

source program A program written in mnemonics.

SELF-TESTING REVIEW

Read each of the following and provide the missing words

Answers appear at the beginning of the next question.

1. The_counter, which is part of the con¬

trol unit, counts from 0000 to 1111. It sends to the

memory the_of the next instruction.

2. (program, address) The MAR, or_reg¬

ister, latches the address from the program counter.

A bit later, the MAR applies this address to the

_, where a read operation is performed.

3. (memory-address, RAM) The instruction register is

164 Digital Computer Electronics

part of the control unit. The contents of the

-register are split into two nibbles. The

upper nibble goes to the_

4. (instruction, controller-sequencer) The controller-

sequencer produces a 12-bit word that controls the

rest of the computer. The 12 wires carrying this

_word are called the control

5. (control, bus) The_is a buffer register

that stores sums or differences. Its two-state output

goes to the adder-subtracter. The_pro¬

duces the sum when Sv is low and the difference

when Sv is high. The output register is sometimes

called an output_

6. (-accumulator, adder-subtracter, port) The SAP-1

_set is LDA, ADD, SUB, OUT, and

HLT. LDA, ADD, and SUB are called_

instructions because they use data stored in the

memory.

7. (instruction, memory-reference) The 8080 was the

first widely used microprocessor. The_is

an enhanced version of the 8080 with essentially the

same instruction set.

8. (8085) LDA, ADD, SUB, OUT, and HLT are

coded as 4-bit strings of Os and Is. This code is

called the_code. _language

uses mnemonics when writing a program._

language uses strings of Os and Is.

9. (op, Assembly, Machine) SAP-1 has_T

states, periods during which register contents

change. The ring counter, or_counter,

produces these T states. These six T states represent

one machine cycle. In SAP-1 the instruction cycle

has only one machine cycle. In microprocessors like

the 8080 and the 8085, the_cycle may

have from one to five machine cycles.

10. (six, state, instruction) The controller-sequencer

sends out control words, one during each T state

or clock cycle. Each control word is called a

_Instructions like LDA, ADD, SUB,

etc. are called_Each SAP-1 macroin¬

struction is made up of three_

11. (microinstruction, macroinstructions, microinstruc¬

tions) With larger instruction sets, the control ma¬

trix becomes very complicated. This is why hard¬

wired control is being replaced by_The

basic idea is to store the_in a control

ROM.

12. (microprogramming, microinstructions) SAP-1 uses

a fixed machine cycle for all instructions. In other

words, each machine cycle takes exactly six T

states. Microprocessors like the 8085 have variable

machine cycles because all unwanted nop states are

eliminated.

PROBLEMS

10-1. Write a SAP-1 program using mnemonics (simi¬

lar to Example 10-1) that will display the result

of

5 + 4-6

Use addresses DH, EH, and FH for the data.

10-2. Convert the assembly language of Prob. 10-1

into SAP-1 machine language. Show the answer

in binary form and in hexadecimal form.

10-3. Write an assembly-language program that per¬

forms this operation:

8 + 4 — 3 + 5- 2

Use addresses BH to FH for the data.

10-4. Convert the program and data of Prob. 10-3 into

machine language. Express the result in both

binary and hexadecimal form.

10-5. Figure 10-19 shows the timing diagram for the

ADD instruction. Draw the timing diagram for

the SUB instruction.

b+-■r>+• r=+- +r* +-H

“LT1
i l

_m i
i

LTU
1
i

ru ru n
i

i

u
i
i

ru

i
1

~L2J
i

1 L
-1"

L ""L- j r

L i
i
i i
i i

Li

Li j

j r “L

n L _r
Fig. 10-19

Chapter 10 SAP-1 165

C
5

2
T

O
 1

7

4
L

S
1

5
7

M
U

L
T

IP
L

E
X

E
R

A
 S

+

F
ig

.
10

-2
0

W
 b

u
s

Fi
g.
 1

0-
21

CLEAR/
START

r

SINGLE
STEP

MANUAL/
AUTO

5

9

> LOW l_10

> HIGH
f V2

13

1

> MANUAL

> AUTO r^T

+5 V O-

36 kil ’

L?——Tc25\>—■
CLOCK

BUFFERS

11 I 5|V^ 6

CLOCK
CIRCUIT

C28
6 NE555 5

vlH_
/ w

_Li—N
C26 1

- >
HLT 10 ^

1 3
O- j Q-

12_<] C29

4
- K Q

2 1
0.01 F] 0.01 juP

POWER
SUPPLY

C30
1000/iF LM 340-5

Fig. 10-22

170 Digital Computer Electronics

R
IN

G
 C

O
U

N
T

E
R

F
ig

.
10

-2
3

10-6. Suppose an 8085 uses a clock frequency of 3

MHz. The ADD instruction of an 8085 takes

four T states to fetch and execute. How long is

this?

10-7. What are the SAP-1 microinstructions for the

LDA routine? For the SUB routine? Express the

answers in binary and hexadecimal form.

10-8. Suppose we want to transfer the contents of the

accumulator to the B register. This requires a

new microinstruction. What is this microinstruc¬

tion? Express your answer in hexadecimal and

binary form.

10-9. Look at Fig. 10-20 and answer the following

questions:

a. Are the contents of the program counter

changed on the positive or negative edge of

the CLK signal? At this instant, is the CLK
signal on its rising or falling edge?

b. To increment the program counter, does CP
have to be low or high?

c. To clear the program counter, does CLR have

to be low or high?

d. To place the contents of the program counter

on the W bus, should EP be low or high?

10-10. Refer to Fig. 10-21:

a. If La is high, what happens to the accumulator

contents on the next positive clock edge?

b. If A = 0010 1100 and B = 1100 1110, what

is on the W bus if EA is high?

c. If A = 0000 1111, B = 0000 0001, and

Su — 1, what is on the W bus when Ev is

high?

10-11. Answer the following questions for Fig. 10-22:

a. With S5 in the clear position, is the CLR
output low or high?

b. With S6 in the low position, is the output low

or high for pin 11, C24?

c. To have a clock signal at pin 3 of C29, should

HLT be low or high?

10-12. Refer to Fig. 10-23 to answer the following:

a. If I7I6I5I4 = 1110, only one of the output pins

in C35 is high. Which pin is this? (Disregard

pins 10 and 12.)

b. CLR goes low. Which is the timing signal {Tx
to T6) that goes high?

c. LDA and T5 are high. Is the voltage low or

high at pin 6, C45?

d. ADD and TA are high. Is the signal low or

high at pin 12, C45?

172 Digital Computer Electronics

SAP-2

SAP-1 is a computer because it stores a program and data

before calculations begin; then it automatically carries out

the program instructions without human intervention. And

yet, SAP-1 is a primitive computing machine. It compares

to a modem computer the way a Neanderthal human would

compare to a modem person. Something is missing, some¬

thing found in every modem computer.

SAP-2 is the next step in the evolution toward modem

computers because it includes jump instructions. These new

instructions force the computer to repeat or skip part of a

program. As you will discover, jump instructions open up

a whole new world of computing power.

11-1 BIDIRECTIONAL REGISTERS

To reduce the wiring capacitance of SAP-2, we will run

only one set of wires between each register and the bus.

Figure 11-1 a shows the idea. The input and output pins are

shorted; only one group of wires is connected to the bus.

Does this shorting the input and output pins ever cause

trouble? No. During a computer run, either LOAD or

ENABLE may be active, but not both at the same time. An

active LOAD means that a binary word flows from the bus

to the register input; during a load operation, the output

lines are floating. On the other hand, an active ENABLE
means that a binary word flows from the register to the

bus; in this case, the input lines float.

The IC manufacturer can internally connect the input and

output pins of a three-state register. This not only reduces

the wiring capacitance; it also reduces the number of I/O

pins. For instance, Fig. 11-1 b has four I/O pins instead of

eight.

Figure 11-lc is the symbol for a three-state register with

internally connected input and output pins. The double¬

headed arrow reminds us that the path is bidirectional; data

can move either way.

11-2 ARCHITECTURE

Figure 11-2 shows the architecture of SAP-2. All register

outputs to the W bus are three-state; those not connected

to the bus are two-state. As before, the controller-sequencer

sends control signals (not shown) to each register. These

control signals load, enable, or otherwise prepare the register

for the next positive clock edge. A brief description of each

box is given now.

Input Ports

SAP-2 has two input ports, numbered 1 and 2. A hexade¬

cimal keyboard encoder is connected to port 1. It allows

us to enter hexadecimal instructions and data through port

1. Notice that the hexadecimal keyboard encoder sends a

READY signal to bit 0 of port 2. This signal indicates when

the data in port 1 is valid.

Also notice the SERIAL IN signal going to pin 7 of port

2. A later example will show you how to convert serial

input data to parallel data.

Program Counter

This time, the program counter has 16 bits; therefore, it
can count from

PC = 0000 0000 0000 0000

to

pc = mi mi nil nil

This is equivalent to 0000H to FFFFH, or decimal 0 to

65,535. _

A low CLR signal resets the PC before each computer

run; so the data processing starts with the instruction stored
in memory location 0000H.

173

Bus

MAR and Memory

During the fetch cycle, the MAR receives 16-bit addresses

from the program counter. The two-state MAR output then

addresses the desired memory location. The memory has a

2K ROM with addresses of 0000H to 07FFH. This ROM

contains a program called a monitor that initializes the

computer on power-up, interprets the keyboard inputs, and

so forth. The rest of the memory is a 62K RAM with

addresses from 0800H to FFFFH.

Memory Data Register

The memory data register (MDR) is an 8-bit buffer register.

Its output sets up the RAM. The memory data register

receives data from the bus before a write operation, and it

sends data to the bus after a read operation.

Instruction Register

Because SAP-2 has more instructions than SAP-1, we will

use 8 bits for the op code rather than 4. An 8-bit op code

can accommodate 256 instructions. SAP-2 has only 42

174 Digital Computer Electronics

instructions, so there will be no problem coding them with

8 bits. Using an 8-bit op code also allows upward compat¬

ibility with the 8080/8085 instruction set because it is based

on an 8-bit op code. As mentioned earlier, all SAP

instructions are identical with 8080/8085 instructions.

Controller-Sequencer

The controller-sequencer produces the control words or

microinstructions that coordinate and direct the rest of the

computer. Because SAP-2 has a bigger instruction set, the

controller-sequencer has more hardware. Although the CON
word is bigger, the idea is the same: the control word or

microinstruction determines how the registers react to the

next positive clock edge.

Accumulator

The two-state output of the accumulator goes to the ALU;

the three-state output to the W bus. Therefore, the 8-bit

word in the accumulator continuously drives the ALU, but

this same word appears on the bus only when EA is active.

W bus

ACKNOWLEDGE

READY

SERIAL IN ■

Fig. 11-2 SAP-2 block architecture.

Input
port

2

PC

MAR

\^6| V

64 K
Memory

TV
JjL

MDR

IR

V7
CON

Hexadecimal
keyboard
encoder

\ 8 /

V
8 N >
/

8-^
-T1

16

o

■N

z_

M-

16

~A

Controller/
sequencer

25
ACCUMULATOR

■ pi
ALU

\

ABHI 2 1 /

■
3KK TMP
\ Z

vV B

/ \

00 C

FLAGS

Output \
port 8 >

3

0

7
•

vl
Hexadecimal

display

SERIAL OUT

■ ACKNOWLEDGE

ALU and Flags

Standard ALUs are commercially available as integrated

circuits. These ALUs have 4 or more control bits that

determine the arithmetic or logic operation performed on

words A and B. The ALU used in SAP-2 includes arithmetic

and logic operations.

In this book a flag is a flip-flop that keeps track of a

changing condition during a computer run. The SAP-2

computer has two flags. The sign flag is set when the

accumulator contents become negative during the execution

of some instructions. The zero flag is set when the accu¬

mulator contents become zero.

TMP, B, and C Registers

Instead of using the B register to hold the data being added

or subtracted from the accumulator, a temporary (TMP)

register is used. This allows us more freedom in using the

B register. Besides the TMP and B registers, SAP-2 includes

a C register. This gives us more flexibility in moving data

during a computer run.

Chapter 11 SAP-2 175

Output Ports

SAP-2 has two output ports, numbered 3 and 4. The

contents of the accumulator can be loaded into port 3,

which drives a hexadecimal display. This allows us to see

the processed data.
The contents of the accumulator can also be sent to port

4. Notice that pin 7 of port 4 sends an ACKNOWLEDGE
signal to the hexadecimal encoder. This ACKNOWLEDGE
signal and the READY signal are part of a concept called

handshaking, to be discussed later.

Also notice the SERIAL OUT signal from pin 0 of port

4; one of the examples will show you how to convert

parallel data in the accumulator into serial output data.

11-3 MEMORY-REFERENCE
INSTRUCTIONS

The SAP-2 fetch cycle is the same as before. T, is the

address state, T2 is the increment state, and T3 is the memory

state. All SAP-2 instructions therefore use the memory

during the fetch cycle because a program instruction is

transferred from the memory to the instruction register.

During the execution cycle, however, the memory may

or may not be used; it depends on the type of instruction

that has been fetched. A memory-reference instruction

(MRI) is one that uses the memory during the execution

cycle.

The SAP-2 computer has an instruction set with 42

instructions. What follows is a description of the memory-

reference instructions.

LDA and STA

LDA has the same meaning as before: load the accumulator
with the addressed memory data. The only difference is

that more memory locations can be accessed in SAP-2

because the addresses are from 0000H to FFFFH. For

example, LDA 2000H means to load the accumulator with

the contents of memory location 2000H.

To distinguish the different parts of an instruction, the

mnemonic is sometimes called the op code and the rest of

the instruction is known as the operand. With LDA 2000H,

LDA is the op code and 2000H is the operand. Therefore,

“op code” has a double meaning in microprocessor work;

it may stand for the mnemonic or for the binary code used

to represent the mnemonic. The intended meaning is clear

from the context.

STA is a mnemonic for store the accumulator. Every

STA instruction needs an address. STA 7FFFH means to

store the accumulator contents at memory location 7FFFH.

the execution of STA 7FFFH stores BAH at address 7FFFH.

MVI

MVI is the mnemonic for move immediate. It tells the

computer to load a designated register with the byte that

immediately follows the op code. For instance,

MVI A,37H

tells the computer to load the accumulator with 37H. After

this instruction has been executed, the binary contents of

the accumulator are

A = 0011 0111

You can use MVI with the A, B, and C registers. The

formats for these instructions are

MVI A,byte

MVI B,byte

MVI C,byte

Op Codes

Table 11-1 shows the op codes for the SAP-2 instruction

set. These are the 8080/8085 op codes. As you can see,

3A is the op code for LDA, 32 is the op code for STA,

etc. Refer to this table in the remainder of this chapter.

EXAMPLE 11-1

Show the mnemonics for a program that loads the accu¬

mulator with 49H, the B register with 4AH, and the C

register with 4BH; then have the program store the accu¬

mulator data at memory location 6285H.

SOLUTION

Here’s one program that will work:

Mnemonics

MVI A,49H

MVI B,4AH

MVI C,4BH

STA 6285H

HLT

The first three instructions load 49H, 4AH, and 4BH into

the A, B, and C registers. STA 6285H stores the accumulator

contents at 6285H.

Note the use of HLT in this program. It has the same

meaning as before: halt the data processing.

176 Digital Computer Electronics

TABLE 11-1. SAP-2 OP CODES

Instruction Op Code Instruction Op Code

ADD B 80 MOV B,A 47
ADD C 81 MOV B,C 41
ANA B A0 MOV C,A 4F
ANA C A1 MOV C,B 48
ANI byte E6 MVI A,byte 3E
CALL address CD MVI B,byte 06
CMA 2F MVI C,byte 0E
DCR A 3D NOP 00
DCR B 05 ORA B B0
DCR C 0D ORA C B1
HLT 76 ORI byte F6
IN byte DB OUT byte D3
INR A 3C RAL 17
INR B 04 RAR IF
INR C OC RET C9
JM address FA STA address 32
JMP address C3 SUB B 90
JNZ address C2 SUB C 91
JZ address CA XRA B A8
LDA address 3A XRA C A9
MOV A,B 78 XRI byte EE
MOV A,C 79

instruction, notice that the op code goes into the first address

and the byte into the second address. This is true of all 2-

byte instructions: op code into the first available memory

location and byte into the next.

The instruction

STA 6285H

is a 3-byte instruction (1 byte for the op code and 2 for the

address). The op code for STA is 32H. This byte goes into

the first available memory location, which is 2006H. The

address 6285H has 2 bytes. The lower byte 85H goes into

the next memory location, and the upper byte 62H into the
next location.

Why does the address get programmed with the lower

byte first and the upper byte second? This is a peculiarity

of the original 8080 design. To keep upward compatibility,

the 8085 and some other microprocessors use the same

scheme: lower byte into lower memory, upper byte into

upper memory.

The last instruction HLT has an op code of 76H, stored

in memory location 2009H.

In summary, the MVI instructions are 2-byte instructions,

the STA is a 3-byte instruction, and the HLT is a 1-byte

instruction.

11-4 REGISTER INSTRUCTIONS

EXAMPLE 11-2

Translate the foregoing program into 8080/8085 machine

language using the op codes of Table 11-1. Start with

address 2000H.

SOLUTION

Memory-reference instructions are relatively slow because

they require more than one memory access during the

instruction cycle. Furthermore, we often want to move data

directly from one register to another without having to go

through the memory. What follows are some of the SAP-

2 register instructions, designed to move data from one

register to another in the shortest possible time.

Address Contents Symbolic MOV

2000H 3EH MVI A,49H MOV is the mnemonic for move. It tells the computer to
2001H 49H move data from one register to another. For instance,
2002H 06H MVI B,4AH
2003H 4AH MOV A,B

2004H 0EH MVI C,4BH
2005H 4BH tells the computer to move the data in the B register to the

2006H 32H STA 6285H accumulator. The operation is nondestructive, meaning that
2007H 85H the data in B is copied but not erased. For example, if

2008H 62H

2009H 76H HLT A = 34H and B= 9DH

There are a couple of new ideas in this machine-language
program. With the

MVI A,49H

then the execution of MOV A,B results in

A = 9DH

B = 9DH

Chapter 11 SAP-2 177

You can move data between the A, B, and C registers.

The formats for all MOV instructions are

MOV A,B

MOV A,C

MOV B,A

MOV B,C

MOVC,A

MOV C,B

These instructions are the fastest in the SAP-2 instruction

set, requiring only one machine cycle.

ADD and SUB

ADD stands for add the data in the designated register to

the accumulator. For instance,

ADD B

means to add the contents of the B register to the accu¬

mulator. If

A = 04H and B= 02H

then the execution of ADD B results in

A = 06H

Similarly, SUB means subtract the data in the designated

register from the accumulator. SUB C will subtract the

contents of the C register from the accumulator.

The formats for the ADD and SUB instructions are

ADD B

ADD C

SUBB

SUB C

INR and DCR

Many times we want to increment or decrement the contents

of one of the registers. INR is the mnemonic for increment;
it tells the computer to increment the designated register.

DCR is the mnemonic for decrement, and it instructs the

computer to decrement the designated register. The formats

for these instructions are

INR A

INR B

INR C

DCR A

DCR B

DCR C

As an example, if

B = 56H and C = 8AH

then the execution of INR B results in

B= 57H

and the execution of a DCR C produces

C = 89H

EXAMPLE 11-3

Show the mnemonics for adding decimal 23 and 45. The

answer is to be stored at memory location 5600H. Also,

the answer incremented by 1 is to be stored in the C register.

SOLUTION

As shown in Appendix 2, decimal 23 and 45 are equivalent

to 17H and 2DH. Here is a program that will do the job:

Mnemonics

MVI A,17H

MVI B,2DH

ADD B

STA 5600H

INR A

MOVC, A

HLT

EXAMPLE 11-4

To hand-assemble a program means to translate a source

program into a machine-language program by hand rather

than machine. Hand-assemble the program of the preceding

example starting at address 2000H.

SOLUTION

Address Contents Symbolic

2000H 3EH MVI A,17H

2001H 17H

2002H 06H MVI B,2DH

2003H 2DH

2004H 80H ADD B

2005 H 32H STA 5600H

2006H 00H

2007H 56H

2008H 3CH INR A

2009H 4FH MOV C,A

200AH 76H HLT

Notice that the ADD, INR, MOV, and HLT instructions

are 1-byte instructions; the MVI instructions are 2-byte

instructions, and the STA is a 3-byte instruction.

178 Digital Computer Electronics

11-5 JUMP AND CALL
INSTRUCTIONS

SAP-2 has four jump instructions; these can change the

program sequence. In other words, instead of fetching the

next instruction in the usual way, the computer may jump

or branch to another part of the program.

JMP

To begin with, JMP is the mnemonic for jump; it tells the

computer to get the next instruction from the designated

memory location. Every JMP instruction includes an address

that is loaded into the program counter. For instance,

JMP 3000H

tells the computer to get the next instruction from memory

location 3000H.

2000H - 2000H

negative, the sign flag will be set; otherwise, the sign flag

is cleared. Symbolically,

0 if A ^ 0

1 if A < 0

where 5 stands for sign flag. The sign flag will remain set

or clear until another operation that affects the flag.

JM is a mnemonic for jump if minus; the computer will

jump to a designated address if and only if the sign flag is

set. As an example, suppose a JM 3000H is stored at

2005H. After this instruction has been fetched,

PC = 2006H

If S = 1, the execution of JM 3000H loads the program

counter with

PC = 3000H

Since the program counter now points to 3000H, the next

instruction will come from 3000H.

If the jump condition is not met (5 = 0), the program

counter is unchanged during the execution cycle. Therefore,

when the next fetch cycle begins, the instruction is fetched

from 2006H.

Figure 11-3b symbolizes the two possibilities for a JM

instruction. If the minus condition is satisfied, the computer

jumps to 3000H for the next instruction. If the minus

condition is not satisfied, the program falls through to the

next instruction.

(a) (b)

Fig. 11-3 {a) Unconditional jump; (b) conditional jump.

Here is what happens. Suppose JMP 3000H is stored at

2005H, as shown in Fig. 11-3a. At the end of the fetch

cycle, the program counter contains

PC = 2006H

During the execution cycle, the JMP 3000H loads the

program counter with the designated address:

PC = 3000H

When the next fetch cycle begins, the next instruction

comes from 3000H rather than 2006H (see Fig. 11-3a).

JM

SAP-2 has two flags called the sign flag and the zero flag.

During the execution of some instructions, these flags will

be set or reset, depending on what happens to the accu¬

mulator contents. If the accumulator contents become

JZ

The other flag affected by accumulator operations is the

zero flag. During the execution of some instructions, the

accumulator will become zero. To record this event, the

zero flag is set; if the accumulator contents do not go to

zero, the zero flag is reset. Symbolically,

^ _ f 0 when A ^ 0

| 1 when A = 0

JZ is the mnemonic for jump if zero; it tells the computer

to jump to the designated address only if the zero flag is

set. Suppose a JZ 3000H is stored at 2005H. If Z = 1

during the exection of JZ 3000H, the next instruction is

fetched from 3000H. On the other hand, if Z = 0, the next

instruction will come from 2006H.

JNZ

JNZ stands for jump if not zero. In this case, we get a jump

when the zero flag is clear and no jump when it is set.

Suppose a JNZ 7800H is stored at 2100H. If Z = 0, the

next instruction will come from 7800H; however, if Z =

1, the program falls through to the instruction at 2101H.

Chapter 11 SAP-2 179

JM, JZ, and JNZ are called conditional jumps because

the program jump occurs only if certain conditions are
satisfied. On the other hand, JMP is unconditional; once

this instruction is fetched, the execution cycle always jumps

the program to the specified address.

CALL and RET

A subroutine is a program stored in the memory for possible

use in another program. Many microcomputers have sub¬

routines for finding sines, cosines, tangents, logarithms,

square roots, etc. These subroutines are part of the software

supplied with the computer.

CALL is the mnemonic for call the subroutine. Every

CALL instruction must include the starting address of the

desired subroutine. For instance, if a square-root subroutine

starts at address 5000H and a logarithm subroutine at

6000H, the execution of

CALL 5000H

will jump to the square-root subroutine. On the other hand,

a

CALL 6000H

produces a jump to the logarithm subroutine.

RET stands for return. It is used at the end of every

subroutine to tell the computer to go back to the original

program. A RET instruction is to a subroutine as a HLT is

to a program. Both tell the computer that something is

finished. If you forget to use a RET at the end of a

subroutine, the computer cannot get back to the original

program and you will get computer trash.

When a CALL is executed in the SAP-2 computer, the

contents of the program counter are automatically saved in

memory locations FFFEH and FFFFH (the last two memory

locations). The CALL address is then loaded into the

program counter, so that execution begins with the first

instruction in the subroutine. After the subroutine is finished,

the RET instruction causes the address in memory locations

FFFEH and FFFFH to be loaded back into the program

counter. This returns control to the original program.

Figure 11-4 shows the program flow during a subroutine.

The CALL 5000H sends the computer to the subroutine

located at 5000H. After this subroutine has been completed,

the RET sends the computer back to the instruction following

the CALL.

CALL is unconditional, like JMP. Once a CALL has

been fetched into the instruction register, the computer will

jump to the starting address of the subroutine.

More on Flags

The sign or zero flag may be set or reset during certain

instructions. Table 11-2 lists the SAP-2 instructions that

can affect the flags. All these instructions use the accu¬

mulator during the execution cycle. If the accumulator goes

negative or zero while one of these instructions is being

executed, the sign or zero flag will be set.

For instance, suppose the instruction is ADD C. The

contents of the C register are added to the accumulator

contents. If the accumulator contents become negative or

zero in the process, the sign or zero flag will be set.

A word about the INR and DCR instructions. Since these

instructions use the accumulator to add or subtract 1 from

the designated register, they also affect the flags. For

instance, to execute a DCR C, the contents of the C register

are decremented by sending these contents to the accumu¬

lator, subtracting 1, and sending the result back to the C

register. If the accumulator goes negative while the DCR

C is executed, the sign flag is set; if the accumulator goes

to zero, the zero flag is set.

TABLE 11-2. INSTRUCTIONS
AFFECTING FLAGS

CALL 5000H -1

5000H

RET -1

Fig. 11-4 CALL instruction.

Instruction Flags Affected

ADD S, Z

SUB S, Z

INR s, z
DCR s, z
ANA s, z
ORA s, z
XRA s, z
ANI s, z
ORI s, z
XRI s, z

X 80 Digital Computer Electronics

EXAMPLE 11-5

Hand-assemble the following program starting at address
2000H:

MVI C,03H

DCRC

JZ 0009H

JMP 0002H

HLT

SOLUTION

Address Contents Symbolic

2000H OEH MVI C,03H
2001H 03 H

2002H 0DH DCR C
2003H CAH JZ 2009H
2004H 09H

2005H 20H

2006H C3H JMP 2002H
2007H 02H

2008H 20H

2009H 76H HLT

EXAMPLE 11-6

In the foregoing program, how many times is the DCR

instruction executed?

2000H: MVI C, 03H

2002H: DCR C -

Three

passes

through

loop v

2003H: JZ 2009H -

2006H: JMP 2002H -

2009H: HLT -

Fig. 11-5 Looping.

the computer will loop 7 times. Similarly, if we wanted to

pass through the loop 200 times (equivalent to C8H), the

first instruction would be

MVI C,C8H

The C register acts like a presettable down counter. This

is why it is sometimes referred to as a counter.

The point to remember is this. We can set up a loop by

using an MVI, DCR, JZ, and JMP in a program. The

number loaded into the designated register (the counter)

determines the number of passes through the loop. If we

put new instructions inside the loop, these added instructions

will be executedX times, the number preset into the counter.

SOLUTION
EXAMPLE 11-7

Figure 11-5 illustrates the program flow. Here is what

happens. The MVI C,03H instruction loads the C register

with 03H. DCR C reduces the contents to 02H. The contents

are greater than zero; therefore, the zero flag is reset, and

the JZ 2009H is ignored. The JMP 2002H returns the
computer to the DCR C instruction.

The second time the DCR C is executed, the contents

drop to 01H; the zero flag is still reset. JZ 2009H is again

ignored, and the JMP 2002H returns the computer to DCR
C.

The third DCR C reduces the contents to zero. This time

the zero flag is set, and the JZ 2009H jumps the program
to HLT instruction.

A loop is part of a program that is repeated. In this

example, we have passed through the loop (DCR C and JZ

2009H) 3 times, as shown in Fig. 11-5. Note that the

number of passes through the loop equals the number

initially loaded into the C register. If we change the first

instruction to

MVI C,07H

When you buy a microcomputer, you often purchase

software to do different jobs. One of the programs you can

buy is an assembler. The assembler allows you to write

programs in mnemonic form. Then the assembler converts

these mnemonics into machine language. In other words,

if you have an assembler, you no longer have to hand-

assemble your programs; the computer does the work for
you.

Show the assembly-language version of the program in

Example 11-5. Include labels and comments.

SOLUTION

Label Instruction

MVI C,03H

REPEAT: DCRC

JZ END

JMP REPEAT

END: HLT

Comment

;Load counter with decimal.3

;Decrement counter

;Test for zero

;Do it again

Chapter 11 SAP-2 181

When you write a program, it helps to include your own

comments about what the instruction is supposed to do.

These comments jog your memory if you have to read the

program months later. The first comment reminds us that

we are presetting the down counter with decimal 3, the

second comment reminds us that we are decrementing the

counter, the third comment tells us that we are testing for

zero before jumping, and the fourth comment tells us that

the program will loop back.

When the assembler converts your source program into

an object program, it ignores everything after the semicolon.

Why? Because that’s the way the assembler program is

written. The semicolon is a coded way to tell the computer

that your personal comments follow. (Remember the ASCII

code. 3BH is the ASCII for a semicolon. When the assembler

encounters 3BH in your source programs, it knows com¬

ments follow.)

Labels are another programming aid used with jumps

and calls. When we write an assembly-language program,

we often have no idea what address to use in a jump or

call instruction. By using a label instead of a numerical

address we can write programs that make sense to us. The

assembler will keep track of our labels and automatically

assign the correct addresses to them. This is a great

laborsaving feature of an assembler.

For instance, when the assembler converts the foregoing

program to machine language, it will replace JZ by CA (op

code of Table 11-1) and END by the address of the HLT

instruction. Likewise, it will replace JMP by C3 (op code)

and REPEAT by the address of the DCR C instruction.

The assembler determines the addresses of the HLT and

JMP by counting the number of bytes needed by all

instructions and figuring out where the HLT and DCR C

instructions will be in the final assembled program.

All you have to remember is that you can make up any

label you want for jump and call instructions. The same

label followed by a colon is placed in front of the instruction

you are trying to jump to. When the assembler converts

your program into machine language, the colon tells it a

label is involved.

One more point about labels. With SAP-2, the labels can

be from one to six characters, the first of which must be a

letter. Labels are usually words or abbreviations, but

numbers can be included. The following are examples of

acceptable labels:

REPEAT

DELAY

RDKBD

A34

B12C3

The first two are words; the third is an abbreviation for

read the keyboard. The last two are labels that include

numbers. The restrictions on length (no more than six

characters) and starting character (must be letter) are typical

of commercially available assemblers.

EXAMPLE 11-8

Show a program that multiplies decimal 12 and 8.

SOLUTION

The hexadecimal equivalents of 12 and 8 are OCH and

08H. Let us set up a loop that adds 12 to the accumulator

during each pass. If the computer loops 8 times, the

accumulator contents will equal 96 (decimal) at the end of

the looping.

Here’s one assembly-language program that will do the

job:

Label Mnemonic Comment

MVI A,00H ; Cl ear accumulator

MVI B,0CH ;Load decimal 12 into I

MVI C,08H ;Preset counter with 8

REPEAT: ADD B ;Add decimal 12

DCR C ;Decrement the counter

JZ DONE ;Test for zero

JMP REPEAT ;Do it again

DONE: HLT ;Stop it

The comments tell most of the story. First, we clear the

accumulator. Next, we load decimal 12 into the B register.

Then the counter is preset to decimal 8. These first three

instructions are part of the initialization before entering a

loop.

The ADD B begins the loop by adding decimal 12 to

accumulator. The DCR C reduces the count to 7. Since the

zero flag is clear, JZ DONE is ignored the first time through

and the program flow returns to the ADD B instruction.

You should be able to see what will happen. ADD B is

inside the loop and will be executed 8 times. After eight

passes through the loop, the zero flag is set; then the JZ

DONE Will take the program out of the loop to the HLT

instruction.

Since 12 is added 8 times,

12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 = 96

(Because decimal 96 is equivalent to hexadecimal 60, the

accumulator contains 0110 0000.) Repeated addition like

this is equivalent to multiplication. In other words, adding

12 eight times is identical to 12 x 8. Most microprocessors

do not have multiplication hardware; they only have an

adder-subtracter like the SAP computer. Therefore, with

the typical microprocessor, you have to use some form of

programmed multiplication such as repeated addition.

182 Digital Computer Electronics

EXAMPLE 11-9

Modify the foregoing multiply program by using a JNZ

instead of a JZ.

SOLUTION

Look at this:

Label Mnemonic

MVI A,00H

MVI B,0CH

MVI C,08H

REPEAT: ADD B

DCR C

JNZ REPEAT

HLT

Comment

;Clear accumulator

;Load decimal 12 into B

;Preset counter with 8

;Add decimal 12

;Decrement the counter

;Test for zero

;Stop it

This is simpler. It eliminates one JMP instruction and one

label. As long as the counter is greater than zero, the JNZ

will force the computer to loop back to REPEAT. When

the counter drops to zero, the program will fall through the

JNZ to the HLT.

EXAMPLE 11-10

Hand-assemble the foregoing program starting at address

2000H.

SOLUTION

Address Contents Symbolic

2000H 3EH MVI A,00H
2001H 00H

2002H 06H MVI B,0CH
2003H 0CH

2004H OEH MVI, C,08H
2005H 08H

2006H 80H ADD B
2007H 0DH DCR C
2008H C2H JNZ 2006H
2009H 06H

200AH 20H

200BH 76H HLT

The first three instructions initialize the registers before the

multiplication begins. If we change the initial values, we
can multiply other numbers.

EXAMPLE 11-11

Change the multiplication part of the foregoing program

into a subroutine located at starting address F006H.

SOLUTION

Address Contents Symbolic

F006H 80H ADD B
F007H 0DH DCR C
F008H C2H JNZ F006H
F009H 06H

F00AH F0H

F00BH C9H RET

Here’s what happened. The initializing instructions depend

on the numbers we are multiplying, so they don’t belong

in the subroutine. The subroutine should contain only the

multiplication part of the program.

In relocating the program we mapped (converted) ad¬

dresses 2006H-200BH to F006H-F00BH. Also, the HLT

was changed to a RET to get us back to the original
program.

EXAMPLE 11-12

The multiply subroutine of the preceding example is used

in the following program. What does the program do?

MVI A,00H

MVI B,10H

MVI C,0EH

CALL F006H

HLT

SOLUTION

Hexadecimal 10H is equivalent to decimal 16, and hexa¬

decimal OEH is equivalent to decimal 14. The first three

instructions clear the accumulator, load the B register with

decimal 16, and preset the counter to decimal 14. The

CALL sends the computer to the multiply subroutine of the

preceding example. When the RET is executed, the accu¬

mulator contents are EOH, which is equivalent to 224.

Incidentally, a parameter is a piece of data that the

subroutine needs to work properly. The multiply subroutine

located at F006H needs three parameters to work properly

{A, By and C). We pass these parameters to the multiply

subroutine by clearing the accumulator, loading the B

register with the multiplicand, and presetting the C register

with the multiplier. In other words, we set A = 00H,

B = 10H, and C = OEH. Passing data to a subroutine in

this way is called register parameter passing.

Chapter 11 SAP-2 183

11-6 LOGIC INSTRUCTIONS

A microprocessor can do logic as well as arithmetic. What

follows are the SAP-2 logic instructions. Again, they are a

subset of the 8080/8085 instructions.

|xxxx] xxxx I
1111
lilt
MM

1II1
MM
1 II 1

1 XXXX XXXX I

Fig. 11-6 Logic instructions are bitwise.

CMA

CMA stands for “complement the accumulator.” The

execution of a CMA inverts each bit in the accumulator,

producing the l’s complement.

ANA

ANA means to and the accumulator contents with the

designated register. The result is stored in the accumulator.

For instance,

ANA B

means to and the contents of the accumulator with the

contents of the B register. The ANDing is done on a bit-by-

bit basis. For example, suppose the two registers contain

A = 1100 1100 (11-1)

and

XRA C. If the accumulator and B contents are given by

Eqs. 11-1 and 11-2, the execution of XRA B produces

SAP-2 also has immediate logic instructions. ANI means

and immediate. It tells the computer to and the accumulator

contents with the byte that immediately follows the op code.

For instance, if

A = 0101 1110

the execution of ANI C7H will and

01011110 with 1100 0111

to produce new accumulator contents of

A = 0100 0110

B = 1111 0001 (11-2) ORI

The execution of an ANA B results in

A = 1100 0000

Notice that the ANDing is bitwise, as illustrated in Fig.
11-6. The ANDing is done on pairs of bits; A7 is ANDed
with B7, A6 with B6, A5 with B5, and so on, with the result
stored in the accumulator.

Two ANA instructions are available in SAP-2: ANA B

and ANA C. Table 11-1 shows the op codes.

ORI is the mnemonic for or immediate. The accumulator

contents are ORed with the byte that follows the op code.

If

A = 0011 1000

the execution of ORI 5AH will or

0011 1000 with 0101 1010

to produce new accumulator contents of

ORA
0111 1010

ORA is the mnemonic for or the accumulator with the

designated register. The two ORA instructions in SAP-2

are ORA B and ORA C. As an example, if the accumulator

and B register contents are given by Eqs. 11-1 and 11-2,

then executing ORA B gives

XRI

XRI means XOR immediate. If

A = 0001 1100

A = 1111 1101
the execution of XRI D4H will xor

0001 1100 with 11010100

XRA
to produce

XRA means xor the accumulator with the designated

register. The SAP-2 instruction set contains XRA B and A= 1100 1000

184 Digital Computer Electronics

11-7 OTHER INSTRUCTIONS

This section looks at the last of the SAP-2 instructions.

Since these instructions don’t fit any particular category,

they are being collected here in a miscellaneous group.

NOP

NOP stands for no operation. During the execution of a

NOP, all T states are do nothings. Therefore, no register

changes occur during a NOP.

The NOP instruction is used to waste time. It takes four

T states to fetch and execute the NOP instruction. By

repeating a NOP a number of times, we can delay the data

processing, which is useful in timing operations. For

instance, if we put a NOP inside a loop and execute it 100

times, we create a time delay of 400 T states.

HLT

We have already used this. HLT stands for halt. It ends
the data processing.

IN

IN is the mnemonic for input. It tells the computer to

transfer data from the designated port to the accumulator.

Since there are two input ports, you have to designate which

one is being used. The format for an input operation is

IN byte

For instance,

IN 02H

means to transfer the data in port 2 to the accumulator.

OUT

OUT stands for output. When this instruction is executed,

the accumulator word is loaded into the designated output

port. The format for this instruction is

OUT byte

Since the output ports are numbered 3 and 4 (Fig. 11-2),

you have to specify which port is to be used. For instance,

OUT 03H

will transfer the contents of the accumulator to port 3.

RAL

RAL is the mnemonic for rotate the accumulator left. This

instruction will shift all bits to the left and move the MSB

<a> tbt

Fig. 11-7 Rotate instructions: (a) RAL; (b) RAR.

into the LSB position, as illustrated in Fig. ll-7a. As an

example, suppose the contents of the accumulator are

A = 1011 0100

Executing the RAL will produce

A = 0110 1001

As you see, all bits moved left, and the MSB went to the
LSB position.

RAR

RAR stands for rotate the accumulator right. This time,

the bits shift to the right, the LSB going to the MSB

position, as shown in Fig. 11-76. If

A = 1011 0100

the execution of a RAR will result in

A = 0101 1010

EXAMPLE 11-13

The bits in a byte are numbered 7 to 0 (MSB to LSB).

Show a program that can input a byte from port 2 and

determine if bit 0 is a 1 or a 0. If the bit is a 1, the program

is to load the accumulator with an ASCII Y (yes). If the

bit is a 0, the program should load the accumulator with

an ASCII N (no). The yes or no answer is to be sent to
output port 3.

SOLUTION

Label Mnemonic Comment

IN 02H ;Get byte from port 2
ANI 01H ;Isolate bit 0
JNZ YES ;Jump if bit 0 is a 1
MVI A,4EH ;Load N into accumulator
JMP DONE ;Skip next instruction

YES: MVI A,59H ;Load Y into accumulator
DONE: OUT 03H

HLT
;Send answer to port 3

Chapter 11 SAP-2 185

The IN 02H transfers the contents of input port 2 to the

accumulator to get

A = A7A6A5A4A3A2A] Aq

The immediate byte in ANI 01H is

0000 0001

This byte is called a mask because its 0s will mask or blank

out the corresponding high bits in the accumulator. In other

words, after the execution of ANI 01H the accumulator

contents are

A = 0000 000A0

If A0 is 1, the JNZ YES will produce a jump to the MVI

A,59H; this loads a 59H (the ASCII for Y) into the

accumulator. If A0 is 0, the program falls through to the

MVI A,4EH. This loads the accumulator with the ASCII

for N.
The OUT 03H loads the answer, either ASCII Y or N,

into port 3. The hexadecimal display therefore shows either

59H or 4EH.

EXAMPLE 11-14

Instead of a parallel output at port 3, we want a serial

output at port 4. Modify the foregoing program so that it

converts the answer (59H or 4EH) into a serial output at

bit 0, port 4.

SOLUTION

Label Mnemonic

IN 02H

ANI 01H

JNZ YES

MVI A,4EH

JMP DONE

Comment

YES: MVI A,59H

DONE: MVI C,08H ;Load counter with 8

AGAIN: OUT 04H ;Send LSB to port 4

RAR ;Position next bit

DCR C ; Decrement count

JNZ AGAIN

HLT

;Test count

In converting from parallel to serial data, the A0 bit is sent

first, then the bit, then the A2 bit, and so on.

EXAMPLE 11-15

Handshaking is an interaction between a CPU and a

peripheral device that takes place during an I/O data transfer.

In SAP-2 the handshaking takes place as follows. After

you enter two digits (1 byte) into the hexadecimal encoder

of Fig. 11-2, the data is loaded into port 1; at the same

time, a high READY bit is sent to port 2.

Before accepting input data, the CPU checks the READY
bit in port 2. If the READY bit is low, the CPU waits. If

the READY bit is high, the CPU loads the data in port 1.

After the data transfer is finished, the CPU sends a high

ACKNOWLEDGE signal to the hexadecimal keyboard en¬

coder; this resets the READY bit to 0. The ACKNOWLEDGE

bit then is reset to low.

After you key in a new byte, the cycle starts over with

new data going to the port 1 and a high READY bit to port

2.
The sequence of SAP-2 handshaking is

1. READY bit (bit 0, port 2) goes high.

2. Input the data in port 1 to the CPU.

3. ACKNOWLEDGE bit (bit 7, port 4) goes high to reset

READY bit.

4. Reset the ACKNOWLEDGE bit.

Write a program that inputs a byte of data from port 1

using handshaking. Store the byte in the B register.

SOLUTION

Label Mnemonic Comment

STATUS: IN 02H ;Input byte from port 2

ANI 01H ;Isolate READY bit

JZ STATUS ;Jump back if not ready

IN 01H ;Transfer data in port 1

MOV B,A ;Transfer from A to B

MVI A,80H ;Set ACKNOWLEDGE bit

OUT 04H ;Output high ACKNOWLEDGE
MVI A,00H ;Reset ACKNOWLEDGE bit

OUT 04H ;Output low ACKNOWLEDGE
HLT

If the READY bit is low, the ANI 01H will force the

accumulator contents to go to zero. The JZ STATUS

therefore will loop back to IN 02H. This looping will

continue until the READY bit is high, indicating valid data

in port 1.

When the READY bit is high, the program falls through

the JZ STATUS to the IN 01H. This transfers a byte from

port 1 to the accumulator. The MOV sends the byte to the

B register.The MVI A,80H sets the ACKNOWLEDGE bit

186 Digital Computer Electronics

(bit 7). The OUT 04H sends this high ACKNOWLEDGE

to the hexadecimal encoder where the internal hardware

resets the READY bit. Then the ACKNOWLEDGE bit is

reset in preparation for the next input cycle.

11-8 SAP-2 SUMMARY

This section summarizes the SAP-2 T states, flags, and
addressing modes.

T States

The SAP-2 controller-sequencer is microprogrammed with

a variable machine cycle. This means that some instructions

take longer than others to execute. As you recall, the idea

behind microprogramming is to store the control routines
in a ROM and access them as needed.

Table 11-3 shows each instruction and the number of T

states needed to execute it. For instance, it takes four T

states to execute the ADD B instruction, seven to execute

the ANI byte, eighteen to execute the CALL, and so on.

Knowing the number of T states is important in timing
applications.

Notice that the JM instruction has T states of 10/7. This

means it takes 10 T states when a jump occurs but only 7

without the jump. The same idea applies to the other

conditional jumps; 10 T states for a jump, 7 with no jump.

Flags

As you know, the accumulator goes negative or zero during

the execution of some instructions. This affects the sign

and zero flags. Figure 11-8 shows the circuits used in
SAP-2 to set the flags.

When the accumulator contents are negative, the leading

bit A7 is a 1. This sign bit drives the lower and gate. When

the accumulator contents are zero, all bits are zero and the

output of the nor gate is a 1. This nor output drives the

upper and gate. If gating signal LF is high, the flags will

be updated to reflect the sign and zero condition of the

accumulator. This means the ZFlAC will be high when the

accumulator contents are zero; the SFLAG will be high when

the accumulator contents are negative.

Not all instructions affect the flags. As shown in Table

11-3, the instructions that update the flags are ADD, ANA,

ANI, DCR, INR, ORA, ORI, SUB, XRA, and XRI. Why

only these instructions? Because the LF signal of Fig. 11-8

is high only when these instructions are executed. This is

accomplished by microprogramming an LF bit for each

instruction. In other words, in the control ROM we store a

high Lf bit for the foregoing instructions, and a low L, bit
for all others.

Fig. 11-8 Setting the flags.

Conditional Jumps

As mentioned earlier, the conditional jumps take ten T

states when the jump occurs but only seven T states when

no jump take place. Briefly, this is accomplished as follows.

During the execution cycle the address ROM sends the

computer to the starting address of a conditional-jump

microroutine. The initial microinstruction looks at the flags

and judges whether or not to jump. If a jump is indicated,

the microroutine continues; otherwise, it is aborted and the
computer begins a new fetch cycle.

Addressing Modes

The SAP-2 instructions access data in different ways. It is

the operand that tells us how the data is to be accessed.

For instance, the first instructions discussed were

LDA address

STA address

These are examples of direct addressing because we specify

the address where the data is to be found.

Immediate addressing is different. Instead of giving an

address for the data, we give the data itself. For instance,

MVI A,byte

accesses the data to be loaded into the accumulator by using

the byte in memory that immediately follows the op code.

Table 11-3 shows the other immediate instructions.

An instruction like

MOV A,B

Chapter 11 SAP-2 187

TABLE 11-3. SAP-2 INSTRUCTION SET

Instruction OpCode T States Flags Addressing Bytes

ADD B

ADD C

ANA B

ANA C

ANI byte

CALL address

CMA

DCR A

DCR B

DCR C

HLT

IN byte

INR A

INR B

INR C

80

81

AO

A1

E6

CD

2F

3D

05

0D

76

DB

3C

04

0C

4

4

4

4

7

18

4

4

4

4

5

10
4

4

4

S, Z

s, z
s, z
s, z
s, z
None

None

s, z
s, z
s, z
None

None

S, Z

s, z
s, z

Register

Register

Register

Register

Immediate

Immediate

Implied

Register

Register

Register

Direct

Register

Register

Register

1

1

1
1
2
3

1
1
1
1
1
2
1
1
1

JM address FA 10/7 None Immediate 3

JMP address C3 10 None Immediate 3

JNZ address C2 10/7 None Immediate 3

JZ address CA 10/7 None Immediate 3

LDA address 3A 13 None Direct 3

MOV A,B 78 4 None Register 1
MOV A,C 79 4 None Register 1
MOV B,A 47 4 None Register 1
MOV B,C 41 4 None Register 1
MOV C,A 4F 4 None Register 1
MOV C,B 48 4 None Register i
MVI A,byte 3E 7 None Immediate 2
MVI B,byte 06 7 None Immediate 2

MVI C.byte 0E 7 None Immediate 2

NOP 00 4 None — 1

ORA B B0 4 S, Z Register 1

ORA C B1 4 s, z Register 1

ORI byte F6 7 s, z Immediate 2

OUT byte D3 10 None Direct 2

RAL 17 4 None Implied 1

RAR IF 4 None Implied 1

RET C9 10 None Implied 1
ST A address 32 13 None Direct 3

SUB B 90 4 S, Z Register 1
SUB C 91 4 s, z Register 1
XRA B A8 4 s, z Register 1

XRA C A9 4 s, z Register 1
XRI byte EE 7 s, z Immediate 2

is an example of register addressing. The data to be loaded

is stored in a CPU register rather than in the memory.

Register addressing has the advantage of speed because

fewer T states are needed for this type of instruction.

Implied addressing means that the location of the data

contained within the op code itself. For instance,

RAL

188 Digital Computer Electronics

tells us to rotate the accumulator bits left. The data is in

the accumulator; this is why no operand is needed with
implied addressing.

Bytes

Each instruction occupies a number of bytes in the memory.

SAP-2 instructions are either 1, 2, or 3 bytes long. Table

11-3 shows the length of each instruction. As you see,

ADD instructions are 1-byte instructions, ANI instructions

are 2-byte instructions, CALLs are 3-byte instructions, and
so forth.

EXAMPLE 11-16

SAP-2 has a clock frequency of 1 MHz. This means that

each T state has a duration of 1 jjls. How long does it take

to execute the following SAP-2 subroutine?

Label Mnemonic Comment

MVI C,46H ;Preset count to decimal 70
AGAIN: DCR C ;Count down

JNZ AGAIN ;Test count
NOP

RET
;Delay

SOLUTION

The total byte length of the subroutine is 8. As part of the

SAP-2 software, the foregoing subroutine can be assembled

and relocated at addresses F010H to F017H. Hereafter, the

execution of a CALL F010H will produce a time delay of
1 ms.

EXAMPLE 11-17

How much time delay does this SAP-2 subroutine produce?

Label Mnemonic Comment

MVI B,0AH ;Preset B counter with

decimal 10
LOOP1: MVI C,47H ;Preset C counter with

decimal 71
LOOP2: DCR C ;Count down on C

JNZ LOOP2 ;Test for C count of zero
DCR B ;Count down on B
JNZ LOOP1

RET
;Test for B count of zero

SOLUTION

This subroutine has two loops, one inside the other. The

inner loop consists of DCR C and JNZ LOOP2. This inner

loop produces a time delay of

The MVI is executed once to initialize the count. The DCR

is executed 70 times. The JNZ jumps back 69 times and

falls through once. With the number of 7 states given in

Table 11-3, we can calculate the total execution time of
the subroutine as follows:

MVI: 1 x 7 X 1 (JLS = 7 |JLS

DCR: 70 x 4 X 1 (JLS = 280
JNZ: 69 x 10 X 1 JJLS = 690
JNZ: 1 x 7 X I (JLS = 7
NOP: 1 x 4 X 1 fJLS = 4
RET: 1 x 10 X 1 (JLS = 10

(jump)

(no jump)

998 ns « 1 ms

As you see, the total time needed to execute the subroutine
is approximately 1 ms.

A subroutine like this can produce a time delay of 1 ms

whenever it is called. There are many applications where
you need a delay.

According to Table 11-3, the instructions in the foregoing

subroutine have the following byte lengths:

Instruction MVI DCR JNZ NOP RET

Bytes 2 1 3 1 1

DCR C: 71 X 4 X 1 p.s = 284 pis

JNZ LOOP2: 70 X 10 X 1 p,s = 700 (jump)

JNZ LOOP2: 1 x 7 x 1 pis =_1_ (no jump)

991 pis

When the C count drops to zero, the program falls through

the JNZ LOOP2. The B counter is decremented, and the

JNZ LOOP1 sends the program back to the MVI C,47H.

Then we enter LOOP2 for a second time. Because LOOP2

is inside LOOP1, LOOP2 will be executed 10 times and
the overall time delay will be approximately 10 ms.

Here are the calculations for the overall subroutine:

MVI B,0AH:

MVI C,47H:

LOOP2:

DCR B:

JNZ LOOP1:

JNZ LOOP1:

RET:

1 X 7 X 1 jjls = 7 JJLS

10 X 7 X 1 (jls = 70
10 X 991 |uls = 9,910

10 x 4 X 1 (is = 40

9 X 10 X 1 |uls = 90 (jump)
1 x 7 x 1 (jls = 7 (no jump)

1 x 10 X 1 JJLS = 10

10,134 p,s ~ 10 ms

This SAP-2 subroutine has a byte length of

2 + 2+1+3+1+3+1 = 13

Chapter 11 SAP-2 189

It can be assembled and located at addresses F020H to

F02CH. From now on, a CALL F020H will produce a time

delay of approximately 10 ms.

By changing the first instruction to

MVI B,64H

the B counter is preset with decimal 100. In this case, the

inner loop is executed 100 times and the overall time delay

is approximately 100 ms. This 100-ms subroutine can be

located at addresses F030H to F03CH.

EXAMPLE 11-18

Here is a subroutine with three loops nested one inside the

other. How much time delay does it produce?

Label Mnemonic Comment

MVI A,0AH ;Preset A counter with

decimal 10

LOOP 1: MVI B,64H ;Preset B counter with

decimal 100

LOOP2: MVI C,47H ;Preset C counter with

decimal 71

LOOP3: DCR C ;Count down C

JNZ LOOP3 ;Test C for zero

DCR B ;Count down B

JNZ LOOP2 ;Test B for zero

DCR A ;Count down A

JNZ LOOP1

RET

;Test A for zero

SOLUTION

LOOP3 still takes approximately 1 ms to get through.

LOOP2 makes 100 passes through LOOP3, so it takes about

100 ms to complete LOOP2. LOOP1 makes 10 passes

through LOOP2; therefore, it takes around 1 s to complete

the overall subroutine.

What do we have? A 1-s subroutine. It will be located

in F040H to F052H. To produce a 1-s time delay, we

would use a CALL F040H.

By changing the initial instruction to

MVI A,64H

LOOP1 will make 100 passes through LOOP2, which

makes 100 passes through LOOP3. The resulting subroutine

can be located at F060H to F072H and will produce a time

delay of 10 s.
Table 11-4 summarizes the SAP-2 time delays. With

these subroutines, we can produce delays from 1 ms to

10 s.

TABLE 11-4. SAP-2 SUBROUTINES

Label Starting Address Delay Registers Used

DIMS F010H

D10MS F020H

D100MS F030H

DISEC F040H

D10SEC F060H

EXAMPLE 11-19

The traffic lights on a main road show green for 50 s,

yellow for 6 s, and red for 30 s. Bits 1, 2, and 3 of

port 4 are the control inputs to peripheral equipment that

runs these traffic lights. Write a program that produces time

delays of 50, 6, and 30 s for the traffic lights.

SOLUTION

Label Mnemonic Comment

AGAIN: MVI A,32H ;Preset counter with

decimal 50

STA SAVE ;Save accumulator

contents

MVI A,02H ;Set bit 1

OUT 04H ;Tum on green light

LOOPGR: CALL DISEC ;Call 1-s subroutine

LDA SAVE ;Load current A count

DCR A ;Decrement A count

STA SAVE ;Save reduced A count

JNZ LOOPGR ;Test for zero

MVI A,06H

STA SAVE

;Preset counter with

decimal 6

MVI A,04H ;Set bit 2

OUT 04H ;Tum on yellow light

LOOPYE: CALL DISEC

LDA SAVE

DCR A

STA SAVE

JNZ LOOPYE

MVI A,1EH

STA SAVE

;Preset counter with

decimal 30

MVI A,08H ;Set bit 3

OUT 04H ;Tum on red light

LOOPRE: CALL DISEC

LDA SAVE

DCR A

STA SAVE

JNZ LOOPRE

JMP AGAIN

SAVE: Data

1 ms C

10 ms B, C

100 ms B, C

Is A, B, C

10 s A, B, C

190 Digital Computer Electronics

Let’s go through the green part of the program; the yellow

and red are similar. The green starts with MVI A,32H,

which loads decimal 50 into the accumulator. The STA

SAVE will store this initial value in a memory location

called SAVE. The MVI A,02H sets bit 1 in the accumulator;

then the OUT 04H transfers this high bit to port 4. Since

this port controls the traffic lights, the green light comes
on.

The CALL DISEC produces a time delay of 1 s. The

LDA SAVE loads the accumulator with decimal 50. The

DCR A decrements the count to decimal 49. The STA

SAVE stores this decimal 49. Then the JNZ LOOPGR

takes the program back to the CALL DISEC for another
1-s delay.

The CALL DISEC is executed 50 times; therefore, the

green light is on for 50 s. Then the program falls through

the JNZ LOOPGR to the MVI A,06H. The yellow part of

the program then begins and results in the yellow light

being on for 6 s. Finally, the red part of the program is

executed and the red light is on for 30 s. The JMP AGAIN

repeats the whole process. In this way, the program is

controlling the timing of the green, yellow, and red lights.

EXAMPLE 11-20

Middle C on a piano has a frequency of 261.63 Hz. Bit 5

of port 4 is connected to an amplifier which drives a

loudspeaker. Write a program that sends middle C to the
loudspeaker.

SOLUTION

n ~L IT

— 3822 jus

1911 ns

Fig. 11-9 Generating middle C note.

The OUT 04H sends a bit (either low or high) to the

loudspeaker. The MVI presets the counter to decimal 134.

Then comes LOOP2, the DCR and JNZ, which produces

a time delay of 1,866 |xs. The program then falls through

to the CM A, which complements all bits in the accumulator.

The two NOPs add a time delay of 8 p.s. The JMP LOOP1

then takes the program back. When the OUT 04H is

executed, bit 5 (complemented) goes to the loudspeaker.

In this way the loudspeaker is driven into the opposite state.

The execution time for both half cycles is 3,824 p,s, close
enough to middle C.

Here are the calculations for the time delay:

OUT 04H:

MVI C,86H:

DCR C:

JNZ LOOP2:

JNZ LOOP2:

CMA:

2 NOPs:

JMP LOOP1:

1 x 10 X 1 |xs = 10 p,s
lx7xl(j,s= 7

134 x 4 X 1 (xs = 536
133 x 10 x 1 |xs = 1,330

1 x 7 x 1 |xs = 7
1 X 4 X 1 (is = 4

2 x 4 x 1 |xs = 8
1 X 10 X 1 (ULS = _10

1,912 |xs

To begin with, the period of middle C is This is the half-cycle time. The period is 3,824 |xs.

T
1

/
1

261.63 Hz
3,822 p,s

What we are going to do is send to port 4 a signal like Fig.

11-9. This square wave is high for 1,911 |xs and low for

1,911 (xs. The overall period is 3,822 |xs, and the frequency

is 261.63 Hz. Because the signal is square rather than

sinusoidal, it will sound distorted but it will be recognizable
as middle C.

Here is a program that sends middle C to the loudspeaker.

Label Mnemonic Comment

LOOP1: OUT 04H ;Send bit to speaker
MVI C,86H ;Preset counter with decimal

134
LOOP2: DCR C ;Count down

JNZ LOOP2 ;Test count
CMA ;Reset bit 5
NOP ;Fine tuning
NOP ;Fine tuning
JMP LOOP1 ;Go back for next half cycle

EXAMPLE 11-21

Serial data is sometimes called a serial data stream because

bits flow one after another. In Fig. 11-10 a serial data

stream drives bit 7 of port 2 at a rate of approximately 600

bits per second. Write a program that inputs an 8-bit

character in a serial data stream and stores it in memory
location 2100H.

SOLUTION

Since approximately 600 bits are received each second, the
period of each bit is

1

600 Hz
1,667 |xs

The idea will be to input a bit from port 2, rotate the

accumulator right, wait approximately 1,600 |xs, then input

another bit, rotate the accumulator right, and so on, until
all bits have been received.

Chapter 11 SAP-2 191

W bus

Fig. 11-10

Here is

Label

BIT:

DELAY:

ACKNOWLEDGE

READY

SERIAL IN

CON

a program that will work:

Mnemonic Comment

MVI B,00H ;Load zero into B register

MVI C,07H ;Preset counter with decimal 7

IN 02H ;Input data

ANI 80H ;Isolate bit 7

ORA B ;Update character

RAR ;Move bits right

MOV B,A ;Save bits in B

MVI A,73H ;Begin a delay of 1,600 |jls

DCR A ;Count down A

JNZ DELAY ;Test A count for zero

DCR C ;Count down C

JNZ BIT ;Test C count for zero

IN 02H ;Input last bit

ANI 80H ;Isolate bit 7

ORA B

STA 2100H ;Save character

The first instruction clears the B register. The second

instruction loads decimal 7 into the C counter. The IN 02H

brings in the data from port 2. The ANI mask isolates bit

7 because this is the SERIAL IN bit from port 2. The ORA

B does nothing the first time through because B is full of

Os. The RAR moves the accumulator bits to the right. The

MOV B,A stores the accumulator contents in the B register.

MVI A,73H presets the accumulator with decimal 115.

Then comes a delay loop, DCR A and JNZ DELAY, that

takes approximately 1,600 jxs to complete.

The DCR C reduces the C count by 1, and the JNZ BIT

tests the C count for zero. The program jumps back to the

IN 02H to get the next bit from the serial data stream. The

ANI mask isolates bit 7, which is then ORed with the

contents of the B register; this combines the previous bit

with the newly received bit. After another RAR, the two

received bits are stored in the B register. Then comes

another delay of approximately 1,600 jjls.

The program continues to loop and each time a new bit

is input from the serial data stream. After 7 bits have been

192 Digital Computer Electronics

received, the program will fall through the JNZ BIT

instruction.

The last four instructions do the following. The IN 02H

brings in the eighth bit. The ANI isolates bit 7. The ORA

B combines this new bit with the other seven bits in the B

register. At this point, all received bits are in the accu¬

mulator. The STA 2100H then stores the byte in the

accumulator at 2100H.

A concrete example will help. Suppose the 8 bits being

received are 57H, the ASCII code for W. The LSB is

received first, the MSB last. Here is how the contents of

the B register appear after the execution of the ORA B:

A = 1000 0000

A = 1100 0000

A = 1110 0000

A = 01110000

A = 1011 1000

A = 0101 1100

A = 1010 1110

A = 01010111

(First pass through loop)

(Second pass)

(Third pass)

(Fourth pass)

(Fifth pass)

(Sixth pass)

(Seventh pass)

(Final contents)

Incidentally, the ASCII code only requires 7 bits; for this

reason, the eighth bit (A-j) may be set to zero or used as a
parity bit.

GLOSSARY

assembler A program that converts a source program into
a machine-language program.

comment Personal notes in an assembly-language program

that are not assembled. They refresh the programmer’s
memory at a later date.

conditional jump A jump that occurs only if certain
conditions are satisfied.

direct addressing Addressing in which the instruction

contains the address of the data to be operated on.

flag A flip-flop that keeps track of a changing condition
during a computer run.

hand assembling Translating a source program into a

machine-language program by hand rather than computer.

handshaking Interaction between a CPU and a peripheral

device that takes place during an I/O operation. In SAP-2

it involves READY and ACKNOWLEDGE signals.

immediate addressing Addressing in which the data to be

operated on is the byte immediately following the op code
of the instruction.

implied addressing Addressing in which the location of

the data is contained within the mnemonic.

label A name given to an instruction in an assembly-

language program. To jump to this instruction, you can use

the label rather than the address. The assembler will work

out the correct address of the label and will use this address

in the machine-language program.

mask A byte used with an ANI instruction to blank out
certain bits.

register addressing Addressing in which the data is stored
in a CPU register.

relocate To move a program or subroutine to another part

of the memory. In doing this, the addresses of jump

instructions must be converted to new addresses.

subroutine A program stored in higher memory that can

be used repeatedly as part of a main program.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. The controller-sequencer produces_

words or microinstructions.

2. {control) A flag is a_that keeps track of

a changing condition during a computer run. The

sign flag is set when the accumulator contents go

negative. The-flag is set when the accu¬

mulator contents go to zero.

3. (flip-flop, zero) In coding the LDA address and

STA address instructions, the_byte of

the address is stored in lower memory, the_
byte in upper memory.

4. {lower, upper) The JMP instruction changes the

program sequence by jumping to another part of the

program. With the JM instruction, the jump is exe¬

cuted only if the sign flag is_With the

JNZ instruction, the jump is executed only if the
zero flag is_

5. {set, clear) Every subroutine must terminate with a

-instruction. This returns the program to

the instruction following the CALL. The CALL

instruction is unconditional; it sends the computer to
the starting address of a_

6. {RET, subroutine) An assembler allows you to write

programs in mnemonic form. Then the assembler

Chapter 11 SAP-2 193

7.

8.

9.

converts these mnemonics into-lan¬

guage. The assembler ignores the-fol¬

lowing a semicolon and assigns addresses to the

labels. Labels can be up to six characters, the first

of which must be a-
(machine, comments, letter) Repeated addition is

one way to do_Programmed multiplica¬

tion is used in most microprocessors because their

ALUs can only add and subtract.

(multiplication) A parameter is a piece of data

passed to a_* WTien you call a subrou¬

tine, you often need to pass-for the

subroutine to work properly.

(subroutine, parameters) A- . is used to

isolate a bit; it does this because the ANI sets all

other bits to zero.
10. (mask) Handshaking is an interaction between a

__ and a peripheral device. In SAP-2 the

_bit tells the CPU whether the input data

is valid or not. After the data has been transferred

into the computer, the CPU sends an-

bit to the peripheral device.

11. (CPU, READY, ACKNOWLEDGE) The SAP-2

computer is microprogrammed with a-

machine cycle. This means that some instructions

take longer than others to execute.

12. (variable) The types of addressing covered up to

now are direct, immediate, register, and implied.

PROBLEMS

11-1. Write a source program that loads the accumula¬

tor with decimal 100, the B register with deci¬

mal 150, and the C register with decimal 200.

11-2. Hand-assemble the source program of the pre¬

ceding problem starting at address 2000H.

11-3. Write a source program that stores decimal 50 at

memory location 4000H, decimal 51 at 4001H,

and decimal 52 at 4002H.

11-4. Hand-assemble the source program in the pre¬

ceding problem starting at address 2000H.

11-5. Write a source program that adds decimal 68 and

34, with the answer stored at memory location

5000H.
11-6. Hand-assemble the preceding program starting at

address 2000H.

11-7. Here is a program:

Label Mnemonic

LOOP: MVI C,78H

DCR C

JNZ LOOP

HLT

a. How many times (decimal) is the DCR C

executed?

b. How many times does the program jump to

LOOP?

c. How can you change the program to loop 210

times?

11-8. Which of the following are valid labels?

a. G100

b. UPDATE

c. 5TIMES

d. 678RED

e. T

f. REPEAT

11-9. Write a program that multiplies decimal 25 and

7 and stores the answer at 2000H. (Use the

multiply subroutine located at F006H.)

11-10. Write a program that inputs a byte from port 1

and determines if the decimal equivalent is even

or odd. If the byte is even, the program is to

send an ASCII E to port 3; if odd, an ASCII O.

11-11. Modify the foregoing program so that it sends

the answer in serial form to bit 0 of port 4.

11-12. Write a program that inputs a byte from port 1

using handshaking. Store the byte at address

4000H.
11-13. Hand assemble the foregoing program starting at

address 2000H.

11-14. Write a subroutine that produces a time delay of

approximately 500 |xs.

11-15. Hand-assemble the preceding program starting at

address 2000H.

11-16. Write a subroutine that produces a time delay of

approximately 35 ms using a SAP-2 subroutine.

Hand-assemble this subroutine and locate it at

starting address E000H.

11-17. Write a subroutine that produces a time delay of

50 ms. (Use a SAP-2 subroutine.) Hand-assem¬

ble the program at starting address E100H.

11-18. Write a subroutine that produces a delay of 1

min. (Use CALL F060H.)

11-19. Hand-assemble the preceding subroutine at start¬

ing addresses F080H.

11-20. The C note one octave above middle C has a

frequency of 523.25 Hz. Write a program that

sends this note to bit 4 of port 4.

11-21. Hand-assemble the foregoing program starting at

address 2000H.

1 94 Digital Computer Electronics

SAP-3
The SAP-3 computer is an 8-bit microcomputer that is

upward-compatible with the 8085 microprocessor. In this

chapter, the emphasis is on the SAP-3 instruction set. This

instruction set includes all the SAP-2 instructions of the

preceding chapter plus new instructions to be discussed.

Appendix 6 shows the op codes, T states, flags, and so

forth, for the SAP-3 instructions. In the remainder of this

chapter, refer to Appendix 6 as needed.

12-1 PROGRAMMING MODEL

All you need to know about SAP-3 hardware is the

programming model of Fig. 12-1. This is a diagram showing

the CPU registers needed by a programmer.

Some of the CPU registers are familiar from SAP-2. For

instance, the program counter (PC) is a 16-bit register that

can count from 0000H to FFFFH or decimal 0 to 65,535.

As you know, the program counter sends out the address

of the next instruction to be fetched. This address is latched
into the MAR.

CPU registers A, B, and C are the same as in SAP-2.

These 8-bit registers are used in arithmetic and logic

operations. Since the accumulator is only 8 bits wide, the

range of unsigned numbers is 0 to 255; the range of signed

2’s-complement numbers is - 128 to +127.

SAP-3 has additional CPU registers (D, E, H, and L)

for more efficient data processing. These 8-bit registers can

be loaded with MOV and MVI instructions, the same as

the A, B, and C registers. Also notice the F register, which

stores flag bits S, Z, and others.

Finally, there is the stack pointer (SP), a 16-bit register.

This new register controls a portion of memory known as

the stack. The stack and the stack pointer are discussed
later in this chapter.

Figure 12-1 shows all the CPU registers needed to

understand the SAP-3 instruction set. With this program¬

ming model we can discuss the SAP-3 instruction set,

which is upward-compatible with the 8080 and 8085. At

the end of this chapter, you will know almost all of the

8080/8085 instruction set.

12-2 MOV AND MVI

The MOV and MVI instructions work the same as in SAP-

2. The only difference is more registers to choose from.

The format of any move instruction is

MOV regl, reg2

where regl = A, B, C, D, E, H, orL

reg2 = A, B, C, D, E, H, or L

PC

SP

Fig. 12-1 SAP-3 programming model.

The MOV instructions send the data in reg2 to regl.

Symbolically,

regl ^reg2

where the arrow indicates that the data in register 2 is

copied nondestructive^ into register 1. At the end of the

execution

regl = reg2

For instance,

MOV L,A

copies A into L, so that

L = A

Similarly,

MOV E,H

gives

E = H

The immediate moves have the format of

MVI reg,byte

12-3 ARITHMETIC INSTRUCTIONS

Since the accumulator is only 8 bits wide, its contents can

represent unsigned numbers from 0 to 255 or signed 2’s

complement numbers from — 128 to +127. Whether signed

or unsigned binary numbers are used, the programmer needs

to detect overflows, sums or differences that lie outside the

normal range of the accumulator. This is where the carry

flag comes in.

Carry Flag

As shown in Fig. 6-7, a 4-bit adder-subtracter produces a

sum S3S2S1S0 and a carry. In SAP-1, two 74LS83s (equiv¬

alent to eight full adders) produce an 8-bit sum and a carry.

In this simple computer, the carry is disregarded. SAP-3,

however, takes the carry into account.

Figure 12-2a shows the logic circuit used for the SAP-3

adder-subtracter. When SUB is low, the circuit adds the A

and B inputs. If a final carry is generated, CARRY will be

high and CY will be high. If there is no final carry, CY is

low.
On the other hand, when SUB is high, the circuit forms

the 2’s complement of B, which is then added to A, Because

of the final xor gate, a high CARRY out of the last full-

adder produces a low CY. If no carry occurs, CY is high.

In summary,

CY
CARRY

CARRY

for ADD instructions

for SUB instructions

where reg = A, B, C, D, E, H, or L. Therefore, the

execution of

MVI D,0EH

will result in

D = OEH

During an add operation, CY is called a carry. During a

subtract operation, CY is referred to as a borrow.

The 8-bit sum S7S6S5S4S3S2SlSo is stored in the accu¬

mulator of Fig. 12-2b. The carry (or borrow) is stored in a

special flip-flop called the carry flag, designated CY in Fig.

12-2b. This flag acts like the next higher bit of the

accumulator. That is,

Likewise,
CY =A8

MVI L,FFH

produces

L = FFH

Carry-Flag Instructions

There are two instructions we can use to control the carry

flag. The STC instruction will set the CY flag if it is not

already set. (STC stands for set carry.) So, if

What is the advantage of more CPU registers? As you

may recall, MOV and MVI instructions use fewer T states

than memory-reference instructions (MRIs). The extra CPU

registers mean that we can use more MOV and MVI

instructions and fewer MRIs. Because of this, SAP-3

programs can run faster than SAP-2 programs; furthermore,

having more CPU registers for temporary storage simplifies

program writing.

CY = 0

the execution of a STC instruction produces

CY = 1

The other carry-flag instruction is the CMC, which stands

for complement the carry. When executed, a CMC corn-

196 Digital Computer Electronics

SUB

CARRY

CY

(a)

(b)

Fig. 12-2 (a) SAP-3 adder-subtractor (b) carry flag and accumu¬
lator.

plements the value of CY. If CY = I, CMC produces a CY
of 0. On the other hand, if CY = 0, CMC results in a CY
of 1.

If you want to reset the carry flag and its current status

is unknown, you have to set it, then complement it. That

is, execution of

STC

CMC

guarantees that the final value of CY will be 0 if the initial

value of CY is unknown.

ADD Instructions

The format of the ADD instruction is

ADD reg

where reg = A, B, C, D, E, H, or L. This instruction

adds the contents of the specified register to the accumulator

contents. The sum is stored in the accumulator and the

carry flag is set or reset, depending on whether there is a
final carry or not.

For instance, suppose

A = 1111 0001 and E = 0000 1000

The instruction

ADD E

produces the binary addition

1111 0001
± 0000 1000

ini iooi

There is no final carry; therefore, at the end of the instruction
cycle,

CY = 0 and A = 1111 1001

As another example, suppose

A = 1111 1111 and L = 0000 0001

Then executing an ADD L produces

1111 1111
+ 0000 0001

1 0000 0000

At the end of the instruction cycle

CY - 1 and A = 0000 0000

ADC Instructions

The ADC instruction (add with carry) is formatted like this:

ADC reg

Chapter 12 SAP-3 1 97

where reg = A, B, C, D, E, H, or L. This instruction

adds the contents of the specified register plus the carry

flag to the contents of the accumulator. Because it includes

the CY flag, the ADC instruction allows us to add numbers

outside the unsigned 0 to 255 range or the signed - 128 to

4-127 range.

As an example, suppose

A = 1000 0011

E = 0001 0010

and CY = 1

The execution of

ADC E

produces the following addition:

1000 0011

00010010

+_1

10010110

Therefore, the new accumulator and carry flag contents are

CY = 0 A = 1001 0110

SUB Instructions

The SUB instruction is formatted as

SUB reg

where reg = A, B, C, D, E, H, or L. This instruction will

subtract the contents of the specified register from the

accumulator contents; the result is stored in the accumulator.

If a final borrow occurs, the CY flag is set. If there is no

borrow, the CY flag is reset. In other words, during

subtraction the CY flag functions as a borrow flag.

For example, if

A = 0000 1111 and C = 0000 0001

then

SUB C

results in

Notice that there is no final borrow. In terms of 2’s-

complement addition, the foregoing subtraction appears like

this:

0000 1111

+ ini mi
10000 1110

The final CARRY is 1, but this is complemented during

subtraction to get a CY of 0 (Fig. 12-2a). This is why the

execution of SUB C produces

CY = 0 A = 0000 1110

Here is another example. If

A = 0000 1100 and C = 0001 0010

then a SUB C produces

0000 1100

- 0001 0010

i mi ioio

Notice the final borrow. This borrow occurs because the

contents of the C register (decimal 18) are greater than the

contents of the accumulator (decimal 12). In terms of 2’s-

complement arithmetic, the foregoing looks like

0000 1100

+ 11101110

01111 1010

In this case, CARRY is 0 and CY is 1. The final register

and flag contents are

CY = 1 and A = 1111 1010

SBB Instructions

SBB stands for subtract with borrow. This instruction goes

one step further than the SUB. It subtracts the contents of

a specified register and the CY flag from the accumulator

contents. If

A = 1111 1111

E = 0000 0010

and CY = 1

the instruction SBB E starts by combining E and CY to get

0000 0011 and then subtracts this from the accumulator as

follows:

0000 1111

- 0000 0001
nil nil

- oooooon

0000 1110 mi noo

198 Digital Computer Electronics

The final contents are

CY = 0 and A = 1111 1100

EXAMPLE 12-1

In unsigned binary, 8 bits can represent 0 to 255, whereas

16 bits can represent 0 to 65,535. Show a SAP-3 program

that adds 700 and 900, with the final answer stored in the

H and L registers.

SOLUTION

Double bytes can represent decimal 700 and 900 as follows:

70010 = 02BCH = 0000 0010 1011 11002

900,o = 0384H = 0000 0011 1000 0100,

Here is how to add 700 and 900:

Label Instruction Comment

MVI A,00H ;Clear the accumulator

MVI B,02H ;Store upper byte (UB) of

700

MVI C,BCH ;Store lower byte (LB) of

700

MVI D,03H ;Store UB of 900

MVI E,84H ;Store LB of 900

ADD C ;Add LB of 700

ADD E ;Add LB of 900

MOV L,A ;Store partial sum

MVI A,00H ;Clear the accumulator

ADC B ;Add UB of 700 with carry

ADD D ;Add UB of 900

MOV H,A ;Store partial sum

HLT ;Stop

The first five instructions initialize registers A through E.

The ADD C and ADD E add the lower bytes BCH and

84H; this addition sets the carry flag because

BCH = 10111100,

+ 84H = 1000 0100,

1 40H = 1 0100 0000,

The sum is stored in the L register and the final carry in
the CY flag.

Next, the accumulator is cleared. The ADC B adds the

upper byte plus the carry flag to get

OOH = 0000 00002

+ 02H = 0000 00102

+ 1H =_U

03 H = 0000 00112

Then the ADD D produces

03H = 0000 00112

+ 03H = 0000 00112

06H = 0000 0110,

The MOV H,A stores this upper sum in the H register.

So the program ends with the answer stored in the H and

L registers as follows:

H = 06H = 0000 0110,

and L = 40H = 0100 00002

The complete answer is 0640H, which is equivalent to
decimal 1,600.

12-4 INCREMENTS, DECREMENTS,
AND ROTATES

This section is about increment, decrement, and rotate

instructions. The increment and decrement are similar to

those of SAP-2, but the rotates are different because of the
carry flag.

Increment

The increment instruction appears as

INR reg

where reg = A, B, C, D, E, H, or L. It works as previously

described. Therefore, given

L = 0000 1111

the execution of INR L produces

L = 0001 0000

The INR instruction has no effect on the carry flag, but,

as before, it does affect the sign and zero flags. For instance,
if

B = 1111 1111

and the initial flags are

5=1 Z = 0 CY = 0

then INR B produces

B = 0000 0000

5 = 0 Z = 1 CY = 0

Chapter 12 SAP-3 I 99

As you see, the carry flag is unaffected even though the B

register overflowed. At the same time, the zero flag has

been set and the sign flag reset.

Decrement

The decrement is similar. It looks like

DCR reg

where reg = A, B, C, D, E, H, or L. If

E = 01110110

then a DCR E produces

E = 01110101

The DCR affects the sign and zero flags but not the carry

flag. This is why the initial values may be

E = 0000 0000

S = 0 Z = 1 CY = 0

Executing a DCR E results in

E = 11111111

S = 1 Z - 0 CY = 0

(b)

Fig. 12-3 (a) RAL; (b) RAR.

Rotate All Left

Figure 12-3a illustrates the RAL instruction used in

SAP-3. The CY flag is included in the rotation of bits.

RAL stands for rotate all left, which is a reminder that all

bits including the CY flag are rotated to the left.

If the initial values are

CY = 1 A = 0111 0100

As you see, the original CY goes to the LSB position, and

the original MSB goes to the CY flag.

Rotate All Right

The rotate-all-right instruction (RAR) rotates all bits in¬

cluding the CY flag to the right, as shown in Fig. 12-3b.

If

CY = 1 A = 01110100

an RAR will result in

CY — 0 A = 1011 1010

This time, the original CY goes to the MSB position, and

the original LSB goes into the CY flag.

(b)

Fig. 12-4 (a) RLC; (b) RRC.

Rotate Left with Carry

Sometimes you don’t want to treat the CY flag as an

extension of the accumulator. In other words, you may not

want to rotate all bits. Figure 12-4a illustrates the RLC

instruction. The accumulator bits are rotated left, and the

MSB is saved in the CY flag. For instance, given

CY = 1 A = 0111 0100

executing an RLC produces

CF = 0 A =1110 1000

Rotate Right with Carry

Figure 12-4b shows how the RRC instruction rotates the

bits. In this case, the accumulator bits are rotated right and

the LSB is saved in the CY flag. So, given

CY = 1 A = 0111 0100

then executing a RAL instruction produces an RRC will result in

cy = o a =11101001 cy = o a = 00111010

200 Digital Computer Electronics

Multiply and Divide by 2

Example 11-14 showed a program where the RAR instruc¬

tion was used in converting from parallel to serial data.

Parallel-to-serial conversion, and vice versa, is one of the

main uses of rotate instructions.

There is another use for rotate instructions. Rotating has

the effect of multiplying or dividing the accumulator contents

by a factor of 2. Specifically, with the carry flag reset, an

RAL has the effect of multiplying by 2, while the RAR

divides by 2. This can be proved algebraically, but it’s

much easier to examine a few specific examples to see how

it works.

Suppose

CY = 0 A = 0000 0111

Then an RAL produces

CY = 0 A = 0000 1110

The accumulator contents have changed from decimal 7 to

decimal 14. The RAL has multiplied by 2.

Likewise, if

cy = o A = 0010 0001

then an RAL results in

cy = o A = 0100 0010

In this case, A has changed from decimal 33 to 66.

RAR instructions have the opposite effect; they divide

by 2. If

CV = 0 A = 0001 1000

an RAR gives

cy = 0 A = 0000 1100

The decimal contents of the accumulator have changed from

decimal 24 to 12.

Remember the basic idea. RAL instructions have the

effect of multiplying by 2; RAR instructions divide by 2.

12-5 LOGIC INSTRUCTIONS

The SAP-3 logic instructions are almost the same as in

SAP-2. For instance, three of the logic instructions are

ANA reg

ORA reg

XRA reg

where reg = A, B, C, D, E, H, or L. These instructions

will and, or, or xor the contents of the specified register

with the contents of the accumulator on a bit-by-bit basis.

The only new logic instruction is the CMP, formatted as

CMP reg

where reg = A, B, C, D, E, H, or L. CMP compares the

contents of the specified register with the contents of the

accumulator. The zero flag indicates the outcome of this

comparison as follows:

7 = [1 if A = reg
[0 if A ^ reg

SAP-3 carries out a CMP as follows. The contents of

the accumulator are copied in a temporary register. Then

the contents of the specified register are subtracted from

the contents of the temporary register. Since the ALU does

the subtraction, the zero flag is affected. If the 2 bytes

being compared are equal, the zero flag is set. If the bytes

are unequal, the zero flag is reset. Because the temporary

register is used, the accumulator contents are not changed

by a CMP instruction.

For example, if

A = F8H

D = F8H

and Z = 0

executing a CMP D results in

A = F8H

D = F8H

and Z = 1

CMP has no effect on A and D; only the flag changes to

indicate that A and D are equal. (If they were not equal, Z

would be 0.)

CMP is a powerful instruction because it allows us to

compare the accumulator contents with the data in a specified

register. By following a CMP with a conditional zero jump,

we can control loops in a new way. Later programs will

show how this is done.

12*6 ARITHMETIC AND LOGIC
IMMEDIATES

So far, we have introduced these arithmetic and logic

instructions: ADD, ADC, SUB, SBB, ANA, ORA, XRA,

and CMP. Each of these has the accumulator as an implied

register; the data comes from a specified register (A, B, C,

D, E, H, or L).

Chapter 12 SAP-3 201

The immediate instructions from SAP-2 that carry over

to SAP-3 are ANI, ORI, and XRI. As you know, each of

these has the format of

ANI byte

ORI byte

XRI byte

where the immediate byte is ANDed, ORed, or xoRed with

the accumulator byte.

Besides the foregoing, SAP-3 has these immediate in¬

structions:

ADI byte

ACI byte

SUI byte

SBI byte

CPI byte

The ADI adds the immediate byte to the accumulator byte.

The ACI adds the immediate byte plus the CY flag to the

accumulator byte. The SUI subtracts the immediate byte

from the accumulator byte. The SBI subtracts immediate

byte and the CY flag from the accumulator byte. The CPI

compares the immediate byte with the accumulator byte; if

the bytes are equal, the zero flag is set; if not, it is reset.

At this point,

CY — 1 A = C8H

The high CY flag indicates a borrow.

After saving C8H in the L register, the program loads

the upper byte of 900 into the accumulator. The SBI is

used instead of a SUI because of the borrow that occurred

when subtracting the bytes. The execution of the SBI gives

0000 0011

- 0000 0010

-_1

0000 0000

This part of the answer is stored in the H register, so that

the final contents are

H = 00H = 0000 00002

L = C8H = 1100 10002

12-7 JUMP INSTRUCTIONS

EXAMPLE 12-2

Show a program that subtracts 700 from 900 and stores the

answer in the H and L registers.

SOLUTION

Here are the SAP-2 jump instructions that become part of

the SAP-3 instruction set:

JMP address

JM address

JZ address

JNZ address

(Unconditional jump)

(Jump if minus)

(Jump if zero)

(Jump if not zero)

We need double bytes to represent 900 and 700 as follows: TT „ . ^ „ .
Here are some more SAP-3 jump instructions.

90010 = 0384H = 0000 0011 1000 01002

70010 = 02BCH = 0000 0010 1011 11002 JP

Here’s the program for subtracting 700 from 900:

Label Instruction Comment

MVI A, 84H

SUI BCH

MOV L,A

MVI A, 03H

SBI 02H

MOV H,A

;Load LB of 900

;Subtract LB of 700

;Save lower half answer

;Load UB of 900

;Subtract UB of 700 with borrow

;Save upper half answer

JM stands for jump if minus. When the program encounters

a JM address, it will jump to the specified address if the

sign flag is set.

The JP instruction has the opposite effect. JP stands for

jump if positive (including zero). This means that

JP address

produces a jump to the specified address if the sign flag is

reset.

The first two instructions subtract the lower bytes as follows:
JC and JNC

1000 0100

- 1011 1100

1 1100 1000

The instruction

JC address

202 Digital Computer Electronics

means to jump to the specified address if the carry flag is

set. In short, JC stands for jump if carry. Similarly,

JNC address

means to jump to the specified address if the carry flag is

not set. That is, jump if no carry.

Here is a program segment to illustrate JC and JNC:

Label Instruction Comment

MVI A,FEH

REPEAT: ADI 01H

JNC REPEAT

MVI A,C4H

JC ESCAPE

ESCAPE: MOV L,A

The MVI loads the accumulator with FEH. The ADI adds

1 to get FFH. Since no carry takes place, the JNC takes

the program back to the REPEAT point, where a second

ADI is executed. This time the accumulator overflows to

get contents of 00H with a carry. Since the CY flag is set,

the program falls through the JNC. The accumulator is

loaded with C4H. Then the JC produces a jump to the

ESCAPE point, where the C4H is loaded into the L register.

JPE and JPO

Besides the sign, zero, and carry flag, SAP-3 has a parity
flag designated P. During the execution of certain instruc¬

tions (like ADD, INR, etc.), the ALU result is checked for

parity. If the result has an even number of Is, the parity

flag is set; if an odd number of Is, the flag is reset.

The instruction

JPE address

produces a jump to the specified address when the parity

flag is set (even parity). On the other hand,

JPO address

results in a jump when the parity flag is reset (odd parity).

For instance, given these flags,

S = 1 Z = 0 CY = 0 P = 1

the program would jump if it encountered a JPE instruction;

but it would fall through a JPO instruction.

Incidentally, we now have discussed all the flags in the

SAP-3 computer. For upward compatibility with the 8085

Fig. 12-5 F register stores flags.

microprocessor, these flags are stored in the F register, as

shown in Fig. 12-5. For instance, if the contents of the F

register are

F = 0100 0101

then we know that the flags are

S = 0 Z = 1 P = 1 CY = 1

EXAMPLE 12-3

What does the following program segment do?

SOLUTION

Label Instruction Comment

MVI E,00H ;Initialize counter

LOOP: INR E increment counter

MOV A,E ;Load A with E

CPI FFH ;Compare to 255

JNZ LOOP ;Go back if not 255

The E register is being used as a counter. It starts at 0. The

first time the INR and MOV are executed

A = 01H

After executing the CPI, the zero flag is 0 because 01H

and FFH are unequal. The JNZ then forces the program to

return to the LOOP point.

The looping will continue until the INR and MOV have

been executed 255 times to get

A = FFH

On this pass through the loop, the CPI sets the zero flag

because the accumulator byte and the immediate byte are

equal. With the zero flag set for the first time, the program

falls through the JNZ instruction.

Do you see the point? The computer will loop 255 times

before it falls through the JNZ. One use of this program

segment is to set up a time delay. Another use is to insert

additional instructions inside the loop as follows:

Chapter 12 SAP-3 203

Label Instruction Comment

MVI E,00H

LOOP:

INR E

MOV A,E

CPI FFH

JNZ LOOP

The instructions at the beginning of the loop (symbolized

by dots) will be executed 255 times. If you want to change

the number of passes through the loop, modify the CPI

instruction as required.

12-8 EXTENDED-REGISTER
INSTRUCTIONS

Some SAP-3 instructions use pairs of CPU registers to

process 16-bit data. In other words, during the execution

of certain instructions, the CPU registers are cascaded, as

shown in Fig. 12-6. The pairing is always as shown: B

with C, D with E, and H with L. What follows are the

SAP-3 instructions that use register pairs. Throughout these

instructions, you will notice the letter X, which stands for

extended register, a reminder that register pairs are involved.

B C

D E

H L

Fig. 12-6 Register pairs.

Load Extended Immediate

Since there are three register pairs (BC, DE, and HL), the

LXI instruction can appear in any of these forms:

LXI B,dble

LXI D,dble

LXI H,dble

where B stands for BC

D stands for DE

H stands for HL

dble stands for double byte

The LXI instruction says to load the specified register pair

with the double byte. For instance, if we execute

LXI B,90FFH

the B and C registers are loaded with the upper and lower

bytes to get

B - 90H

C - FFH

Visualizing B and C paired off as shown in Fig. 12-6, we

can write

BC = 90FFH

DAD Instructions

DAD stands for double-add. This instruction has three

forms:

DAD B

DADD

DADH

where B stands for BC

D stands for DE

H stands for HL

The DAD instruction adds the contents of the specified

register pair to the contents of the HL register pair; the

result is then stored in the HL register pair. For instance,

given

BC = F521H

HL - 0003H

the execution of a DAD B produces

HL = F524H

As you see, F521H and 0003H are added to get F524H.

The result is stored in the HL register pair.

The DAD instruction affects the CY flag. If there is a

carry out of the HL register pair, the CY flag is set;

otherwise it is reset. As an example, if

DE = 0001H

HL = FFFFH

a DAD D will result in

HL = 0000H

CY = 1

Incidentally, a DAD H has the effect of adding the data

in the HL register pair to itself. In other words, a DAD H

doubles the value of HL. If

HL = 1234H

204 Digital Computer Electronics

a DAD H results in

HL = 2468H

INX and DCX

INX stands for increment the extended register, and DCX

means decrement the extended register. The extended

increment instructions are

INX B

INX D

INX H

where B stands for BC

D stands for DE

H stands for HL

The DCX instructions have a similar format: DCX B, DCX

D, and DCX H.

The INX and DCX instructions have no effect on the

flags. For instance, if

BC = FFFFH

5 = 1
Z = 0

P = 1

CY = 0

executing an INX B results in

BC = 0000H

S = 1

Z = 0

P = 1

CY = 0

Notice that all flags are unaffected.

In summary, the extended register instructions are LXI,

DAD, INX, and DCX. Of the three register pairs, the HL

combination is special. The next section tells you why.

2050H

(a) (b)

Fig. 12-7 (a) HL pointer; (b) pointing to 2050H.

first memory location is Mqoooh, the next is Mqooih* and so

on. The memory location with address HL is MHL.

With some SAP-3 instructions, the contents of the HL

register pair are used as the address for data in memory.

That is, the contents of the HL register pair are sent to the

MAR, and then a memory read or write is performed. It’s

as though the HL register pair were pointing to the desired

memory location, as shown in Fig. 12-7*2.

For instance, suppose

HL = 2050H

If HL is acting as a pointer, its contents (2050H) are sent

to the MAR during one T state. During the next T state,

the memory location whose address is 2050H undergoes a

read or write operation. As shown in Fig. 12-76 the HL

register pair points to the desired memory location.

12-9 INDIRECT INSTRUCTIONS

As discussed in Chap. 10, the program counter is an

instruction pointer; it points to the memory location where

the next instruction is stored.

The HL register pair is different; it points to memory

locations where data is stored. In other words, SAP-3 has

several instructions where the HL register pair acts like a

data pointer. The following discussion clarifies the idea.

Indirect Addressing

With direct addressing like LDA 5000H and STA 6000H,

the programmer knows the address of the memory location

because the instruction itself directly gives the address.

With instructions that use the HL pointer, however, pro¬

grammers do not know the address; all they know is that

the address is stored in the HL register pair. Whenever an

instruction uses the HL pointer, the addressing is called

indirect addressing.

Visualizing the HL Pointer

Figure 12-7a shows a 64K memory; it has 65,636 memory

registers or memory locations where data is stored. The

Indirect Read

One of the indirect instructions is

MOV reg,M

Chapter 12 SAP-3 205

As another example, if where reg = A, B, C, D, E, H, or L

M = Mhl

This instruction says to load the specified register with the

data addressed by HL. After execution of this instruction,

the designated register contains MHL.

For instance, if

HL = 3000H and M300oh = 87H

executing a

MOV C,M

produces

C - 87H

HL = 9850H and M9850H = CEH

a MOV A,M results in

A = CEH

Figure 12-8b illustrates the MOV A,M. The HL pointer

points to CEH, which is the data to be loaded into the A

register.

Indirect Write

Here is another indirect MOV instruction:

MOV M,reg

HL HL

3000H 87H 9850H CEH

(a) (b)

HL

E300H F2H

(c)

Fig. 12-8 Examples of indirect addressing.

where M = Mhl

reg = A, B, C, D, E, H, orL

This says to load the memory location addressed by HL

with the contents of the specified register. After execution

of this instruction,

Mhl = reg

As an example, if

HL = E300H

B = F2H

the execution of a MOV M,B produces

ME3ooh = F2H

Figure 12-8c illustrates the idea.

Indirect-Immediate Instructions

Sometimes we want to write immediate data into the memory

location addressed by the HL pointer. The instruction to

use in this case is

MVI M,byte

Here is an example. If HL = 3000H, executing a

MVI M,87H

Figure 12-8a shows how to visualize the MOV C,M. The produces

HL pointer points to 87H, which is the data to be read into

register C. M3000H = 87H

206 Digital Computer Electronics

Other Pointer Instructions

Here are more instructions using the HL pointer:

ADD M

ADC M

SUB M

SBBM

INRM

DCRM

ANAM

ORAM

XRAM

CMPM

In each of these, M is the memory location addressed by

HL. Think of M as another register where data is stored.

Each of the foregoing instructions operates on this data as

previously described.

EXAMPLE 12-4

Suppose 256 bytes of data are stored in memory between

addresses 2000H and 20FFH. Show a program that will

copy these 256 bytes at addresses 3000H to 30FFH.

SOLUTION

Label Instruction Comment

LXI H,1FFFH initialize pointer

LOOP: INX H ;Advance pointer

MOV B,M ;Read byte

MOV A,H ;Load 20H into accumulator

ADI 10H ;Add offset to get 30H

MOV H,A ;Offset pointer

MOV M,B ; Write byte in new location

SUI 10H ; Subtract offset

MOV H,A ; Restore H for next read
MOV A,L ;Prepare for compare

CPI FFH ;Check for 255

JNZ LOOP ;If not done, get next byte

HLT ;Stop

This looping program transfers each successive byte in the

2000H-20FFH area of memory into the 3000H-30FFH area

of memory. Here are the details.

The LXI initializes the pointer with address 1FFFH. The

first time into the loop, the INX will advance the HL pointer

to 2000H. The MOV B,M then reads the first byte into the

B register. The next three instructions

MOV A,H

ADI 10H

MOV H,A

offset the HL pointer to 3000H. Then the MOV M,B writes

the first byte into location 3000H. The next two instructions,

SUI and MOV, restore the HL pointer to 2000H. The MOV

A,L puts 00H into the accumulator. Because the CPI FFH

resets the zero flag, the JNZ forces the program to return

to the LOOP entry point.

On the second pass through the loop, the computer will

read the byte at 2001H and it will store this byte at 3001H.

The looping will continue with successive bytes being

moved from the 2000H-20FFH section of memory to the

3000H-30FFH area. Since the first byte is read from 2000H,

the 256th byte is read from 20FFH. After this byte is stored

at 30FFH, the pointer is restored to 20FFH. The MOV A,L

then loads the accumulator to get

A = FFH

This time, the CPI FFH will set the zero flag. Therefore,

the program will fall through the JNZ to the HLT.

12-10 STACK INSTRUCTIONS

SAP-2 has a CALL instruction that sends the program to a

subroutine. As you recall, before the jump takes place, the

program counter is incremented and the address is saved at

addresses FFFEH and FFFFH. The addresses FFFEH and

FFFFH are set aside for the purpose of saving the return

address. At the completion of a subroutine, the RET

instruction loads the program counter with the return

address, which allows the computer to get back to the main

program.

The Stack

A stack is a portion of memory set aside primarily for

saving return addresses. SAP-2 has a stack because addresses

FFFEH and FFFFH are used exclusively for saving the

return address of a subroutine call. Figure 12-9a shows

how to visualize the SAP-2 stack.

SAP-3 is different. To begin with, the programmer

decides where to locate the stack and how large to make

it. As an example, Fig. 12-9b shows a stack between

addresses 20E0H and 20FFH. This stack contains 32

memory locations for saving return addresses. Programmers

can locate the stack anywhere they want in memory, but

once they have set up the stack, they no longer use that

portion of memory for program and data. Instead, the stack

becomes a special space in memory, used for storing the

return addresses of subroutine calls.

Stack Pointer

The instructions that read and write into the stack are called

stack instructions; these include PUSH, POP, CALL, and

Chapter 12 SAP-3 207

(a) (b)

Fig. 12-9 (a) SAP-2 stack; (b) example of a stack; (c) stack
pointer addresses the stack; (d) SP points to 20FFH.

others to be discussed. Stack instructions use indirect

addressing because a 16-bit register called the stack pointer

(SP) holds the address of the desired memory location. As

shown in Fig. 12-9c, the stack pointer is similar to the HL

pointer because the contents of the stack pointer indicate

which memory location is to be accessed. For instance, if

SP = 20FFH

the stack pointer points to memory location M20ffh (see

Fig. 12-9d). Depending on the stack instruction, a byte is

then read from, or written into, this memory location.

To initialize the stack pointer, we can use the immediate

load instruction

LXI SP,dble

For instance, if we execute

LXI SP,20FFH

the stack pointer is loaded with 20FFH.

PUSH Instructions

The contents of the accumulator and the flag register are

known as the program status word (PSW). The format for

this word is

PSW = AF

where A = contents of accumulator

F = contents of flag register

The accumulator contents are the high byte, and the flag

contents the low byte. When calling subroutines, we usually

have to save the program status word, so that the main

208 Digital Computer Electronics

fc) id)

program can resume after the subroutine is executed. We

may also have to save the contents of the other registers.

PUSH instructions allow us to save data in a stack. Here

are the four PUSH instructions:

PUSH B

PUSH D

PUSH H

PUSH PSW

where B stands for BC

D stands for DE

H stands for HL

PSW stands for program status word

When a PUSH instruction is executed, the following things

happen:

1. The stack pointer is decremented to get a new value

of SP - 1.

2. The high byte in the specified register pair is stored in

Msp- l*
3. The stack pointer is decremented again to get SP —

2.
4. The low byte in the specified register pair is stored in

Msp - 2*

Here is an example. Suppose

BC = 5612H

SP = 2100H

When a PUSH B is executed,

1. The stack pointer is decremented to get 20FFH.

2. The high byte 56H is stored at 20FFH (Fig. 12-10g).

3. The stack pointer is again decremented to get 20FEH.

4. The low byte 12H is stored at 20FEH (Fig. 12-10b).

20FAH

20FBH

20FCH

20FDH

20FEH

20FFH

20FAH

20FBH

20FCH

20FDH

20FEH

20FFH

(c) (d)

Fig. 12-10 Push operations: (a) high byte first; (b) low byte
second; (c) 6 bytes pushed on stack; (d) popping a byte off the
stack; (e) incrementing stack pointer.

20FAH

20FBH

20FCH

20FDH

20FEH

20FFH

(e.I

Here’s another example. Suppose

SP = 2100H

AF = 1234H

DE = 5678H

HL = 9A25H

then executing

PUSH PSW

PUSH D

PUSH H

loads the stack as shown in Fig. 12-10c. The first PUSH

stores 12H at 20FFH and 34H at 20FEH. The next PUSH

stores 56H at 20FDH and 78H at 20FCH. The last PUSH

stores 9AH at 20FBH and 25H at 20FAH. Notice how the

stack builds. Each new PUSH shoves data onto the stack.

POP Instructions

Here are four POP instructions:

POP B

POP D

POPH

POP PSW

where B stands for BC

D stands for DE

H stands for HL

PSW stands for program status word

Chapter 12 SAP-3 209

When a POP is executed, the following happens:

1. The low byte is read from the memory location

addressed by the stack pointer. This byte is stored in

the lower half of the specified register pair.

2. The stack pointer is incremented.

3. The high byte is read and stored in the upper half of

the specified register pair.

4. The stack pointer is incremented.

Here’s an example. Suppose the stack is loaded as shown

in Fig. 12-10c with the stack pointer at 20FAH. Then

execution of POP B does the following:

1. Byte 25H is read from 20FAH (Fig. 12-10c) and stored

in the C register.

2. The stack pointer is incremented to get 20FBH. Byte

9AH is read from 20FBH (Fig. 12-10d) and stored in

the B register. The BC register pair now contains

BC = 9A25H

3. The stack pointer is incremented to get 20FCH (Fig.

12-10c).

Each time we execute a POP, 2 bytes come off the stack.

If we were to execute a POP PSW and a POP H in Fig.

12-10c, the final register contents would be

AF = 5678H

HL - 1234H

and the stack pointer would contain

SP = 2100H

CALL and RET

The main purpose of the SAP-3 stack is to save return

addresses automatically when using CALLs. When a

CALL address

is executed, the contents of the program counter are pushed

onto the stack. Then the starting address of the subroutine

is loaded into the program counter. In this way, the next

instruction fetched is the first instruction of the subroutine.

On completion of the subroutine, a RET instruction pops

the return address off the stack into the program counter.

Here is an example:

Address Instruction

2000H LXI SP,2100H

2001H

2002H

Address Instruction

2003H CALL 8050H

2004H

2005H

2006H MVI A,0EH

20FFH HLT

8050H

8059H RET

To begin with, LXI and CALL instructions take 3 bytes

each when assembled: 1 byte for the op code and 2 for the

data. This is why the LXI instruction occupies 2000H to

2002H and the CALL occupies 2003H to 2005H.

The LXI loads the stack pointer with 2100H. During the

execution of CALL 8050H, the address of the next instruc¬

tion is saved in the stack. This address (2006H) is pushed

onto the stack in the usual way; the stack pointer is

decremented and the high byte 20H is stored; the stack

pointer is decremented again, and the low byte 06H is

stored (see Fig. 12-1 la). The program counter is then

loaded with 8050H, the starting address of the subroutine.

When the subroutine is completed, the RET instruction

takes the computer back to the main program as follows.

First, the low byte is popped from the stack into the lower

half of the program counter; then the high byte is popped

from the stack into the upper half of the program counter.

(a) (b)

Fig. 12-11 (a) Saving a return address during a subroutine call;
(b) popping the return address during a RET.

210 Digital Computer Electronics

After the second increment, the stack pointer is back at

2100H, as shown in Fig. 12-11 b.

The stack operation is automatic during CALL and RET

instructions. All we have to do is initialize the setting of

the stack pointer; this is purpose of the LXI SP,dble

instruction. It sets the upper boundary of the stack. Then a

CALL automatically pushes the return address onto the

stack, and a RET automatically pops this return address off

the stack.

Conditional Calls and Returns

Here is a list of the SAP-3 conditional calls:

CNZ address

CZ address

CNC address f

CC address

CPO address

CPE address "4

CP address ^ r

CM address

They are similar to the conditional jumps discussed earlier.

The CNZ branches to a subroutine only if the zero flag is

reset, the CZ branches only if the zero flag is set, the CNC

branches only if the carry flag is reset, and so forth.

The return from a subroutine may also be conditional.

Here is a list of the conditional returns:

RNZ

RZ

RNC

RC

RPO

RPE

RP

RM

The RNZ will return only if the zero flag is reset, the RZ

returns only when the zero flag is set, the RNC returns

only if the carry flag is reset, and so on.

EXAMPLE 12 5

SAP-3 has a clock frequency of 1 MHz, the same as SAP-

2. Write a program that provides a time delay of approxi¬

mately 80 ms.

SOLUTION

Label Mnemonic Comment

LXI SP,E000H initialize stack pointer

MVI E,08H initialize counter

LOOP: CALL F020H ;Delay for 10 ms

DCR E ;Count down

JNZ LOOP

HLT

;Test for 8 passes

You almost always use subroutines in complicated programs;

this means that the stack will be used to save return

addresses. For this reason, one of the first instructions in

any program should be a LXI SP to initialize the stack

pointer.

The 80-ms time delay program shown here starts with a

LXI SP,E000H. This implies that the stack grows from

address DFFFH toward lower memory. In other words, the

stack pointer is decremented before the first push operation;

this means that the stack begins at DFFFH.

The remainder of the program is straightforward. The E

register is used as a counter. The program calls the 10-ms

time delay 8 times. Therefore, the overall time delay is

approximately 80 ms.

GLOSSARY

data pointer Another name for the HL register pair because

some instructions use its contents to address the memory.

extended register A pair of CPU registers that act like a

16-bit register with certain instructions.

indirect addressing Addressing in which the address of

data is contained in the HL register pair.

overflow A sum or difference that lies outside the normal
range of the accumulator.

pop To read data from the stack.

push To save data in the stack.

stack A portion of memory reserved for return addresses

and data.

stack pointer A 16-bit register that addresses the stack.

The stack pointer must be initialized by an LXI instruction

before calling subroutines.

Chapter 12 SAP-3 211

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. An_is a sum or difference that lies out¬

side the normal range of the accumulator. One way

to detect an overflow is with the-flag.

2. (overflow, carry) To reset the carry flag, you may

use an_followed by a CMC. STC stands

for_the carry flag.

3. (STC, set) The ADC instruction adds the-

flag and the contents of the specified register to the

contents of the_SBB stands for subtract

with-
4. (carry, accumulator, borrow) The RAL rotates all

bits to the_with CY going to the LSB.

RRC rotates the accumulator bits to the right with the

LSB going to the carry flag.

5. (left) The CMP instruction compares the contents of

the designated register with the contents of the accu¬

mulator. If the two are equal, the zero flag is

_The CPI compares an immediate byte to

the contents of the-

6. (set, accumulator) JM stands for jump if-

. The program will branch to a new address if the

_flag is set. JNZ means jump if not zero.

With this instruction, the program branches only if

the_flag is reset.

7. (minus, sign, zero) The LXI instruction is used to

load register pairs. B is paired off with C, D with E,

and H with_The HL register pair acts

like a_pointer with some instructions.

This type of addressing is called-

8. (L, data, indirect) The stack is a portion of memory

reserved primarily for return addresses. The stack

pointer is a 16-bit register that addresses the stack. It

is necessary to initialize the stack pointer before

calling any subroutines.

PROBLEMS

12-1. Write a program that adds decimal 345 and 753.

(Use immediate bytes for the data.)

12-2. Write a program that subtracts decimal 456 from

983. (Use immediate data.)

12-3. Suppose that 1,024 bytes of data are stored be¬

tween addresses 5000H and 53FFH. Write a pro¬

gram that copies these bytes at addresses 9000H

to 93FFH.

12-4. Show a program that provides a delay of approxi¬

mately 35 ms. If you use the SAP subroutines of

Chap. 11, start your program with LXI SP,E000H

12-5. Write a program that sends 1, 2, 3, ... , 255 to

port 22 with a time delay of 1 ms between OUT

22 instructions. (Use a LXI SP,E000H and a

CALL F010H.)

12-6. Bytes arrive a port 21H at a rate of approximately

1 per millisecond. Write a program that inputs

256 bytes and stores them at addresses 8000H to

80FFH. (Use CALL F010H.)

12-7. Suppose that 512 bytes of data are stored at ad¬

dresses 6000H to 61FFH and write a program that

outputs these bytes to port 22H at a rate of ap¬

proximately 100 bytes per second. (Use CALL

F020H.)

12-8. A peripheral device is sending serial data to bit 7

of port 21H at a rate of 1,000 bits per second.

Write a program that converts any 8 bits in the

serial data stream to an 8-bit parallel word, which

is then sent to port 22H. (Use CALL F010H.)

12-9. Suppose that 256 bytes are stored at addresses

5000H to 50FFH and write a program that con¬

verts each of these bytes into a serial data stream

at bit 0 of port 22H. Output the data at a rate of

approximately 1,000 bits per second. (Use CALL

F010H.)

212 Digital Computer Electronics

PART 3
PROGRAMMING POPULAR

MICROPROCESSORS

Introduction to Microprocessors
This part of the text is designed to introduce you to some

of the more popular microprocessors. The design and

operation of a microprocessor are based on the digital

circuits which you studied in Part 1.

You will learn the basic principles of microprocessors

and how to write simple assembly language programs. In

the study of computers, programming, and microprocessors,

one fundamental idea emerges:

If you do correctly a great number of

very simple tasks, you will have done

something complicated.

If you understand the basic principles and simple programs

presented here, you will be on your way to understanding

more complicated ideas.

Since the microprocessor is a “computer on a chip,” it

may help to take a quick look at computers before stalling

to study microprocessors.

13-1 COMPUTER HARDWARE

The digital circuits you studied in the first part of this text

are the building blocks of a computer. In the early days of

computers, digital circuits were made by using vacuum

tubes and later were built with transistors. Circuits were

designed which would act as the “brain” of a computer.

These circuits were called the central processing unit (CPU).

The CPU could perform basic arithmetic operations such

as addition and subtraction, logic operations such as ANDing

and ORing, and control operations. Thus it could process

data.

A CPU cannot be used alone. There are other components

which are needed to make a computer. For example, we

said that a CPU can process data. Where is this data? We

need memory—a place where data can be stored until the

CPU needs it. And what if the CPU does a calculation and

comes up with an answer? How would we know what the

Fig. 13-1 A simplified overview of a microprocessor
system.

answer is? We need a way for the CPU to communicate

with us. We need an output device. Figure 13-1 illustrates

what a simple system looks like.

13-2 DEFINITION OF A
MICROPROCESSOR

What exactly is a microprocessor? As the name implies, it

must be small (micro-) and it must be able to process data

(-processor). A microprocessor is a CPU which is con¬

structed on a single silicon chip. What, then, is a CPU? A

CPU is an electronic circuit which can interpret and execute

instructions and control input and output.

In this text, when reference is made to a microprocessor,

only the microprocessor is being referred to. However, if

reference is made to a computer, then we are talking about

a device which contains a microprocessor and several

subsystems. Figure 13-2 serves to illustrate this.

13-3 SOME COMMON USES FOR
MICROPROCESSORS

Microprocessors can be found in a variety of products.

Some well-known examples are computers and industrial

controls. Some not-so-obvious products that use micropro-

213

Fig. 13-2 Block diagram of a complete computer and
peripherals.

cessors include answering machines, compact disk players,

and automobiles.

The microprocessor supplies electronic products with a

new dimension. In the past, electronic products have been

able to make simple decisions because of certain kinds of

circuitry and/or sensors. The microprocessor, however, has

multiplied this trait many times: Some devices, most notably

computers, now almost appear to think.

13-4 MICROPROCESSORS
FEATURED IN THIS TEXT

It is the purpose of this book to examine the most popular

8-bit microprocessor families in addition to the 16-bit Intel

8086-8088 family.

6502 Family

The 6502 family is supported by this text. The 65C02, an

advanced version of the 6502 which is used in the Apple

lie, has some additional instructions and enhanced features

which can be found in the manufacturer’s programming

manuals.

6800 Family

The 6800/6808 is supported by this text. The 6809 is an

enhanced version of the 6800. It understands all the

instructions of the 6800 and includes some other advanced

features.

8080/8085/Z80 Family

The 8080, 8085, and Z80 are also supported in this text.

The 8080 and 8085 have exactly the same instruction set

except for two additional instructions included in the 8085.

The Z80 understands all the 8080/8085 instructions and has

many other additional instructions.

Only those instructions common to all three micropro¬

cessors are discussed in this text. (The extended Z80

instructions are not used in the text.) This has the advantage

of making it possible for students to use a mixture of 8085

and Z80 microprocessor trainers in the same class at the

same time with all students on equal footing and with a

minimum of confusion. Either Z80 or 8085 mnemonics can

be used interchangeably for the homework problems and

the object code will be the same.

8086/8088 Family

The Intel 8086/8088 is the only 16-bit microprocessor

discussed in this text. This microprocessor (in addition to

the 80286, 80386, and 80486) is used in the popular IBM

PCs, IBM compatibles, and clones. The DOS DEBUG

utility is used throughout the text. Assemblers are introduced

in later chapters.

13-5 ACCESS TO
MICROPROCESSORS

Developing skill in programming and interfacing micropro¬

cessors requires access to a microprocessor. Here are some

ways to gain access to a microprocessor supported by this

text.

Computers

The 6502 or one of its derivatives can be found in the entire

line of Commodore computers including the PET, Vic-20,

C-64, C-16, Plus-4, and C-128. They can also be found in

the Apple II line of computers including the Apple II, II + ,

lie, lie, and lie + . They are also included in that portion of

the Laser line of computers that are Apple-compatible, in¬

cluding the Laser 128, Laser 128 EX, and Laser 128 EX/2.

And last of all, some of the older Atari home computers

contain this type of microprocessor.

The 8085 and Z80 can be found in some of the older

CP/M machines. (CP/M stands for control program for

microprocessors.) The Z80 was used in Radio Shack’s

TRS-80 line of computers and is also found in the Com¬

modore 128 (the Commodore 128 contains two micropro¬

cessors). The Commodore 128 will also run CP/M software

if that is desired.

The 8086/8088 are found in all of the IBM PCs and XTs,

IBM compatibles, and clones. The 80286 is used in AT-

class machines, and of course the 80386 is used in the

newer 386s. These microprocessors use a superset of the

8086/8088 instructions set and can therefore also be used

with this text.

214 Digital Computer Electronics

Some IBM compatibles use the NEC-V20 or one of the

other NEC microprocessors. These are compatible with the

Intel series of microprocessors and will work equally well.

Microprocessor Trainers

Another way to gain access to a microprocessor supported

by this text is through the use of a microprocessor trainer.

Heathkit’s ET-3400-A trainer contains a 6808 chip. E&L

Instruments has the “FOX” (MT-80Z) with a Z80 micro¬

processor. Intel makes the SDK-85, which features the

8085 chip, and the SDK-86, which uses the 8086. Motorola

makes the MEK6800D with a 6800 chip.

Software Emulation Programs

Finally, there are software emulation programs that will

make a computer act as though it is using another micro¬

processor.

Chapter 13 Introduction to Microprocessors 215

Programming and Languages
What is a program and why do we need one? What do we

mean by program design? What is a programming lan¬

guage? Why do we need a language? What is a flowchart?

How does all of this relate to electronics and digital circuits?

These are some of the questions we will try to answer in

this chapter.

14-1 RELATIONSHIP BETWEEN
ELECTRONICS AND PROGRAMMING

A question sometimes raised by electronics students is,

“Why are we learning about programming microproces¬

sors?”

Programming is a topic which is closely related to

electronics. Mathematics and physics are topics which

support or undergird the subject of electronics. They form

a foundation. Programming is not so much a support subject

as it is a related subject. Let’s take a closer look at this.

Digital Electronics and Microprocessors

What prompted the creation of digital electronics? It was

the desire to make a machine without moving parts which

could perform mathematical calculations. Such a machine

would be much faster than any mechanical calculator.

Correctly connecting enough digital logic circuits together

created such a machine.

Once the calculating machine had been built, there had

to be a way to tell this machine to add, or subtract, or

perform some logical operation. Thus programming was

born. We simply needed a way to tell the machine what to

do. In the beginning, programming was done by connecting

wires or patch cords. This was very slow compared to what

we do today.

Over the years digital circuits became more complex,

the calculating machine grew into far more than just a big

calculator, and the need for ways to communicate with the

machine grew. Finally, it became possible to put the entire

computer “brain” on a single chip.

Until this point an electronics technician might never

work on or even see a computer. However, when the

“brain” could be put on a chip, and the cost was measured

in dollars rather than thousands of dollars, its possibilities

became endless.

Designers and engineers realized that these “brains,” or

microprocessors, could improve the performance of many

common electronic products and could make new products

economically possible. With microprocessors everywhere,

the electronics technician can no longer be unaware of their

operation.

The Electronic Technician and Programming

So why should a technician learn about programming?

Because the technician will probably eventually work on

products with microprocessors, and the microprocessor

cannot be separated from its program. A microprocessor

without a program would be like a resistor with no resistance

or a wire with no conductivity. Without the program, a

microprocessor does nothing.

Programming is now part of the overall picture that

electronics is concerned with—like mathematics and phys¬

ics. Some technicians will not need as much knowledge

about programming as others: It depends on what your

career field is. But everyone should at least be aware of

the basics.

The goal of this book is to provide the digital understand¬

ing and programming experience which would be appro¬

priate for the “typical” electronics student.

14-2 PROGRAMMING

In everyday language:

A program is a very detailed list of steps which

must be followed to accomplish a certain task.

216

A Familiar Example

We have all used this concept of programming—of follow¬

ing specific steps to accomplish a certain task—but have

probably not thought of it in these terms. Let’s look at

something like taking a city bus downtown. You would be

likely to

1. Wear clothes appropriate for the weather that particular
day.

2. Take some money or tickets.

3. Go to a nearby bus stop.

4. Wait for the correct bus.

5. Get on.

6. Pay the driver.

7. Sit down if there were empty seats available.

8. Wait until the bus arrived in the area you wished to

go to.

9. Alert the driver you wished to get off.

10. Wait for the bus to stop.

11. And finally get off.

Figure 14-1 is a flowchart (we’ll talk about flowcharts in

just a minute) of this process.

Unless this was your first time riding a bus, you wouldn’t

think about every detail because much of it is understood

and is a natural part of your life. You usually dress for the

weather when you go outside, and you usually take money

when you go places. With a computer, though, things are
different.

Very little is “natural” for a computer. The micropro¬

cessor has several temporary storage places where numbers

can be kept (called registers). The machine can add and

subtract, it can and and or, it can move numbers from one

register to another, and it can do other simple things, but

everything must be specified! One of the things that often

surprises people learning to program microprocessors is the

amount of detail which is necessary when writing a program.

Fig. 14-1 Flowchart of a bus ride.

Chapter 14 Programming and Languages 217

14-3 FUNDAMENTAL PREMISE

Before we look further at the subject of programming and

flowcharts, we need to discuss a fundamental concept of

programming. The concept is this:

You cannot program the computer to do

something you don’t know how to do.

If you use computers only with application software (spread¬

sheets, word processors, and so on), this may not always

be true, but if you want to program microprocessors, it is.

Before you begin to think about how you will program a

computer to do something, think about how you would do

it yourself without a computer. After you know how you

would do it, you can begin to tell the computer how it

should do it.

14-4 FLOWCHARTS

When you are writing a program, it helps to have an

organized way to write or express the flow of the program’s

logic. A flowchart is one way to do this.
Fig. 14-3 Straight-line program to calculate sales tax and
display total cost for one item.

Flowchart symbols

Figure 14-2 shows some common flowchart symbols. There

are others, but we’ll need only a few for most of the

programs we’ll be writing.

Straight-Line Programs

The simplest type of program is the straight-line program.

In this type of program the steps involved follow each

other, one after another, without any alternate routes or

paths. Figure 14-3 is an example of a straight-line program.

This program is similar to one that might be used at the

cash register of a store. It allows you to enter the price and

product code of one item. The program then calculates a 5

percent sales tax, adds the tax to the original price to arrive

at a total, and finally displays the total cost. The program

will accept only one item, which means that it would have

to be “run” again to find the total cost of a second item.

Since we often buy more than one item at a time, let’s look

at another flowchart.

Looping

A loop is a section of a program which will repeat over

and over again. We can make the loop repeat indefinitely,

or make it stop after a certain number of repetitions, or

make it stop when some condition is met. Look at Fig.

14-4 and compare it to Fig. 14-3.

Fig. 14-4 Sales-tax program with loop.

218 Digital Computer Electronics

These are almost identical, aren’t they? What do you

think this program will do that the one in Fig. 14-3 didn’t?

The answer, of course, is that this program is ready to

accept a new number immediately after displaying the

previous total. After you enter an item’s price, the total

cost is shown on the screen and the program then waits for

you to enter the price of the next item.

Loops make it easier for programs to perform repetitive

tasks. The program that uses loops can do the same

calculations or functions over and over again.

Branching

Sometimes we want the computer program to do different

things based on the situation at the time or based on the

results of certain operations. We need a way to branch off

from the main program flow. Branching allows us to write

one program that can do different things at different times.

Let’s look at the sales-tax situation again. Study Fig. 14-5

at this time. This new version of the sales-tax program has

a branch and a decision symbol.

Let s look at the decision symbol (diamond). If the

program is to be able to take an alternate path when certain

conditions exist, we must give it a chance to check for

those conditions. The decision diamond represents that

time. If the item is a nonfood item, it will be taxed as

usual, and the program flow continues downward. If it is

Fig. 14-5 Sales-tax program with loop and branch for non-
taxable food items.

a food item which is not to be taxed, then we take the

branch. The branch doesn’t actually say not to tax the food

item. But by making the total cost equal to the original

price and bypassing the tax calculation section, we have

effectively done the same thing. The total that appears will

be the same as the original price, and the program will then

loop back to the beginning to wait for the next item.

Subroutines

Sometimes we need to have the computer program take

care of some intermediate task before it can continue with

the main job at hand. We don’t want it to branch and then

end up somewhere else after the branch is finished. Rather,

we want it to go to an intermediate task and then come

right back to where it was before it left. This is called a

subroutine. Looking at a subroutine will help clarify this

new concept. Figure 14-6 shows our new program.

Everything is the same as in the last (Fig. 14-5) program

except that we have added a subroutine which handles

inventory. This subroutine is really just another small

program that works along with the main one. It reduces the

inventory total for this particular item by 1. If this total is

less than 10, then it’s time to order more. Either way, the

subroutine prints a line on a printer in the administrative

office with the product code and name of the product. We

then return ’ from the subroutine to the main program and

continue where we left off.

Calling Subroutines

The act of going to a subroutine is often referred to as

calling a subroutine, at the end of which we return to the
main program.

The greatest advantage in having subroutines is not in

calling or using them once but in using them several times

in a program. You write that part of the program only once,

but you can use it many times. Figure 14-7 illustrates this.

In Fig. 14-7 the boxes are not process boxes but rather

representations of certain parts or modules of the whole
computer program.

In this hypothetical situation there may be times when

merchandise needs to be ordered other than w'hen inventory

drops below 10. For example, if a clerk finds a piece of

merchandise damaged too badly to sell at a reduced price,

it may simply be disposed of; however, it must be replaced

to keep inventory up. The “damaged merchandise” part of

the program can then call the “inventory-ordering subrou¬
tine” at some point.

Likewise, the store might sometimes give food or clothing

to charity. This part of the program might also call the

inventory-ordering subroutine to replace that merchandise.

This store’s computer program uses the same subroutine

in three different situations, but the programmer had to
write the subroutine only once.

Chapter 14 Programming and Languages 219

Fig. 14-6 Sales-tax program with inventory control
reordering subroutine.

14-5 PROGRAMMING LANGUAGES

Price entry
part of

program

Damaged-
merchandise

reporting
part of program

Charities
bookkeeping

part of
program

Inventory¬
reordering
subroutine

Fig. 14-7 Repetitive calling of inventory-reordering
subroutine.

Now that we can define and flowchart the desired process,

we need to be able to communicate this process to the

computer. We need a language which the computer under¬

stands. Many languages have been developed for use with

computers.

Machine Language

There is only one language the computer actually under¬

stands, and that is machine language, which consists of Is

and Os. This binary language is fine for the computer but

not for people. To have to communicate with the computer

in binary, you would place in its memory a series of

numbers that might look like this:

10010100

01001010
11101110

00101001

It would be nearly impossible to remember what the many

different patterns of Is and 0s meant, and the probability

of making a mistake would be very high. Something better

is needed.

220 Digital Computer Electronics

Assembly Language

The first step toward a language that is easier for people to

work with uses abbreviations to stand for different opera¬

tions. For example, the instruction which tells a 6800

microprocessor to add numbers is the ADDA instruction,

which stands for ADD accumulator A to a memory location.

This “language” of abbreviations is called assembly

language. The “abbreviations” are called mnemonics. A

mnemonic (pronounced ne-'man-ik) is something that aids

the memory. Mnemonics are designed to be easy to re¬

member and are a significant improvement over binary
digits.

Machine language and assembly language are the subjects

of this book. We refer to them as low-level languages

because only very simple instructions exist.

High-level languages

In-between languages

Low-level languages

Fig. 14-8 Some examples of high-level, low-level, and in-
between languages.

High-Level Languages

Over the course of time, people working with computers

felt it would be helpful to create languages that were more

like English, so that it would not be so difficult to

communicate with the computer and so that more advanced

commands could be created. We call these high-level
languages.

For example, many microprocessors do not have the

ability to multiply or divide. It is obvious, however, that

these are common mathematical functions that must be

available to a computer programmer. In machine or assembly

language one can use repeated additions to multiply or

repeated subtractions to divide. This is not necessarily the

best way to multiply or divide, but it is one way. In a high-

level language there are “multiply” and “divide” com¬

mands. The language knows how to create the multiply and

divide functions even though the microprocessor does not

have these functions built in. In fact, these languages can

understand English commands like print, run, do, next,

and end. The microprocessor does not understand these

English words, but the language changes (interprets or

compiles) them into machine language before sending them
to the microprocessor.

Many high-level languages have been created over the

years. FORTRAN (formula translation) is a language that

handles high-level mathematics very well and is designed

for scientists and engineers. COBOL, which stands for

common business-oriented language, is tailored to the needs

of business. BASIC, which stands for beginner’s all-purpose

symbolic instruction code, was designed to be easy for

nonprofessional programmers to learn and use. Pascal,

named for the French mathematician Blaise Pascal, is

designed to encourage the programmer to adhere to what

are considered “correct” programming practices.

There are some languages that are somewhat “in be¬

tween’ ’ the high-level and low-level languages, most notably

C and FORTH. Figure 14-8 illustrates this.

14-6 ASSEMBLY LANGUAGE

Let’s look at the subject of assembly-language programming
in a little more detail.

Machine language is the language the computer under¬

stands, but it is difficult for people to work with. Assembly

language gives us the advantages of machine language

without the disadvantage of doing something that seems so
unnatural.

When we write in assembly language, we use abbrevi¬

ations called mnemonics for certain operations or functions.

The assembly language is called source code. It is more

like English than machine language. The microprocessor,

however, cannot act upon or execute mnemonics. It doesn’t

understand mnemonics. We need to convert the assembly

language or source code into machine language or object

code. There are a couple of ways to do this.

Manual Assembly

Let’s look at manual assembly first. When using this

technique, you write your program on paper using mne¬

monics. Then you look up each mnemonic on a chart. On

the chart there will be a number which is the machine-

language code for the assembly-language mnemonic. You

then write down this object code so that you can later key

it into the microprocessor trainer or computer. This is called

manual assembly because you must look up the codes
yourself.

Assembly with an Assembler or Monitor

The other way to create machine-language object code from

assembly-language source code is through the use of a

monitor or assembler. Since manual assembly involves

simply looking up mnemonics on a chart, it seems reasonable

that the chart could be stored in a computer and the computer

Chapter 14 Programming and Languages 222

could look up the mnemonics and find their corresponding

object code. Though there is much more to a fairly

sophisticated assembler or monitor, this is the basic idea.

A monitor is a program that is normally stored in ROM

and gives you access to the microprocessor’s various

registers. It sometimes has in it a simple assembler to

change mnemonics into machine code and a disassembler

to change machine code back into mnemonics.

An assembler program is usually more sophisticated than

a monitor and has features that are difficult to explain at

this point, but suffice it to say they are for more serious

programming than the monitor. A longer period of time is

required to become skilled in the use of an assembler, but

it is a more powerful tool.

14-7 WORKSHEETS

During the remainder of this book you will be writing

assembly-language programs. In addition to the flowchart,

the worksheet is a tool which helps you stay organized as

you write programs. The worksheet is simply a form on

which you can write your program. It is laid out in such a

way that it’s a little easier to stay neat. Figure 14-9 is a

portion of such a worksheet.

Name_

Program name.

Date_

Sheet _ of

Address Obj code Labe! Mnemonic Operand/Addr Comment

Fig. 14-9 Example of a portion of a worksheet.

GLOSSARY

assembler A program which translates assembly language

mnemonics into binary patterns (machine language).

assembly language A low-level language which uses

mnemonics in place of binary patterns (machine language).

branch A section of a program which causes different

actions to be taken based on conditions.

disassembler A program which translates binary patterns

(machine language) into assembly language mnemonics.

loop A section of a program which will repeat over and

over again.

mnemonic Something that aids the memory. Assembly

language uses mnemonics, which are abbreviations for

machine-language instructions.

monitor A program (usually stored in ROM) which gives

the programmer access to the microprocessor’s stack,

accumulator, registers, and so forth. It sometimes contains

a simple assembler.

straight-line program A program in which each step is

followed by the next without any alternate routes or paths.

subroutine A portion of the program which is called upon

to perform a specific task. When the task is finished, the

main part of the program is returned to.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Without a_, a microprocessor does noth¬

ing.

2. (program) A_is a very detailed list of

steps which must be followed to accomplish a certain

task.

3. (program) What is the shape of the decision symbol?

222 Digital Computer Electronics

4. (Diamond)-make programs more practi¬
cal for doing repetitive tasks.

5. (Loops) The only language a computer actually un¬

derstands is__ language.

6. (machine) What does COBOL stand for?

7* (Common business-oriented language) A program in

which the steps involved occur one after the other

without any alternate paths is called a_

program.

8. (straight-line) A section of a program which repeats

indefinitely, a certain number of times, or while or

until a certain condition exists is called a_
(loop)

PROBLEMS

14-1. If you want to write a program to do something,

what should you think about before you try to

figure out what computer instructions to use?

14-2. What is the shape of the process symbol?

14.3. What provides an alternate path for program

flow based on certain conditions?

14-4. What allows program execution to go to an in¬

termediate task and then return to the place

where it was before it started the intermediate
task?

14-5. What is one of the advantages of using subrou¬
tines?

14-6. What is assembly language?

14-7. What does FORTRAN stand for?

14-8. What does BASIC stand for?

14-9. What was one of the goals of the creator of the

Pascal language?

14-10. What does an assembler translate source code

(mnemonics) into?

Chapter 14 Programming and Languages 223

System Overview

New Concepts_
We’ll begin this chapter by reviewing computer architecture.

Then we’ll spend the greater part of the chapter looking at

microprocessor architecture in general and at the architecture

of the microprocessor families supported by this text in

particular.

15-1 COMPUTER ARCHITECTURE

Let’s review computer architecture a little. Refer to Fig.

15-1.

Memory

We said that memory was needed so that there would be a

place for data and instructions to be stored. Data and

instructions which can be lost after power is removed are

stored in RAM (random-access memory). Data and instruc¬

tions which must never be lost, even after the power is

turned off, are stored in ROM (read-only memory). Re¬

member that ROM is a type of memory which cannot have

its contents changed once the ROM chip is manufactured.

PROM and EPROM are used in much the same way as

ROM but can be programmed after being manufactured

(PROM) or even programmed more than once (EPROM).

PROM and EPROM differ from RAM in that they require

special equipment to program them.

When we refer to memory in this text, we will usually

be referring to RAM.

Addressing

Since there are many memory locations, it is necessary to

have a means of referring to specific locations. This is done

through addressing. Typically, memory locations are num¬

bered from 0000 (in hexadecimal numbering) to the highest

location used by that particular trainer or computer. This

sequential number which is assigned to each location is its

address. See Fig. 15-2.

A memory address is similar to the address of your home.

Your house has a number or address assigned to it, and no

other house on your street can have the same address. Inside

your house are its contents; chairs, beds, and so on. Notice

Fig. 15-1 Block diagram of a complete computer with
peripheral devices. (Arrows indicate data flow.)

Addresses

Memory

0000 Contents

0001 Contents

0002 Contents

0003 Contents

0004 Contents

0005 Contents

0006 Contents

0007 Contents

Fig. 15-2 Memory addressing.

that your home’s address and your home’s contents are not
the same.

Each memory location has an address and contents. The

address is necessary to specify which memory location to

read information from or write information into. The

contents is the information itself.

Address Bus

Most microprocessors can store information and instructions

in a wide range of memory locations. Usually the memory

locations are in a memory chip rather than in the micro¬

processor. The microprocessor needs a way to tell the

memory chip which memory location it wants to put data

into or take data from. It does this through the address bus.
See Fig. 15-3.

The address bus is a communications link between the

microprocessor and the memory chips. Physically, it is

simply a group of electrical paths which are connected to

RAM, ROM, and the I/O chips. Through this bus the

microprocessor can specify the address of any memory

location in any chip or device. Notice in Fig. 15-3 that

information travels on the address bus in only one direction,

from the microprocessor to memory and I/O. There are

more details involved, but this is the basic idea.

Data Bus

Once the microprocessor has specified which memory-

location or device it wants to put data into or take data

from, it then needs a set of electrical paths for this

information to travel on. This set of paths is called the data
bus.

It is this set of electrical paths that allows data to flow

from one chip to the next. Notice in Fig. 15-3 that

information on the data bus travels both to and from the

microprocessor, memory, and I/O devices. Eight-bit mi¬

croprocessors have a data bus that is 8 bits wide; 16-bit

microprocessors have a data bus that is 16 bits wide. That

is, the bus consists of 8 or 16 parallel connecting paths.

Addressing Range

Let’s look at the normal range of addresses possible with
8-bit computers at this time.

In earlier chapters you studied the binary number system

and learned that each position represents a certain power

of 2. This is similar to the way each position in our decimal

number system represents a certain power of 10. This is
illustrated below.

Decimal 103 102 101 10°
1,000’s 100’s 10s Is

Binary 23 22 21 2°
8s 4s 2s Is

If we look at a decimal number like 9,999j0 (the subscript

10 means that we are using a number in base 10), it not

only tells us about a quantity of items, such as apples, but

also tells us about possible combinations.

The number 9,999 is a four-digit number. Using the 10

different decimal digits from 0 through 9, and using no

more than four digits at a time, there would be 9,999 +

1, or 10,000, possible numbers you could create. (You add

the 1 because the number 0000 or simply 0 must also be

included.) This can also be calculated as 104 = 10,000.

If you were interested in giving unique addresses to

10,000 homes on the same street (quite a long street), it

would be possible to do so by using only four digits. The

first house would have the address 0, and then you would

just continue numbering up to 9,999.

EXAMPLE 15-1

Using only three digits, how many unique addresses could

you give to homes on a single street (a decimal number)?

SOLUTION

Since 103 — 1,000, this is the number of unique addresses
that are possible.

Data bus = bidirectional (two way)

Fig. 15-3 Data bus and address bus.

Chapter 15 System Overview 225

Now, let’s try the same problem in binary: 11112 is a

binary number. (The subscript 2 tells us we are using base

2 or binary numbers.) The size of this number is shown

below.

Binary 23 22 21 2°

8s 4s 2s Is

1 111

We have one 8. We have one 4. We have one 2. And we

have one 1. That is, we have an 8, a 4, a 2, and a 1. If

we add this up, we get

8 + 4 + 2 + 1 = 15

The number 111 12 is the same as 1510 (decimal 15). This

means that using only 4 binary digits or bits, there are a

total of 15 + 1, or 16 unique numbers possible. This can

be calculated by using 24 - 16.

If you wanted to give unique binary addresses to 16

houses on the same street (not such a long street), it would

be possible to do so with only 4 bits. The first house would

be 0000 or simply 0, the next would be 0001, the next

0010, and so on up to 1111.

EXAMPLE 15 2

Using 12 binary digits, how many unique house addresses

would be possible?

SOLUTION

2V~ = 4,096 unique addresses

This is essentially what is necessary in the matter of

addressing memory locations. The highest number that

exists in binary using only 4 bits is 11112 (1510). That

means that if we had only four address lines—that is, an

address bus with only four lines—we would be able to

have only a maximum of 1610 different addresses. (0000

counts as one address.) Obviously, this is not enough. Look

at Fig. 15-4. This illustrates the number of unique addresses

possible with different numbers of address lines.

As can be seen in Fig. 15-4, if we decide to use only

eight address lines, since we are studying 8-bit chips, we

then limit ourselves to 256 memory locations. (Add the

values of the first eight positions starting from the far right

216 215 214 213 212 211 210 29

32,768 8,192 2,048 512

65,536 16,384 4,096 1,024

Fig. 15-4 Powers of 2. Also the number of memory
addresses available with varying numbers of address lines.

+ 1.) This is not nearly enough. Most 8-bit chips use 2

bytes for addressing purposes, which then allows 65,536

different memory locations. (One byte is 8 bits; 2 bytes is

16 bits, which then allows 216 combinations.) This is often

adequate. If not, there are ways to increase this number by

using a method known as bank switching.

EXAMPLE 15 3

How many memory locations could be addressed by a 10-

line address bus?

SOLUTION

210 = 1,024 memory locations can be addressed.

15-2 MICROPROCESSOR
ARCHITECTURE

We now need to look more closely at the actual micropro¬

cessor, which is the “brain” of our computer. First, we

will study those features which most microprocessors have

in common. Then we will look at each of the microprocessor

families and study their specific features.

Accumulator

One of the most often used parts of a microprocessor is the

accumulator. The accumulator is a storage place or register

which often has its contents altered in some way. For

example, we can add the contents of the accumulator to

the contents of a memory location. Usually the result of an

operation is also placed in the accumulator. This action is

illustrated in Fig. 15-5.

The microprocessor can take the contents of the accu¬

mulator and the data coming in, perform some operation

on the two, and place the result back in the accumulator.

There are times when no data is coming in but some

operation is being performed on the contents of the accu¬

mulator only. For example, the microprocessor might find

the l’s complement of the contents of the accumulator and

place the result in the accumulator in place of the original

number.

Some microprocessors have only one accumulator; others

have more than one.

28 27 26 25 24 23 22 21 2°

256 128 64 32 16 8 4 2 1

226 Digital Computer Electronics

Accumulator
Memory

Data in In contents Out —.

Fig. 15-5 Accumulator operation.

Result

General-Purpose Registers

General-purpose registers are similar to the accumulator.

In fact, the accumulator is a special type of register.

General-purpose registers are temporary storage locations.

They differ from the accumulator in that operations involving

two pieces of data are usually not performed in them with

the result going back into the register itself, as in the case

of the accumulator. The microprocessor will often alter the

contents of a register, however. Figure 15-6 shows the

operation of a general-purpose register.

One might wonder why a microprocessor needs general-

purpose registers when it has RAM to temporarily store

information. The answer is speed. Data in registers can be

accessed and moved much more quickly than data in RAM.

Program Counter/Instruction Pointer

We mentioned earlier that instructions are stored in memory.

Considering the fact that there can be tens of thousands,

hundreds of thousands, or even millions of memory loca¬

tions, it’s obvious that the microprocessor must keep track

of the location from which it will be getting its next

instruction. This is the job of the program counter.

The program counter is a very special register whose

only job is to keep track of the location of the next

instruction which the microprocessor will use. Figure 15-7

illustrates its operation.

The program counter “points” to the address of the next

instruction to be retrieved and used by the microprocessor.

The act of “getting” an instruction is usually referred to

as fetching the instruction. The period of time needed for

this is often called tht fetch cycle.

Index Registers

Another type of register is the index register. In the same

way that the index of a book helps a person locate

information, the index register can be used to help locate

data. The index register is normally used as an aid in

|-Register-1
Data in-In contents Out-Data out

Fig. 15-6 General-purpose register operation.

I— Program counter —j

Address of next
instruction

0002

0000 Contents

0001 Contents

0002 Instruction

0003 Contents

0004 Contents

0005 Contents

0006 Contents

0007 Contents

Fig. 15-7 Program counter operation.

accessing data in tables stored in memory. The index

register(s) can be incremented (increased by 1) or decre¬

mented (decreased by 1) but normally does not have other

arithmetic or logical capabilities.

We will look at the index register(s) more completely in
later chapters.

Status Register

The status register, sometimes called the condition code

register, or flag register, is a special register which keeps

track of certain facts about the outcome of arithmetic,

logical, and other operations. This register makes it possible

for the microprocessor to be able to test for certain conditions

and then to perform alternate functions based on those

conditions. This is done through the use of flags.

We will now take an overall look at flags. Don’t be

concerned if these next few paragraphs are not completely

clear at this point. They can serve as a refresher for those

who may have had some experience with microprocessors

in the past. And for those who are new to this subject,

reading about them now will at least give you some idea

of what flags are and how they are used. These concepts

will be covered again in greater detail as they arise in later
chapters.

The status register is divided into individual bits which

have their own unique functions. Each bit is called a flag.

Each flag keeps track of, or “flags,” us concerning certain

conditions. Not every operation or instruction affects every

flag. Some instructions affect many flags, and some don’t

affect any at all. Figure 15-8 shows a model of a typical
status register.

When referring to flags, the following logic is used. If

some condition has come to be, or is true, the flag uses a

1 to say, kkYes, this is true or has happened.” If that

condition has not occurred, the flag uses a 0 to say, “No,

this is not true or has not happened.” Causing a flag to

become 1 is called setting a flag. Causing a flag to become

0 is called clearing a flag.

Chapter 15 System Overview 227

Memory
Status register

Flags

1 Z N C H V

b b b b b b

1- Overflow flag

- Half-carry flag

- Carry flag

--— Negative flag

—-- Zero flag

-- Interrupt flag

Fig. 15-8 Model of a typical status register, (b’s represent
bits.)

The zero flag keeps track of whether the last operation

which affects this flag produced an answer of zero. This

flag is set or 1 if a zero result has been produced and is

cleared or 0 if a nonzero result has been produced.

The negative flag tells us if the last operation which

affects this flag produced a negative number. When 8-bit

signed binary numbers are used, if bit 7 (the eighth bit) of

the number is 1, then the number is negative and the N

flag will be set; if bit 7 of the number is 0, then the number

is positive and the N flag will be cleared or 0. (This negative

flag is sometimes called a sign flag and is indicated with

an “S.”)

The carry flag tells us if the last operation which affects

this flag produced a carry from bit 7 (in 8-bit systems) of

the accumulator (bit 7 is the left-most or most significant

bit) into the carry bit. The carry flag also tells us if, during

subtraction, a borrow into bit 7 was needed. How a borrow

is indicated depends on which microprocessor is being

used. See Fig. 15-9.

The half-carry flag tells us if the last operation which

affects this flag was an arithmetic operation which produced

a carry from bit 3 to bit 4. This feature is primarily used

with BCD (binary-coded-demical) numbers.

The overflow flag tells us if the last operation which

affects this flag caused a result that is outside the range of

signed binary numbers for the word size being used at the

time. In the case of 8-bit microprocessors, this is +127 or

— 128. If this range is exceeded, the overflow flag is set

(1) to warn the programmer.

L —

m □ 0 □ 0 0 0 0 0
Carry 7 6 5 4 3 2 1 0

' ag Accumulator

Fig. 15-9 A “ carry” from bit 7 into the carry flag.

0000

A
0001

0002 Top-of-stack d

d

r
0003 Data item #6

1
— Stack pointer —

0004 Data item #5 _ 0002 e
g

s
0005 Data item #4

e 0006 Data item #3

s
0007 Data item #2

0008 Data item #1

Fig. 15-10 Typical stack and stack pointer.

The interrupt (interrupt mask, interrupt flag, interrupt

enable bit) prevents maskable interrupts from occurring

when it is set and allows them when cleared.

Stack and Stack Pointer

The stack is a special place in memory. The stack is most

often used to store certain critical pieces of data during

subroutines and interrupts. You’ll learn more about these

later, but let’s look at the structure of a stack at this time.

Refer to Fig. 15-10.

The structure of the stack is a first-in-last-out (FILO)

type of structure. Unlike main memory, where you can

access any data item in any order, the stack is designed so

that you can access only the top of the stack. If you want

to place data in the stack, it must go on top; if you wish

to remove data from the stack, it must be on top before it

can be removed.

Let’s see how the situation in Fig. 15-10 has come to

be. To do that, refer to Fig. 15-11. Data item #1 is the

first item we wish to place on the stack.

Memory

0000

A
0001

d 0002

d

r
0003 — Stack pointer —

0004 0008 e

c a

s
0005

e 0006

s
0007

0008 Top-of-stack 1
Fig. 15-11 Typical stack and stack pointer.

228 Digital Computer Electronics

Memory

0000

A
0001

d 0002

d

r
0003 — Stack pointer-

0004 0007 e

s
0005

s

e 0006

s
0007 Top-of-stack

0008 Data item #1

Fig. 15-12 Typical stack and stack pointer.

At this time the stack pointer is “pointing” to memory

location 0008; therefore data item #1 will be placed in the

stack at that memory location. The act of putting a piece

of data in the stack is called pushing data onto the stack.

It is as though the data is being pushed in from the top.

Now look at Fig. 15-12.

We have pushed data item #1 onto the stack and the

stack pointer has been decremented or decreased by one,

which means that it is now pointing to memory location

0007. Location 0007 is the top-of-the-stack now. Now let's

push data item #2 onto the stack. The stack will appear as

it does in Fig. 15-13.

When data item #2 was pushed onto the stack, it went

into the location the stack pointer was pointing to—which

was 0007. The stack pointer was then decremented to 0006.

This process will be repeated until it appears as it did in

Fig. 15-10.

At some point we will need this data in the stack, so we

will remove it from the top-of-the-stack. This is called

popping or pulling the data from the stack. We simply

Memory

0000

A
0001

d 0002

d

r
0003 — Stack pointer —

0004 0006 e

s
0005

s

0006 Top-of-stack e

s
0007 Data item #2

0008 Data item #1

Fig. 15-13 Typical stack and stack pointer.

reverse the whole process. As each data item is removed,

the stack pointer will drop, which in this case means that

it will point to the next-greater memory address.

EXAMPLE 15-4

Refer to Fig. 15-13. If we pull data item #2 from the stack,

will the stack pointer increment or decrement? What hex¬

adecimal value will appear in the stack pointer?

SOLUTION

The stack pointer will be incremented as data item #2 is

pulled from the stack. The hexadecimal value 0007 will

appear in the stack pointer. In fact, the stack will appear

as it did in Fig. 15-12.

Width of Registers

All registers have a maximum capacity. That is, they will

only hold a certain number of bits. The width is generally
8, 16, or 32 bits.

8-Bit Registers

An 8-bit register is one that is 8 bits wide. This means it

can hold 1 byte as shown in Fig. 15-14. Most computers

and trainers you will be using will not display an 8-bit

register in binary. Instead, they will have a hexademical

display. If you have forgotten how to convert binary to

hexadecimal and hexadecimal to binary, review that section
in Chap. 1.

|-Register-1

Data in-In 0100 0011 Out-► Data out

Fig. 15-14 Eight-bit register model.

It is often useful to separate the 8 bits into two groups

of 4. The left group of 4 is called the upper nibble, and

the right group of 4 is called the lower nibble. This is

illustrated in Fig. 15-15.

0101 0011

Upper nibble Lower nibble

Fig. 15-15 Upper- and lower-nibble positions.

Chapter 15 System Overview 229

EXAMPLE 15-5

If a register contained the binary number shown in Fig. 15-

lb, what would appear in the hexadecimal display for that

register?

be represented by 1100 in binary. Putting the four nibbles

together produces 1011 1111 0011 1100, which constitutes

the binary contents of this register.

Specific Microprocessor
Families___
The rest of this chapter is divided into sections, each of

which is devoted to one particular microprocessor family.

Go to the section which discusses the microprocessor family

you are using.

SOLUTION

The upper nibble, 1100, is the same as the hexadecimal

digit C. The lower nibble, 1011, is the same as the

hexadecimal digit B. Therefore, the hexadecimal display

will show CB.

16-Bit Registers

A 16-bit register of course is 16 bits wide. This is illustrated

in Fig. 15-17. As you can see, the 16 bits are again separated

into groups of 4. Each nibble, or group of 4, will be

represented in the display as 1 hexadecimal digit.

Fig. 15-17 Sixteen-bit register model.

EXAMPLE 15-6

In Fig. 15-18, what are the binary contents of the register

when the display is as shown?

Fig. 15-18 Example B.

SOLUTION

The far left digit (also called the most significant digit), the

B, has a binary equivalent of 1011. The F would be 1111.

The 3 would be 0011. And the hexadecimal digit C would

15-3 6502 FAMILY

Let’s look at specific characteristics of the 6502 family of

microprocessors.

Accumulator

The accumulator in the 6502 family of microprocessors is

8 bits wide. The 6502 has only one accumulator* unlike

others which have more than one. Figure 15-19 shows what

it looks like.

General-Purpose Registers

The 6502 has no general-purpose registers. The functions

they perform must be accomplished in the 6502 by using

the accumulator, index registers, and memory.

Fig. 15-19 6502 accumulator model.

Program Counter

The 6502 family program counter, as shown in Fig. 15-20,

is 16 bits wide and is divided into an upper half which we

have labeled PCH (program counter high) and a lower half

which we have labeled PCL (program counter low).

Fig. 15-20 Sixteen-bit 6502 program counter and display.

230 Digital Computer Electronics

Most of the time it operates as one 16-bit counter, but

there are times, particularly when subroutines are involved,

when the division into 2 bytes is necessary. The display

for the program counter will appear as four hexadecimal

digits as shown in the figure.

bit, it will be easier to remember. Please note that other

microprocessors handle this situation with the carry flag

and subtraction in just the opposite manner.

Stack and Stack Pointer

Index Registers

The 6502 has two index registers. They are each 8 bits

wide. One is the X index register, and the other is the Y

index register.

Status Register

The 6502 status register contains 8 bits, but only 7 are

actually used. The layout of this register is shown in Fig.
15-21.

The 6502 has several flags in addition to those mentioned

in the New Concepts section of this chapter.

The break flag keeps track of what are called “software

interrupts.” When the programmer puts a BRK (BReaK)

instruction in the program telling the microprocessor to

stop, the programmer “interrupts” the program in progress.

If this occurs, the break flag is set.

The decimal mode flag, when set, tells the microprocessor

to assume that any numbers which it is instructed to add

or subtract are BCD (binary-coded decimal) numbers instead

of regular binary numbers. This will result in a BCD answer.

During addition the carry flag in the 6502 is used as

described in the New Concepts section of this chapter.

When a carry goes out from bit 7 of the accumulator, it

goes into the carry bit. During subtraction, however, if a

borrow is needed from the carry bit by bit 7, then the carry

flag is cleared (0). If you think of it as though the 1 that

was needed during the borrow actually came from the carry

Carry flag

Zero flag

Interrupt flag

Decimal mode flag

Break flag

Unused

Overflow flag

Negative flag

Fig. 15-21 6502 family status register, (b’s represent bits.)

The 6502 has a stack with a maximum size of 256 bytes

or memory locations. The stack pointer is 8 bits wide with

a 9th bit that is always set. Figure 15-22 shows it in more

detail.

The greatest memory address (lowest position) which can

be designated as the top-of-the-stack is 1 1111 11112, which

is 01FF16. Each time another number is pushed onto the

stack, the top-of-the-stack rises, which means that the stack

pointer is decremented by one (since smaller-numbered

memory addresses are toward the top). The smallest address

which can be designated as the top-of-the-stack is 1 0000

00002, which is 0100,6. This is not always the top; it is

simply the highest position (smallest memory address) at

which the top can exist.

We will look at the stack and its uses in later chapters.

Complete Model

Let’s look at a complete model of the 6502 family of

microprocessors. Refer to Fig. 15-23.

In our model we do not show the binary numbers that

are actually in each register or location but, rather, the

hexadecimal numbers which appear in the display of

microprocessor trainers. The exception is the status register,

in which both binary and hexadecimal are shown. The small

h’s and b’s represent the data that would be in each register

or memory location. Each “h” stands for one hexadecimal

digit or nibble—which is to say, 4 bits. Each “b” stands

for 1 bit. When we use this model in later chapters, we

will place actual values in place of the h’s and b’s.

A

d

d

r

e

s

s

e

s

00FE

00FF

0100

0101

0102

01FC

01FD

01FE

01FF

Memory

Fig. 15-22 6502 family stack and stack pointer.

Chapter 15 System Overview 23 X

Memory

Accumulator
hh

X register
hh

Y register
hh

1
Stack pointer

hh

PCh—Prograrr
hh

i counter—PCL

hh

Status register

N V —B D 1 ZC

bb — bbbbb

h | h

Fig. 15-23 Complete 6502 programming model.

15*4 6800/6808 FAMILY

This section covers the Motorola 6800 and 6808 micropro¬

cessors. The 6809 is an enhanced version of the 6800/6808,

but most of this section can be applied to the 6809 as well.

The 6809 has all of the features of the 6800 plus additional

ones. The 6800 and 6808 are the primary subjects of this

section, but some differences in the 6809 are mentioned.

Accumulators

The 6800/6808 microprocessors have two 8-bit accumula¬

tors. Each has the same capabilities; that is, neither is a

general-purpose register. Both are true accumulators. (Gen¬

eral-purpose registers do not have all of the features of an

accumulator.) Figure 15-24 illustrates their functions.

The operation of these accumulators is the same as that

described in the New Concepts section of this chapter. One

note of interest concerning the 6809. It has the same 8-bit

accumulators; however, it has the additional ability to treat

Data in

|-Accumulator A-1

In 8 bits Out -1

the two as a single 16-bit accumulator known as accumulator

D and has special instructions for such operation.

General-Purpose Registers

The 6800/6808, like the 6502, has no general-purpose

registers. Their functions must be performed by using the

accumulators, index register, and memory.

Program Counter

The 6800, 6808, and 6809 each have 16-bit program

counters. The 6800 family program counter, as shown in

Fig. 15-25, is 16 bits wide but is divided into an upper half

which we have labeled PCH (for program counter high)

and a lower half we have labeled PCL (for program counter

low). Most of the time it operates as one 16-bit counter,

but there are times, particularly when subroutines are

involved, when the division into 2 bytes is necessary. The

display for the program counter will appear as four hex¬

adecimal digits as shown in the figure.

Index Register

The 6800 and 6808 microprocessors each have one 16-bit

index register called the X index register. The 6809 has

two 16-bit registers named the X index register and the Y

index register.

The 6800 family’s index registers operate as described

in the New Concepts section of this chapter and will be

discussed in more detail in later chapters.

Condition Code Register

The 6800/6808 condition code register (called a status

register in other microprocessors), which is shown in Fig.

15-26, is composed of 6 flags or bits in an 8-bit register.

The 2 most significant bits are not used and are always set

(1).
In the 6809 the 2 bits that are unused on the 6800/6808

have functions and are called the E flag and the F flag.

They will not be discussed in this text.

Result

Accumulator B

■ Program counter

1111 0000

— PCH-

0100 0001

— PCL

301

Data in —► in 8 bits Out-
r-Display-i 1 1 F° 41

Result r;., ic tc e;viaw,
—PCH

r AC AO foi

— PCL —

mill, nran

Fig. 15-24 Models of the 6800/6808 family accumulators. display.

232 Digital Computer Electronics

Status register

Flags

1 1 H 1 N Z V C

1 1 b b b b b b

- Carry flag

- Overflow flag

--- Zero flag

Negative flag

“ -- Interrupt flag

Half-carry flag

Unused

--— Unused

Fig. 15-26 6800/6808 status register, (b’s represent bits.)

The carry flag in the 6800 family is set (1) when either

a carry or borrow from bit 7 occurs. (The 6502 by contrast

sets the flag for a carry but clears it for a borrow.)

All flags used in the 6800/6808 operate as described in

the New Concepts section of this chapter.

Stack and Stack Pointer

The 6800/6808 has a 16-bit stack pointer which uses RAM

for the stack itself. It operates as described in the New

Concepts section of this chapter.

The 6809 has a second stack called the user stack which

operates in a fashion similar to the first stack, which is

called the hardware stack. The user stack is not used for

interrupts and subroutines but is left free for the programmer
to use.

Complete Model

Let s look at a complete model of the 6800 family of

microprocessors. Refer to Fig. 15-27.

In our model we do not show the binary numbers that

are actually in each register or location but, rather, the

hexadecimal numbers which appear in the display of

microprocessor trainers. The exception is the status register

in which both binary and hexadecimal are shown. The small

ITs and b’s represent the data that would be in each register

or memory location. Each “h” stands for one hexadecimal

digit or nibble—which is to say, 4 bits. Each “b” stands

for 1 bit. When we use this model in later chapters, we

will place actual values in place of the ITs and b’s.

15-5 8080/8085/Z80 FAMILY

This section deals with the 8080 and 8085 microprocessors

from Intel and the Z80 microprocessor manufactured by
the Zilog Corp.

The 8080 and 8085 are nearly identical, the 8085 being

a slightly improved version of the 8080. Except for two

instructions, the instruction sets for the two chips are
identical.

The Z80 is a considerably enhanced version of the 8080.

It understands all the instructions of the 8080 and many

more. It has all the registers of the 8080 plus a number of

additional registers. We will cover only those aspects of

the Z80 that are found in the 8080 and 8085 at this time.

Accumulator

The 8080/8085/Z80 chips have one 8-bit accumulator. It

operates as described in the New Concepts section of this

chapter. Its operation is shown in Fig. 15-28. The Z80 also

has a second alternate accumulator.

Accumulator A
hh

Accumulator B
hh

XH—X register—XL

hh | hh

SPH—Stack pointer—SPL

hh | hh

PCh—Program
hh

counter—PCL

hh

Status register

1 1 H 1 N Z V C

1 1 b b b b b b
h | h

Fig. 15-27 Complete 6800/6808 programming model.

General-Purpose Registers

The 8080/8085/Z80 chips have an abundance of general-

purpose registers. These registers are arranged in pairs.

Notice the arrangement of one of these pairs in Fig. 15-29.

In this figure, 8 bits of data can go into and out of either

register B or C. Or, 16 bits can go into and out of the pair,

at which point they act as one 16-bit register.

Data in

|-Accumulator

In 8 bits Out-1

-•+-Result

Fig. 15-28 8080/8085/Z80 accumulator model.

Chapter 15 System Overview 233

-Register B- -Register C-1

_1 1_1 1_

_

_1 1_1 L_l

16 bits into
BC register

Pa'r 8 bits into
register B

8 bits out of
register B

8 bits out of
register C

8 bits into
register C

16 bits out of
BC register

pair

Fig. 15-29 Model of 8080/8085/Z80 general-purpose
registers.

There are three sets of these general-purpose register

pairs. They are the BC pair, the DE pair, and the HL pair.

The letters B, C, D, and E are assigned to stand for each

register. The letters H and L stand for high and low. The

HL register pair is usually used for a different purpose than

the other two pairs. We will discuss that purpose more in

a later chapter.

Each of these registers has a mate, or “alternate,”

register in the Z80.

Program Counter

The 8080/8085/Z80 chips each have a 16-bit program

counter which operates as described in the New Concepts

section of this chapter. This program counter, as is the case

with the 6502 family and the 6800 family, is divided into

two halves for some operations. The upper byte or 8 bits

are called the PCH (for program counter high), and the

lower byte is called the PCL (for program counter low).

See Fig. 15-30.

Most of the time the program counter operates as one

16-bit counter, but there are times, particularly when

subroutines are involved, when division into 2 bytes is

necessary. The display for the program counter will appear

as four hexadecimal digits as shown in the figure.

Index Register(s)

The 8080 and 8085 have no index registers. The Z80 has

two—an X index register and a Y index register. The index

registers in the Z80 are each 16 bits wide.

Status Register

The status register in the 8080 and 8085 contains five flags

in an 8-bit register. See Fig. 15-31.

The parity flag involves a topic which has not been

discussed yet. Parity refers to the number of Is in a binary

number. Even parity exists when there is an even number

of Is. For example, the binary number 0110 000 has even

parity because it has two Is, and 2 is an even number. Odd

parity exists when there is an odd number of Is. For

example, the binary number 0111 0000 has odd parity

because there are three Is, and 3 is an odd number. It is

sometimes useful to keep track of parity for error-checking

routines and in data communications. If the parity is even,

the parity flag becomes set (1); if parity is odd, it clears

(0).
The Z80 has the same five flags as the 8080 and 8085,

and in the same positions, plus one additional flag. See

Fig. 15-32.

The half-carry flag in the Z80 has exactly the same

function as the auxiliary carry in the 8085/8080.

The parity flag in the Z80 has a dual role—that of parity

checking and that of warning the programmer of 2’s-

complement overflow. Also, the Z80 has a negative or sign

flag (the 8080 and 8085 do not have one) which operates

as described in the New Concepts section of this chapter.

Stack and Stack Pointer

The 8080, 8085, and Z80 each have a stack with a 16-bit

stack pointer which operates as described in the New

Concepts section of this chapter.

Complete Model

Let’s look at a complete model of the 8080/8085/Z80 family

of microprocessors. Refer to Fig. 15-33 at this time.

Status register

Flags

S Z — A — P — C

b b — b — b — b

Carry flag (CY)

Unused

-Program counter-1

1111 0000 0100 0001

-PCH-1 -PCL—1

-Display-1

F° I 41
— PCH—^—PCt —I

Fig. 15-30 Sixteen-bit 8080/8085/Z80 program counter and
display.

1- Parity flag

—--- Unused

- Auxiliary carry (AC)

- Unused

- Zero flag

- Sign flag

Fig. 15-31 8080/8085 status register, (b’s represent bits.)

234 Digital Computer Electronics

Status register

Flags

S Z — H — P N C

b b — b — b b b

’- Carry flag (CY)

- Negative flag

- Parity/overflow (PV)

- Unused

- Half-carry flag

- Unused

- Zero flag

- Sign flag

Fig. 15-32 Z80 status register, (b’s represent bits.)

A couple of points concerning differences between the

8080/8085 and the Z80 should be noted. Figure 15-33 is a

model of the 8080/8085. The Z80 has an additional set of

alternate registers and two index registers which are not

shown in the model. The status register in the Z80 has an

additional flag called the negative flag. And the auxiliary

carry flag in the 8080/8085 is usually called the half-carry

flag in the Z80.

In our model we will not show the binary numbers that

are actually in each register or location but rather the

hexadecimal numbers which appear in the display of

microprocessor trainers. The exception is the status register

in which both binary and hexadecimal are shown. The small

Accumulator
hh

Register B
hh

Register C
hh

Register D
hh

Register E
hh

Register H
hh

Register L
hh

SPh—Stack pointer—SPj.

hh | hh

PCH—Progranr
hh

counter—PC|_

hh

Status register

SZ —A —P —C

bb — b — b — b

h | h

Fig. 15-33 Complete 8080/8085 and Z80 (8080 subset)
programming model.

h’s and b’s represent the data that would be in each register

or memory location. Each “h” stands for one hexademical

digit or nibble, which is to say 4 bits. Each “b” stands for

1 bit. When we use this model in later chapters, we will

place actual values in place of the h’s and b’s.

There is one point of significant difference between the

8080/8085/Z80 family and the 6502 or 6800 family. In the

case of the 6502 and 6800 microprocessors, the registers

and accumulators are completely independent of one an¬

other. In the 8080/8085/Z80 family, the six registers, namely

B and C, D and E, and H and L, can operate as six

independent 8-bit registers or as three 16-bit register pairs.

This allows single operations to be performed on 16-bit

data words.

15-6 8086/8088 FAMILY

In this section we will examine the 8086 and 8088 micro¬

processors from Intel. The 8088 is the microprocessor used

in the popular IBM PCs, XTs, and compatibles. The 80286

used in ATs and the 80386 can also be used with this text.

Since the 8086/8088 chips are the successors of the 8085,

they are similar to it but have many additional registers and

capabilities.

Accumulator(s)

The 8086/8088 has an accumulator (shown in Fig. 15-34)

which is 16 bits wide and is called AX. The upper 8 bits

is called AH {accumulator high), and the lower 8 bits is

called AL (accumulator low).

General-Purpose Registers

The 8086/8088 has three 16-bit or six 8-bit general-purpose

registers (besides the accumulator). These are shown in

Fig. 15-34 and are called the BX, CX, and DX registers.

Each can be divided into an upper and lower byte called

BH, BL, CH, CL, DH, and DL, respectively. Also note

in the figure that A stands for accumulator, B for base, C

- Accumulator AX -

AH
hh

BH
hh

CH
hh

DH
hh

-Base BX-

-Count CX-

-Data DX -

AL
hh

BL
hh

CL
hh

DL
hh

Fig. 15-34 8086/8088 accumulator and general-purpose
registers.

Chapter 15 System Overview 235

for count, and D for data. This can help you remember the

main functions of each register.

Instruction Pointer

Instead of a program counter, the 8086/8088 has an

instruction pointer which does what the program counter

does in the 8-bit microprocessors. The instruction pointer

is 16 bits wide.

Index Registers

The 8086/8088 has several index registers and pointers

including the base pointer, source index, and destination

index. All are 16 bits wide. These are not used alone, as

with the 8-bit chips, but are used in combination with

registers called segment registers. Figure 15-35 is a model

of the 8086/8088 pointers and index registers.

Stack and Stack Pointer

The 8086/8088 stack is a standard memory stack (as are

all the 8-bit microprocessors we’ve covered). The 8086/

8088, however, can have a very large stack, up to 64K

(65,536 bytes). The location of the top-of-the-stack is

calculated by using both the stack pointer and the stack

segment.

Status Register

The status register containing the 8086/8088 flags is 16 bits

wide, although not all 16 bits are used. This register, shown

in Fig. 15-36, has a lower byte (8 bits) which is exactly

the same as the 8-bit 8085 microprocessor’s status register.

It has the same flags in the same positions. The upper byte

has four flags which the 8085 does not have.

The first flag is the trap flag, which controls a single-

step mode of operation.

Fig. 15-35 8086/8088 index registers and pointers.

-FIs

New

gs-

8085-like

-O D 1 T

-b b b b

h | h

S Z — A — P — C

b b — b — b — b

h i h i

Fig. 15-36 8086/8088 flag register, (b’s represent bits; h’s
represent hex digits.)

The interrupt enable flag controls the interrupt request

pin on the microprocessor chip.

The direction flag controls whether the source index and

destination index increment or decrement during string

operations.

Finally, the overflow flag alerts the programmer to the

existence of an arithmetic overflow when set. This is a

condition in which the legal range for signed binary numbers

of a particular word size has been exceeded.

Segment Registers

The 8086/8088 microprocessor has several other registers

which do not exist on the 8-bit chips. These are the segment

registers. We’ll explain very briefly how they are used at

this time.

All the pointers and index registers in the 8086/8088

chips are 16 bits wide; 216 is 65,536 (64K) bytes. The

address bus, however, is 20 bits wide. We can have memory

locations extending up to 220 or 1,048,576 (1 mega-) bytes.

None of the pointers, including the instruction pointer,

would be able to point to this wide of a range of addresses.

To solve this problem, segment registers are used. Their

contents are combined with the contents of the various

pointers and index registers to form an address which is 20

bits wide. Exactly how this is done will be explained in a

later chapter.

Complete Model

Figure 15-37 is a complete model of the 8086/8088 micro¬
processors.

In the model shown in Fig. 15-37 the placeholders for

each binary digit are not shown. Rather, the hexadecimal

digits that would be seen on a computer or trainer are

indicated. The exception is the status register, in which

both binary and hexadecimal placeholders are shown. The

small h’s and b’s represent the data that would be in each

register or memory location. Each “h” stands for one

hexadecimal digit or nibble, which is 4 bits. Each “b”

stands for 1 bit. When we use this model in later chapters,

we will place actual values in place of the h’s and b’s.

236 Digital Computer Electronics

A

d

d

r

e

s

s

e

s

Memory

0100 hh

0101 hh

0102 hh

0103 hh

0104 hh

0105 hh

0106 hh

0107 hh

0108 hh

0109 hh

010A hh

010B hh

010C hh

010D hh

010E hh

010F hh

0110 hh

0111 hh

0112 hh

0113 hh

0114 hh

0105 hh

0106 hh

0107 hh

■Accumulator AX-

AH ! AL
hh | hh
-Base BX-

BH ! BL
hh | hh
-Count CX-

CH i CL
hh | hh
-Data DX-

DH
hh

DL
hh

Source index
hhhh

Destination index
hhhh

Stack pointer
hhhh

Base pointer
hhhh

Code segment
hhhh

Data segment
hhhh

Extra segment
hhhh

Stack segment
hhhh

Instruction pointer
hhhh

New
Flags -

-0 D I T

-b b b b

8085-like

S Z — A — P — C

b b — b — b — b

Fig. 15-37 Complete 8086/8088 microprocessor programming model.

GLOSSARY

accumulator A register in a microprocessor which can

not only store a byte or word of data but can have its

contents operated on, with the result of that operation going

back into the accumulator, replacing the previous value.

address B inary numbers which are assigned to consecutive

memory locations. Specific memory locations are accessed

through their addresses.

address bus A set of conductors upon which binary

addresses travel to memory chips.

data bus A set of conductors which carry binary data to

and from the microprocessor, memory, and I/O devices.

fetching The act of going to memory to get an instruction

which is to be decoded and executed.

flag One of the bits in the status register. (See status

register.)

general-purpose registers Locations which can store a

byte or word of data similar to RAM but which are inside

the microprocessor itself. Certain operations can usually be

performed on the contents of registers.

index register A register which can be incremented and

decremented and whose primary function is to point to data
(often used in tables).

Chapter 15 System Overview 237

program counter A special-purpose register whose pur¬

pose is to keep track of the next instruction to be fetched

from memory.

RAM An acronym for random-access memory. This type

of memory loses its data when power is removed.

ROM An acronym for read-only memory. This type of

memory does not lose its data when power is removed.

stack An area (usually in RAM) which holds vital infor¬

mation during subroutines and interrupts. It can also be

used by the programmer as a LIFO (last-in-first-out) data

storage area.
status register (condition code register) A special register

whose individual bits show the status of certain conditions

or the results of certain operations.

SELF TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. _is the type of memory which can have

its contents changed thousands of times per second.

2. {RAM) The_of a memory location

is similar to the address of your home and the

_inside the memory location is similar to

the beds, chairs, dishes, and so on, in your home.

3. (address, data) The_of a memory loca¬

tion is necessary to specify which of many locations

is to be written to or read from.

4. (address) The address bus is usually-

(unidirectional, bidirectional).

5. (unidirectional) The data bus is usually-

6. (bidirectional) Each different bit position in binary

numbers represents a certain power of-

7. (2) Probably the most used register in a micropro¬

cessor is the_

8. (accumulator) A register which helps microproces¬

sors to work with tables of data is the-

9. (index register) When a flag has a-in it,

this indicates that the condition which the flag tests

has not come true.

10. (0) When a flag has a_in it, this indi¬

cates that the condition which the flag tests has

come true. (7)

PROBLEMS

General

15-1. By what means is one memory location differen¬

tiated from another?

15-2. Using decimal numbers, how many combinations

can be represented by using only five digits?

15-3. Using binary numbers, how many combinations

can be represented by using only 20 bits?

15-4. If we had 20,000lo memory locations, what

would be the least number of address lines

needed to describe each location? (Hint: Change

20,000 to binary or hex and determine the num¬

ber of bits needed.)

15-5. What register can have its contents altered in the

greatest variety of ways and is the real “work¬

horse” in the microprocessor?

15-6. In simplest terms, what are general-purpose reg¬

isters?

15-7. What advantage do registers have over RAM?

15-8. What has the sole purpose of keeping track of

the next instruction to be fetched?

15-9. In what register are the flags located?

15-10. What has happened if the zero flag has a 1 in it?

15-11. Which flag will be set if a carry from bit 7 of

the accumulator is produced during an arithmetic

operation?

15-12. Which flag is primarily used with binary-coded

decimal numbers?

15-13. When normal stack instructions are used, can a

number be pulled from somewhere in the middle

of the stack?

15-14. What is taking a number from the top of the

stack called?

15-15. If an 8-bit register contained the binary number

1101 1110, what hexadecimal number would ap¬

pear as the display or readout for that register?

15-16. What are the binary contents of a register whose

hexadecimal display reads 2A?

15-17. What would the hexadecimal display of a 16-bit

register with 1100 0101 1000 00012 as its con¬

tents read?

6502 Family

15-18. How many general-purpose registers does the

6502 have?

15-19. How wide are the index registers in the 6502?

15-20. What flag, when set, tells the 6502 to assume

that binary-coded decimal (BCD) numbers are

being used?

15-21. What is the maximum size of the 6502 stack?

238 Digital Computer Electronics

6800 Family

15-22. How many accumulators does the 6800 have?

15-23. How wide is the 6800 program counter?

15-24. How many memory locations can the 6800 pro¬

gram counter reference or point to?

15-25. What are the 2 most significant bits in the 6800

condition code register used for?

8080/8085/Z80 Family

15-26. How many 8-bit general-purpose registers does

the 8085 have?

15-27. How many index registers does the 8085 have?

15-28. How wide is the 8085 stack pointer?

8086/8088 Family

15-29. Describe how the 8088 accumulator is labeled

and arranged.

15-30. How many 8-bit general-purpose registers does

the 8088 have?

15-31. In the 8088 what has the same function as the

program counter in the 8-bit microprocessors?

15-32. What 8-bit microprocessor is the lower byte of

the 8088 flag register patterned after?

15-33. How large can the 8088 stack be?

Chapter 15 System Overview 239

Data Transfer Instructions

New Concepts_
So far we’ve been able to get an overview of computers,

computer architecture, microprocessor architecture, pro¬

gramming, languages, flowcharting, and hardware. Now

let’s take a closer look at some of these areas.

Instruction Sets

The commands that microprocessors understand are called

instructions, and the complete “vocabulary” of each chip

is called its instruction set.

We will be studying the 6502, 6800/6808, 8080/8085/

Z80, and 8086/8088 microprocessor families and each

family’s instruction set. We will deviate from this plan in

two respects.

Rather than study the entire Z80 instruction set, we will

study only those instructions which are common to the

8080 and 8085. (The Z80 has many instructions which

neither the 8080 nor the 8085 understands. However, the

Z80 understands all the instructions of the other two chips

with only two exceptions.)

Also, we will not study the entire 8086/8088 instruction

set but will omit the loop and string instructions since they

have no counterpart in the 8-bit microprocessors.

Organization of This Text

You may find it helpful to know how this programming

portion of the text was developed.

We are ready to begin learning about microprocessor

instructions. The instructions being discussed in each chap¬

ter, the sequence in which the instructions are being

presented, the sequence of the chapters, and the instruction

categories have all been carefully planned.

As mentioned before, this text centers around the most

popular general-purpose 8-bit microprocessors (the 6502

family, the 6800/6808 family, and the 8080/8085/Z80

family) and the 16-bit 8086/8088 family. During the prep¬

aration of this text, the instruction sets of each of these

microprocessors were carefully analyzed, and it was found

that each chip’s instructions fell into natural groups. After

each instruction was placed into its natural category, it was

possible to identify those categories which were common

to every microprocessor family. Those instructions which

did not fall naturally into one of these common groups were

placed in the group in which they most nearly fit. In short,

a consistent and uniform method of classifying instructions

was applied to each microprocessor family. In the tables

section of this book (Part 4) you will find the complete

instruction set of each chip broken down into these groups

or categories.

Next, the chapters were planned to reflect these same

groups. Thus, rather than trying to make the microprocessors

fit the scheme of this text, the text was designed around

the natural characteristics of the microprocessors. Each

chip’s instruction set has been broken down into the same

categories as the others, and the appendixes and chapters

treat each chip family equally.

Organization within Each Chapter

Most chapters start with a New Concepts section (which is

where we are now). The discussion here is general—that

is, it can be applied equally well to all microprocessor

families and does not focus on any one family. Then, after

this general discussion, the remainder of the chapter is

divided into family-specific sections.

For example, if you are using the 6808 microprocessor,

you would read the New Concepts section and then go

immediately to the 6800/6808 Family section. There, spe¬

cific information will be given to help you apply the

principles discussed in the New Concepts section to the

6800/6808 microprocessors.

Now let’s look at our first instruction category.

240

16-1 CPU CONTROL INSTRUCTIONS

The easiest instruction to learn about is an instruction which

does nothing, and surprisingly, there is such an instruction.

Let’s look at it.

The No Operation Instruction

The no operation instruction does exactly that: It does

nothing. This is a waste of time, and wasting time is what

this instruction does best.

A microprocessor is quite fast, in some situations too

fast. We can give it a certain number of these no operation

instructions to stall it until a certain amount of time passes.

The no operation instruction has another use—that of

filling space in the program. When writing programs, we

must sometimes insert additional instructions into the middle

of a program to alter the way it works or to fix a problem.

If you use one of the simpler monitors (instead of an

assembler, or a monitor with an insert feature), it may not

have a feature which will let you insert instructions into

the middle of a program you have entered. When this

happens, you must rewrite every part of the program

beginning from the point at which the inserted instruction

must be placed, to the end. By adding some no operation

instructions at various locations in the program when you

first write it, some spaces will have been created where

new instructions can go. The new instructions can simply

take the place of the no operation instructions.

The Halt Instruction

Called wait, halt, or break (depending on the microproces¬

sor), this instruction has the obvious purpose of stopping

the microprocessor. There is no go instruction—we’ll see

how that is done shortly—but there must be a way to stop

the program. In some microprocessor families this is not

the only function of this instruction, but this is all we need

to be concerned with at this time.

16-2 DATA TRANSFER
INSTRUCTIONS

This category of instructions has the job of transferring or

moving data from one place to another. Before studying

these instructions, we need to consider a basic concept.

Physical Places

Sometimes people think that when we speak of moving

data from one place to another within a microprocessor,

we are referring only to the “net effect’’ of the transfer,

and that nothing actually moved.

If this were so, the operation of a microprocessor would

resemble what happens when you go to the bank and transfer

money from your savings account into your checking

account. Though the net effect of the transfer is to decrease

the amount of money in the savings account and to increase

the amount in the checking account, you know that no one

in the bank actually picked up the money in the savings

account and placed it in another spot where your checking

account was. It all happened “on paper.’’

This is not the case with microprocessors. The accu¬

mulators, general-purpose registers, program counter, index

registers, and so on, are all real places. While it is true that

tiny numbers don’t move around inside the chip, the voltages

representing these numbers can be made to appear in various

places, so for all practical purposes the numbers themselves

move.

If you experience difficulty visualizing what a program

does, it may help to write down the contents of each register

and/or memory location. Then as each location is changed

by the program, change it on your paper. We will use this

technique in many of the figures.

Where Data Is Transferred

Data is moved between registers or between registers and

memory. The number of possible combinations depends on

the microprocessor and how many registers it has. Figure

16-1 shows some typical possibilities.

How Data Is Transferred

Different microprocessor instruction sets use different terms

to represent the act of transferring data. “Move,” “load,”

“store,’’ and “transfer” are all common terms.

Though we will use the term “moving,” and even though

thinking of it in that way will work as you become proficient,

in the beginning a distinction has to be made. When a

Fig. 16-1 Some of the possible data transfer combinations.

Chapter 16 Data Transfer Instructions 241

Fig. 16-2 An example of a transfer instruction.

move, load, transfer, or store instruction is executed, o

duplicate of the data is actually being placed in the target

register or destination.

If you were to move your car from one parking spot to

another in a parking lot, your car would no longer be in its

original place. This is true moving. This is not what happens

in a microprocessor. If, however, you photocopy an im¬

portant document, place the copy in a filing cabinet, and

keep the original, you have not actually moved the document

to the filing cabinet, but rather you have moved a copy of

the document. This is what happens in a microprocessor.

An Example of a Transfer Instruction

Look at Fig. 16-2.

Suppose we wanted to transfer the FF in the accumulator

to the register, which now contains 23. We would write a

program which instructs the microprocessor to transfer the

contents of the accumulator to the register. The result of

this action is shown in Fig. 16-3.

Fig. 16-3 An example of a transfer instruction.

Notice that the original FF in the accumulator is still

there. We simply made a copy of it and placed the copy in

the register. The original contents of the register are lost.

Now go to the section of this chapter which discusses

your particular microprocessor family.

Specific Microprocessor
Families

16-3 6502 FAMILY

Let’s see how the ideas which were introduced in the New

Concepts section apply to the 6502 microprocessor family.

CPU Control Instructions

The 6502 family has a no operation instruction which uses

the mnemonic NOP. Refer to the Expanded Table of 6502

Instructions Listed by Category in Part 4 of this text.

Look at the NOP instruction, which is the very first

instruction in this table. In the third column, the Boolean/

Arithmetic Operation column, we see that this instruction

does “nothing,” just as we said it would. Also notice the

hexadecimal number under the Op (op code) column, in

this case EA. This is the actual hexadecimal code for NOP.

Don’t worry about the rest of the NOP information at this

time.

The 6502 family doesn’t have an actual halt instruction,

but the instruction which serves its purpose is the BReaK

instruction. Refer to the table again. Notice that the BReaK

instruction uses the mnemonic BRK and has an op code of

00.

Data Transfer Instructions

Look under the BReaK instruction and you will see the

beginning of the Data Transfer Instructions section of the

table. In this section you will see a list of all of the different

types of data transfer instructions available in the 6502

family. (To those with previous microprocessor experience:

You may notice that we have excluded transfer instructions

involving the stack. This is intentional. They have been

included in the Stack Instructions category.)

Direction of Data Transfer

Let’s look at the data transfer instructions more closely.

The first instruction listed is the LoaD Accumulator instruc¬

tion. The boldfaced letters show where the LDA mnemonic

came from. The third column shows the Boolean/Arithmetic

Operation. This is a concise and graphic way to state exactly

what this instruction does. It shows M, which stands for

memory, moving toward A, which stands for the accu-

242 Digital Computer Electronics

mulator. To put it another way, the contents of a certain

memory location are being transferred into the accumulator.

Recall from the New Concepts section that moving or

transferring is actually more like making a copy of what’s

in a particular location and placing the copy in the desti¬
nation.

Referring to the Expanded Table of 6502 Instructions,

notice that the second and third instructions, LDX and

LDY, are similar to the LDA. The difference is that they

copy the contents of a particular memory location and place

it in either the X register or the Y register instead of the
accumulator.

It may help to have a mental picture of our programming

model of the 6502, shown in Fig. 16-4, as we discuss these

instructions.

We have talked about moving or copying the contents

of some particular memory location to the accumulator, the

X register, or the Y register. Now let’s consider doing the
reverse.

Look at the fourth, fifth, and sixth instructions in the

table. They are STA, STX, and STY, that is, Store the

contents of the accumulator in a memory location, store

the contents of the X register in a memory location, and

store the contents of the Y register in a memory location,

respectively. The store instructions are just the reverse of

the load instructions. (See the Boolean/Arithmetic Operation
column.)

Now, continue referring to both the table and Fig. 16-4.

The next two instructions (TAX and TXA) allow you to

transfer the contents of the accumulator and X register

between each other. The last two instructions (TAY and

TYA) allow you to transfer the contents of the accumulator

and the Y register between each other.

mnemonic LDA? No, but if you are using an assembler,

the assembler translates the mnemonics into binary numbers

which it does understand. (If you use a hexadecimal keypad

or type in hex numbers, you do not have an assembler.)

The point here is that the microprocessor inside your

computer does not understand English words like “load”
or mnemonics like LDA.

If you are using an assembler, the assembler program is

translating the mnemonics, which the microprocessor does

not understand, into something it does understand. What

does the microprocessor understand? Binary numbers. In

our case we will enter them as their equivalent hexadecimal

value and let the monitor or assembler translate that into

binary. For our purposes, at least at this point, well say

that the microprocessor understands hexadecimal. (The

monitor is part of the firmware built into your microprocessor
trainer.)

Refer to the Expanded Table of 6502 Instructions. If we

wanted to tell the microprocessor to load the accumulator

from memory (the first data transfer instruction, LDA) the

microprocessor chip would actually need the hex code in

the seventh column over, the Op code column (Op for

short). We would place the hex number A9, AD, A5, Al,

Bl, B5, BD, or B9, depending on which variation of the

instruction we wanted to use, in the computer’s memory

as the first instruction to execute.

Let’s try another example. What if you wanted to have

the microprocessor store the contents of the Y register in

memory? What would be the hex number the microprocessor

would need to understand what you wanted to do? (You

should have said either 8C or 84 or 94 from the STY

instruction.)

Op Codes

Does your computer or microprocessor trainer understand

the words “load accumulator”? No. Does it understand the

Accumulator
hh

X Register
hh

Y Register
hh

! Stack pointer
! hh

PCH—Program

hh
counter—PCL

hh

Status register

N V —BDIZC

bb—bbbbb
h | h

Fig. 16-4 Complete 6502 programming model.

Sample 6502 Program

Program Objective

Let’s create a program which will

1. Place the number 11 in the accumulator.
2. Stop.

Creating the Program

Refer to the Data Transfer Instructions section of the

Expanded Table. Do you see an instruction which could be

used to place a number in the accumulator? Look in the

Boolean/Arithmetic Operation column. You need an instruc¬

tion which has an arrow pointing to the accumulator. There

are three such instructions—LDA, TXA, and TYA. Since

we don’t want to involve the X register or Y register, LDA
will be our choice.

The next step is to determine which of the LDA instruc¬

tions to use. There are eight. The key to this decision is in

the Address Mode column. The LDA instruction which has

Immediate in the address column is the one we want.

Chapter 16 Data Transfer Instructions 243

Addr Obj Assembler Comment

0000 A9 LDA #$11 Load the accumulator with the number (11)
immediately following the LDA# op code (A9)

0001 11

0002 00 BRK Halt

Fig. 16-5 Sample program. (Note: The addresses should be
an area where user programs can be placed. If 0000 is not
such a place on your system, then you will need to change
these addresses.)

Immediate addressing tells the microprocessor that the data

it needs will be coming immediately after the op code. We

will learn more about addressing modes in the next chapter.

Finally, you want the program to stop. The instruction

which does this is in the CPU Control Instructions section

of the Expanded Table. The BRK instruction is the obvious

choice.

Entering the Program

The completed program is shown in Fig. 16-5. WeTl see

how to enter it into your microprocessor first by using an

assembler and then without an assembler.

Note that the column labeled Obj contains the actual

6502 op codes while the Assembler column contains the

mnemonic and data in a format similar to that which is

used by an assembler.

Refer to the LDA instruction in the Expanded Table. To

the right of the word Immediate, you see LDA #$dd. This

is in the Assembler Notation column and describes how

many assemblers require that you type this instruction. With

eight different LoaD Accumulator instructions, the assem¬

bler must know which one you want. The format of the

information after the LDA is how the various forms of the

command are differentiated. The # means that the data to

be used is coming immediately after the command itself.

The $ indicates that it is a hexadecimal number. The dd

simply stands for two hexadecimal digits of data. (Each d

stands for one nibble or 4 bits.)

It is important to remember that we are talking about a

typical assembler format; however, there is no absolute

standard that must be followed. Refer to the manual which

came with your assembler, or ask your instructor for

information about your assembler’s format.

We are going to enter this program into memory starting

at location 0000 (hexadecimal). If the trainer you are using

does not allow programs to be placed in these memory

locations, refer to your manual and substitute addresses

which are valid for your trainer or computer for those shown

in Fig. 16-5.

If you are using an assembler, please enter the program

at this time. It will look similar to what is shown in Fig.

16-6.

Address Opcode Data Mnemonic Immediate Hex Data

0002 00 BRK

Fig. 16-6 Disassembly of the sample program. (The
mnemonic and the data to the right of the mnemonic are
all that’s typed in during assembly.)

Now place 0s in the accumulator, the X register, and the

Y register so that you will know what numbers are in each

register before the program is run. Refer to Fig. 16-7 to

see what memory and the registers should look like.

If you are not using an assembler, you must look up the

op codes by hand in the Expanded Table. This is called

hand-assembly. Let’s go through the necessary steps for

hand-assembly.

To the right of the LDA #$dd, in the op code (op for

short) column you will see the hexadecimal number A9.

This is the 6502 op code, which stands for Load the

accumulator with the number immediately following this op

code. Set your trainer so that the memory address at which

the next instruction will be loaded is someplace within the

area allowed for user programs. We chose 0000, but you

Accumulator
00

X Register
00

Y Register
00

1
Stack pointer

hh

PCH—Program
hh

i counter—PCL

hh

Status register

N V— B D 1 Z C

bb — bbbbb

h | h

Fig. 16-7 6502 sample program.

244 Digital Computer Electronics

Memory

0000 A9

0001 11 -

0002 00

0003 hh

0004 hh

0005 hh

0006 hh

0007 hh

0008 hh

0009 hh

New number
- (11) replacing —

old number
(00)

Accumulator
—^ 11 00 —►

X Register
00

Y Register
00

1

_
Stack pointer

hh

PCH—Program

hh
counter—PC(_

hh

Status register
N V —B DIZC

bb — bbbbb
h | h

Fig. 16-8 6502 sample program.

Checking the Results of Program (Analysis)

After running the program, you should have 00 in the X

register, 00 in the Y register, and 11 in the accumulator.

The program does what we designed it to do.

Here’s one for you to try.

EXAMPLE 16-1

Manually place 00s in the accumulator, the X register, and

the Y register. Next, write a program which will

1. Place the hex number EE in the accumulator.

2. Transfer (copy) the contents of the accumulator (A)

into the X register (X).

3. Transfer (copy) the contents of the accumulator (A)

into the Y register (Y).

4. Stop.

may need to use another location. Enter the number A9

into the first available memory location. Since this was a

load accumulator immediate instruction, the microprocessor

will expect the next address, which immediately follows

the op code, to contain the number which is to be placed

in the accumulator. Therefore enter 11 next. In the third

address enter 00, which is the op code for the BRK

instruction.

Enter 0s into the accumulator, X register, and Y register

at this time so that you will know the condition of these

registers before the program is run.

If you check your registers and memory, you should see

what is shown in Fig. 16-7 (although you may have placed

the program at a different memory location). The h’s and

b’s represent hex and binary digits which we are not

concerned with at this time.

Running the Program

Let s use Fig. 16-8 during our analysis of program operation.

The first op code is A9, which means Load the accumulator

with the contents of the next memory location, or more

properly, Place a copy of the contents of the next memory

location in the accumulator. As you see, the number 11 is

replacing 00 in the accumulator. The program then continues

to the next instruction op code, 00, which stands for
BREAK, and stops.

SOLUTION

Figure 16-9 shows the completed program. Figure 16-10

shows memory and the registers and what happens during
program execution.

16-4 6800/6808 FAMILY

Let’s see how the ideas which were introduced in the New

Concepts section apply to the 6800/6808 microprocessor
family.

CPU Control Instructions

The 6800/6808 family has a no operation instruction which

uses the mnemonic NOP. Refer to the Expanded Table of

6800 Instructions Listed by Category in Part 4 of this text.

In the third column, called the Boolean/Arithmetic Op¬

eration column, we see that this instruction does “nothing,”

just as we said it would. Also notice the hexadecimal

number under the op (op code) column, in this case 01.

This is the actual hex code for NOP.

The 6800 family doesn’t have an actual halt instruction,

but the instruction which serves its purpose is the WAIt

for Interrupt instruction. (Bold type and capital letters

Addr Obj Assembler Comment

0000 A9 LDA #$EE Copy the hex number EE into the
accumulator (A) 0001 EE

0002 AA TAX Transfer the contents of A into X
0003 A8 TAY Transfer the contents of A into Y
0004 00 BRK Stop

Fig. 16-9 Example 16-1 program listing.

Chapter 16 Data Transfer Instructions 245

Memory

0000 A9 !

0001 EE-

0002 AA

0003 A8

0004 00

0005 hh

0006 hh

0007 hh

0008 hh

0009 hh

1. Transfer "EE" to A
— 2. Transfer A to X -

— 3. Transfer A to V —

Accumulator
EE

X Register
EE

Y Register
EE

Stack pointer
hh

PCH—Program counter—PCL

hh ! hh

Status register

N V—BDIZC

bb — bbbbb

h | h

Fig. 16-10 Example 16-1 program analysis.

identify the mnemonic.) Refer to the Expanded Table of

6800 Instructions. Notice that the wait for interrupt instruc¬

tion uses the mnemonic WAI and has an op code of 3E.

Data Transfer Instructions

Look in the Expanded Table at the next entry underneath

the WAI instruction. This is the first entry in the Data

Transfer Instructions section, which is a list of all of the

different types of data transfer instructions available in the

6800/6808 family. (To those with previous microprocessor

experience: You may notice that we have excluded transfer

instructions involving the stack. This is intentional. They

have been included in the Stack Instructions category.)

Direction of Data Transfer

Let’s look at this Data Transfer section a little more closely.

The first instruction listed is the LoaD Accumulator A

instruction. The boldfaced letters show where the LDAA

mnemonic came from. The third column shows the Boolean/

Arithmetic Operation. This is a concise and graphic way

to state exactly what this instruction does. It shows M,

which stands for memory, moving toward A, which stands

for the accumulator. To put it another way, the contents of

a certain memory location are being transferred into the

accumulator.

Recall from the New Concepts section that moving or

transferring is actually more like making a copy of what’s

in a particular location and placing the copy in the desti¬

nation.

Referring to the table, notice that the second (LoaD

Accumulator B) and seventh (LoaD X register) instructions

are similar to the first (LDAA). The difference is that they

copy the contents of a particular memory location and place

it either in accumulator B or in the X register instead of

accumulator A.

It may help to have a mental picture of our programming

model of the 6800, shown in Fig. 16-11, as we discuss

these instructions.

We have talked about moving or copying the contents

of some particular memory location to accumulator A,

accumulator B, or the X register. Now let’s consider doing

the reverse.

Look at the third, fourth, and eighth instructions in the

Expanded Table. They are STAA, STAB, and STX, which

is to say, store the contents of accumulator A in a memory

location, store the contents of accumulator B in a memory

location, and store the contents of the X register in a

memory location, respectively. The STORE instructions

are just the reverse of the LOAD instructions. (Note the

Boolean/Arithmetic Operation column.)

Accumulator A
hh

Accumulator B
hh

XH—X Register—XL
hh | hh

SPH—Stack pointer—SPL

hh | hh

PCH—Program

hh

counter—PC|_

hh

Status register

1 1 H1NZVC

1 1 b b b b b b

h | h

Fig. 16-11 Complete 6800/6808 programming model.

246 Digital Computer Electronics

Continue referring to both the Expanded Table and Fig.

16-11. Instructions 5 and 6 in the Expanded Table (TAB

and TBA) allow you to transfer the contents of accumulator

A and accumulator B between each other.

The last three instructions (CLR, CLRA, and CLRB)

simply transfer or place the number zero in accumulator A

or B or in a memory location.

Op Codes

Does your computer or microprocessor trainer understand

the words “load accumulator A”? No. Does it understand

the mnemonic LDAA? If you are using an assembler, the

assembler translates the mnemonic into binary numbers,

which it does understand. (If you can type the mnemonic

LDAA into your computer or trainer, you have an assembler.

If instead you must use a hexadecimal keypad or type in

hex numbers, you do not have an assembler.) The point

here is that the microprocessor inside your computer does

not understand English words like “load” or mnemonics

like LDAA.

If you are using an assembler, the assembler program is

translating the mnemonics, which the microprocessor does

not understand, into something it does understand. What

does the microprocessor understand? Binary numbers. In

our case we will enter them as their equivalent hexadecimal

value and let the monitor or assembler translate that into

binary. For our purposes, at least at this point, we’ll say

that the microprocessor understands hexadecimal. (The

monitor is part of the firmware built into your microprocessor

trainer.)

Look again at the Expanded Table. If we wanted to tell

the microprocessor to load the accumulator from memory

(the first data transfer instruction, LDAA), the micropro¬

cessor chip would actually need the hex code in the seventh

column over, the op code column (op for short). We would

place the hex number 86, 96, A6, or B6 (depending on

which variation of the instruction we wanted to use) in the

computer’s memory as the first instruction to execute.
(We’ll talk more about these variations later.)

Let’s look at another example. What if you wanted to

have the microprocessor store the contents of the X register

in memory? What would be the hex number the micropro¬

cessor would need to understand what you wanted to do?

You should have said either DF or EF or FF from the STX

instruction.

Sample 6800/6808 Program

Program Objective

Let’s create a program which will

L Place the number 11 in the accumulator.
2. Stop.

Creating the Program

Refer to the Data Transfer Instructions section of the

Expanded Table. Do you see an instruction which could be

used to place a number in the accumulator? Look in the

Boolean/Arithmetic Operation column. You need an instruc¬

tion which has an arrow pointing to the accumulator. There

are three such instructions—LDAA, TBA, and CLRA.

Since we don’t want to involve accumulator B, and since

we don't want to clear accumulator A, LDAA will be our
choice.

The next step is to determine which LDAA instruction

to use. There are four. The key to this decision is in the

Address Mode column. The LDAA instruction which has

Immediate in the address column is the one we want.

Immediate addressing tells the microprocessor that the data

it needs will be coming immediately after the op code. We

will learn more about addressing modes in the next chapter.

Finally, you want the program to stop. The instruction

which does this is in the CPU Control Instructions section

of the Expanded Table. The WAI instruction is the correct
choice.

Entering the Program

The completed program is shown in Fig. 16-12. We’ll see

how to enter it into your microprocessor first by using an

assembler and then without an assembler.

Note that the column labeled Obj contains the actual

6800 op codes, and the Assembler column contains the

mnemonic and data in a format similar to that used by an
assembler.

Assembler Comment

0000 LDAA #$11 Load the accumulator with the number (11)
immediately following the LDAA# op code (86) 0001 11

0002 Halt

Fig. 16-12 Sample program. (Note: The addresses should
be an area where user programs can be placed. If 0000 is
not such a place on your system, then you will need to
change these addresses.)

Chapter 16 Data Transfer Instructions 247

Refer to the LDAA instruction in the Expanded Table.

To the right of the word Immediate you see LDAA #$dd.

This is in the Assembler Notation column and describes

how many assemblers require that you type this instruction.

With four different LoaD Accumulator A instructions, the

assembler must know which one you want. The format of

the information after the LDAA is how the different forms

of the command are differentiated. The # means that the

data to be used is coming immediately after the command

itself. The $ indicates that it is a hexadecimal number. The

dd simply stands for two hexadecimal digits of data. (Each

d stands for one nibble or 4 bits.)

It is important to remember that we are talking about a

typical assembler format; however, there is no absolute

standard that must be followed. Refer to the manual which

came with your assembler or ask your instructor for

information about your assembler’s format.

We are going to enter this program into memory starting

at location 0000 (hexadecimal). If the trainer you are using

does not allow programs to be placed in these memory

locations, refer to your manual and substitute valid addresses

in place of those shown in Fig. 16-12.

If you are using an assembler, please enter the program

now. It will look similar to what is shown in Fig. 16-13.

Also place Os in accumulator A, accumulator B, and the

X (index) register so that you will know what numbers are

in each register before you run the program. Refer to Fig.

16-14 to see what the memory and registers should look

like.

If you are not using an assembler, you must look up the

op codes by hand in the Expanded Table. This is called

hand-assembly. Let’s go through the necessary steps for

hand-assembly.

To the right of the LDAA #$dd, in the op code (op for

short) column you will see the hexadecimal number 86.

This is the 6800/6808 op code, which stands for Load

accumulator A with the number immediately following this

op code. Set your trainer so that the memory address where

the next instruction will be loaded is someplace within the

area allowed for user programs. We chose 0000, but you

may need to use another location. Enter the number 86 into

the first available memory location. Since this was a Load

Accumulator A Immediate instruction, the microprocessor

will expect the next address, which immediately follows

the op code, to contain the number which is to be placed

in accumulator A. Therefore enter 11 next. In the third

Address Op code Data Mnemonic Immediate Hex Data

0000 86 11 LDAA#$11

0002 3E WAI

Fig. 16-13 Disassembly of the sample program.

Memory

Fig. 16-14 6800/6808 sample program.

address enter 3E, which is the op code for the WAI

instruction.

Enter 0s into accumulator A, accumulator B, and the X

(index) register now so that you will know the condition

of these registers before the program is run.

If you check your registers and memory, you should see

what is shown in Fig. 16-14 (although you may have placed

the program at a different memory location). The h’s and

b’s represent hex and binary digits which we are not

concerned with now.

Running the Program

Let’s use Fig. 16-15 during our analysis of program

operation.

The first op code is 86, which means, Load accumulator

A with the contents of the next memory location, or more

properly, Place a copy of the contents of the next memory

location in accumulator A. As you see, the number 11 is

A 0002
d

. 0003

Memory

Fig. 16-15 6800/6808 sample program.

248 Digital Computer Electronics

Addr Obj Assembler Comment

0000 86 LDAA #$EE Load accumulator A with the hex number
immediately following the LDAA# op code (86) 0001 EE

0002 16 TAB Transfer the contents of A into B

0003 3E WAI Stop

Fig. 16-16 Example 16-2 program.

replacing 00 in the accumulator. The program then continues

to the next instruction op code, 3E, which stands for WAI,
and stops.

Checking the Results of Program (Analysis)

After running the program, you should have 00 in accu¬

mulator B and the X (index) register and 11 in accumulator

A. The program docs what we designed it to do.

Here’s one for you to try.

EXAMPLE 16-2

First manually place 00s in accumulator A, accumulator B,

and the X register. Then write a program which will

1. Load accumulator A with the hex number EE.

2. Transfer a copy of the contents of the accumulator A

into accumulator B.

3. Stop.

SOLUTION

Figure 16-16 shows the completed program. Figure 16-17

shows the memory and registers and what happens during
program execution.

16-5 8080/8085/Z80 FAMILY

Let’s see how the ideas which were introduced in the New

Concepts section apply to the 8080/8085/Z80 microproces¬
sor family.

CPU Control Instructions

The 8080/8085/Z80 family has a no operation instruction

which uses the mnemonic NOP. Refer to the Expanded

Table of 8085/8080 and Z80 (8080 Subset) Instructions

Listed by Category in Part 4 of this text.

In the ninth column, called the Boolean/Arithmetic

Operation column, we see that this instruction does “noth¬

ing?” as we said it would. Also notice the hexadecimal

number under the op (op code) column, in this case 00.

This is the actual hex code for NOP.

The 8080/8085/Z80 family has an actual halt instruction.

Refer to the Expanded Table again. Notice that the halt

instruction uses the mnemonic HLT [Z80 = HALT] and

has an op code of 76.

Data Transfer Instructions

Refer to the Expanded Table. Underneath the halt instruction

you will see the MOV A,A [Z80 = LD A,AJ instruction

Memory

0000 86

0001 EE-

0002 16

0003 3E

0004 hh

0005 hh

0006 hh

0007 hh

0008 hh

0009 hh

1. Load EE into
accumulator A **

— 2. Transfer A into B-
Accumulator A

EE

EE

XH—X register—XL

00 | 00

SPH—Stack pointer—SPL

hh | hh

PCH—Program

hh
counter—PCL

hh

Status register

1 1 H1NZVC

1 1 b b b b b b
h | h

Fig. 16-17 Example 16-2 program analysis.

Chapter 16 Data Transfer Instructions 249

at the beginning of the Data Transfer Instructions section.

This section is a list of all of the different types of data

transfer instructions available in the 8080/8085/Z80 family.

(To those with previous microprocessor experience: You

may notice that we have excluded transfer instructions

involving the stack. This is intentional. They have been

included in the Stack Instructions category.)

Direction of Data Transfer

Let’s look at the data transfer section a little more closely.

The second instruction listed is the MOVe data to A from

B instruction. The boldfaced letters help show where the

MOV A,B mnemonic came from. (If you are using the Z80

microprocessor, it is the LoaD data into A from B instruc¬

tion. The boldfaced letters show where the LD A,B

mnemonic came from.) The ninth column shows the Boo¬

lean/Arithmetic Operation. This is a concise and graphic

way to state exactly what this instruction does. It shows B,

which stands for register B, moving toward A, which stands

for the accumulator. To put it another way, the contents of

register B are being transferred into the accumulator.

Recall from the New Concepts section that moving or

transferring is actually more like making a copy of what’s

in a particular location and placing the copy in the desti¬

nation.

It may help to have a mental picture of our programming

model of the 8085/8080/Z80, shown in Fig. 16-18, as we

discuss these instructions.

There are many directions in which data could be

transferred with an accumulator, six registers, and memory.

This can be seen in the Expanded Table. The first eight

instructions transfer the contents of a register or memory

location into the accumulator. (This can be seen in the

Operation column and the Boolean/Arithmetic Operation

column.) The second group of eight instructions copy the

contents of the accumulator, one of the registers, or memory

into register B. The third group of eight transfer data into

register C. The fourth group into D. The fifth into E. The

sixth into H. The seventh into L. And the eighth into a

memory location. This makes 8 x 8 or 64 instructions just

to do simple data transfers between registers.

The next group of eight instructions consists of the Move

Immediate instructions. They move a specified number

directly into a register or memory.

We will leave it to you to glance at the rest of the data

transfer instructions in the Expanded Table.

If you have used the 6502 family or 6800/6808 family

chips before (especially the 6502 family) and are now

studying the 8085/Z80 family for the first time, you may

be surprised by the great number of different instructions

this family has. This is offset, however, by the relatively

few addressing modes available and the simplicity this can

offer the programmer. (The 6502 family, by contrast, has

very few different instructions but has a large number of

addressing modes for an 8-bit chip from its era.)

Op Codes

Does your computer or microprocessor trainer understand

the statement “Move data to A from B”? No. Does it

understand the mnemonic MOV A,B? If you are using an

assembler, the assembler translates the mnemonic into

binary numbers, which it does understand. (If you can type

the mnemonic MOV A,B into your computer or trainer,

you have an assembler. If instead you must see a hexade¬

cimal keypad or type in hex numbers, you do not have an

assembler.) The point here is that the microprocessor inside

your computer does not understand English words like

“Move” or mnemonics like MOV A,B.

Memory

0000 hh

0001 hh

0002 hh

0003 hh

0004 hh

0005 hh

0006 hh

0007 hh

0008 hh

0009 hh

000A hh

Fig. 16-18 Complete 8080/8085 and Z80 (8080 subset)
programming model.

—
Accumulator

hh

Register B
hh

Register C
hh

Register D
hh

Register E
hh

Register H
hh

,_i

Register L
hh

i_

SPH—Stack pointer—SP|_

hh | hh

PCh—Program

hh

counter—PCL

hh

Status register

S Z — A — P — C

bb—b —b —b

h | h

250 Digital Computer Electronics

If you are using an assembler, the assembler program is

translating the mnemonics, which the microprocessor does

not understand, into something it does understand. What

does the microprocessor understand? Binary numbers. In

our case we will enter them as their equivalent hexadecimal

value and let the monitor or assembler translate that into

binary. For our purposes, at least at this point, we’ll say

that the microprocessor understands hexadecimal. (The

monitor is part of the firmware built into your microprocessor
trainer.)

Look again at the Data Transfer section of the table. If

we wanted to tell the microprocessor to load the accumulator

from register B (the second data transfer instruction, MOV

A-B [LD A,B], the microprocessor chip would actually

need the hex code in the eighth column over, the op code

column (op for short). We would place the hex number 78

in the computer’s memory as the first instruction to execute.

Let s look at another example. What if you wanted to

have the microprocessor copy the contents of the C register

into the accumulator? What would be the hex number the

microprocessor would need to understand what you wanted

to do? You should have said 79 from the MOV A,C
[LD A,C] instruction.

Sample 8085/Z80 Program

(Note: Since we are simultaneously covering the 8085 and

Z80 microprocessors, we will give the 8085 mnemonic

first, followed by the Z80 mnemonic in italic print and

enclosed by square brackets, for example, MVI A dd ILD
A,ddJ.)

Program Objective

Let’s create a program which will

1. Place the number 11 in the accumulator.
2. Stop.

Creating the Program

Refer to the Data Transfer Instructions section of the

Expanded Table. Do you see an instruction which could be
used to place a number in the accumulator?

[Note: You may want to use the Mini Table of 8085/Z80

(8080 Subset) Instructions listed by Category at this time.

There are so many 8085/Z80 data transfer instructions that

it may prove to be a bit time-consuming to page through
the Expanded Table.]

Look in the Boolean/Arithmetic Operation column (sim¬

ply labeled Operation in the Mini Table). You need an

instruction which has an arrow pointing to the accumulator

(indicated by an A). There are 12 such instructions; using

8085 mnemonics, they are MOV A,A; MOV A,B; MOV

A,C; MOV A,D; MOV A,E: MOV A,H; MOV A,L; MOV

A'M; MVI A,dd; LDAX B; LDAX D; and LDA aaaa.

[Using Z80 mnemonics, they are LD A,A; LD A,B; LD

A,C; LD A,D: LD A,E; LD A,H: LD A,L; LD A, (HL); LD

A,dd; LD A, (BC); LD A, (DE); and LD A, (aaaa)./

The next step is to determine which one of these

instructions to use. The key to this decision can be found

in the Operation or (Boolean/Arithmetic Operation) column.

The data transfer instruction we want is one which will

take a number (which we will place immediately after the

instruction op code) and will transfer it into the accumulator.

The first eight instructions mentioned above take a number

which is already in one of the seven 8085/Z80 registers or

memory and place it in the accumulator. This is not what

we want. The last three instructions take a number or data

byte from a memory location and place it in the accumulator.

This is not what we want either. The MVI A.dd (MoVe

Immediate dd to A) [Z80 = LD A, dd (LoaD dd into A)]

instruction takes the number immediately following the

move instruction and places it in the accumulator. This is

what we want since it allows us to specify the number 11

right after the op code for the move instruction.

Finally, you want the program to stop. The instruction

which does this is in the CPU Control Instructions section.

The halt instruction is the obvious choice.

Entering the Program

The completed program is shown in Fig. 16-19. We’ll see

how to enter it into your microprocessor first using an
assembler and then without an assembler.

Note that the column labeled Obj contains the actual

8085 and Z80 op codes, and the Assembler column contains

the mnemonic and data in a format similar to that used by
an assembler.

Refer to the MVI A,dd [LD A,dd] instruction in the Mini

Table. These mnemonics are used by assemblers, which

means that you must type the instruction using this format.

To the right of the mnemonic, in the Op column, is the op

code for that particular instruction. The 8085 and Z80

microprocessors use the same op codes: Only the mnemonics

are different. The dd simply stands for two hexadecimal

digits of data. (Each d stands for one nibble or 4 bits.)

We are going to enter this program into memory starting

at location 0000 (hexadecimal). If the trainer you are using

does not allow programs to be placed in these memory

locations, refer to your manual to determine where programs

can be placed in memory and substitute those addresses.

If you are using an assembler, please enter the program

now. It will look similar to what is shown in Fig. 16-20.

Also place 0s in the accumulator and all the general-

purpose registers (registers B, C, D, E, H, and L) so that

you will know what numbers are in each register before

you run the program. Refer to Fig. 16-21 to see what the

memory and registers should look like.

If you are not using an assembler, you must look up the

op codes by hand in either the Expanded Table or the Mini

Table. This is called hand assembly. Let’s go through the
necessary steps for hand assembly.

Chapter 16 Data Transfer Instructions 251

8085 rr^nemonics

Addr Obj Assembler Comment

0000 3E MVI A, 11 Load the accumulator with the number (11)
immediately following the MVI op code (3E)

0001 11

0002 76 HALT Halt

Z80 mnemonics

Addr Obj Assembler Comment

0000 3E LD A, 11 Load the accumulator with the number (11)
immediately following the LD A,dd op code (3E)

0001 11

0002 76 HALT Halt

Fig. 16-19 Sample program. (Note: The addresses should
be an area where user programs can be placed. If 0000 is
not such a place on your system, then you will need to
change these addresses.)

If you look up the MVI A,dd [LD AM] mnemonic in

either the Expanded Table or the Mini Table (for the 8080/

8085/Z80), you will see the hex number 3E in the Op

column. This is the op code which stands for, ”MoVe the

number Immediately following this op code into the Ac¬

cumulator.” [*'.LociD the number following this op code

into the Accumulator. *9] Set your trainer so that the memory

address where the next instruction will be loaded is some¬

place within the area allowed for user programs. We chose

0000, but you may need to use another location. Enter the

hex number 3E into the first available memory location.

Since this was a MoVe Immediate to Accumulator [LoaD

Accumulator] instruction, the microprocessor will expect

the next address, which immediately follows the op code,

to contain the number which is to be placed in the

accumulator. Therefore enter 11 next. In the third address

enter 76, which is the op code for the halt instruction.

8085 mnemonics

Address Opcode Data Mnemonic Source Destination

0000 3E 11 MVI A, 11

0002 76 HALT

Z80 mnemonics

Address Op code Data Mnemonic Source Destination

0000 3E 11 LD A, 11
0002 76 HALT

Fig. 16-20 Disassembly of the sample program.

Enter 0s into the accumulator and all the general-purpose

registers at this time so that you will know the conditions

of these registers before the program is run.

If you check your registers and memory, you should see

what is shown in Fig. 16-21 (although you may have placed

the program at a different memory location). The h's and

b’s represent hex and binary digits which we are not

concerned with at this time.

Running the Program

Let’s use Fig. 16-22 during our analysis of program

operation.

The first op code is 3E, which means, Load the accu¬

mulator with the contents of the next memory location, or

Accumulator
00

Register B
00

Register C
00

Register D
00

:

Register E
00

—
Register H

00
___i

Register L
00

SPH—Stack pointer—SPL

hh | hh

PCH—Program
hh

counter—PCL

hh

Status register

SZ —A —P —C

b b — b — b — b

h | h

Fig. 16-21 8085/Z80 sample program.

252 Digital Computer Electronics

Memory

0000 3E New number (11) Accumulator

0001 11
|—replacing old number (00) — —► 11 00 —►

Register B
00

Register C
00 0002 76

0003 hh Register D
00

Register E
00

L UUU4 hh
Register H

00
■ _

Register L
00

i_
0005 hh

0006 hh SPH—Stack pointer—SPL
hh 1 hh

0007
....

hh
PCH—Proaram counter—PC, 1

0008 hh hh hh

0009 hh
Status register

SZ —A —P —C

000A hh
b b— b — b — b

h | h

Fig. 16-22 8085/Z80 sample program.

more properly, Place a copy of the contents of the next

memory location in the accumulator. As you see, the

number 11 is replacing 00 in the accumulator. The program

then continues to the next instruction op code, 76, which
stands for halt, and stops.

Checking the Results of Program (Analysis)

After running the program, you should have 00 in all the

general-purpose registers and 11 in the accumulator. The

program does what we designed it to do.

Here’s one for you to try.

EXAMPLE 16-3

First manually place 00s in the accumulator and all general-

purpose registers. Then write a program which will

1. Place the hex number EE in the accumulator.

2. Move (copy) the contents of the accumulator (A) into
register B.

3. Move (copy) the contents of the accumulator (A) into
register C.

4. Stop.

SOLUTION

Figure 16-23 shows the completed program in both 8085

and Z80 mnemonics. Figure 16-24 shows the memory and

registers and what happens during program execution.

16-6 8086/8088 FAMILY

We will approach the 16-bit 8086/8088 microprocessor a

little differently than we did the 8-bit microprocessors. The

8-bit sections are designed to fit the needs of a person using

op code charts and hand assembly in the earlier chapters

and an assembler in the later chapters.

In the 16-bit section we assume that you are using the

DOS DEBUG utility in the earlier chapters. DEBUG is

readily available to all who use MS-DOS—type machines,

and it is less sophisticated than assemblers, which keeps

you closer to the hardware during the early part of the
learning process.

In later chapters we will use both an assembler and

DEBUG in figures and in answers to chapter questions.

This will allow you to explore the advantages of a full-

featured assembler and to continue to use DEBUG if you
wish.

One final point should be kept in mind. This text is

designed to make the learning process as simple as possible

for the beginner. A 16-bit chip like the 8086/8088 is quite

complex for the beginner. Therefore we do not attempt to

cover every aspect of this chip.

CPU Control Instructions

The 8086/8088 has a no operation (NOP) instruction which

works as described in the New Concepts section of this

chapter. A brief description of the NOP instruction can be

found in the CPU Control Instructions section of the

Expanded Table of 8086/8088 Instruction Listed by Cate¬

gory in Part 4 of this text. The NOP has an op code of 90
and affects no flags.

The 8086/8088 has a halt instruction which functions as

described in the New Concepts section. A description of

this instruction appears in the CPU Control Instructions

section of the 8086/8088 instruction set. Its mnemonic is
HLT, and its op code is F4.

Chapter 16 Data Transfer Instructions 253

8085 mnemonics

IBB Assembler Comment

0000 3E MVI A,EE Place the hex number EE in the
accumulator (A)

EE

0002 47 ' MOV B,A Copy into register B the contents of A

0003 4F MOVC, A 1 Copy into register C the contents of A

0004 76 HALT Stop

Z80 mnemonics

Addr Obj Assembler Comment

0000 3E LD A,EE Place the hex number EE in the
accumulator (A)

0001 EE

0002 47 Copy into register B the contents of A

0003 4F Copy into register C the contents of A

0004 76 1 Stop

Fig. 16-23 Example 16-3 program.

Data Transfer Instructions

The 8086/8088 has eight instructions which we have placed

in the Data Transfer Instructions section. While the Ex¬

panded Table of 8086/8088 Instructions Listed by Category

lists all eight of these instructions, the most versatile and

by far the most useful for the beginner is the MOVe

instruction.
A copy of our programming model for the 8086/8088

appears in Fig. 16-25.

Direction of Data Transfer

A move can be from (source) a register, memory, or an

immediate number to (destination) a register or memory.

While either the source or the destination can be a memory

location, both cannot be memory locations in the same

instruction. The source and destination must both be either

8 bits wide or 16 bits wide; you can’t mix data widths in

the same instruction. And finally, you can’t move from one

segment register to another.

As you have seen from the programming model, the

8086/8088 has several 8-bit and 16-bit registers. This causes

the number of move combinations between registers alone

to number in the hundreds. A few examples are

MOV AL.DL AL <- -DL

MOV BH.BL BH -BL

MOV AX.DX AX DX

MOV SP.BP SP <- BP

MOV SI.DI SI <- DI

MOV BX.DS BX DS

MOV AL.76 AL 76

A

d

d

r

e

s

s

e

s

Memory

0000 3E

0001 EE-

0002 47

0003 4F

0004 76

0005 hh

0006 hh

0007 hh

0008 hh

0009 hh

000A hh

-► 1. EE copied into A -

I- EE copied from A

— 2. Into B ■
^— 3. Into C '

Accumulator
-► EE

--

Register B
EE !

—

Register C
EE

Register D i
00

Register E
00

Register H
oo !
_i

Register L
00

SPH—Stack pointer—SPL

_M
hh |

PCH—Program counter—PCl

hh hh

Status register

SZ —A —P —C

bb— b — b — b

h I h

Fig. 16-24 Example 16-3 program analysis.

254 Digital Computer Electronics

Memory

0100 hh

0101 hh

0102 hh

0103 hh

0104 hh

0105 hh

0106 hh

0107 hh

0108 hh

A

d
0109 hh

d 010A hh

r
010B hh

e

s 010C hh

s
010D hh

e

s 010E hh

010F hh

0110 hh

0111 hh

0112 hh

0113 hh

0114 hh

0115 hh

0116 hh

.
0117 hh

Fig. 16-25 8080/8086 programming model.

AH
-Accumulator AX-

i
i AL

hh i hh

BH
case da "

i
i BL

hh i
i

i i n 1 ^ V __
hh

CH
couni ca

i
CL

hh i
hh

DH
uaxa ua ■—

i
DL

hh i
j hh

Source index
hhhh

Destination index
hhhh

Stack pointer
hhhh

Base pointer
hhhh

Code segment
hhhh

Data segment
hhhh

Extra segment
hhhh

Stack segment
hhhh

New

Instruction pointer
hhhh

■ Flags -

-0

-b
D I T

b b b

8085-like

Z — A — P — C

b — b — b — b

MOV AX,89E3 AX ^ 89E3
MOV [1234], AX memory location

1234 <- AX
MOV BL,[4456] BL memory

location 4456
MOV DX,[BX + DI] DX memory

location found by

adding the

contents of BX

and DI
MOV AX,[BX + DI + 0200] AX <— memory

location pointed to

by the sum of the

contents of BX,

the contents of

Dl, and the hex

number 200,6

The left column shows the instruction exactly as it appears

when disassembled by DEBUG. The right column indicates

where the data comes from and where it goes.

Sample 8086/8088 Program

Figure 16-26 shows a sequence of commands that will

demonstrate a simple MOVe instruction and give you
practice entering programs into DEBUG.

First, we started DEBUG by typing

C>debug

at the DOS prompt as shown. DEBUG responded with a

which indicates it is waiting for a command.

Chapter 16 Data Transfer Instructions 255

ODEBUG

ftX=0000 BX=0000 CX=0000 DX=0QD0 SP=bD5E BP=0000 SI=QQD0 DI=D000
DS-*H2A ES = cn2A SS-T^A CS-V12A IP=0100 NV UP El PL NZ NA PO NC

n2A:0100 7420 JZ 0122
-a
qR2R:0inD mov al/dl
qqEArDlDE
-u 1UU 101
qqEA:flfiDD MOV AL ,DL
-r
AX=0DDD BX=00nD CX=D0DD DX=0DDD SP=LDBE BP=0Q[]D SI=D00D DI=DDDD
Ds=qqaA ES-qqaA ss=qqaA cs=qqaA ip=oido nv up ei pl nz na po nc
qqpArDicm sado mov al,dl
-rdx
DX □□□□
: DDf3
-r
AX=DDD0 BX=D0D0 CX=DD00 DX=D DF3 SP=LDBE BP=QDDD SI=DDDQ DI=D000
Ds=qqaA ES-qqaA ss=qqaA cs-bbea ip=dido nv up ei pl nz na po nc
qqEA:01DD A ADO MOV AL,DL
-t

AX-D0E3 BX=0DDD CX=DDQD DX=D0F3 SP=LDBE BP=0DD0 SI=0D0D DI=0CIQ0
DS=qq2A Es^qqaA ss=qqEA cs^bbea ip=oioe nv up ei pl nz na po nc
qqaa:dide lb db lb
-q

c>
Fig. 16-26 MOVe instruction (DEBUG screens).

Next we typed an “r,” which stands for register. This

causes DEBUG to display the values of all registers as

shown in Fig. 16-27.

We will now duplicate (several times) that portion of

Fig. 16-26 (in bold type) which shows the values in various

registers. You should compare these sections (as we progress

through each figure) to our 8086/8088 programming model

in Fig. 16-25.
The current values of the general-purpose registers are

shown in bold type in Fig. 16-28.

The values of the stack pointer, base pointer, source

index, and destination index are shown in bold type in Fig.

16-29.

-r
AX=0DDD BX=0000 CX=D0D0 DX=D0D0 SP=LDBE BP=DDDD SI=DDD0 DI=000D
DS=qqaA es^bbea ss=qqaA cs=qqaA ip=oidd nv up ei pl nz na po nc
qqaA:Dicm ?4ED jz oiaa

Fig. 16-27 DEBUG screens (cont.).

-r

AX = D00D BX = D00D CX = DD00 DX = DODD SP=LD5E BP^ODOD SI^OQOD DI=DDDD
DS=qqaA es^bbea ss^bbea cs=qqaA ip=qidd nv up ei pl nz na po nc

qqEA:74 ED JZ D1EE

Fig. 16-28 DEBUG screens (cont.).

-r
AX=0DDQ BX=DDDD CX=DDDD DX=0Q0D SP=bDSE BP=000D SI=0a00 DI=DDDD
ds—qqaa es=bbea ss^bbea cs^bbea ip=didd nv up ei pl nz na po nc
qqEA:U1UU 74ED JZ aiEE

Fig. 16-29 DEBUG screens (cont.).

The values in the segment registers are shown in bold in

Fig. 16-30.

The value of the instruction pointer and the current status

of the flags are shown in bold in Fig. 16-31.

Finally, the address, op code, and assembler notation for

the next instruction which is to be executed are shown in

bold type in Fig. 16-32.

The area shown in bold type in Fig. 16-33 illustrates

how we then typed an "a,” which is the DEBUG assemble

command, at the DEBUG prompt.

-a <ENTER>

256 Digital Computer Electronics

AX=DOOD BX=ODOD

DS=qq2A ES=iq2A
qq5A:DlDD 7A50

Fig. 16-30 DEBUG screens (cont.).

CX-DQDD DX-00D0 SP=tD5E BP=0QQQ SI=00DQ DI=DDDD

ss-qqeA cs=qqsA ip=dioo nv op ei pl nz na po nc
JZ 0155

Fig. 16-31 DEBUG screens (cont.).

-r
AX=DDD0 BX=0000

DS=qq5A Es=qq5A
^EArDlDO 74 50

CX-0000 DX-0000 SP=LDSE BP=0000 SI=D000 DI=0000

SS-TTEA CS=qq2A IP=0100 NV UP EI PL NZ NA PO NC
JZ 0152

-r
AX=0000 BX=0000 CX=0DQD DX

DS=q95A ES=qSEA SS=RR5A CS
CHEA:0100 74E0 JZ

Fig. 16-32 DEBUG screens (cont.).

ODEBUG
-r
AX=0000 BX=00DD CX=D000 DX

DS=qqEA ES=qq5A SS=qq5A CS:
qq5A:010D 745D JZ
-a

qq2A:01DD mov al,dl
qq5A:010E
-u 1DD 101
qqpA:D10D flflDO MOV
-r

AX=0000 BX=0000 CX=0000 DX
DS=qq5A Es^qqaA ss=qq2A cs:
qqEA:01DD flflDO MOV
-rdx
DX 0000

: OOf 3
-r

AX=0000 BX=00QQ CX=D000 DX=

DS=qq5A ES=qq5A ss=qq2A cs^
qqEA:01DD flflDO MOV
-t

0000 SP=LD5E BP=0000 SI=0000 DI=DD0D

qq5A IP=0100 NV UP ei pl nz na po nc
01 EE

0000 SP=LD5E BP=000Q SI=0Q00 DI=000D

qqEA IP=0100 NV UP ei pl nz na po nc
01 EE

AL, DL

□000 SP=LD5E BP=0000 Sl=0000 Dl=0000

qS5A IP=010D NV UP El PL NZ NA PO NC
AL, DL

000D SP=LD5E BP=000Q SI=0D00 DI=00D0
qR5A IP=01DD NV UP EI PL NZ NA PO NC

AL, DL

CX-DOOD DX-DDF3 SP=LD5E BP=DDDO SI=000D DI=DDDQ

ss=qqaA cs=qqEA ip=oios nv up ei pl nz na po nc
DB L5

C>

Fig. 16-33 DEBUG screens (cont.).

AX=D0F3 BX=DD00

DS=qq5A ES=qqoa
qqEArDIDE LS
-q

DEBUG then responded with

992A:0100

which is the address at which our program will start. The

992A is the memory segment, and 0100 is the memory

location within that segment. If you try this program on

your computer, your segment will probably not be the same

as ours. This is normal and will not affect the results ot
the program.

We then typed

mov al,dl <ENTER>

and DEBUG responded with

992A:0102

which is the address of the next available memory location.

We then pressed <ENTER> to terminate assembly, and
DEBUG waited for our next command.

Chapter 16 Data Transfer Instructions 257

We told DEBUG to create or assemble the machine code

for the MOV AL,DL instruction. Then we wanted to check

to see that this is what DEBUG did. We wanted to

disassemble the machine code. The DEBUG command for

this is “u,” which stands for unassemble (DEBUG’s name

for disassemble). The next command in our program is

-u 100 101

which tells DEBUG to unassemble memory locations 100l6-

101 J<5 within the current code segment. DEBUG responded

with

992A:0100 88D0 MOV AL,DL

992A is the current code segment. 0100 is the memory

location of the first byte of this instruction. 88DO is the

machine code for MOV AL.DL, which was the assembly-

language instruction we typed in.

We typed the register command, and DEBUG again

displayed the current status of all registers. DEBUG’s

response is shown in Fig. 16-34.
When DEBUG displays the registers, it also displays the

instruction which it finds at the memory location pointed

to by the instruction pointer in the current code segment.

These appear in bold type in Fig. 16-34. Our MOV AL,DL

instruction appears in the assembly-language section.

Since our instruction said to move the contents of register

DL to register AL, we needed to place some value in

register DL. Notice that at this point AX, BX, CX, and

DX all contained 0000. Even if the contents of DL were

copied to AL, we wouldn’t see any difference. We needed

to place some value in DL which we could observe.

The area in bold type in Fig. 16-35 shows our next

command

-rdx

which told DEBUG we wanted to change the value in

register DX. DEBUG responded with

DX 0000

which was the current contents of register DX. The cursor

waited after the colon. If we had typed in a value, that

value would have been placed in the DX register. If we

had pressed the <ENTER> key, the value in DX would

not have changed.

-r
AX=0000 BX=0000
DS=CISBR ES^RRaA
lIBi:0100 flflDO

Fig. 16-34 DEBUG screens (cont.).

ODEBUG
-r

AX=0000 BX=0000
DS=qqaA ES=qqaA
qqaA:0100 7430
-a
qq3A:0100 mov al,
qqaA:oioa
-u 100 101
qqaA:oioo flfiDO
-r

AX=0000 BX=0000
DS=qqaA Es=qqaA
RRBA:0100 flflDO
-rdx
DX 0000
: OOf 3
-r
AX=000D BX=0Q00
DS=RRBA ES=RciaA
qqaA:oioo aado
-t

AX=00F3 BX=0000
DS=qqeA Es=qqaA
qqaA:oioa ts

-q

CX=0000 DX=0000 SP=LDSE
ss=qqaA cs=naA ip=oioo

BOV AL,DL

CX=0000 DX=0000 SP=LD5E
ss=qqaA cs=qqaA ip=oioo

jz oiaa

dl

MOV AL,DL

CX=0000 DX=0000 SP=fcD5E
ss=qqaA cs=qqaA ip=oioo

MOV AL,DL

CX=0000 DX=00F3 SP=LDSE
ss=qqaA cs=qqaA ip=oioo

MOV AL,DL

CX=0000 DX=00F3 SP=LD5E
ss=qqaA cs=qqaA ip=oioa

DB LS

BP=0000 SI=D000 DI=0000
NV UP El PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NV UP El PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NV UP El PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NV UP El PL NZ NA PO NC

BP=0000 SI=0000 DI=000Q
NV UP El PL NZ NA PO NC

C>

Fig. 16-35 DEBUG screens (cont.).

258 Digital Computer Electronics

We wanted to place a new number in DL. However, we

could not single out the low byte of the DX register, so we

simply placed Os in the high byte and our number in the

low byte. We typed that number (0Gf3) and pressed
<ENTER>.

:00f3 < ENTER >

Figure 16-36 shows how we again used the register
command (“r”).

Notice that the value in register DX has been changed
to the value we typed in.

Running the Program

Next we wanted the computer to execute the MOV AL,DL

instruction. However, we did not want it to continue any

further than that. Even though we had not entered any other

instruction into the computer, there were others. When we

turned the computer on, each unused memory location

contained some number, even if it was 0016. Most of these

random numbers were actually the op code for some

instruction. We didn t want these “random” instructions
to execute .

DEBUG has a command called trace which executes the

next instruction (the one displayed at the bottom of the

register display) and then stops and automatically displays

the contents of the registers for viewing. This is what we
did in Fig. 16-37.

Notice that the value in DX has been copied into register

AX. Notice also that the Instruction Pointer has been

incremented to the position ot the next instruction in memory

-r
AX=D0D0 BX=DDDD

RHEArDlDD A ADD

Fig. 16-36 DEBUG screens (cout.L

-t

which is displayed at the bottom of the register display (in
bold type).

Checking the Results

Figure 16-38 shows the operation of the program by using

our programming model to illustrate the movement of F3

from one register to the other.

Our program worked. In the future we will not discuss

each 8086/8088 program in such detail, but we have done

so here to give you an idea of how to monitor the execution

of a program. We have also introduced you to some DEBUG

commands. Remember that the DEBUG commands_as¬

semble, unassemble, trace, register, and quit—are not

assembly-language instructions but are commands to the

DEBUG utility, which helps you to enter, modify, and

execute assembly-language instructions.

Finally, you may want to exit from the DEBUG program.

That command is simply the quit command, which is

entered with the letter q. You will then be returned to the
DOS prompt.

EXAMPLE 16-4

Place the number FE in register DH. Place the number 12

in DL. Then write a program that will

1. Copy DH to AH.

2. Copy DL to BH.

Use the trace command to execute the program and follow
its operation.

CX=DDDD
ss=qqeA

DX=00F3
CS=qqDA

MOV

SP=bD5E
IP=010D

AL, DL

BP=000D SI=0DD0 DI=0DDQ
NV UP El PL NZ NA P0 NC

AX=00F3 BX=D00D
DS=qq^A Es=qq^A
TT2A: 0102 b5

Fig. 16-37 DEBUG screens (cont.).

CX=0000 DX=00F3 SP=bD5E
ss=qq£A cs=qq^A ip=oio2

DB b5

BP=000D SI=DD0D DI=D000
NV UP El PL NZ NA PO NC

Memory
Accumulator AX

!
0100 88 AH AL

0101 DO
hh \ F3

DaSe DA"

0102 hh
BH
hh

!
i

BL
hh

0103 hh CH
Co u n LCX -

! CL

0104 hh
hh 1

- n nv
hh

uata ux -

0105 hh
DH
hh j

DL _
F3

[
Fig. 16-38 MOVe instruction (programming model).

Chapter 16 Data Transfer Instructions 259

ODEBUG

-r
AX=0000 BX=0000
DS=CIBFB E5=CIBFB
3BFB:0100 A3FF72
-rdx
DX □□□□
: felB
-r
AX=0000 BX=Q000
DS=CIBFB ES=CIBFB
3BFB:0100 A3FF72

CX=0000 DX=DQ0Q SP=404E
SS=9BFB CS=3BFB IP=0100

MOV [7 2FF],AX

CX=0000 DX=FE12 SP=404E
SS=CIBFB CS=CIBFB IP=0100

MOV [7 2FF],AX

-a
3BFB:0100 mov ah,Ah
1BFB:Q102 mov bh,dl
IBFB:0104

BP=0000 SI=0000 DI=00D0
NV OP El PL NZ NA P0 NC

DS:72FF=FF1F

BP=0000 SI=0000 DI=0000
NV UP El PL NZ NA PO NC

DS:72FF=FF1F

-r

AX^OOOO BX=0000 CX=0000 DX=FE12 SP=404E
DS=CIBFB ES=RBFB SS=CIBFB CS=9BFB IP=Q100
3BFB:0100 AfiF4 MOV AH,DH

-t

BP=0000 SI=0000 DI=0000
NV OP El PL NZ NA PO NC

AX=FE00 BX=0000 CX=0000 DX=FE1E

DS=9BFB ES=CIBFB SS^BFB CS=cIBFB

3BFB:0102
-t

6QD7 MOV BH

AX=FE00 BX=1200 CX = 0000 DX^FEIB

DS=9BFB ES=9BFB SS=CIBFB CS=HBFB

SBFB:0104 3C3 A CMP 1 AL

SP=404E bp=oooo si=oooo di=oddq
IP=D102 NV OP El PL NZ NA PO NC

DL

SP=404E BP=0000 SI=0000 DI=0000
IP=01Q4 NV OP El PL NZ NA PO NC

3 A

Fig. 16-39 Example 16-4 (DEBUG screens).

SOLUTION

Figure 16-39 shows the process of changing the contents

of the registers, entering the assembly-language instructions,

and tracing program execution. Especially notice the areas

in bold type. (They, of course, will not appear in bold on

your computer screen.)

Figure 16-40 shows the same program, illustrating the

movement of the data with our programming model.

Memory

0100 88

0101 F4

0102 88

0103 D7

0104 hh

0105 hh

Fig. 16-40 Example 16-4 (programming model).

-Accumulator AX -

AH
FE

BH
12

CH
hh

DH
FE

-Base BX-

-Count CX-

-Data DX-

AL
hh

BL
hh

CL
hh

DL —,
12

260 Digital Computer Electronics

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1* The various instructions which form the instruction

set of most microprocessors fall into natural

-or groups.

2. (categories) The_and_are the

microprocessor chips found in IBM PC compatibles.

3. (8086, 8088) A technique which is sometimes help¬

ful when analyzing a program involves_

the contents of each register or memory location and

updating each as it changes in the program.

4. (writing) When we talk of moving, loading, transfer¬

ring, or storing data, while working with the micro¬

processors in this text, are we referring to moving in

the sense that the data no longer exists in its original
location?

5. (No) When we talk about moving, loading, transfer¬

ring, or storing data, we are actually_the
data.

6. (copying) If you can type mnemonics into your com¬

puter or trainer, it must have an_

7. (assembler) What do microprocessors understand?

8. (binary numbers) An assembler translates mnemonics
into_

(binary numbers)

PROBLEMS

General

16-1. What does the NOP (no operation) instruction
do?

16-2. What are two purposes of the NOP instruction?

16-3. If you move, load, or transfer the contents of the

accumulator to a general-purpose register, what

is left in the accumulator?

6502 Family

16-4. What is the op code for the NOP instruction?

16-5. What is the op code for the BReaK instruction?

16-6. What is the op code for the TAX (Transfer

Accumulator to X register) instruction?

16-7. What does the TYA instruction do?

16-8. What does the mnemonic STX stand for?

16-9. Which instruction would you use to copy the

contents of the Y register into a memory loca¬
tion?

16-10. Write a program which will

a. Place the number 45]6 in the accumulator.

b. Transfer the contents of the accumulator to

the X register.

c. Stop.

6800/6808 Family

16-11. What is the op code for the NOP instruction?

16-12. What is the op code for the WAI instruction?

16-13. What is the op code for the TAB (Transfer

accumulator A to accumulator B) instruction?

16-14. What does the TBA instruction do?

16-15. What does the mnemonic CLRA stand for?

16-16. Which instruction would you use to copy the

contents of accumulator B into a memory loca¬
tion?

16-17. Write a program which will

a. Place the number 89I6 in accumulator B.

b. Copy the contents of accumulator B to accu¬
mulator A.

c. Stop.

8080/8085/Z80 Family

16-18. What is the op code for the NOP instruction?

16-19. What is the op code for the HALT instruction?

16-20. What is the op code for the Mov A,D [LD A,D]

instruction?

16-21. What does the MOV B,C [LD B,C] instruction
do?

16-22. What does the mnemonic MVI A,dd [LD A,dd]

stand for?

16-23. Which instruction would you use to store the

contents of the accumulator in a memory loca¬
tion?

16-24. Write a program which will

a. Place the number 7816 immediately into the

accumulator.

b. Copy the contents of the accumulator into
register C.

c. Stop.

8086/8088 Family

16-25. What is the DOS utility which we are using in

this text to do assembly, disassembly, running,

and debugging of 8086/8088 assembly-language
programs?

16-26. What three areas can serve as a source for the

8088 MOVe instruction?

Chapter 16 Data Transfer Instructions 261

16-27. What are the two areas which can serve as desti¬

nations for the 8088 MOV instruction?

16-28. Which area cannot be both a source and a desti¬

nation at the same time?

16-29. What is the source of a MOV AL,DL instruc¬

tion?

16-30. What is the destination of a MOV AL,76

instruction?

16-31. Does the instruction MOV B,[4456] move the

number 4456 or the contents of memory location

445616 to register B?

16-32. What does the DEBUG command “r” stand for

and what does it do?

16-33. What does the DEBUG command “a” stand for

and what does it do?

16-34. What does the DEBUG command “u” stand for

and what does it do?

16-35. What does the DEBUG trace command do?

16-36. What is the DEBUG quit command?

16-37. Using DEBUG, write an 8086/8088 assembly

program which will

a. Place the number 8916 into the register BL.

b. Copy the contents of BL into CL.

{Note: Use DEBUG’s trace command to ex¬

ecute the program to see if it works.)

262 Digital Computer Electronics

Addressing Modes—I
New Concepts_
In this chapter we will study the simplest of the different

addressing modes. This will provide a foundation for the

next couple of chapters. In a later chapter we will look at

the more complex addressing modes. First we need to learn

what an addressing mode is.

17-1 WHAT IS AN ADDRESSING
MODE?

In an earlier chapter we used the system of addressing

homes as a way to describe memory addressing. Let’s use

the same idea to describe addressing modes.

If you are moving and want to describe to the movers

how to get to your new home so that they can deliver your

belongings, you would give them the name of the state,

city, street, and house number.

But what if you were moving to an apartment in Canada?

In that case you would give them the name of the country,

province, city, street, apartment complex, and apartment

number.

Or what if you were moving to a backwoods cabin for a

summer in the wilderness? You would give them the name

of the state, county, county road, the direction and number

of miles to travel on that county road, and finally landmarks

to help them find the cabin. (OK, you probably won’t have

a truck moving all of your belongings to a wilderness cabin,

but the analogy worked well up to that point.)

You can see that we need more than one way to ‘ ‘address”

or describe a location because not every method works in

every circumstance. This is what addressing modes are

about.

How you describe a location you want to transfer a

number to can depend on several factors. Remember that

while the addressing mode which should be used is very

apparent in some cases, in other cases choosing the best

addressing mode requires skill that must be developed over
time.

17-2 THE PAGING CONCEPT

Before we go any further into the subject of addressing

modes, we need to look at the concept of paging. Paging

is the concept of dividing memory into blocks of 256 bytes

each. Each block is called a page. We have to look at how

we count in hexadecimal to see why this number was

chosen.

The number 256 was chosen because that is how far you

can count using only two hex digits. Actually, FF, which

is the highest two-digit hex number, is 255 (decimal), but

if you count 00, you have 256 different numbers, or in this

case, memory locations.

Counting from 0016 to FF16 using four hex digits looks

like this:

0000
0001
0002

00FE

00FF

Notice that the left two digits are always 0. The range of

hex numbers from 00 to FF is called page 00 (sometimes

called the zero page).

The next number after 00FF is 0100. Let’s continue

counting from there:

0100
0101
0102

01FE

01FF

Notice that the left two digits are 01. This is called page

one.

263

The next number in the sequence is 0200. This is the

beginning of page two. Page two ends with CUFF, after

which comes 0300, the beginning of page three.

This process continues up to FFFF16. There are 256 of

these pages, with 256 bytes per page.

The addressing modes of the 8085 do not reference page

numbers; however, the 6800/6808 and 6502 do have

addressing modes that depend upon the concept of paging.

17-3 BASIC ADDRESSING MODES

We are now going to study the four most basic addressing

modes. As you read about each mode, first and foremost

try to understand the concept. The actual name of the

addressing mode may be different for the microprocessor

which you are using. After you read about these four modes,

go to the section which covers your particular micropro¬

cessor for specific details.

Implied Addressing

In implied addressing, sometimes called inherent address¬

ing, no address is necessary because the location is implied

in the instruction itself. It is the simplest of all addressing

modes. You used this mode in Chap. 16, which discussed

the CPU control instructions. Remember the NOP (no

operation) instruction? Do we have to tell it where to do

nothing? No. No addressing is necessary.

Another example would be the case of a microprocessor

which has only one accumulator and a certain index register.

The 6502, for example, has an instruction called

TAX

which means

Transfer Accumulator to X register

There is only one accumulator, and the specified register

is the X register. The microprocessor knows exactly where

the accumulator and the X register are, so we say that the

address is implied in the instruction itself. The data will be

transferred from the accumulator to the X register.

Register (Accumulator) Addressing

Register addressing, sometimes called accumulator ad¬

dressing, involves only internal registers or an accumula¬

tors) and no external RAM. For example, the 8085

microprocessor has an instruction called

MOV A,B

which means

MOVe data to A from B

Since the data is being moved from one register to another,

no other address information is needed. The names of the

registers are enough.

It should be noted that with some microprocessors it is

not clear whether this is considered to be a separate

addressing mode or a special subtype of the implied ad¬

dressing mode. See your particular microprocessor section

for details.

Immediate Addressing

Immediate addressing is a mode in which the number or

data to be operated on or moved is in the memory location

immediately following the instruction op code. For example,

the 6800/6808 microprocessor has an instruction called

LDAA #$dd

which means

LoaD Accumulator A with the two hexadecimal ($)

digits of data (dd) immediately (#) following this

op code

In the computer’s memory there will be the hex number

86, which is the op code for the LDAA immediate instruc¬

tion, followed immediately by the two hex digits which we

have called dd (since we don’t know what their actual value

is right now).

Direct Addressing

Direct addressing uses an op code followed by a 1- or

2-byte memory address where the data which is to be used

can be found. The data is outside of the microprocessor

itself, in one of the many thousands of memory locations.

The Z80 has an instruction called

LD A, (aaaa)

which means

LoaD the Accumulator with the data found at memory

location (aaaa)

Here of course the aaaa is four hex digits, which makes a

16-bit address. The microprocessor will go to memory

address aaaa and place a copy of the contents of that address

in the accumulator.

Keep in mind that some microprocessors do not call this

“direct” addressing and that some have more than one

form of this addressing mode.

264 Digital Computer Electronics

Specific Microprocessor
Families

Go to the section which discusses the microprocessor you

are using.

hexadecimal (not decimal). The dd stands for two hex digits

such as 35 or E2. To load the accumulator with the hex

number E2, you would type

LDA #$E2

17-4 6502 FAMILY

The 6502 uses the implied and immediate modes as described

in the New Concepts section of this chapter. The register

mode and direct mode are a little different.

Implied Addressing

For an example of implied addressing refer to the Data

Transfer Instructions part of the 6502 instruction set in the

Expanded Table of 6502 Instructions Listed by Category.

Find the TAX instruction, which is an example of implied

addressing as noted in the Address Mode column. Notice

that it Transfers the contents of the Accumulator to the X

register as indicated in the Operation and Boolean/Arith¬

metic Operation columns. Of course, no other information

is needed since both of these locations are inside the

microprocessor itself.

Direct Addressing

The 6502 has two different types of direct addressing. One

is called zero page addressing, and the other absolute

addressing.

Zero page addressing is direct addressing in which the

target address is in page zero of memory, somewhere in

the first 256 bytes of memory, between 000016 and 00FF,6.

Since the first two hex digits of any address in zero page

are 00s, the 00s can be omitted, making it possible to

describe the address with only 1 byte.

Absolute addressing is a form of direct addressing in

which the target address can be anywhere from 000016 to

FFFF16. This requires four hex digits, which is a 2-byte

address.

Referring again to the LDA instruction, the third form

down is the zero page addressing form of the instruction.

Notice that the assembler notation form appears as

LDA $aa

Register (Accumulator) Addressing

The 6502 doesn’t use register addressing as a dominant

addressing mode like the 8080/8085 does. It does use it in

four instances, however, and calls it accumulator address¬
ing.

For example, the 6502 instruction

The two lowercase a’s indicate a two-digit hex address.

The second form of the LDA instruction is the absolute

addressing form. The assembler notation in this case ap¬

pears as

LDA $aaaa

ASL

which stands for Arithmetic Shift Left, shifts every bit in

the accumulator to the left one place. The operand is in the

accumulator.

There are only four 6502 instructions which use the

register or accumulator addressing mode: they are ASL A

(Arithmetic Shift Left Accumulator), LSR A (Logical Shift

Right Accumulator), ROL A (ROtate Left Accumulator),

and ROR A (ROtate Right Accumulator). All these instruc¬

tions can be found in the Rotate and Shift Instructions

section of the Expanded Table of 6502 Instructions Listed

by Category.

which means that the address consists of four hex digits (2

bytes).

{Note: The 6502 microprocessor expresses addresses in

reverse low-byte/high-byte order!)

6502 Summary

Some examples are

NOP

ASL

LDA #$35

LDA $ IE

LDAS123D

Implied addressing

Register (accumulator) addressing

Immediate addressing

<— Direct (zero page) addressing

Direct (absolute) addressing

Immediate Addressing

Now let’s look at an example of immediate addressing. In

the Data Transfer section of the 6502 instruction set, notice

the first form of the LDA instruction. It uses immediate

addressing, which is what the # in the Assembler Notation

column stands for. The $ means that the number is

17-5 6800/6808 FAMILY

The 6800/6808 uses the implied and immediate modes as

described in the New Concepts section. The register and

direct modes are a little different.

Chapter 17 Addressing Modes—I 265

Implied Addressing

For an example of implied addressing, refer to the Data

Transfer Instructions part of the Expanded Table of 6800

Instructions Listed by Category.

Find the TAB instruction, which is an example of implied

addressing as noted in the Address Mode column. Notice

that it transfers the contents of accumulator A to accumulator

B as indicated in the Operation and Boolean/Arithmetic

Operation columns. No other information is needed since

both of these locations are inside of the microprocessor

itself.

which means there are only two hex address digits, indicated

by aa (a stands for address). The fourth LDAA form is the

extended addressing form of the instruction. The assembler

notation in this case appears as

LDAA $aaaa

which means that there are four hex address digits (2 bytes).

6800/6808 Summary

Some examples are

Register (Accumulator) Addressing

The 6800/6808 doesn’t use register addressing as a dominant

addressing mode the way the 8080/8085 does. Technically,

it does use it, however, and calls it accumulator addressing.

Since it is often considered a special form of implied

addressing by many who use the 6800/6808, it has not been

included in the Address Mode column of the instruction

sheets but rather falls under the title of Implied addressing.

TAB

TAB

LDAA #$35

LDAA $ IE

LDAA $123D

<— Implied addressing

<r- Register (accumulator) addressing

<— Immediate addressing

<— Direct addressing

Direct (extended) addressing

17-6 8080/8085/Z80 FAMILY

Immediate Addressing

Now let’s look at an example of immediate addressing. In

the Data Transfer section of the 6800/6808 instruction set

notice the first form of the LDAA instruction. It uses

immediate addressing, which is what the # in the Assembler

Notation column stands for. The $ means that the number

is hexadecimal (not decimal). The dd stands for two hex

digits such as E2. The instruction which would LoaD

accumulator A with the value E2 would appear as

LDAA #$E2

Direct Addressing

The 6800/6808 has two different types of direct addressing.

One is called direct addressing, and the other extended

addressing.

Direct addressing is a form of direct addressing in which

the target address is in page zero of memory—that is,

somewhere in the first 256 bytes of memory between 0000,6

and 00FF,6. Since the first two hex digits of any address

in this range are 00, the 00s can be omitted, making it

possible to designate the address with only 1 byte.

Extended addressing is a form of direct addressing in

which the target address can be anywhere from 000016 to

FFFF16. This requires four hex digits, which is a 2-byte

address.

Referring to the LDAA instruction, notice that the second

form down is the direct addressing form of the instruction.

The assembler notation appears as

LDAA $aa

The 8080/8085/Z80 uses the implied, immediate, register,

and direct addressing modes as described in the New

Concepts section of this chapter.

Note that the Z80 has all of the addressing modes that

the 8080/8085 has, plus a number of addressing modes that

the 8080/8085 does not have. We do not include these

additional modes of the Z80 in either the text or the

instruction set tables in this book. Refer to one of the many

books available about the Z80 to learn about these other

modes.

We need to bring your attention to a sometimes confusing

fact about the 8080/8085/Z80 mnemonics. Look at the Data

Transfer Instructions section of the Expanded Table of

8080/8085/Z80 (8080 subset) Instructions Listed by Cate¬

gory. Now look at the MOV A,B [Z80 = LD A,B]

instruction (the second instruction in this section). Notice

in the Boolean/Arithmetic Operation column that the data

is moving from B toward A. This means that the mnemonic

places the destination register before the source register.

This is true of the entire 8080/8085/Z80 instruction set.

The MOV A,B instruction is moving data to A from B.

(Note: The 6502 and 6800/6808 are just the reverse.)

Implied Addressing

An example of implied addressing can be seen in the CPU

Control Instructions section of the 8080/8085/Z80 instruc¬

tion set. The NOP instruction uses implied addressing since

no address is necessary. In the Flag Instructions section

you can see another example. The STC (SeT Carry flag)

instruction uses implied addressing. The carry flag is inside

the 8080/8085/Z80 microprocessor. Therefore no other

address information is needed.

266 Digital Computer Electronics

Register (Accumulator) Addressing

This form of addressing is called register addressing with

the 8080/8085 (in contrast to the term accumulator ad¬

dressing used by the 6502 and 6808). The 8080/8085/Z80

uses this form of addressing very frequently. In fact, if you

browse through the Data Transfer Instructions section of

the Expanded Table of 8085/8080 and Z80 (8080 Subset)

Instructions Listed by Category, you will find that most of

these instructions use this form of addressing.

For example, the instruction MOV A,B [Z80 = LD A,BJ

moves or makes a copy of the data in the B register and

places it in the A register. (We normally call this the

accumulator.) Since external memory is not utilized, and

both the source of the data and its destination are inside

the microprocessor, this information is sufficient.

Immediate Addressing

The 8080/8085/Z80 microprocessors use the immediate

mode as described in the New Concepts section at the

beginning of the chapter.

To see an example of this mode, scan through the 8080/

8085/Z80 instruction set in the Data Transfer Section until

you come to the MVI A,dd [Z80 = LD A}dd] instruction

(the 64th instruction in that section). You’ll notice in the

Address Mode column that this is labeled as using the

immediate addressing mode. This means that the op code

for this instruction (3E) would be followed immediately by

the two hex digits we want moved.

If the Hex number C8 was the value we wanted to load

into the accumulator, the 8080/8085 assembly-language

notation would appear as

MVI A,C8 [LD A,C8]

The second instruction, in brackets and in italics, is the

Z80 form.

Direct Addressing

The direct addressing mode as implemented in the 8080/

8085/Z80 microprocessors works as described in the New

Concepts section of this chapter.

The 8080/8085/Z80 has only one form of direct address¬

ing. (The 6502 and the 6800/6808 have two forms of this

addressing mode.)

To find an example of this mode, scan through the Data

Transfer Instructions section of the 8080/8085/Z80 instruc¬

tion set until you find the LDA aaaa [LD A,(aaaa)[

instruction (the 78th instruction in this section). The op

code for this instruction is 3A. It uses 3 bytes of memory.

The 1st byte will be the op code, 3A. The 2d and 3d bytes

will be the address of the memory location where the data

can be found.

{Note: The 8080/8085/Z80 microprocessors express ad¬

dresses in reverse low-byte/high-byte order!) If we wanted

to load the accumulator from memory location 1234, the 3

bytes of object code would be

3A 34 12

in the op code/high-byte/low-byte sequence.

The assembly-language notation for this instruction would

appear as

LDA 1234 [LD A, (1234)]

8080/8085/Z80 Summary

Some examples are

NOP <— Implied addressing

MOV A,B [LD A,B] Register addressing

MVI A,C8 [LDA,C8] <— Immediate addressing

LDA 1234 [LD A, (1234)] <— Direct addressing

17-7 8086/8088 FAMILY

Most of the 8086/8088 instructions are implemented as

described in the New Concepts section of this chapter.

We need to bring to your attention a sometimes confusing

fact about 8086/8088 mnemonics. The 8086/8088 mne¬

monics place the destination register before the source

register. This is true of the entire 8086/8088 instruction set.

The MOV AL,BL instruction is moving data to AL from

BL. (Note: This is similar to the 8080/8085/Z80 micropro¬

cessors.)

Implied Addressing

Implied addressing works on the 8086/8088 microprocessors

as described in the New Concepts section of this chapter.

Two examples are HLT (halt) and NOP (no operation).

Register Addressing

Register addressing also works as described in the New

Concepts section of this chapter. Since the 8086/8088 chips

have eight 8-bit (or four 16-bit) general-purpose registers

in addition to a number of other special-purpose registers,

there are hundreds of move combinations. Let’s look at

one of them.

The instruction which moves the contents of the CX

register into the BX register looks like this:

MOV BX,CX

Again you should notice that where the data is going to

(BX) is written first, and where the data is coming from

(CX) is written last.

Chapter 17 Addressing Modes—I 267

Since only registers are involved, all of which are inside

the microprocessor, no other information is needed by the

microprocessor.

Immediate Addressing

Immediate addressing on the 8086/8088 is as described in

the New Concepts section of this chapter. For example, the

instruction MOV AL,37 would place the hexadecimal

number 37 in the AL register.

Memory Segmentation

Before we can discuss direct addressing, we need to look

at a feature of the 8086/8088 microprocessors which does

not exist in any of the 8-bit microprocessors used in this

book. That feature is memory segmentation.

Earlier in this chapter we discussed the paging concept.

Segmentation is an extension of that concept. The 8-bit

microprocessors use 16-bit addresses. That gives them a

range from 0000,6 to FFFF16. In decimal that is 65,535,

which gives us a total of 65,536 different memory locations

counting location 000016. Another way to express this is as

64 kilobytes, or 64K. Notice that the addresses from 000016

to FFFF16 use four hex digits. The two right-most digits

express which byte is being referred to. The two left-most

digits express which page the bytes are in. There are 256

bytes per page and 256 pages from 000016 to FFFF16.

The 8086/8088 chips use a larger 20-bit address instead

of the 16-bit address used by the 8-bit chips. Twenty bits

is five hexadecimal digits. This provides a range from

00000]6 to FFFFF16. In decimal this is 1,048,575, which

gives us 1,048,576 memory locations (since we can count

0000016), or 1 megabyte of memory.

A segment is a 64K block of memory; thus there could

be as many as 16 nonoverlapping segments in 1M (mega¬

byte) of memory. Unlike a memory page, however, a

segment is not bound to a certain location. The only

requirement is that a segment must start on a 16-byte

memory boundary. Segments can be nonoverlapping, they

can partially overlap, or they can be superimposed with

one exactly on top of the other. The 8086/8088 has four

segment registers and so can manage four different segments
at a time.

Direct addressing uses not only the address specified in

the instruction but also the address in one of the segment

registers. In the case of move instructions, the data segment

register is used. The process involves adding the address

you have specified to the address in the data segment register

after shifting the data segment register to the left one

hexadecimal digit. For example, if you said

MOV DL,[0100]

and if the data segment register contained 2000, the address

would be calculated in the following manner.

2000 data segment register (shifted left)

T 0100 address

20100 effective address

Notice that the contents of the data segment register have

been shifted to the left one place. (You can think of it as

adding a 0 to the right side of the data segment register.)

So the MOV DL,[0100] instruction places a copy of the

data found at memory location 20100I6 (not location 010016)

in the DL register.

We generally won't be concerned with segment registers

in this text since our programs are simple and very small.

All the segment registers will be the same, so the offset

(the address of the instruction pointer) will be all we must

pay attention to.

Direct Addressing

Except for memory segmentation, direct addressing on the

8086/8088 is quite like that used on the 8-bit chips. When

we use the term direct addressing in reference to the 8086/

8088, we are referring to the direct form of addressing used

when manipulating data. (See the following topic, Program

Direct Addressing, for the other use of direct addressing.)

For example, if the data segment register contains the

number 0723, and the instruction

MOV BE,[0100]

is encountered, the contents of memory location 07330,6

(07230 + 0100 = 07330) would be copied into the BL

register.

Program Direct Addressing

Program direct addressing is no different from direct

addressing: It is simply direct addressing used for a different

purpose.

Program direct addressing is used with JMP and CALL

instructions. These instructions direct the “flow” of the

program. They are not used to manipulate data. Which

instruction or subroutine is to be executed next can be

altered with the JMP and CALL instructions.

For example, the instruction

JMP 100

tells the microprocessor to execute the instruction found at

location 0100 (hex) in the program segment. This is an

example of program direct addressing.

The offset (100 in the above example) is added to the

code segment register rather than the data segment register.

Remember that the contents of the code segment register,

like the data segment register, are shifted one hexadecimal

place to the left before being added to the offset.

268 Digital Computer Electronics

8086/8088 Summary

Some examples are

NOP <— Implied addressing

MOV BX,CX <— Register addressing

MOV AL,37

MOV BL,[0100]

JMP 100

Immediate addressing

Direct addressing

<— Direct (program direct) addressing

Chapter 17 Addressing Modes—I 269

Arithmetic and Flags
In this chapter we will study the arithmetic instructions of

each of our microprocessor families. We will also look at

the closely related topic of flags, at how they react to

arithmetic instructions, and at the instructions which control

them.

New Concepts_
There are several main topics in this chapter. We will learn

about (and review) the number systems microprocessors

use. We will study addition and subtraction (as well as

multiplication and division on the 16-bit 8086/8088). And

finally we will study the flags which are affected by these

arithmetic operations and how to alter the condition of those

flags.

18-1 MICROPROCESSORS AND
NUMBERS

We must first look at the kind of numbers a microprocessor

performs arithmetic operations on. You have already studied

much of this in earlier chapters.

Binary and Hexadecimal Numbers

We introduced binary numbers in Chap. 1. If that was the

first time you had ever seen numbers in another base system,

the whole subject may have been a bit confusing. It all

becomes quite natural, though, with time and experience.

At this point there are a couple of very important skills

which you must have. You should be able to look at an 8-

0000 0000

Fig. 18-1 Decimal values of each bit of an 8-bit binary
number.

bit binary number and know the decimal value of each of

the bit’s positions. This is illustrated in Fig. 18-1.

You should also be able to add the decimal values of

each binary digit to determine the decimal value of the

complete binary number. See Chap. 1 if you have forgotten

how to do this.

Another skill which was stressed in Chap. 1 is now

necessary if you are to work with microprocessors effec¬

tively. This is the ability to recognize any 4-bit binary

number, its hexadecimal equivalent, and its decimal equiv¬

alent. The table which illustrates this appeared in Chap. 1

as Table 1-4 and is repeated here as Fig. 18-2.

If you are unsure about any of these concepts, review

Chap. 1.

Binary-Coded Decimal Numbers

Binary-coded decimal numbers are just that: They are

decimal numbers that happen to have each digit represented

by its 4-bit binary equivalent. For example

01002 = 410 and 00012 = 110

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3
4 0100 4

5 0101 5
6 0110 6
7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Fig. 18-2 Hexadecimal-binary-decimal conversion chart.

270

Therefore the BCD (Binary Coded Decimal) equivalent of

the decimal number 41 is

0100 0001

Each nibble (group of 4 bits) stands for one decimal digit.

The number as a whole is still a decimal number, however.

ASCII

ASCII code is different from decimal, binary, hexadecimal,

and BCD in that it is not a number system but rather a way

to represent various symbols with different patterns of Is

and 0s. Each pattern of Is and 0s stands for a different

letter of the alphabet (uppercase or lowercase), digit,

punctuation mark, or other useful character.

We use number systems to count and to perform math¬

ematical computations. We don’t use ASCII for these

purposes. We use ASCII code to represent characters used

in normal written communication.

Do not try to memorize the ASCII code. Using charts

when needed will suffice. If a large amount of data is

necessary, we usually have some device, primarily the

standard computer keyboard, to create these ASCII char¬

acters. A table (Table 1-6) showing the ASCII code appears

in Chap. 1.

Microprocessors and Number Conversions

Microprocessors “think” in binary numbers. They use

binary numbers for calculations and logical operations.

Since binary numbers can be displayed as hexadecimal

numbers with fewer digits, we often display binary numbers

as their hexadecimal equivalents when people must enter

or interpret those numbers.

The BCD numbers are used in certain situations to aid

the people who must read them. For this reason some

microprocessors have instructions which can convert an¬

swers resulting from binary mathematical operations to

binary-coded decimal numbers. We will look at these

operations later in this chapter.

Bit Positions

Sometimes students are confused when people talk about a

certain “bit.” There are two ways to describe a particular

bit: by the binary power of 2 reflected in its position and

by its location, from right to left. Look at Fig. 18-3.

You will see both methods used in the workplace and in

other textbooks, so you should become comfortable with

each.

18-2 ARITHMETIC INSTRUCTIONS

We will now review basic binary math and look at typical

microprocessor instructions which perform mathematical

0000 0000

27 26 25 24 23 22 21 2°

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0000 0000

8th bit 7th bit 6th bit 5th bit 4th bit 3d bit 2d bit 1st bit

Fig. 18-3 Two methods for describing bit positions.

computations. Remember that we are now discussing tech¬

niques and instructions which are common to most micro¬

processors. We will study instructions specific to each

microprocessor family in its appropriate section later in this

chapter.

Addition

Each microprocessor family included in this text has at

least one addition instruction. Most have more than one.

When adding binary numbers the microprocessor pro¬

duces two types of information: (1) the sum of the two

numbers (answer), (2) and information indicating whether

there were carries in certain columns.

If you don’t remember how to add binary numbers, you

may want to review Chap. 6 now. There are really only

five binary addition combinations to remember:

(1) (2) (3) (4) (5)

0 0 1 1 1

+ 0 + 1 + 0 + 1 1

0 1 1 10 + 1

11

The first three combinations produce the same answer as

they do in the decimal number base system. Combination

#4 is simply saying that 1 + 1=2, except that the 2 is

binary (102 = 210). You should say combination #4 to

yourself as, “1 plus 1 equals 0, carry 1.” Likewise, the

fifth combination is saying that 1 + 1 + 1 = 3, except

that the 3 is binary (1 I2 “ 310). You should express

combination #5 as, “1 plus 1 plus 1 equals 1, carry 1.”

The last two combinations are the only new ones that you

should memorize, since they are the only two that are

different from our decimal number system.

To continue our review, let’s see how to add several

columns. It is common (and very practical) to show 8-bit

binary numbers in two groups of four (as 2 nibbles). Refer

to Fig. 18-4.

As you study Fig. 18-4, you will see that each of the

Chapter 18 Arithmetic and Flags 271

-Half-carry flag

i 11 i

1 0 0 1 1 1 0 1 15710

+ 110 1 10 0 1 + 21710

1 0 1 1 1 0 1 1 0 37410

- Carry flag (9th bit)

Fig. 18-4 Multi-column addition.

individual additions in each column is one of the five

combinations we presented a moment ago.

Now let’s continue using this example as we talk about

two other closely related subtopics.

Carry Flag

The first flag we’ll study is the carry flag. The carry flag,

during addition, lets us know that the 8-bit sum is not the

complete answer. If the carry flag is set (has a value of 1),

it indicates that a 9th bit was produced.

Let’s look again at Fig. 18-4. Notice the sum shown in

the decimal version of the example. The decimal answer is

374. Now look at the binary version of the example. If you

were to use only the right-most 8 bits (the 8 least significant

bits), the sum would appear to be 118l0 (0111 01102 =

11810), which is not the correct sum. The 9th bit, which

appears at the far left (the most significant bit), would not

appear in an 8-bit accumulator. The 9th bit would exist in

the carry flag (so to speak). The 1 in the carry flag would

indicate a carry from column 8 to column 9. Again, we

cannot see a 9th bit since the accumulator only holds 8

bits. (If you are using a 16-bit microprocessor, the function

of the carry flag is the same as that described above except

that it indicates the presence of a 17th bit, which will not

fit into a 16-bit accumulator.

Substraction also affects the carry flag. We will discuss

that a little later in this chapter.

Half-Carry Flag

Some (but not all) of our microprocessors have a half-carry

flag. A half-carry flag indicates that a carry has occurred

from the 4th-bit column to the 5th-bit column. The half¬

carry has been marked in Fig. 18-4.

Overflow Flag

The overflow flag alerts the programmer to a condition that

is similar to, but not the same as, that to which the carry

flag alerts the programmer. All our featured microprocessor

families have an overflow flag except the 8080/8085. To

understand what the overflow flag does, we need to take a

closer look at 2’s-complement arithmetic and signed binary

numbers.

Each of our microprocessor families has one or more

99,999 00,000

(a) (b)

Fig. 18-5 (a) Automobile odometer. (b) Automobile
odometer reset.

accumulators. All are 8-bit accumulators except the 8086/

8088, which has a 16-bit accumulator. Let’s focus our

discussion on the 8-bit microprocessors.

If we do not expect to ever need negative numbers in a

particular application, we can let the binary range of 0000

0000 to 1111 1111 represent decimal numbers 0 to 255.

These are called unsigned binary numbers. However, if we

need to represent negative numbers, we must use the 2’s-

complement form of the numbers we wish to make negative.

When we allow both positive and negative numbers, we

are using signed binary numbers.

We introduced 2’s-complement numbers in Chap. 6. The

concept was compared to that of the odometer on a car.

Remember that the accumulator, like the odometer of a

car, can contain only a certain number of digits. Most cars

display 5 digits plus lOths of a mile. If we disregard the

lOths digit, we have just 5 places. Of course, the highest

number which can be represented is 99,999 miles. There

aren’t enough digits to show 100,000 miles. The 1 is lost,

and only the 00,000 remains. The odometer has reset.

Figure 18-5 illustrates this.

The accumulator of a microprocessor has this same

limitation. If you continuously increment an 8-bit accu¬

mulator, you will eventually reach a maximum number

beyond which the accumulator would have to have another

digit. Figure 18-6 illustrates this. The accumulator, like the

odometer, will reset to zero if it is incremented one more

time.

When working with 2’s-complement binary numbers, we

assume that the accumulator can also be rolled backward,

so to speak, to represent negative numbers. One less than

zero is 11111111?» which would be equal to —110. One

less than that would be 111111102, which would be equal

to — 210. This process would continue as shown in Fig.

18-7.

As Fig. 18-7 illustrates, -12810 is as far as we can go

11111111

Fig. 18-6 Eight-bit accumulator.

272 Digital Computer Electronics

Therefore
0 1111111 +127

0 0 0 0 0 0 1 1 +3

00000010 +2

00000001 +1

00000000 0

11111111 -1

11111110 -2

1111110 1 -3

1 0 0 0 0 0 0 0 -128

Fig. 18-7 Eight-bit 2’s-complement range.

on the negative end. The reason for this is that one less

than 100000002 is 011111112, which, if you look at the top

of Fig. 18-7, is already being used as the equivalent of

+ 12710. When working with 8-bit 2’s-complement num¬

bers, we regard all numbers which have a 1 as the MSB

(most significant bit) as negative. Numbers with a 0 in the

MSB are positive. This means that the range for 8-bit 2’s-

complement binary numbers is + 12710to - 12810 inclusive.

Let’s review a little. If we are using all 8 bits to represent

numbers from 0010 to 25510, we refer to these numbers as

unsigned binary numbers. If we are using the MSB to

signify whether a number is positive or negative, we have

a range of —12810 to +127,0. These are called signed

binary numbers.

There is a simple procedure by which you can determine

how to form a negative binary (or hexadecimal) number.

First, write the binary equivalent of the positive form of

the number. For example

1010 = 0000 10102 = 0A16

Now invert each bit of the binary number.

0000 1010 becomes 1111 0101

Then add 1.

1111 0101
+_1

mi ono

-io10 = mi ono2 = F616

Notice that the MSB of the binary number is 1, as we said

it would be.

To determine what value a negative-signed binary number

represents, reverse the above process. If you had the binary

number

1111 0110 (the number created a moment ago)

invert each bit

0000 1001

and then add 1.

0000 1001

+_1

0000 1010

Notice that we now have the binary number for 10lo. (A

small 1 indicates a carry.) We have found that the binary

number 1111 0110 is the signed binary number for — 10lo.

The question now is how to interpret certain numbers.

For example,

125,0 0111 11012 125,o

+ 5010 + 0011 00102 +

©

©

175,0 1010 11112 81 io

We know that 125,0 + 5010 II --
j

L
/l

9 As you will notice

in this example, however, the binary number for 17510

(which is 1010 11112) is also the binary number for — 8110.

So if we didn’t know what two numbers this was the sum

of, how would we know how to interpret this answer? If

we simply found the binary number 1010 11112 in a register,

how would we know if it was meant to be + 175,0 or

— 8110? The answer is that we wouldn’t. (The number

— 8110 is, of course, the wrong answer. We will deal with

that part of the problem in just a bit.) We must know

whether we are using unsigned binary numbers or signed

binary numbers before we see the answer. It is simply a

matter of agreement beforehand.

We have been preparing to explain the purpose of the

overflow flag. We are now ready. The previous example,

which produced a sum of + 175,0 (1010 11112)? would

have set the overflow flag in an 8-bit microprocessor. The

overflow flag tells the programmer that the last answer

produced was outside the range of + 12710 to - 12810 (0111

11112 to 1000 00002 or 7F16 to 80,6). If the programmer

understood this answer to represent an unsigned binary

number, he or she would ignore the flag. If, however, this

Chapter 18 Arithmetic and Flags 273

was intended to be a signed binary number, the programmer

would know that this answer, if taken as a signed binary

number, is incorrect because it has exceeded the range for

8-bit signed binary numbers.

The range for unsigned 16-bit binary numbers is O10

(0000 0000 0000 00002 or 000016) to 65,53510 (Hll mi
1111 11112 or FFFFl6). The range for signed 16-bit binary

numbers is + 32,76710 (0111 1111 1111 11112 or 7FFF16)

to — 32,76810 (1000 0000 0000 00002 or 800016).

you its decimal value. For example, to calculate the value

of the binary number

0100 0001 0000 0010

you would enter

214 + 28 + 21 = 16,64210

into your calculator to get the above answer.

Addition-with-Carry

The previous section on addition discussed the carry flag.

The carry flag signals the programmer that the result of an

operation has exceeded 8 bits.

The carry flag has another use, though. The carry from

the 8th bit to the 9th bit (which is what the carry represents)

can be used during multiple-precision arithmetic. We use

multiple-precision arithmetic when the accumulator cannot

accept numbers large enough for the desired operation.

Multiple-Precision Binary Numbers

Until now we have assumed that any numbers we want to

add would occupy only 1 byte of memory. This is called a

single-precision number. One-byte unsigned numbers can

range from 0 to 255. Two-byte unsigned numbers can range

from 0 to 65,535. These are called double-precision binary

numbers. Three-byte unsigned binary numbers can range

from 0 to 16,777,215. These are called triple-precision

numbers.

When we construct a double-precision number, we use

the same techniques to determine its value as when we

work with a single-precision number. Recall from earlier

chapters that each binary position has a value and that each

value is twice as large as the value to its right. If you have

a calculator which will calculate powers of a number, it is

quite easy to determine the value of a double-precision

binary number. Refer to Fig. 18-8.

You see that the least significant bit (LSB) has a value

of 2°. This is equal to the number 1. (If you try this on a

scientific calculator, it should give you that answer.) To

determine the value of a double-precision number, add the

value of each position which has a 1 in it. This will give

0000 0000 0000 0000

Fig. 18-8 Powers of 2 for a double-precision binary
number.

Add-with-Carry

Let’s step through a double-precision addition problem.

Remember that we will be using the carry flag. Figure

18-9 shows an example.

The least significant bytes (LSBs) are on the right. They

occupy the positions which have the least value. The most

significant bytes are on the left. They occupy the positions

which have the most value.

As you can see, several carries occur in this example.

We are interested in the carry from the LSB to the MSB.

That carry would actually be held in the carry flag of the

microprocessor.

A typical microprocessor program to add these two binary

numbers (using English phrases instead of microprocessor

instructions) would appear as follows:

CLEAR CARRY FLAG

LOAD ACCUMULATOR WITH LSB OF ADDEND

ADD THE LSB OF THE AUGEND TO THE

ACCUMULATOR

STORE THE LSB OF THE SUM IN MEMORY

LOAD THE ACCUMULATOR WITH THE MSB

OF THE ADDEND

ADD-WITH-CARRY THE MSB OF THE AUGEND

TO THE ACCUMULATOR

STORE THE MSB OF THE SUM IN MEMORY

Notice that we simply add the LSB of each number, but

we add-with-carry the MSB of each number. When the

microprocessor sees the add-with-carry instruction, it ac¬

tually adds three numbers. It adds the addend (MSB),

augend (MSB), and the carry flag. This brings the carry

from the LSB into the MSB.

- Carry (carry flag) from least significant
byte (LSB) being carried into the most
significant byte (MSB).

1111 i iii

0100 0111 0110 0101 Addend

+ 0010 0001 1101 0111 + Augend

0110 1001 0011 1100 Sum

MSB LSB

Fig. 18-9 Double-precision addition-with-carry.

274 Digital Computer Electronics

Subtraction

Each of the microprocessor families included in this text

has at least one subtraction instruction. Most have more

than one.

When subtracting binary numbers, the microprocessor

produces two types of information: (1) The difference

between the two numbers (answer) and (2) whether there

were borrows in certain columns.

If you don’t remember how to subtract binary numbers,

you may want to review Chap. 6 now. There are really

only four binary combinations you need to remember:

(1) (2) (3) (4)

0 1 1 >0
-0 -0 -1 -1

0 1 0 1

The first three combinations produce the same answer as

they do in the decimal-number base system. Combination

#4 requires a borrow, which is shown by the small 1 set

as a superscript. You cannot have 0 and subtract 1 from it.

If you can borrow a 1 from the next-higher column, the

subtraction becomes possible. If there is a higher column

from which to borrow, this combination is really 2l0 - 110

= 110. That is, 102 is created after the borrow occurs, and

now the top number is larger than the bottom number. The

carry flag is used if there is no higher column from which

to borrow. You might say that it now becomes a “borrow”

flag.

The last combination is the only new one that you will

need to memorize since it is the only one that is different

from our decimal number system.

The above discussion appeared in Chap. 6 and has been

reviewed here for your convenience.

To continue our review, let’s see how to subtract several

columns. As in addition, it is common (and very practical)

to show 8-bit binary numbers in two groups of four (as two

nibbles). Refer to Fig. 18-10.

As you study Fig. 18-10, you will see that each individual

subtraction in each column is one of the four combinations

we presented a moment ago. When a borrow occurs, we

have shown the borrowed 1 as a superscript 1 next to the

0 which needed it. The 1 that was borrowed from is crossed

off, and its new value, 0, is shown above it.

Negative (Sign) Flag

The negative flag, sometimes called the sign flag, tells us

whether the number in the accumulator is a positive or

- From carry flag (indicates a borrow)

I- Half carry

w o *

^10/ ^ 0 1 1 339 (after borrow)

- 1 1 0 0 1 0 0 0 - 200

1 0 0 0 1 0 1 1 139

Fig. 18-10 Subtraction of binary numbers.

negative number. Since the most signficant bit of the

accumulator is the sign bit (when using signed binary

numbers), the negative flag simply reflects the status of that

bit. If the most significant bit is 0, the negative flag is 0,

and this is a positive number. If the most significant bit is

1, the negative flag will be 1, and this is a negative number.

While the negative flag always indicates the status of bit

7 of the accumulator, it is up to the programmer to determine

whether the number is to be interpreted as a signed or

unsigned binary number.

Figure 18-11 illustrates how the negative flag works.

Zero Flag

The zero flag shows that the last operation produced a result

of 0. This does not apply just to the accumulator but can

apply to other registers as well. This is especially helpful

when repeatedly decrementing (reducing by 1) an index

register to determine the number of times a loop has

executed. Knowing when a register has reached 0 is also

useful when branching to other parts of a program and

when determining whether or not to activate (call or enter)

certain subroutines.

The one unusual feature of the zero flag is that it contains

a 1 when the result is 0, and the flag is 0 when the result

is anything other than 0. While this may appear confusing

at first, it becomes second nature as you gain experience

with microprocessors.

The idea here is that a 0 says that something is false or

has not occurred. A 0 says, “No, this number was not the

number zero.”

A 1 says that something is true or has occurred. A 1

says, “Yes, this number is the number zero.”

Subtraction-with-Carry (Borrow)

The same carry flag that informs us that an addition problem

produced a sum which carried a 1 into the 9th bit also tells

us something about subtraction problems. Now it tells us

that to produce the answer (difference) the microprocessor

had to borrow a 1 from a 9th bit. This occurs when the top

number (minuend) is smaller than the bottom number

(subtrahend).

0110 0100

Accumulator

Positive signed
binary number

□
Negative flag

Negative signed
binary number

1 0 0 0 1 1 1 0 | | 1 |
Accumulator Negative flag

Fig. 18-11 The negative flag.

Chapter 18 Arithmetic and Flags 275

Refer again to Fig. 18-10. Notice that a borrow was

required from a column that doesn’t actually exist. There

is no 9th column. The carry flag acts as that column. It

tells us that a borrow from this “imaginary” column was

necessary.

Most microprocessors set the carry flag (make it a 1)

when a borrow is necessary (l=true). The exception to

this is the 6502 microprocessor. It clears the carry flag, as

though the borrow actually came from the flag itself. In the

6502 you must set the carry flag before you start a subtraction

problem so that, if a borrow is necessary, a 1 will be

present.
Some microprocessors also monitor the 4th bit during

subtraction. This is the half-carry flag which was mentioned

earlier in this chapter.

Multiplication and Division

The 8-bit microprocessors featured in this text do not have

multiplication or division instructions (the 6809, a relative

of the 6800 and 6808, does have a MULtiply instruction).

However, the 16-bit 8086/8088 has both multiply and divide

instructions, which will be discussed in the 8086/8088

section of this chapter.

There are several software algorithms for both multipli¬

cation and division which work well with the 8-bit micro¬

processors.

18-3 FLAG INSTRUCTIONS

Each of our microprocessors has instructions to alter the

state of its flags. Which of their flags and how many of

their flags can be directly altered vary.

The 8080/8085 has the fewest instructions for setting and

clearing flags. The 6502, 8086/8088, and 6800/6808 all

have the ability to set and clear many of their flags directly.

The 6800/6808 has an instruction which makes it possible

to move the status of all the flags into accumulator A and

to copy the contents of accumulator A into the flag register.

All our microprocessors except the 6800/6808 have the

ability to push all the flags onto the stack and retrieve them

from the stack. The 6800/6808 can accomplish the same

task by transferring the flags to accumulator A and then to

the stack in a two-step process.

We’ll discuss the specific uses for each flag instruction

in the Specific Microprocessor Families section of this

chapter. The uses for flag instructions can be generalized,

however. We use the flags primarily during arithmetic

operations and for control of loops, branches, and subrou¬

tines.

Since we use the flags to give us information about the

outcome of arithmetic operations, we often need to set or

clear flags before these math operations so that we are

certain of their exact condition before the operation begins.
We use flags to determine whether or not certain loops

should be repeated, whether branches into other parts of

the program should be taken, and whether certain subrou¬

tines should be called. Flags are used to make decisions

about which microprocessor instructions should be executed

next. This is the same as saying that the flags are used by

the program to make decisions. For these reasons we may

want to set or clear certain flags before or after certain

instructions are executed.

Specific Microprocessor
Families_
Let’s study the arithmetic and flag instructions for each of

our microprocessor families. We’ll be using short routines

to study operations for which each microprocessor has

specific instructions. We will not develop long routines to

facilitate arithmetic operations which are not inherent to

each microprocessor family. This will help you to become

familiar with your microprocessor’s basic arithmetic and

flag instructions.

18-4 6502 FAMILY

The 6502 probably has the fewest different arithmetic

instructions of any of our microprocessor families. However,

by conscientiously setting and clearing the appropriate flags

before arithmetic operations, this chip performs math op¬

erations adequately.

Arithmetic Instructions

The 6502 does not have normal add and subtract instruc¬

tions. It has only add-with-carry and subtract-with-carry.

Both of these instructions use the value in the accumulator

as one of their operands with another value which can be

an immediate value, or a value in memory, in addition to

the value in the carry flag. The value in memory can be

addressed any one of seven different ways. Let’s see how

to use these instructions.

Addition-with-Carry

Let’s start with a very simply addition program. Figure 18-

12 illustrates this type of program.

Notice first that we have used the CLC (CLear Carry)

instruction before we even loaded the accumulator with our

first operand. This is necessary when using the 6502

microprocessor. If the carry flag is set from a previous

operation, the ADC (ADd-with-Carry) instruction will add

276 Digital Computer Electronics

1 1

0 10 0 10 0 1 4916 7310

+ 0 0 0 1 1110 + 1E,6 + 30to

0 110 0 111 6716 10310

Addr Assembler Comment

0340 18 CLC Prepare for addition problem

0341 A9 LDA #$49 Load accumulator with first number (49)

0342 49

0343 69 ADC #$1E Add IE to the number in the accumulator
and place the answer in the accumulator 0344 IE

0345 00 BRK Stop

Fig. 18-12 Simple 6502 addition problem.

the 1 in the carry flag to the answer and will cause the

answer to be incorrect (it will be 1 greater than the correct

result).

Pay particular attention to the accumulator and the

processor status register. Notice their contents both before

and after you run the program. (You may want to write

down their values before and after so that you can study

their behavior.) You will find that the accumulator will

have the number 6716 in it (which is the correct answer)

and that only the BRK (BReaK) flag will be set.

Let’s look at the processor status register a little more

closely. Refer to Fig. 18-13 now.

Examining the flags from right to left, let’s consider eacn

and why it was or was not set during the last problem.

The carry flag would have been set if a carry from the

8th bit to the 9th bit (which doesn’t exist, so it goes into

the carry flag) had occurred, but none did.

The zero flag would have been set if the answer had

been 0, but it wasn’t.

Status register

Flags

N V — B D 1 z c

0 0 X 1 0 0 0 0

1- Carry flag

- Zero flag

- Interrupt flag

- Decimal mode flag

--- Break flag

- Unused

- Overflow flag

- Negative flag

Fig. 18-13 6502 processor status register.

Don’t worry about the interrupt flag since we haven’t

introduced this subject yet.

We dealt with the two operands as though they were

hexadecimal numbers so we didn’t set the decimal flag.

The break flag was set because we used the break

instruction to stop the program.

The status of the unused flag doesn’t matter.

We did not exceed the range of decimal + 127 to — 128

(hexadecimal 7F to 80); therefore the overflow flag was not

set.

Finally, we did not have a 1 in the 8th bit of the

accumulator so the answer could not have been negative;

therefore the negative flag was not set.

The Negative Flag

Let’s look at a problem which produces a negative answer.

Refer to Fig. 18-14 now.

Notice that this is exactly the same problem that was

used in Fig. 18-12 except that we have changed the first

operand, which used to be 4916 into C916, which is the

decimal number — 5510, if we consider these numbers to

be signed binary numbers. We know that — 5510 + 30lo

= — 2510. Since this is a negative answer, we know that

the negative flag should be set after the program is run.

Load the program and run it. Again write down the

contents of the accumulator and processor status register

before and after running the program so that you can

compare them. After the program is run, the accumulator

should contain the value E716. The processor status register

should contain BO.

Let’s examine the status register again. The binary value

for B016 is 1011 00002. If you put those bits into the

appropriate positions in the status register as shown in Fig.

18-15, you will see that 3 bits or flags are set.

The break flag is again set because we used the break

instruction to stop the program. We do not care about the

status of the unused bit.

Chapter 18 Arithmetic and Flags 277

1 1
110 0 100 1 C9i6 o

in

L
fi
1

+ 0 0 0 1 1110 + IE,6 + 3010

1110 0 111 E7,6 -2510

Obj Assembler Comment

18 CLC Prepare for addition problem

A9 LDA #$C9 Load accumulator with first number (C9)

C9

0343 69 ADC #$1E Add IE to the number in the accumulator
and place the answer in the accumulator 0344 IE

00 BRK Stop

Fig. 18-14 Simple 6502 addition problem with negative
answer.

which produces a negative answer.

i iiii 1111

1100 1001

+0011 0111

1 0000 0000

The negative flag is now set, however. This is what we

expected to see. The sum of the addition problem was

— 2510 (E716). If we assume that our numbers are signed

binary numbers, then any number that has a 1 in the 8th

bit is negative. E716 has a 1 in the 8th bit. The negative

flag simply reflects the state of the 8th bit.

The Zero Flag

Now let’s change the program so that we get a sum of 0.

Then we can see how the flags react to this situation.

Figure 18-16 shows the problem and the program to

solve the problem.

We are again assuming that our numbers are signed

binary numbers. The problem is C916 + 3716 = 0016,

which is — 5510 + 5510 = 0lo. You should go through the

binary addition now before you run the program. Notice

both the answer and any carries.

Write down the contents of the accumulator and the

processor status register before and after running the pro¬

gram. You will notice that we are using the same program

as in the last problem but have again changed one of the

operands.

C9-J6 “55-iq

+ 3716 + 55-tp

0016 O-io

Addr Comment

0340 18 CLC Prepare for addition problem

0341 A9 LDA #$C9 Load accumulator with first number (C9)

0342 C9

69 ADC #$37 Add 37 to the number in the accumulator
and place the answer in the accumulator 1 37

00 BRK Stop

Fig. 18-16 Simple 6502 addition problem which produces a
sum of 0.

278 Digital Computer Electronics

Now enter and run the program. The accumulator should

contain 0016, and the status register should contain 33. If

you place the bits of the status register in their proper places

as shown in Fig. 18-17, you will see how the flags have

responded to this problem.

Notice that the break flag and unused flag have again

been set as before. The value of the unused flag has no

meaning, and the break flag simply shows that we used a

break to stop the program.

The zero flag is set, as we supposed it would be. The

carry flag is also set. Notice in the binary addition that a

carry did indeed occur from the 8th to a nonexistent 9th

bit (which the carry flag acts as).

Status register

Flags

N V — B D 1 2 C

0 0 1 1 0 0 1 1

Fig. 18-17 6502 status register after an addition problem
which produces a sum of 0.

The Overflow Flag

When the overflow flag is set, it tells us that if the numbers

which were just added or subtracted are signed binary

numbers, then the valid range for such numbers has been

exceeded and the result is incorrect. The valid range for 8-

bit microprocessors, which the 6502 is, is + 127 to - 128.

Let’s change our problem to create an overflow.

Figure 18-18 shows our problem and program. Notice in

this problem that we are assuming that all values are to be

interpreted as signed binary values.

The problem shown here is 12310 + llljo =_

First go through the binary addition and enter the program.

Then write down the values in the accumulator and processor

status register, run the program, and finally write down the

ending values of the accumulator and status register.

Status register

Flags

N V — B D 1 z c

1 1 1 1 0 0 0 0

Fig. 18-19 6502 status register after an addition problem
which creates an overflow.

Figure 18-19 shows what the value in the status register
should be.

You should have a sum of EA16 in the accumulator and

F0l6 in the status register. EA16 is the correct sum if you

are using unsigned binary numbers! If you interpret EA16

as a signed binary number, it has a value of -2210. This

is not the correct answer. We have exceeded our valid

range for signed binary numbers.

The status register has a value of F0. This means that in

addition to the unused flag and the break flag, both the

overflow and the negative flags have been set.

It makes sense for the negative flag to be set because the

8th bit of the accumulator is set. This indicates a negative

number if the value is a signed binary number.

The overflow flag is set because we have exceeded our

range of 7F16 (12710) to 8016 (— 12810), giving an incorrect
result.

The Decimal Flag

Because of differences in the way binary and decimal

numbers round, and because numeric output to humans is

usually decimal, it is sometimes better to actually do

arithmetic calculations by using decimal numbers rather

than binary numbers. Actually, true decimal numbers are

not used. Rather, a mixture of binary and decimal, called

binary-coded decimal, is used. (The method used to create

BCD numbers is covered in Chap. 1 and they have been

discussed subsequently. You should review that section of

1111 iii

0 111 10 11 7B16 12310

+ 0110 1111 + 6Fle + 11110

1110 10 10 EA16 234-iq

Addr Obj Assembler Comment

0340 18 CLC Prepare for addition problem

0341 A9 LDA #$7B Load accumulator with first number (7B)

0342 7B

0343 69 ADC #$6F Add 6F to the number in the accumulator
and place the answer in the accumulator 0344 6F

0345 00 BRK Stop

Fig. 18-18 Simple 6502 addition problem which produces
an overflow.

Chapter 18 Arithmetic and Flags 279

Chap. 1 now if you are unsure of what BCD numbers are

or how they are formed.)
One of the problems encountered when using BCD

numbers is that, as the binary nibbles are added, invalid

results are sometimes obtained.

Most microprocessors have an instruction called decimal

adjust (or something similar). This instruction changes the

number in the accumulator to what it would be if the last

two numbers operated on had been BCD numbers instead

of binary numbers. The 6502 handles this a little differently.

It requires that you set a flag designed just for this purpose

and enter a ‘ ‘decimal mode, ’ ’ so to speak. When the decimal

0 1 0 0 0 1 1 1 BCD 4710

+ 0011 0110 BCD + 36-iq

flag is set, all operands are assumed to be packed BCD

numbers.

Let’s look at an example. In Fig. 18-20 we have compared

a decimal addition problem to the binary version of the

same problem.

First notice the difference between BCD and binary

addition. BCD addition is not the same as binary addition.

BCD is decimal addition using four binary digits to represent

each decimal digit.

The program shown in Fig. 18-20 will help you understand

the difference between binary and BCD addition (and

subtraction). This program does the addition problem twice,

0 1 0 0 0 1 1 12 47-ie

+ 0 0 11 o i i o2 + 3616

7Di6 I 1 0 0 0 0 0 1 1 BCD 8310 0 1 1 1 1 1 0 12

Decimal (BCD) Binary

This is not the same as this!

Assembler Comment

0340 D8 CLD Prepare to do binary addition

0341 18

mbm A9 LDA #$47 This is being interpreted as a binary number

0343 A7

KOHOH ADC #$36 This also is being considered a binary number

IKIHSI 8D STA $03A0 We'll store the binary answer in memory location
03A0 A0

0348 03

0349 08 PHP Put the flags on the stack

KB 68 PLA Transfer flags from stack to accumulator

8D STA $03A1 We'll store the status of the flags from the binary
addition in the memory location immediately
following the binary sum, which is location 03A1

034C A1

034D 03

034E ■B Prepare for decimal addition

034F 18 CLC

0350 A9 LDA #$47 This number is being interpreted as a decimal
number KB 47

hum 69 ADC #$36 This number likewise is being considered a decimal
number 36

1 0354 8D STA $03A2 We'll store the decimal answer in memory location
03A2 IIBB A2

0356 03

0357 08 Put the flags on the stack [

0358 68 Transfer the flags to the accumulator

0359 8D STA $03A3 We'll store the status of the flags resulting from this
decimal addition in the memory location immediately
following the decimal sum, that is, location 03A3

035A A3

035B 03

035C 00 BRK Stop

Fig. 18-20 Binary vs. BCD addition.

280 Digital Computer Electronics

once using binary numbers and once using BCD numbers.

The result of the binary addition is stored in memory

location 03A016, and the resulting flags in location 03A116.

The result of the BCD addition is stored in location 03A216,

and the resulting flags in location 03A316. Enter and run

this program to see what results you get. (Don’t be concerned

about the reference to the stack in the program. We’ll study

the stack in a later chapter. For now just think of it as a

temporary storage area.) When we ran the program we

found the following:

location 03A016 =

location 03A116 =

location 03A216 =

location 03A316 =

binary sum = 7D

binary flags = 30

BCD sum = 83

BCD flags = F8

The status of the binary flags indicates only that the break

instruction had been used to stop the program. No other

flags were set.

The status of the flags after the BCD addition indicates

that the decimal flag was set. (We set this flag to get into

the "‘decimal mode.”) The negative flag was set but has

no valid meaning. It was simply following the state of the

8th bit of the accumulator. The overflow flag was set, but

it also has no valid meaning in BCD arithmetic.

Subtraction-with-Carry

Subtraction-with-carry is the opposite of addition-with-

carry. As in addition, there is no simple subtract instruction,

only subtract-with-carry.

The 6502 handles borrows differently from the way most

other microprocessors do. Most microprocessors set the

carry flag if either a carry or a borrow occurs. The 6502

sets the flag if a carry occurs and clears the flag if a borrow

occurs. It is important to remember that the carry flag must

be set before a subtraction problem (or the first section of

a multiple-precision subtraction problem) so that if a borrow

is needed, it can clear the carry flag, which then indicates

that the borrow has occurred. If the carry flag is not set

before starting the subtraction, the answer will be incorrect.

(It will be 1 less than the correct result.)

Figure 18-21 illustrates the correct way to write a program

to do single-precision subtraction.

You should assemble and run this program. When we

did, we found that the result in the accumulator was FF.

We also found that the overflow and negative flags had

been set. The negative flag was set because the 8th bit of

the answer is a 1, which indicates a negative-signed binary

number. The overflow flag was set because 7F16 = 12710,

and 80l6 = - 12810; therefore

127

- -128

255

and 25510 is outside the valid range for 8-bit signed binary

numbers. (The valid range is + 12710 to - 12810.)

18-5 6800/6808 FAMILY

The 6800/6808 has a variety of add and subtract instructions

which can use either of its two accumulators and can address

memory locations in several ways. The 6800/6808 can also

add and subtract binary-coded decimal (BCD) numbers.

Arithmetic Instructions

The 6800/6808 has add, subtract, add-with-carry, subtract-

with-carry, add accumulator A to accumulator B, subtract

accumulator B from accumulator A, and decimal adjust

accumulator A instructions. These instructions use the value

in one of the accumulators as one of their operands and

another value which can be an immediate value or a value

in memory. Let’s see how to use these instructions.

Addition

Let’s start with a very simple addition program. Figure

18-22 illustrates this type of program.

Pay particular attention to the accumulator and the

condition code register (status register). Notice their contents

both before and after you run the program. (You may want

to write down their values before and after so you can study

Addr Obj Assembler Comment

0340 38 SEC Remember this step!

0341 A9 LDA #$7F

0342 7F

0343 E9 SBC #$80

0344 80

0345 00 BRK

Fig. 18-21 Subtraction-with-carry.

Chapter 18 Arithmetic and Flags 281

1 1

0 10 0 10 0 1 49ie

o

00
I--*

+ 0 0 0 1 1110 + 1 ^16 + 3010

0 110 0 111 6716 1 03iq

Obj Assembler Comment

86 LDAA #$49 Load accumulator with first number (49)

49

8B ADDA #$1E Add IE to the number in the accumulator and
place the answer in the accumulator

0004 WAI Stop

Fig. 18-22 Simple 6800/6808 addition problem.

their behavior.) You will find that the accumulator will

have the number 6716 in it (which is the correct answer)

and that only the half-carry flag will be set.

Let’s look at the status register a little more closely.

Refer to Fig. 18-23 now.

Examining the flags from right to left, let’s consider each

and why it was or was not set.

The carry flag would have been set if a carry from the

8th bit to the 9th bit (which doesn’t exist, so it goes into

the carry flag) had occurred, but none did.

We did not exceed the range of +127l0 to —12810

(hexadecimal 7F to 80); therefore the overflow flag was not

set.

The zero flag would have been set if the answer had

been zero, but it wasn’t.

We did not have a 1 in the 8th bit of the accumulator so

the answer could not have been negative; therefore the

negative flag was not set.

Don’t worry about the interrupt flag since we haven’t

introduced this subject yet.

The half-carry flag was set because we had a carry from

the 4th bit to the 5th bit. (Information about the half-carry

is useful when dealing with BCD numbers.)

The status of the unused flags doesn’t matter.

The Negative Flag

Now let’s look at a problem that produces a negative

answer. See Fig. 18-24.

Notice that this is exactly the same problem as the last

one except that we have changed the first operand, which

was 4916, into C916, which is the number — 5510 if we

consider these numbers to be signed binary numbers. We

know that - 5510 + 3010 = — 2510. Since this is a negative

answer, we know that the negative flag should be set after

the program is run.

Write down the contents of the accumulator and processor

status register before running the program so that you know

what the initial conditions are. Now load the program and

run it. After you run the program, the accumulator should

Fig. 18-23 6800/6808 status register.

282 Digital Computer Electronics

1 1
110 0 10 0 1 C916 -55,o

+ 0 00 1 1110 + 1E16 + 30,o
1110 0 111 CjO

r**
L

U
 -25,o

Addr Obj Assembler Comment

0000 86 LDAA #$C9 Load accumulator with first number (C9)
0001 C9

8B ADDA #$1E Add IE to the number in the accumulator and
place the answer in the accumulator IE

| 0004 3E WAI Stop

Fig. 18-24 Simple 6800/6808 addition problem with negative
answer.

contain the value E716. The status register should contain
XX101000.

Let’s examine the status register again. If you put the

bits into their appropriate positions in the status register as

shown in Fig. 18-25, you will see that 2 bits or flags are
set.

Status register

Flags

1 1 H 1 N Z V c

1 1 1 0 1 0 0 0

Carry flag

Overflow flag

Zero flag

Negative flag

Interrupt flag

Half-carry flag

Unused

Unused

Fig. 18-25 6800/6808 status register after an addition
problem which produces a negative answer.

i 1111 iii

1100 1001

+0011 0111

1 0000 0000

The half-carry flag is again set because we had a carry

from the 4th to the 5th bit of the result. The difference is

that the negative flag is now set. This is what we expected

to see. The sum of the addition problem was -2510 (E716).

If we assume that our numbers are signed binary numbers,

then any number that has a 1 in the 8th bit is negative.
E716 has a 1 in the 8th bit.

The Zero Flag

Now let’s change the program slightly so that we get a sum

of 0. Then we can see how the flags react to this situation.

Figure 18-26 shows the problem and the program to
solve the problem.

We are again assuming that our numbers are signed

binary numbers. The problem is C916 + 3716 = 0016

(55iq + 5510 = 0lo). You should go through the binary

addition of these two numbers now before you run the

program. Notice both the answer and the carries.

Again write down the contents of the accumulator and

the status register before and after running the program.

You will notice that we are using the same program as the

ast example but have changed one of the operands.

Now enter and run the program. The accumulator should

contain 0016, and the status register should contain XX1001012.

If you place the bits of the status register value in their

C9i6 -55,o

+ 3716 + 55-iq

00ie 010

I^S Obj Assembler Comment

0000 86 LDAA #$C9 Load accumulator with first number (C9)
0001 C9

8B ADDA #$37 Add 37 to the number in the accumulator and
place the answer in the accumulator 1 37

1 0004 3E WAI Stop

Fig. 18-26 Simple 6800/6808 addition problem which
produces a sum of 0.

Chapter 18 Arithmetic and Flags 283

D n D n D E I □
D D D D D D m D

Fig. 18-27 6800/6808 status register after an addition
problem which produces a sum of 0.

proper places as shown in Fig. 18-27, you will see how

the flags have responded to this problem.

Notice that the half-carry flag has again been set. The

zero flag is set, as we supposed it would be. The carry flag

is also set. Notice in the binary addition that a carry did

indeed occur from the 8th to a nonexistent 9th bit (which

the carry flag acts as).

The Overflow Flag

When the overflow flag is set, it tells us that if the numbers

which the microprocessor just added or subtracted are

signed binary numbers, the valid range for such numbers

has been exceeded and the result is incorrect. The valid

range for 8-bit microprocessors is +127 to —128. Let’s

change our problem to create an overflow.

Figure 18-28 shows our problem and program. Note that

in this problem we are assuming that all values are to be

interpreted as signed binary values.

This problem is 12310 T 11110 =-First g°

through the binary addition and enter the program. Then

write down the values of the accumulator and status register,

run the program, and finally write down the final values of

the accumulator and status register.

Figure 18-29 shows what the value in the status register

should be.

You should have a sum of EA16 in the accumulator and

XX1010102 in the status register. EA16 is the correct sum

if you are using unsigned binary numbers! If you interpret

EA,6 as a signed binary number, it has a value of -2210.

Status register

Flags

1 H 1 N Z V

D D a D a D a a
Fig. 18-29 6800/6808 status register after an addition
problem which creates an overflow.

This is not the correct answer. We have exceeded our valid

range for signed binary numbers.

The status register has a value of XX101010. This means

that in addition to the half-carry flag, both the overflow and

the negative flags have been set.

It makes sense for the negative flag to be set because the

8th bit of the accumulator is set. This indicates a negative

number if the value is a signed binary number.

The overflow flag is set because we have exceeded our

range of 7F16 (12710) to 8016 (— 12810), and the result is

incorrect.

Decimal Addition

Because of differences in the way binary and decimal

numbers round, and because numeric output to humans is

usually decimal, it is sometimes helpful to actually do

arithmetic calculations by using decimal numbers rather

than binary numbers. Actually, true decimal numbers are

not used. Rather a mixture of binary and decimal, called

binary-coded decimal, is used. (The method used to create

BCD numbers is covered in Chap. 1, and they have been

discussed subsequently. You should review that section of

Chap. 1 now if you are at all unsure of what BCD numbers

are or how they are formed.)

One of the problems encountered in using BCD numbers

is that, as the binary nibbles are added, invalid results are

sometimes obtained.

Most microprocessors have an instruction called decimal

adjust (or something similar). This instruction changes the

1111 iii

0 111 10 11 7B16 123i0

+ 0110 1111 + 6F16 +m10

1110 10 10 EA16 234,0

■Snag

—1—
E

Fig. 18-28 Simple 6800/6808 addition problem which
produces an overflow.

284 Digital Computer Electronics

number in the accumulator to what it would be if the last

two numbers operated on were packed BCD (binary-coded

decimal) numbers instead of binary numbers.

Let s look at an example. Figure 18-30 compares a

decimal addition problem to the binary version of the same
problem.

Notice first the difference between BCD and binary

addition. BCD addition is not at all the same as binary

addition. BCD is decimal addition using four binary digits

to represent each decimal digit.

The program shown in Fig. 18-30 will help you understand

the difference between binary and BCD addition (and

subtraction). This program does the addition problem twice,

once using binary numbers and once using BCD numbers.

The result of the binary addition is stored in memory

location A016, and the resulting flags in location Al16. The

result of the BCD addition is stored in location A216, and

the resulting flags in location A316. Enter and run this

program to see what results you obtain. When we ran the

program, we found the following:

location A016 = binary sum = 7D

location Al16 = binary flags = 000000

0 1 0 0 0 1 1 1 BCD 4710

+ 0011 0110 BCD + 3610

location A216 = BCD sum = 83

location A316 = BCD flags = 001000

The status of the binary flags indicates that no flags were

set as a result of the binary addition. After the BCD

addition, the negative flag was set but has no valid meaning.

It is simply following the state of the 8th bit of the
accumulator.

Subtraction

Subtraction is the opposite of addition. All the flags operate

the same except the carry flag. After subtraction, the carry

flag indicates whether or not a borrow has occurred. You

can think of it as a 4‘borrow” flag. A 1 in the carry flag

position indicates that a borrow from the nonexistent 9th

bit was required to do the subtraction. A 0 indicates that

no borrow from the 9th bit was required.

Figure 18-31 illustrates how to write a program to do

single-precision subtraction.

You should assemble and run this program. When we

did, we found that the result in the accumulator was FF.

0 10 0 o 1 1 12 4716

+ 0011 0 1 1 0? + 3616

7D16 | 1 0 0 0 0 0 1 1 BCD 8310 | 0111 1 1 0 12

Decimal (BCD) Binary

This is not the same as this1

Addr Obj Assembler Comment

86 LDAA #$47 This is being interpreted as a binary number
47

8B ADDA #$36 This also is being considered a binary number
0003 36

0004 97 STAA #A0 We'll store the binary answer in memory location
03A0 IWIliSi A0

0006 07 TPA Transfer flags to accumulator
0007 97 STAA #A1 We'll store the status of the flags from the binary

addition in memory location A1 0008 A1

0009 86 LDAA #$47 This number is being interpreted as a decimal number
000A 47

8B ADDA #$36 This number likewise is being considered a decimal
number oooc 36

000D 19 DAA Make the answer decimal
000E _ 97 STAA $A2 We'll store the decimal answer in memory location

03A2 000F

CM

<

IHKwflil 07 TPA Transfer the flags to the accumulator
0011 97 STAA $A3 We'll store the status of the flags resulting from

this decimal addition in memory location A3 0012 A3

0013 3E WAI Stop |

Fig. 18-30 Binary vs. BCD addition.

Chapter 18 Arithmetic and Flags 285

Addr Assembler Comment

0000 86 LDAA #$7F

0001 7F

0002 01 SUBA #$80

80

0004 3E WAI

Fig. 18-31 Subtraction.

We also found that the overflow, negative, and carry flags

had been set. The negative flag was set because the 8th bit

of the answer is a 1, which indicates a negative-signed

binary number. The overflow flag was set because 7F16 =

12710, and 8016 = - 12810; therefore

127

-(-128)

255

and 25510 is outside the valid range for 8-bit signed binary

numbers (the valid range is + 127,0 to — 128,0). The carry

flag was set because a borrow from a 9th bit was needed

to complete the subtraction.

18-6 8080/8085/Z80 FAMILY

The 8080/8085/Z80 family has a variety of add and subtract

instructions. The 8080/8085/Z80 can also work with binary-

coded decimal (BCD) numbers.

1 1
0100 1001

+ 0001 1110

0110 0111

Arithmetic Instructions

The 8080/8085/Z80 family has add, subtract, add-with-

carry, subtract-with-borrow, immediate mode and decimal

adjust accumulator A instructions. These instructions use

the value in the accumulator as one of their operands and

another value in one of the other registers as the other

operand. Let’s see how to use these instructions.

Addition

Let’s start with a very simple addition program. Figure

18-32 illustrates this type of program.

Pay particular attention to the accumulator and the status

register. Notice their contents both before and after you

run the program. (You may want to write down their values

before and after so that you can study their behavior.) You

will find that the accumulator will have the number 6716 in

it (which is the correct answer) and that only the half-carry

flag will be set.

Let's look at the status register a little more closely.

Refer to Fig. 18-33.

49t6 7310

+ 1E16 + 30iq

6716 10310

Addr Obj Assembler Comment

1800 3E MVI A,49 Load accumulator with first number (49)

1801 49

1802 C6 ADI IE Add IE to the number in the accumulator and
place the answer in the accumulator

1803 IE

1804 76 HALT Stop

(8080/8085 mnemonics)

Obj Comment

| 1800 3E LD A,49 Load accumulator with first number (49)

49

1802 C6 ADD A,IE Add IE to the number in the accumulator and
place the answer in the accumulator

1803 IE

1804 76 HALT Stop

(Z80 mnemonics)

Fig. 18-32 Simple 8080/8085/Z80 addition problem.

286 Digital Computer Electronics

Fig. 18-33 8080/8085/Z80 status registers after addition
problem.

Examining the flags from right to left, let’s consider each

and why it was or was not set.

The carry flag would have been set if a carry from the

8th bit to the 9th bit (which doesn’t exist, so it goes into

the carry flag) had occurred, but none did.

(Note to Z80 users: Ignore the negative flag.)

The parity flag was not set because the answer 0110

01112 has an odd number of Is. That is to say it has odd

parity, which is indicated by a 0. (Note to Z80 users: We

did not exceed the range of decimal +127 to -128-

hexadecimal 7F to 80; therefore the parity!overflow flag
was not set.)

The microprocessor set the auxiliary carry (half-carry)

flag because we had a carry from the 4th bit to the 5th bit.

(Information about the half-carry is useful when dealing
with BCD numbers.)

The zero flag would have been set if the answer had
been zero, but it wasn’t.

We did not have a 1 in the 8th bit of the accumulator so

the answer could not have been negative; therefore the sign
flag was not set.

The status of the unused flags doesn’t matter.

The Sign Flag

Let s look at a problem that produces a negative answer.
See Fig. 18-34.

Notice that this is the same problem as the last one

except that we have changed the first operand. It used to

4916, but it is now C916, which is the decimal number

-5510 if we consider these numbers to be signed binary

numbers. We know that -5510 + 3010 = -2510. Since

this is a negative answer, we know that the sign flag should
be set after the program is run.

Write down the contents of the accumulator and status

register before running the program so that you know the

initial conditions. Load the program and run it. After the

program is run, the accumulator should contain the value

E716. The status register should contain 10-1-1-0 [Z80 =
10-1-000].

Let’s examine the status register. If you put the status

register bits into the appropriate positions in the status

register as shown in Fig. 18-35, you will see what the bits
indicate.

The auxiliary-carry [half-carry] is set again because we

had a carry from the 4th to the 5th bit of the result.

The difference this time is that the sign flag is now set.

This is what we expected to see. The sum of the addition

problem was — 2510 (E716). If we assume our numbers are

signed binary numbers, then any number that has a 1 in

the 8th bit is negative. E716 has a 1 in the 8th bit. The sign

flag simply reflects the state of the 8th bit.

[Note to 8085 users: Your parity flag is 1 this time

because the answer (E716) has an even number of Is in it

and even parity is indicated by a 1 in the parity flag. Note

to Z80 users: Your parity!overflow flag is 0 just like last

time because the answer did not exceed the range from
+ 127l0 to -128l0.]

The Zero Flag

Now let’s change the program slightly so that we get a sum

of 0. That way we can see how the flags react to this
situation.

Figure 18-36 shows the problem and the program to
solve the problem.

We are again assuming that our numbers are signed

binary numbers. The problem is C916 + 3716 = 0016

Chapter 18 Arithmetic and Flags 2S7

1 1

110 0 100 1 C9ie -5510

+ 00 0 1 1110 +

m

CD
 + 30io

1110 0 111 E716 -2510

Obj Assembler Comment

1800 3E

1801 C9

■■ C6 ADI IE Add IE to the number in the accumulator and
place the answer in the accumulator

1803 IE

1804 76 HALT Stop

(8080/8085 mnemonics)

Addr Obj Assembler Comment

1800 3E LD A,C9 Load accumulator with first number (C9)

1801 C9

C6 ADD A#1E Add IE to the number in the accumulator and
place the answer in the accumulator

IE

1804 76 HALT Stop

(Z80 mnemonics)

Fig. 18-34 Simple 8080/8085/Z80 addition problem with
negative answer.

(-5510 + 5510 = O10). You should go through the binary

addition of these two numbers now before you run the

program. Notice both the answer and the carries.

Again write down the contents of the accumulator and

the status register before and after running the program.

You will notice that we are using the same program but

have changed one of the operands.

Now enter and run the program. The accumulator should

contain 00! 6 and the status register should contain 01-1-1-1

[Z80 = 01-1-001]. If you place the bits of the status

register value in their proper places as shown in Fig.

18-37, you will see how the flags have responded to this

problem.

Notice that the half-carry flag has again been set.

The zero flag is set, as we supposed it would be.

The carry flag is also set. Notice in the binary addition

Fig. 18-35 8080/8085/Z80 status registers after an addition
problem which produces a negative answer.

Status register

Flags

S z — H — P N c

1 0 — 1 — 0 0 0

1- Carry flag (CY)

- Negative flag

- Parity/overflow (PV)

- Unused

- Half carry

- Unused

- Zero flag

-—- Sign flag

Z80 Status register

288 Digital Computer Electronics

1 1111 111

11 00 1 0 0 1 C916 -5510

+ 0 0 1 1 0 1 1 1 + 37i6 + 55-iq

1 0000 0000 0016 010

Obj Assembler Comment

1800 3E MVI A,C9 Load accumulator with first number (C9)
C9

C6 ADI 37 Add 37 to the number in the accumulator and
place the answer in the accumulator ■sa 37

76 HALT Stop

(8080/8085 mnemonics)

Addr Obj Assembler Comment

3E LD A,C9 Load accumulator with first number (C9)
C9

C6 ADD A,37 Add 37 to the number in the accumulator and
place the answer in the accumulator 37

76 HALT Stop

(Z80 mnemonics)

Fig. 18-36 Simple 8080/8085/Z80 addition problem which
produces a sum of 0.

that a carry did indeed occur from the 8th bit to a nonexistent

9th bit (which the carry flag acts as).

The 8085 parity flag is set indicating an even number of

Is. (Note to Z80 users: Your parity!overflow flag is cleared

indicating you have not exceeded the range for 8-hit signed

binary numbers, from + 72710 to -72<S10.)

The Parity Flag [Z80: Parity/Oveiflow Flag]

The 8080/8085 and Z80 microprocessors differ slightly in

the function of this flag. Let’s look at the 8080/8085 first.

Status register

Flags

S z — A — P — C

0 1 — 1 — 1 — 1

8080/8085 Status register

Status register

Flags

S Z — H — P N C

0 1 — 1 — 0 0 1

Z80 Status register

Fig. 18-37 8080/8085/Z80 status registers after an addition
problem which produces a sum of 0.

The 8080/8085 microprocessors have a parity flag which

simply tells us how many Is are in the accumulator after

an arithmetic or a logic operation. Even parity exists when

an even number of Is are in the accumulator. Odd parity

exists when an odd number of Is exist in the accumulator.

Even parity is shown by a 1 in the parity flag, and odd

parity by a zero in the parity flag.

The Z80 has a combination parity/overflow flag. During

logic operations it indicates parity as just described for the

8080/8085. During arithmetic operations, however, it acts
as an overflow flag.

When an overflow flag is set, it tells us that if the

numbers which were just added or subtracted are signed

binary numbers, then the valid range for such numbers has

been exceeded and the result is incorrect. The valid range

for 8-bit microprocessors is +127 to -128. Let’s change

our problem to create an overflow.

Figure 18-38 shows our problem and program. In this

problem it is important to note that we are assuming that

all values are to be interpreted as signed binary values.

This problem is + 12310 + 11110 =-First go

through the binary addition and enter the program. Then

write down the values in the accumulator and status register,

run the program, and finally write down the values of the

accumulator and status register after the program has run.

Figure 18-39 shows what the value in the status register
should be.

You should have a sum of EA16 in the accumulator and

10-1-0-0 [Z80: 10-1-100] in the status register. EA16 is the

correct sum if you are using unsigned binary numbers! If

Chapter 18 Arithmetic and Flags 289

1111 111

0 111 10 11 7B16 123iq

+ 0110 1111 + 6F16 + 111io

1110 10 10 ea16 23410

Assembler Comment

1800 3E MVI A,7B Load accumulator with first number (7B)

1801 7B

1802 C6 ADI 6F Add 6F to the number in the accumulator and
place the answer in the accumulator 1803 6F

1804 76 HALT Stop

(8080/8085 mnemonics)

Addr Obj Assembler Comment

1800 3E LD A,7B Load accumulator with first number (7B)

1801 7B

1802 C6 ADD A,6F Add 6F to the number in the accumulator and
place the answer in the accumulator im 6F

1804 76 HALT Stop

(Z80 mnemonics)

Fig. 18-38 Simple 8080/8085/Z80 addition problem which
produces an overflow.

you interpret EA16 as a signed binary number, it has a value

of — 2210. This is not the correct answer. We have exceeded

our valid range for signed binary numbers.

The status registers of both the 8080/8085 and the Z80

microprocessors have a 1 in the half-carry flag as before.

Now however, both also have a sign flag that is set. It

makes sense for the sign flag to be set because the 8th bit

of the accumulator is set. This indicates a negative number

if the value is a signed binary number.

Status register

Flags

S Z — A — P — c

1 0 — 1 — 0 — 0

8080/8085 Status register

Status register

Flags

S Z — H — P N C

1 0 — 1 — 1 0 0

Z80 Status register

Fig. 18-39 8080/8085/Z80 status registers after an addition
problem which creates an overflow.

The parity flag of the 8080/8085 is 0 because the answer

(EA16) contains five Is and 5 is an odd number. However,

the parity/overflow flag of the Z80 acts as an overflow flag

during an arithmetic instruction and is 1 because we have

exceeded our range of 7F16 (12710) to 8016 (— 12810) for

8-bit signed binary numbers, and the result is therefore

incorrect.

Decimal Addition

Because of differences in the way binary and decimal

numbers round, and because numeric output to humans is

usually decimal, it is sometimes useful to do arithmetic

calculations by using decimal numbers rather than binary

numbers. Actually, true decimal numbers are not used.

Rather a mixture of binary and decimal, called binary-

coded decimal is used. (The method used to create BCD

numbers is covered in Chap. 1, and they have been discussed

subsequently. You should review that section of Chap. 1

now if you are unsure of what BCD numbers are or how

they are formed.)

One of the problems involved in using BCD numbers is

that as the binary nibbles are added, invalid results are

sometimes obtained.

Most microprocessors have an instruction called decimal

adjust (or something similar). This instruction changes the

number in the accumulator to what it would be if the last

two numbers operated on had been packed BCD numbers

instead of binary numbers.

290 Digital Computer Electronics

Let’s look at an example. Figure 18-40 compares a

decimal addition problem to the binary version of the same

problem.

Notice first the difference between BCD and binary

addition. BCD addition is not at all the same as binary

addition. BCD is decimal addition using 4 bits to represent
each decimal digit.

The program shown in Fig. 18-40 will help you understand

the difference between binary and BCD addition (and

subtraction). This program does the addition problem twice,

once using binary numbers and once using BCD numbers.

The result of the binary addition is stored in memory

location 18A016, and the resulting flags in location 18A116.

The result of the BCD addition is stored in location 18A216,

0 1 0 0 0 1 1 1 BCD 4710

+ 0011 0110 BCD + 3610

■ 1000

and the resulting flags in location 18A316. Enter and run

this program to see what results you get. When we ran the

program, we found the following:

location 18A016 = binary sum = 7D

location 18A116 = binary flags = 00-0-1-0

[Z80:00-0-000]

location 18A2l6 = BCD sum = 83

location 18A316 = BCD flags = 10-1-0-0

[Z80:10-1-000]

The status of the flags after the binary addition indicates

that no flags were set (except the 8080/8085 parity flag

indicating even parity).

0 1 0 0 0 1 1 12 4716

+ 0 0 1 1 0 1 1 02 + 3616

~7Di6 I
0 0 11 BCD 8310 | , 0 111 110 1

Decimal (BCD) Binary

This is not the same as this!

Addr Obj Assembler Comment

1800 3E MVI A,47 This is being interpreted as a binary number
1801 47

1802 C6 ADI 36 This also is being considered a binary number
1803 36

1804 32 STA 18A0 We'll store the binary answer in memory location
18 A0 1805 A0

1806 18

1807 F5 PUSH PSW Put the flags and accumulator in stack
1808 Cl POP B Retrieve flags and accumulator into register B and C
1809 79 MOV A,C Move the flags from register C to the accumulator
180A 32 STA 18A1 We'll store the status of the flags from the binary

addition in memory location 18A1 180B A1

180C 18

180D 3E MVI A, 47 This is being interpreted as a decimal number
180E 47

180F C6 ADI 36 This also is being considered a decimal number
1810 36

1811 27 DAA Convert the answer to decimal
1812 32 STA 18A2 We'll store the decimal answer in memory location

18A2 1813 A2

1814 18

1815 F5 PUSH PSW Put the flags and accumulator in stack

1816 Cl POP B Retrieve flags and accumulator into registers B and C
1817 79 MOV A,C Move the flags from register C to the accumulator
1818 32 STA 18A3 We'll store the status of the flags from the binary

addition in memory location 18A3 1819 A3

181A 18

181B 76 HALT Stop

(8080/8085 mnemonics)

Fig. 18-40 Binary vs. BCD addition. (Continued on next page.)

Chapter 18 Arithmetic and Flags 291

Addr Obj Assembler Comment

1800 3E LD A,47 This is being interpreted as a binary number

1801 47

1802 C6 This also is being considered a binary number

mem 36

1 1804 32 We'll store the binary answer in memory location
18A0 1805 A0

1806 18

1807 PUSH AF Put the flags and the accumulator in stack

1808 Retrieve flags and accumulator into registers B and C

1809 79 LD A,C Move the flags from register C to the accumulator

180A 32 LD<18A1),A Well store the status of the flags from the binary
addition in memory location 18A1 180B A1

180C 18

180D 3E LD A, 47 This is being interpreted as a decimal number

! 180E 47

180F C6 ADD A,36 This also is being considered a decimal number

1810 36

1811 27 DAA Convert the answer to decimal

1812 32 LD (18A2), A We'll store the decimal answer in memory location
18A2 1813 A2

1814 18

1815 F5 PUSH AF Put the flags and accumulator in stack

1816 Cl POP BC Retrieve flags and accumulator into registers B and C

^hh^h 79 LD A,C Move the flags from register C to the accumulator

32 LD (18A3),A We'll store the status of the flags from the binary

addition in memory location 18A3 1819 A3

181A 18

181B 76 HALT Stop

(Z80 mnemonics)

Fig. 18-40 (Continued)

After the BCD addition, the sign flag was set, but it has

no valid meaning. It simply follows the state of the 8th bit

of the accumulator.

Several points must be kept in mind when doing decimal

addition and subtraction on the 8080/8085 and Z80 micro¬

processors.

With the 8080/8085 microprocessors, the DAA instruc¬

tion only works after addition. Also, the DAA instruction

works only with the accumulator.

With the Z80 microprocessor, the DAA instruction can

be used after either addition or subtraction. This is made

possible by the addition of the negative flag which the

8080/8085 does not have. This flag simply keeps track of

whether an addition or subtraction was just performed. This

flag is used in combination with the half-carry flag to correct

the BCD answers.

Subtraction

Subtraction is the opposite of addition. All the flags operate
the same except the carry flag. After subtraction, the carry

flag indicates whether a borrow has occurred. You can

think of it as a k‘borrow” flag. A 1 in the carry flag position

indicates that a borrow from the nonexistent 9th bit was

required to do the subtraction. A 0 indicates that no borrow

from the 9th bit was required.

Figure 18-41 illustrates how to write a program to do

single-precision subtraction.

You should assemble and run this program. When we

did, we found that the result in the accumulator was FF.

We also found that the overflow (.Z80), sign, and carry

flags had been set. The sign flag was set because the 8th

bit of the answer is a 1 which indicates a negative-signed

binary number. The overflow flag was set because 7F16 =

12710 and 8016 = — 12810; therefore

127

-(-128)

255

and 255io is outside the valid range for 8-bit signed binary
numbers. (The valid range is + 127,0 to — 12810.) The

292 Digital Computer Electronics

Addr Obj Assembler Comment

1800 3E MVI A,7F

1801 7F

1802 D6 SUI80

1803 80

1804 76 HALT

(8080/8085 mnemonics)

Addr Obj Assembler Comment

1800 3E LD A,7F

1801 7F

1802 D6 SUB A,80

1803 80

1804 76 HALT

(280 mnemonics)

Fig. 18-41 Subtraction.

carry flag was set because a borrow from a 9th bit was

needed to complete the subtraction.

18-7 8086/8088 FAMILY

The 8086/8088 has a variety of arithmetic instructions and

various support instructions. The 8086/8088 can also work

with ASCII and binary-coded decimal (BCD) numbers.

Arithmetic Instructions

The 8086/8088 has add, subtract, add-with-carry, subtract-

with-borrow, ASCII adjust, multiply, divide, integer mul¬

tiply, integer divide, and conversion instructions. These

instructions use a value in one of the registers, memory,

or an immediate number as their operands. Let’s see how
to use these instructions.

DEBUG Revisited

In just a moment we are going to begin studying some

sample arithmetic programs for the 8086/8088 micropro¬

cessor. However, we must first learn more about the DEBUG
utility.

Until now, we have assembled each program with

DEBUG and then executed the program by using the trace

command. Trace executes one instruction, displays the

contents of the registers and flags, and then stops. This

works well when the program is only a few lines long or

when you must carefully observe the effect each instruction

has on the registers. It is very slow, however.

DEBUG has another command which executes an entire

program without stopping until the end. This is the g (go)

command. Of course, the computer has to know where to

start. If you just use the g command the computer assumes

that it should start program execution at the memory location

indicated by the instruction pointer (IP). If that is not where

you want to start, such as when you want to execute a

program for the second time, you have two ways to specify

where to start. One way is to change the instruction pointer

with the r (register) command. This is accomplished as

follows:

-rip

IP 0100

:0100

You should start your assembly-language programs at or

after address 0100H. The other way is to specify a starting

point as part of the g (go) command. To start at memory

location 0100H, for example, you would type

g = 0100

Execution would start at address 0100 even though the

instruction pointer might not contain that address.

When you use the g (go) command, the computer also

has to know where to stop. You might think that the HLT

(HaLT) instruction would work just fine. When you are

using DEBUG, however, a different instruction is needed

to stop the program. You are using DEBUG to control the

computer. When your assembly-language routine is finished,

control of the computer must be returned to DEBUG. DOS

(the computer’s disk operating system) has a routine which

will do this. This routine is accessed by executing the

Chapter 18 Arithmetic and Flags 293

INT 20 instruction. For example, the arithmetic program

we’re going to study shortly looks like this:

MOV AL,49

ADD AL,1E

INT 20

Notice the use of INT 20 to stop program execution. There

are a number of these DOS functions which handle the

computer’s housekeeping chores.

The g command is faster than individual t (trace) com¬

mands, and we can tell the computer where to start and

stop, but it has one major disadvantage. When you use the

r (register) command to view the registers after the program

has run, they will have the same values they had in them

before the program was run. This doesn’t give you a chance

to study the registers and flags to learn about how the

program works.

The solution to this problem is breakpoints. A breakpoint

is an address where you want program execution to stop.

A breakpoint is specified as part of the g command. The

difference between using a breakpoint to stop the program

and INT 20 is that, when the breakpoint is reached, all the

registers will be automatically displayed and their contents

will not have been returned to their previous values. This

allows you to see what all the registers and flags look like

at that exact point in the program. For example:

g 0104

tells DEBUG to start program execution at the address

indicated by the instruction pointer and to stop at address

0104. Notice that the instruction at address 0104 will not

be executed. Instructions or data at address 0103 will be

the last that the program will use. After the program stops

at address 0104, the contents of the registers and flags will

be automatically displayed.

The starting and stopping points for program execution

can be combined into one command. For example:

g = 0100 0104

will cause program execution to start at address 0100 and

to stop at address 0104. The contents of the registers and

flags will be automatically displayed.

When you run programs using a breakpoint, you need to

remember that the instruction pointer will not be reset.

Therefore, you’ll have to change it back to the program’s

starting point if you wish to run the program more than

once or specify the starting point in the g command as just

shown.

If you wish, the t (trace) command can still be used to

execute instructions one at a time.

Now let’s try running a short program which will show

you how to use these DEBUG commands and will allow

you to learn about the 8086/8088 ADD instruction.

Addition

Let’s start with a very simple addition program. Figure

18-42 illustrates this type of program.

We have shown the program twice: the first time using

the g command without a breakpoint, showing that the

registers will in fact be the same as before the program was

run, and the second time using the g command with a

breakpoint, showing that the contents of the registers will

reflect how the program alters them. From this point on in

this text we will use a breakpoint to stop program execution.

Being able to see how a program affects the registers is

important since our primary purpose is to explain what the

program has accomplished and how it functions by studying

the registers and flags after it has run.

Pay particular attention to AL and the flags. Notice their

contents both before and after the program is run. You will

And that the accumulator will have the number 67]6 in it

(which is the correct answer) and that only the auxiliary

flag will be set.

Let’s look at the flags a little more closely. Examining the

flags from right to left, let’s consider each and why it was

or was not set. Refer to the bottom portion of Fig. 18-42.

There was no carry (NC) because no carry from the 8th

bit to the 9th bit (which doesn’t exist so it goes into the

carry flag) occurred.

The parity was odd (PO) because the answer, 0110 01112,

has an odd number of Is.

There was an auxiliary carry (AC) because we had a

carry from the 4th bit to the 5th bit. (Information about the

half-carry is useful when dealing with BCD numbers.)

There was no zero (NZ) because the answer wasn’t 0.

The answer was positive or “plus” (PL) because we did

not have a 1 in the 8th bit of the accumulator so the answer

could not have been negative.

Don’t worry about the enable interrupt (El) or auto¬

increment (UP) flags for the moment.

There was no overflow (NV) because we did not exceed

our range for valid 8-bit signed binary numbers +127 to

-128.

In fact, if you compare the state of the flags before the

program was run with the state of the flags after it was run,

only one of them changed. That was the auxiliary carry

(AC) flag.

The Sign Flag

Let’s look at a problem that produces a negative answer.

See Fig. 18-43 at this time.

Notice that this is exactly the same problem as the last

one except that we have changed the first operand, which

used to be 4916 into C916 (— 5510 if we consider these

numbers to be signed binary numbers). We know that

— 5510 + 3010 = -2510. Since this is a negative answer,

we know that the sign flag should be set after the program

is run.

294 Digital Computer Electronics

1 1
0100 1001

+ 0001 1110

0110 0111

49i6 73-10

m

O)
 + 30io

6716 10310

B>DEBUG

-r

AX=DDD0 BX=0000 CX=DDDD

DS=BFFD ES=BFFD SS=BFFD

BFFD:0100 7420 JZ

-a

BFFD:0100 mov al,<q

BFFD:0102 add al,le

BFFD:0104 int 20
BFFD: 010L

-u 0100 0105

BFFD:D10D BQ^q MOV AL,^q
BFFD:0102 041E ADD AL, IE
BFFD : 0104; CD2D INT 20

-g

Program terminated normally
-r

AX=0000 BX=0000 CX=D00D DX=0000 SP=FFEE BP=DDD0 SI=DD0D DI=0000

DS^BFFD ES=BFFD SS=BFFD CS=BFFD IP=0100 NV UP El PL NZ NA PO NC
BFFD:DIDO BO^q MOV AL,^q

Program assembled, unassembled, and executed
without using a breakpoint to stop program
(notice that registers have returned to their previous state)

DX=QDDD SP=FFEE BP=0000 SI=0DDD DI=0DDD

CS=BFFD IP=D1DD NV UP El PL NZ NA PO NC
0122

B>DEBUG

-r

AX^OOOO BX=0000 CX=DDQD

DS^BFFD ES=BFFD SS=BFFD

BFFD:7420 JZ

-a

BFFD:0100 mov al,4q

BFFD:0102 add al,le
BFFD:0104 int 20
BFFD:010L

-u 0100 0105

BFFD:0100 B04q MOV AL,45
BFFD:0102 041E ADD AL , IE
BFFD:0104 CD20 INT 20

-g 0104

AX=00b7 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=000D DI=D000

DS=BFFD ES=BFFD SS—BFFD CS=BFFD IP=D104 NV UP El PL NZ AC PO NC
BFFD:0104 CD20 INT 20

Program assembled, unassembled, and executed using a
breakpoint to stop and display contents of registers and flags
(notice that registers have not returned to their previous state)

Fig. 18-42 Simple 8086/8088 addition problem.

DX=0000 SP=FFEE BP=0000 31=0000 DI=0000

CS=flFFD IP=0100 NV UP El PL NZ NA PO NC
0122

Chapter 18 Arithmetic and Flags 295

1 1

110 0 10 0 1 C9ie -55iq

+ 0 0 0 1 1110 + lE-ie + 30-|o

1110 0 111 E716 -2510

-r

RX=0DD0 BX=000Q
DS=AFFD ES=AFFD

AFFD:Dion Bocq

CX^DDDD
SS=AFFD

MOV

DX=0DD0

CS—AFFD

AL, CS

SP=FFEE

IP=D10D

BP=DDDD SI-DDDD DI=DD00

NV UP El PL NZ NA PO NC

-a
AFFD:mov al/C^
AFFD:D1DE add al,le
AFFD:01jD4 int ED
AFFDiDlOL

-u DIDO D104
AFFD:01D0 BDC^
AFFD:D1DE D41E
AFFD: D1D4 CDED

MOV ALfC9

ADD AL,IE

INT ED

-g 104

AX=00E7 BX=DOOO CX^ODOO DX=0DQD

DS-AFFD ES=AFFD SS=AFFD CS=AFFD

AFFDldlDA CDED INT ED

SP-FFEE

IP=0104

BP=ODDD SI-DDDd DI=DDOO
NV UP El NG NZ AC PE NC

Fig. 18-43 Simple 8086/8088 addition problem with a

negative answer.

Assemble the program and run it. Observe the contents

of AL and the status register before and after running the

program so that you can compare them. After the program

is run, AL should contain the value E716. The status register

shows that only two flags have changed in exactly the same

way as in the last example. The parity flag indicates even

parity, and we have an auxiliary carry, just like the last

example.

The difference this time is that we have a negative (NG)

answer. This is what we expected to see. The sum of the

addition problem was — 2510 (E716). If we assume that our

numbers are 8-bit signed binary numbers, then any number

that has a 1 in the 8th bit is negative. E716 has a 1 in the

8th bit. The sign flag simply reflects the state of the most

significant bit (8th or 16th depending on whether we are

using 8-bit or 16-bit numbers).

have a half-carry (AC), we have even parity (PE), and of

course the zero flag indicates that our answer was in fact 0

(ZR). You should be able to look at the problem itself and

at the flags before and after the program was run and be

able to see why the flags have responded the way they

have.

The Parity Flag

The 8086/8088 microprocessor has a parity flag which

simply tells us how many Is are in the accumulator after

an arithmetic or logic operation. Even parity exists when

an even number of Is are in the accumulator. Odd parity

exists when an odd number of Is exist in the accumulator.

Even parity (PE) and odd parity (PO) are indicated in the

flags section of the DEBUG display.

The Zero Flag

Now let’s change the program slightly so that we obtain a

sum of 0. Then we can see how the flags react to this

situation.

Figure 18-44 shows the problem and the program to

solve the problem.

We are again assuming that our numbers are signed

binary numbers. The problem is C916 + 3716 = 0016,

which is — 5510 + 5510 = 010. You should go through the

binary addition of these two numbers now before you run

the program. Notice both the answer and the carries. Notice

also that we are using the same program as in the last

example but have changed one of the operands.

We have a carry out of the most-significant bit (CY), we

Overflow Flag

When the overflow flag is set, it tells us that if the numbers

which were just added or subtracted are signed binary

numbers, then the valid range for such numbers has been

exceeded and the result is incorrect. The valid range for

8-bit calculations is +127 to —128. The valid range for

16-bit calculations is +32,767 to —32,768. Let’s modify

our problem to create an overflow.

Figure 18-45 shows our problem and program. Remember

that we are assuming that all values are to be interpreted

as 8-bit signed binary values.

This problem is 12310 + 11110 =-First go

through the binary addition and enter the program. Then

write down the values you think will be found in AL and

296 Digital Computer Electronics

1 1111 1111

110 0 100 1 C916 -5510

+ 0011 0 111 + 3716 + 5510

1 0 0 0 0 0 0 0 0 00,6 °io

-r
RX=D000 BX=0000 CX=0000 DX—0DD0 SP-FFEE BP=0000 SI=0000 DI=DDDD
DS=AFFD ES=AFFD SS=flFFD CS=AFFD IP=0100 NV DP El PL NZ NA PO NC
flFFD: 0100 7450 JZ □122

-a

AFFD:0100 raov al, CS
AFFD:0102 add al. 3?
AFFD:0104 int 50

AFFD: 010L

-u 0100 0104

AFFD:0100 BOCR MOV AL, CH
AFFD:0105 043? ADD AL , 37
AFFD:0104 CD50 INT 20

-g 104

fiX=0000 BX=0000 CX=DDD0 DX=Q000 SP=FFEE BP=0000 SI=0000 DI=DDDD
DS=AFFD ES=AFFD SS=flFFD CS=flFFD IP=D1D4 NV DP El PL ZR AC PE CY
AFFD:0104 CD50 INT 20

Fig. 18-44 Simple 8086/8088 addition problem which
produces a sum of 0.

the status register, run the program, and finally note the

final values of AL and the status register.

You should have a sum of EA,6 in the accumulator and

should find that there has been an auxiliary carry (AC),

that the sign bit indicates that this is a negative number

(NG), and that there has been an overflow (OV). EA16 is

the correct sum if you are using unsigned binary numbers!

If you interpret EAI6 as a signed binary number, it has a

value of — 2210. This is not the correct answer. We have

exceeded our valid range for 8-bit signed binary numbers.

1111 1111

0 111 10 11 7B16 12310

+ 0110 1111 + 6F,g + 111,0

1110 10 10 ea,6 234,o

-r

AX=0000 BX=00Q0 cx^oooo DX=0000 SP=FFEE BP=0000 si=oooa Di=oooa
DS=flFFD ES=flFFD SS=AFFD CS=fiFFD IP=0100 NV UP El PL NZ NA PO NC
flFFD:DIDO 7420 JZ 0122

-a

flFFD: 0100 mov al, 7b
flFFD: 0102 add al. fcf

flFFD:0104 int 20
flFFD:010L

-U 0100 0104
flFFD: BO? B MOV AL, 7B
flFFD:0102 04LF ADD AL, LF
flFFD:DICK CD20 INT 20

-g 104

AX=00EA BX=0D00 cx^oooo DX=000Q SP-FFEE BP=0 000 SI=000D Di=oaaa
DS=flFFD ES^flFFD SS=flFFD CS = flFFD IP=0104 0V UP El NG NZ AC PO NC
AFFD: aim CD20 INT 20

Fig. 18-45 Simple 8086/8088 addition problem which
produces an overflow.

Chapter 18 Arithmetic and Flags 297

0 10 0 0 111 BCD 47io 0 10 0 0 1 1 12 4716

+ 0011 0 110 BCD + 36-jo + 0011 0 1 1 02 + 3616

10 0 0 0 0 11 BCD o

co
00 , 0 111 1 1 0 12 7D16

Decimal (BCD) Binary

This is not the same as this!

-r
AX=DODD BX=ODOO
DS=flFFD ES=AFFD
flFFD:0100 74E0

CX=0000 DX=DDDD SP^FFEE BP=0000 SI=ODDD DI=0000
SS=flFFD CS=flFFD IP=D1D0 NV UP El PL NZ N A PO NC

JZ DIES

-a
flFFD:0100
flFFDiOlOE
flFFD:0104
flFFD : 0107
flFFD:OlOfl
flFFD:OIOS

flFFD:010D
flFFD:Q1QF
flFFD:Dill
flFFD:0110

flFFD:0115
flFFD:011b
6FFD:0117
flFFD:01IB

flFFD : dliID

mov al,47
add al,3L
mov [01A0],al
pushf
pop bx
mov [01Al],bx
mov al,47
add al,3L
daa
mov [01A3]/al
pushf
pop bx
mov [01A4],bx
int E0

1st operand (binary)
add Ed/ put sum in al (binary)
store sum
copy flags
retrieve flags
store flags
1st operand
add Ed, put sum in al (binary)
convert sum to BCD
store BCD sum
copy flags
retrieve flags
store flags
return to DEBUG

-g 011b

AX~0 0 A3 BX = FAT2
DS=AFFD ES=AFFD
flFFD:011B CDE0

CX-OOOD DX-Q000 SP=FFEE BP=0000 SI=0000 DI=D00D
SS=flFFD CS=flFFD IP-QllB OV UP El NG NZ AC P0 NC

INT E0

-d 01A0 01AF
flFFD:01A0 7D 0L FE S3 TE FA 73 LE-74 LI 7fl ED G5 7E LF }. yntax erro

Fig. 18-46 Binary vs. BCD addition.

Decimal Addition

Because of differences in the way binary and decimal

numbers round, and because numeric output to humans is

usually decimal, it is sometimes helpful to do arithmetic

calculations by using decimal numbers rather than binary

numbers. Actually, true decimal numbers are not used.

Rather a mixture of binary and decimal, called binary-

coded decimal, is used. (The method used to create BCD

numbers is covered in Chap. 1, and they have been discussed

subsequently. You should review that section of Chap. 1

now if you are unsure of what BCD numbers are or how

they are formed.)

One of the problems involved in using BCD numbers is

that as the binary nibbles are added invalid results are

sometimes obtained.

Most microprocessors have an instruction called decimal

adjust (or something similar). This instruction changes the

number in the accumulator to what it would be if the last

two numbers operated on had been packed BCD numbers

instead of binary numbers.

Let’s look at an example. Figure 18-46 is a decimal

addition problem which is compared to the binary version

of the same problem.

Notice first the difference between BCD and binary

addition. BCD addition is not at all the same as binary

addition. BCD is decimal addition using 4 bits to represent

each decimal digit.

The program shown in Fig. 18-46 will help you understand

the difference between binary and BCD addition (and

subtraction). This program does the addition problem twice,

once using binary numbers and once using BCD numbers.

The result of the binary addition is stored in memory

location 01A0I6, and the resulting flags in locations 01A1,6

and 01A216. The result of the BCD addition is stored in

location 01A316, and the resulting flags in locations 01A4!6

and 01A516. Assemble and run this program to see whether

you obtain the same results. When we ran the program we

found the following:

location 01A016 = binary sum = 7D

location 01A116 = binary flags (low byte) = 06

298 Digital Computer Electronics

Fig. 18-47 8086/8088 flag chart.

location 01A216 — binary flags (high byte) = F2

location 01A316 = BCD sum = 83

location 01A416 = BCD flags (low byte) = 92

location 01A516 = BCD flags (high byte) = FA

Figure 18-47 will help you understand what the stored

flag values mean.

When you store the value of the flag register (status

register), you can place the hexadecimal values on the chart

in Fig. 18-47. You can then convert the hexadecimal values

to binary values and look in the 0 row or 1 row to see what

conditions the flags indicate existed at a certain point in the

program.

In this example we have placed the values of the flags

after the binary addition in Fig. 18-48.

First notice that we have reversed the order of the

hexadecimal values for the flags. The PUSHF instruction

pushes the current value of the flags onto the stack. The

POP BX then retrieves that value into the BX register. At

this point the values are still in their correct order. In fact,

if you will refer to Fig. 18-46, those areas have been printed

in bold to illustrate this fact. Notice that BX contains

FA9216. Look at memory locations 01A416 and 01A516.

Notice that those 2 bytes have been reversed. PUSH and

POP instructions do not reverse the bytes. However, MOV

instructions do. The MOV instruction places the data into

memory in a low-byte/high-byte order, which has the effect

of reversing the bytes when the memory locations are

examined.

The binary addition problem produced an answer of 7D,6,

as we expected. There were no carries or overflows, and

we have even parity. These conditions are shown in bold

type in Fig. 18-48.

The BCD addition produced a sum of 83BCD, as we

thought it would. Don’t be concerned about the flags at this

point. Simply notice that they are different. They reflect

Fig. 18-48 Conditions after the binary addition.

Chapter 18 Arithmetic and Flags 299

Fig. 18-49 Conditions after the BCD addition.

conditions that result from the conversion from binary to

BCD (see Fig. 18-49.)

Subtraction

Subtraction is the opposite of addition. All the flags operate

the same except the carry flag. After subtraction, the carry

flag indicates whether a borrow has occurred or not. You

can think of it as a “borrow” flag. A 1 in the carry flag

position indicates that a borrow from a nonexistent bit was

required to do the subtraction. A 0 indicates that no borrow

was required.

Figure 18-50 illustrates how to write a program to do

single-precision subtraction.

You should assemble and run this program. When we

did, we found that the result in AL was FF. We also found

that there was an overflow, the answer was negative, and

there was a carry. The answer was negative because the

8th bit of the answer is a 1, which indicates an 8-bit

negative signed binary number. There was an overflow

because 7F16 = 12710 and 8016 = — 128IO; therefore

127

-(-128)

255

and 25510 is outside the valid range for 8-bit signed binary

numbers. (The valid range is + 127I0 to -12810.) There

was a carry because a borrow from a 9th bit was needed

to complete the subtraction.

Multiplication

The 8-bit microprocessors featured in this text do not have

a multiply instruction. To multiply, the programmer must

use many instructions to accomplish what the 8086/8088

does with just one instruction.

There are several ways the 8086/8088 can multiply. It

can multiply signed binary numbers by using the Integer

MULtiply (IMUL) instruction. It can also multiply unsigned

binary numbers by using the MULtiply (MUL) instruction.

Whether signed or unsigned, the 8086/8088 can multiply

two 8-bit binary numbers to produce a 16-bit answer or

two 16-bit binary numbers to produce a 32-bit answer.

AX=aDDD BX=DDDD CX=00DD DX=00DD SP=379E BP=D0DD SI=DDDD DI=DDDD
DS=qCQL. ES=9CflL SS=qCflb CS=9CflL IP=D1DD NV UP El PL NZ NA PO NC
SCflbrDIDD flBFE MOV DI,SI

-a
RCatrOlOO mov al,7f
9Cflt:D105 sub al,A0
qCAb:0104 int 20
qCAbrDlOb

-g 010<

AX=0QFF BX=000D CX=00D0 DX=0000 SP=3?qE BP=0000 SI=0000 DI=0000
Ds=qcab Es=qcAt ss^qcat cs=qcat, ip=oio< ov up ei ng nz na pe cy
qcat:0104 CD20 INT 2D

;load first operand
;subtract second operand
;return control to DEBUG

Fig. 18-50 Subtraction.

300 Digital Computer Electronics

IE

X FC

1DBB

B>DEBUG

-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=3?qE BP=0000 SI^OOOO DI=ODOO

DS=qCAb ES^qCAb SS=SCflb CS=qCAb IP=01D0 NV UP El PL NZ NA PO NC
qCAbrOlOO ABFE MOV DI,SI

-a
RCAb:0100
qCflt:0102
qCAb:0104
qCflb: 010b
qCAb:D10A

-g 10b

AX=1DA A BX^OOFC CX=0000 DX-0000 SP=3?SE BP=OODO 31=0000 DI=DDDD

DS=qC6b-ES=qefiL S3=qCflb-CS=qCflb-IP=010b-&V—UP El PL NZ NA PO CY
qCAb:010b CDED INT ED

mov al / IE ;first operand
mov bl, FC ;second operand
mul bl ;mul automatics
int E0 ;return control

(no immediate mode allowed)
lly uses value value in al or ax
to DEBUG

Fig. 18-51 Eight-bit multiplication on the 8086/8088.

If two 8-bit numbers are to be multiplied, one of them

must be placed in AL. The other can be in a register or

memory location. Immediate mode multiplication is not

allowed. That is, you cannot do this:

mov al,lE

mul al,FC

int 20

You cannot specify a number to be multiplied by the number

in AL in the instruction itself. You must move it to a

register or memory location.

The problem IE x FC and the program to solve it are

shown in Fig. 18-51.

FFE2

X 12D3

Notice that we moved the first number into AL and then

the second into BL. We then only needed to say

mul bl

because the microprocessor assumes that the first number

is in AL. The answer is placed in AX.

The only two flags that have any meaning after a MUL

or 1MUL instruction are the overflow and carry flags. If

the upper byte of the answer (AH) is 00, then both of these

flags will be cleared. Any other result in AH causes both

of these flags to be set. Since the value in AH in our

example is not 0, both the overflow and carry flags are set

after the program is run.

Figure 18-52 illustrates a 16-bit multiplication problem.

12DOCB46

B>DEBUG
-r
AX=0000 BX-DDDD
DS=9BBE ES=qBBF

-a

SBBF:DlDb

SBBF:DIDA

C3

mov ax, FFEE
mov bx, 12D3
mul bx
int E0

CX=0000
SS^qBBF

RET

DX-0000 SP=4<0E BP=0000 SI=0000 DI=0000
CS=SBBF IP=0100 NV UP El PL NZ NA PO NC

;first lb-bit operand
;second lb-bit operand
;multiply ax by bx
;return control to DEBUG

-g 10 A

AX = CB 4 b
DS=qBBF

BX=1ED3
ES=SBBF

qBBF: 010 A CDE0

CX=0000 DX = 12D0 SP^^iOE
SS=RBBF CS=qBBF IP=010A

INT ED

BP—0000 SI=0000 DI=000D
OV UP El PL NZ NA PO CY

Fig. 18-52 Sixteen-bit multiplication on the 8086/8088.

Chapter 18 Arithmetic and Flags 301

58 remainder 2

FB) 564A

B>DEBUG
-r
RX=DC1DD BX=0000 CX=DDOO DX=OOOD SP=4SDE
DS==IBRE ES=qBA2 SS=C1BR5 CS=qBAE IP=01D0
^BRE:ElEtRlDS RND [D5A1],SP

-a
3BA2: Q1DD mov ax f 5L4 A ;dividend (IL-bits
3BAE : D1D3 mov bl / EB ;divisor (fl-bits)
3BA2:D1D5 div bl ;divide ax by bl
3BAE:DliD? int 2D jreturn control to
3BA2:DlQq

-g ID?

Ax=oasa BX=DDEB CX=DDD0 DX=DDDD SP=< 5DE
DS^RBAE! E5=3BAE SS=RBA2 CS=qBA2 IP=D1D7
3BAE:□!□? CD20 INT 2D

BP=DDDD SI=DDDD DI=0DDD
NV UP El PL NZ NA P0 NC

DS : □ 5A1=EC103

DEBUG

BP=DDDO SI=DDDD DI=DDDD
NV UP El PL NZ AC PO CY

Fig. 18-53 A 16-bit number divided by an 8-bit number
using the 8086/8088 DIV instruction.

The process is similar to that used in 8-bit multiplication.

You use 16-bit registers instead of 8-bit, and the answer is

32-bits wide! The upper 2 bytes (16 bits) are found in DX,

and the lower 2 bytes are found in AX.

The flags respond as they do for 8-bit multiplication.

Division

We handle division in a way which is similar to, yet the

opposite of, the way multiplication is handled.

When division is done, the dividend (number to be

divided) must be twice as wide (16 or 32 bits) as the divisor

(8 or 16 bits). Figure 18-53 illustrates how a 16-bit dividend

is divided by an 8-bit divisor.

Notice how we again moved the operands into a register

to prepare for the actual division. Our 16-bit dividend

(564A16) was placed in AX and the 8-bit divisor (FB16) was

placed in BL. Notice that we simply say

div bl

and the microprocessor assumes we are dividing BL into

AX.

Now notice how the answer is displayed. The answer is

5816, with a remainder of 216. The quotient appears in the

lower half of AX (AL), and the remainder is in the upper

half of AX (AH). This is where the answer to a problem

which divides a 16-bit number by an 8-bit number is found.

Figure 18-54 illustrates how to divide a 32-bit binary

number by a 16-bit binary number.

To perform this type of problem, you must place the

most significant 16 bits of the dividend in register DX.

Place the least significant 16 bits of the dividend in register

AX. Then place the 16-bit divisor in BX or CX. After the

division the answer (quotient) will be found in register AX,

with the remainder in register DX.

GLOSSARY

ASCII American Standard Code for Information Inter¬

change. A binary code in which letters of the alphabet,

numbers, punctuation, and certain control characters are

represented.

BCD (binary-coded decimal) Decimal numbers which

replace each decimal digit with its 4-bit binary equivalent.

multiple-precision number A number which is composed

of more than one binary word.

single-precision number A number which is composed

of one binary word. In an 8-bit microprocessor this is an

8-bit number, and in a 16-bit microprocessor this is a 16-

bit number.

302 Digital Computer Electronics

_789A remainder 8

45CE } 20E28DF4

B>DEBUG
-r
AX=ODOQ BX=DDDD CX=DDDD DX=ODDD SP=4ECE BP=DDDD SI=DDDD DI=DDDD
DS=RB13 ES^BBIB SS=9B13 CS=SB13 IP=Q1DD NV UP El PL NZ NA PO NC
3B13: D1DD 7420 JZ 0125

-a
SB13:0100 mov dx,5DE5
3B13 : EI103 mov ax,flDE4
3B13:DIDO mov bx,45CE
3B13:0103 div bx
3B13:010B int 50
3B13:01DD

;most significant word of dividend
;least significant word of dividend
;divisor
;divide DXAX register pair by BX
;return control to DEBUG

-g 10b

AX = 7 AT A BX=4SCE CX=0D0D DX = D006 SP=4ECE BP=DGD0 SI=DDD0 DI=DDDD
DS=9B1.3 ES=qB13 SS^GBIB CS=RB13 IP=D10B NV UP El NG NZ AC PE CY
3B13:010B CD50 INT 50

Fig. 18-54 A 32-bit number divided by a 16-bit number
using the 8086/8088 microprocessor.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Binary-coded decimal numbers are decimal numbers

in which each digit is represented by its_-

_equivalent.

2. (4-bit binary) What is the binary value for 10lo?

3. {10102) When 8-bit binary numbers are added, the

carry flag indicates when a carry from the

_bit to the_bit has oc¬

curred.

4. (8th, 9th) When 8-bit binary numbers are added, the

half-carry flag indicates when a carry from the

_bit to the_bit has oc¬

curred.

5. (4th, 5th) A number which can be represented by 1

byte is called a_-precision number.

6. (single) After subtraction, the carry flag indicates

whether or not a_has occurred.

7. (borrow) Do the 8-bit microprocessors featured in

this text have multiply or divide instructions?

(No)

PROBLEMS

General

18-1. What two types of information are generated by

a microprocessor during addition?

18-2. What does 12 + 12 + I2 = ?

18-3. What is

1010 11102
+ 0011 01112

18-4. What is

0111 1111 0110 1101
+ 0001 1000 1111 quo

18-5. When we are using all 8 bits to represent the

numbers 110 to 25510, we refer to these as_

binary numbers.

18-6. When we use 8-bit binary numbers to represent

values from — 12810 to 3-12710, we refer to

these as_binary numbers.

18-7. Find the 8-bit signed binary value for — 10010.

18-8. What flag warns the programmer that the last

answer produced exceeds the valid range for

signed binary numbers?

18-9. What flag tells the programmer whether the

number in the accumulator is positive or nega¬

tive?

Chapter 18 Arithmetic and Flags 303

Specific Microprocessor Families

Solve the following problems using the microprocessor of
your choice.

18-10. Write a program which will add the unsigned

binary numbers 6716 and 2316. Determine which

flags are altered by the program and why.

18-11. Write a program which will subtract the signed

binary number 4D16 from 7F16. Determine which

flags are altered by the program and why.

18-12. Write a program which will add the decimal

numbers 4010 and 52I0.

18-13. With your computer or microprocessor trainer

store the unsigned binary numbers 6716 and 2316

in two consecutive memory locations. Now write

a program which will find the sum of these two

numbers and store the sum in a free memory

location. (8086/8088 users: To store 6716 and

2316 in memory locations use the DEBUG e

(enter) command. For example, typing

-e 0180 67 23 00 00

will enter 67, 23, 00, and 00 into memory loca¬

tions 0180, 0181, 0182, and 0183, respectively.)

304 Digital Computer Electronics

Logical Instructions
This chapter discusses the logical instructions of our featured

microprocessors. These instructions, along with the arith¬

metic and shift and rotate instructions, give us the ability

to alter bits and bytes (data) in a predictable fashion.

You may wish to review logic gates before beginning

this chapter. Microprocessors use logical instructions the

way digital circuits use logic gates.

New Concepts
There are really only four basic logical functions: and, or,
exclusive-or, and not. The nand, nor, exclusive-nor,
and NEGate functions are simply extensions of the four

basic functions.

We will look at each of the basic four plus a couple of

other special instructions some of the microprocessors have.

We will also discuss masking, a primary use of the logical

instructions.

19-1 THE and INSTRUCTION

When we and 2 bits or conditions, we are saying that the

output bit, or condition, is true only if both the input bits,

or conditions, are true. For example, there will be a voltage

at the output of a circuit only if there is voltage at both of

Input Output

B A Y

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 19-1 and truth table.

0110 1110

AND 1 1 0 0 0 1 0 0

0100 0100

Fig. 19-2 ANDing 2 bytes together.

0 AND 0

1 AND 0

1 AND 1

1 AND 0

0 AND 0

1 AND 0

1 AND 1

0 AND 1

is 0

is 0

is 1

is 0

is 0

is 0

is 1

is 0

its inputs. Or, a bit in memory will be 1 only if 2 other

input bits are also 1. Or, a drill will begin to lower only if

the workpiece has been secured and the worker’s hands are

away from the bit.

ANDing Bits

The truth table to and 2 bits, or conditions, is shown in

Fig. 19-1. Notice that the only way to get a 1 out is to put

two Is in.

ANDing Bytes

We can and entire bytes, or words also. We simply apply

the logic shown in the table to each bit. It’s almost like

turning a truth table on its side. For example, a problem in

which we must and 2 bytes is shown in Fig. 19-2.

Notice that we have applied the logic from the and truth

table to each bit. The only Is in the answer are in columns

where both the inputs are also 1.

EXAMPLE 19-1

Solve the following logical problem.

1011 1110 and 0111 0001 is ???? ????

305

SOLUTION

1011 1110

AND 01110001

0011 0000

Masking

A common use of the and instruction is to and bits or

bytes with a mask. A mask allows us to change some bits

in a certain way while allowing others to pass through

unchanged. Look at the example shown in Fig. 19-3.

Notice that the upper nibble of the data byte passed

through the Is of the mask unchanged. However, every bit

of the lower nibble passing through the 0s was cleared.

ANDing a mask to data can be viewed in either of two

ways. You can say that selected data bits pass through

unchanged while all others are cleared. Or, you can say

that selected data bits are cleared while others pass through

unaltered.

EXAMPLE 19-2

Devise a mask which when ANDed to an 8-bit data byte

will clear all bits except the’first 2 (2 least significant bits).

SOLUTION

0000 0011

For example:

11111111 data

and 0000 0011 <— mask

0000 0011

Input Output

B A Y

0 0 0

0 1 1

1 0 1

1 1 1

Fig. 19-4 or truth table.

look at it another way, the only way to get a 0 out is to

have 0s at both inputs.

ORing Bytes

We can or entire bytes, or words also. We simply apply

the logic shown in the table to each bit. For example, the

same problem used in the previous section, but now ORing

the 2 bytes together, is shown in Fig. 19-5.

Notice that we have used the logic from the or truth

table and applied it to each bit. The only 0s in the answer

are in columns where both the inputs are also 0.

EXAMPLE 19-3

Solve the following logical problem.

1011 1110 or 0111 0001 is ???? ????

SOLUTION

1011 1110

OR 0111 0001

mi mi

19-2 THE or INSTRUCTION

When we or 2 bits or conditions, we are saying that the

output will be true (or 1) if either of the input bits or

conditions is true (1) or if both of the input bits or conditions

are true.

ORing Bits

The truth table to OR 2 bits or conditions is shown in Fig.

19-4.

Notice that you get a 1 out if any input is a 1. Or, to

Masking

A common use of the or instruction is to or bits or bytes

with a mask. A mask allows some bits to pass through

unchanged while others are changed in a certain way. Look

at the example shown in Fig. 19-6.

0 110 1110

OR 1 1 0 0 0 1 0 0

1110 1110

0 AND 0 is 0

1 AND 0 is 1

1 AND 1 is 1

1 AND 0 is 1

0 AND 0 is 0

1 AND 0 is 1

1 AND 1 is 1

0 AND 1 is 1

AND

10 0 1

1111

10 0 1

0 0 0 0

• data

■ mask

1001 0000

Fig. 19-3 Using the and instruction to mask bits. Fig. 19-5 ORing two bytes together.

306 Digital Computer Electronics

1 0 0 1 1 0 0 1 --data

OR 1 1 1 1 0 0 0 0 -*-mask

1111 1001

Fig. 19-6 Using the or instruction to mask bits.

Notice that the lower nibble of the data byte passing

through the 0s of the mask was unchanged while every bit

of the upper nibble passing through the Is was set.

ORing a mask to data can be viewed in either of two

ways. You can allow selected data bits to pass through

unchanged while all others are set. Or, you can allow

selected data bits to be set while all others pass through

unaltered.

EXAMPLE 19-4

Devise a mask which when ORed to an 8-bit data byte will

set all bits except the first 2 (2 least significant bits).

SOLUTION

mi noo
For example:

0000 0000 <— data

or 1111 1100 <— mask

1111 1100

0 110 1110

XOR 1 1 0 0 0 1 0 0

1010 1010

0 and 0 is 0

1 AND 0 is 1

1 AND 1 is 0

1 AND 0 is 1

0 AND 0 is 0

1 AND 0 is 1

1 AND 1 is 0

0 AND 1 is 1

Fig. 19-8 xoRing two bytes together.

Notice that the only way to get a 1 out is to have one,

but not both, of the inputs be a 1.

xoRing Bytes

We can xor entire bytes, or words also. We simply apply

the logic shown in the table to each bit. For example, the

same problem shown in the previous two sections, but this

time xoRing the 2 bytes, is shown in Fig. 19-8.

Notice that we have used the logic from the xor truth

table and applied it to each bit. The only Is in the answer

are in columns where one but not both the inputs are 1.

EXAMPLE 19-5

Solve the following logical problem.

19-3 THE EXCLUSIVE-OR (EOR, XOR)
INSTRUCTION

When we exclusively or (eor, xor) 2 bits or conditions,

we are saying that the output bit or condition is true only

if one or the other of the input bits or conditions is true,

but not both. For example, there will be a voltage at the

output of a circuit only if there is voltage at one or the

other, but not both, of its inputs.

xoRing Bits

The truth table to xor 2 bits or conditions is shown in Fig.

19-7.

Input Output

B A Y

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 19-7 xor truth table.

1011 1110 XOR 0111 0001 is ???? ????

SOLUTION

1011 1110
xor 0111 0001

noo mi

Masking

A common use of the xor instruction is to xor bits or

bytes with a mask. A mask allows some bits to pass through

unchanged while others are changed in a certain way. Look

at the example shown in Fig. 19-9.

Notice that the lower nibble of the data byte passed

through the 0s of the mask unchanged while every bit of

the upper nibble passing through the Is was inverted.

xoRing a mask to data can be viewed in either of two

ways. You can allow selected data bits to pass through

1 0 0 1 1 0 0 1 -data

xor 1 1 1 1 0 0 0 0 -mask

0110 1001

Fig. 19-9 Using the xor instruction to mask bits.

Chapter 19 Logical Instructions 307

unchanged while all others are inverted. Or, you can allow

selected data bits to be inverted while all others pass through

unaltered.

EXAMPLE 19-6

Devise a mask which when xoRed to an 8-bit data byte

will invert all bits except the first 2 (2 least significant bits).

SOLUTION

mi lioo

For example:

mi mi <—data

xor nil noo <— mask

0000 0011

19-4 THE not INSTRUCTION

When we not or invert bits or conditions, we are saying

that the output bit or condition is the opposite of the input

bit or condition. For example, if there is a voltage at the

input, there will not be one at the output; or if there is no

voltage at the input, there will be a voltage at the output.

NOT-ing (Inverting) Bits

The truth table for the not function is shown in Fig.

19-10.

Input Output

A Y

0 1

1 0

Fig. 19-10 not truth table.

NOT-ing (Inverting) Bytes

We can not or invert entire bytes, or words also. We

simply apply the logic shown in the table to each bit. An

example of inverting or complementing a number is shown

in Fig. 19-11.

NOT 1111 0000 is 0000 1111

Fig. 19-11 “NOT-ing” or inverting a binary number.

Notice that we have changed every 0 to a 1 and every 1

to a 0—that is, we have inverted every bit of the byte.

This is the l’s complement of the number.

EXAMPLE 19-7

Solve the following logical problem.

not 1011 1110 is ???? ????

SOLUTION

0100 0001

19-5 THE neg (negATE)
INSTRUCTION

The NEGate instruction finds the 2’s complement of a

number. To find the 2’s complement, we first find the l’s

complement and then add 1. An example is shown in Fig.

19-12.

Specific Microprocessor
Families
Let’s see how these instructions work in the different

microprocessor families.

19-6 6502 FAMILY

The 6502 has three of the instructions discussed in the New

Concepts section of this chapter plus one instruction not

discussed there. These are the and, or, eor, and bit

instructions. Let’s look at each.

The and Instruction

The 6502 and instruction works exactly as described in the

New Concepts section. If we use the same example we

used in Fig. 19-3 in the New Concepts section, we will

find that the 6502 does in fact and bytes as discussed.

Figure 19-13 shows our original problem and solution

plus a 6502 program which solves the problem. After

running this program, you will find that the accumulator

contains 90,6. This is exactly what we expected after 9916

was masked with F016.

1111 0000 -number

0 0 0 0 1 1 1 1 - 1's complement

+_1_ -add 1

0001 0000 -2's complement (original number NEGated)

Fig. 19-12 NEGating a number (2’s complement).

308 Digital Computer Electronics

1 0 0 1 1 0 0 1 --data

and 1 1 1 1 0 0 0 0 -*-mask

1001 0000

0340 AO qq LDA *$qq

0345 30 FO AND #$FO
□ 344 □□ BRK

Fig. 19-13 Using the 6502 and instruction to mask bits.

1 0 0 1 1 0 0 1 --data

OR 1 1 1 1 0 0 0 0 -*-mask

1111 1001

U3AU ar qq lda #$qq

□ 343 00 FO ORA #$FO

3344 00 BRK

Fig. 19-14 Using the 6502 or instruction to mask bits.

If you check the 6502 instruction set, you will find that run the program. We expected the accumulator to have 6916

the and instruction affects the negative and zero flags. In after EORing.

this case the negative flag is set because the 8th bit of the The eor instruction also affects the negative and zero

accumulator is 1, indicating a 2’s-complement negative flags. This time neither is set; the result is neither negative

number. nor zero.

;load A with 1001 1001
;OR mask
; stop

;load A with 1001 1001
;AND mask
; stop

The or Instruction

The 6502 or instruction also works exactly as described in

the New Concepts section. If we use the example from Fig.

19-6 in the New Concepts section, we find that the 6502

does or bytes as discussed there.

Figure 19-14 shows our original problem and solution

plus a 6502 program which solves the problem. After

entering and running the program, you will find that the

accumulator contains F916. This is the value we expected

the accumulator to have.

The or instruction also affects the negative and zero

flags. You will find that the negative flag is again set

because the 8th bit is 1, indicating a 2’s-complement
negative number.

The eor Instruction

The 6502 eor instruction also works as described in the

New Concepts section. If we use the example from Fig.

19-9 in the New Concepts section, we’ll find that the 6502

does eor bytes as discussed there.

Figure 19-15 shows our original problem and solution

plus a 6502 program which solves the problem. Enter and

The bit Instruction

The bit instruction was not described in the New Concepts

section and is somewhat unusual. Refer to the bit instruction

in the Expanded Table of 6502 Instructions Listed by

Category.

The bit instruction ands a memory location with the

accumulator. However, the result is not stored anywhere.

Neither the accumulator nor the memory location is changed.

If the result of the and is zero, the zero flag is set. If

the result is not zero, the zero flag is not set.

The negative and overflow flags are affected in an unusual

way. The status of the negative and overflow flags is not

determined by the result of the and process but rather is

copied from bits 6 and 7 (7th and 8th bits) of the memory
location.

A program which illustrates the operation of the bit

instruction is shown in Fig. 19-16.

The bit instruction is useful when using the flags to

control branching. You can alter the flags with a logical

condition without actually changing the accumulator or

memory location.

1 0 0 1 1 0 0 1 -data

EOR 1 1 1 1 0 0 0 0 -mask

0110 1001

□ 340 Aq qq LDA #$qq ;load A with 1001 1001

□ 343 40 FO EOR #$F0 ;E0R mask
□ 344 00 BRK ;stop

Fig. 19-15 Using the 6502 eor instruction to mask bits.

Chapter 19 Logical Instructions 309

034D A3 CO LDA #$CO ;load A with 1100 □□□□
□ 342 AD A0 □ 3 STA #Q3AD ;store HDD □□□□ in location □ 3AD
□ 34 5 Ag □ □ LDA #$□□ ; load A with □□□□ □□□□
□ 34 7 EC A0 □ 3 BIT $□3 AD ;AND A (□□□□ □□□□) with D34D (HDD
□ 34 A □ □ BRK ; stop

After running the program:

negative flag = 1/ overflow flag = 1, break flag = 1/ zero flag = 1, accumulator = □□
Fig. 19-16 Using the 6502 bit instruction.

19-7 6800/6808 FAMILY

The 6800/6808 has all the instructions discussed in the New

Concepts Section plus one instruction not discussed there.

These are the anda/andb, oraa/orab, eora/eorb, bita/

bitb, com/coma/comb, and neg/nega/negb instructions.

Notice that each instruction has a mnemonic for each

accumulator and that some (com and neg) have one for

memory locations also. Let’s look at each.

Clearing the Flags

The 6800/6808 examples which follow cover both the result

of the logical operation and the condition of the flags. It is

helpful to be able to clear the flags before the examples are

run so that the previous condition of the flags is not confused

with the effect the example had on the flags.

Place the following program in an area of memory you

do not plan to use for the examples. Then run this program

to clear both accumulators and all flags before running each

example program.

xxxx 4F CLRA ;clear A

xxxx 5F CLRB ; clear B

xxxx 06 TAP ;clear flags

xxxx 3E WAI ;stop

The anda/andb Instruction

The 6800/6808 and instruction works exactly as described

in the New Concepts section. If we use the same example

we discussed in the New Concepts section (Fig. 19-3), we

will find that the 6800/6808 does in fact and bytes as

discussed.
Figure 19-17 shows our original problem and solution

plus a 6800/6808 program which solves the problem. If

you will notice the condition of the accumulator and flags

after running this program, you will find that the accumulator

contains 90,6 as we expected.

If you check the 6800/6808 instruction set, you will find

that the and instruction affects the negative and zero flags.

(The overflow flag is always cleared.) In this case the

negative flag is set because the 8th bit of the accumulator

is 1, indicating a 2’s-complement negative number. (It is

assumed that the flags just discussed were cleared before

the program was started.)

The oraa/orab Instruction

The 6800/6808 oraa/orab instruction also works exactly

as described in the New Concepts section. We’ll use the

example found in Fig. 19-6 in the New Concepts section.

Figure 19-18 shows our original problem and solution

plus a 6800/6808 program which solves the problem. After

entering and running the program, you will find that the

accumulator contains F916. This is what we expected.

The or instruction also affects the negative and zero

flags. (The overflow flag is always cleared.) The negative

flag is again set because the 8th bit of A is 1, indicating a

2’s-complement negative number.

The eora/eorb Instruction

Let’s look at the 6800/6808 eora/eorb instruction. If we

use the example from Fig. 19-9 in the New Concepts

section, we will find that the 6800/6808 does eor bytes as

discussed.

Figure 19-19 shows our original problem and solution

from Fig. 19-9 plus a 6800/6808 program which solves the

problem. Enter and run the program. You will find that the

accumulator contains 69,6.

The eor instruction also affects the negative and zero

flags. (The overflow flag is always cleared.) In this case

neither was set; the result is neither negative nor zero.

1 0 0 1 1 0 0 1 -data

and 1 1 1 1 0 0 0 0 -mask

1001 0000

□□□□ al gg
□ □□e A4 FO
□ □□4 3E

ldaa #$gg
ANDA #$F0
WAI

Fig. 19-17 Using the 6800/6808 and instruction to mask bits.

;load A with 1QD1
;AND mask
; stop

310 Digital Computer Electronics

1 0 0 1 1 0 0 1 -data

OR 1 1 1 1 0 0 0 0 -mask

1111 1001

□□□□ at sr ldaa #$qq

□ 002 aA FO ORAA *$FO
0004 3E WAI

Fig. 19-18 Using the 6800/6808 oraa/orab instruction to
mask bits.

;load A with 1001 1001
;0R mask
; stop

1 0 0 1 1 0 0 1 -data

XOR 1 1 1 1 0 0 0 0 -mask

0110 1001

□ooo at qq ldaa #$qq

□002 aa FO EORA #$FO
UUUA 3E WAI

Fig. 19-19 Using the 6800/6808 eora/eorb instruction to
mask bits.

;load A with 1001 1001
;EOR mask
; stop

The bita/bitb Instruction

The bit instruction was not described in the New Concepts

section. Refer to the bit instruction in the Expanded Table

of 6800/6808 Instructions Listed by Category.

The bit instruction ands a memory location with one of

the accumulators. However, the result is not stored any¬

where. Neither the accumulator nor the memory location

is changed.

If the result of the and is zero, the zero flag is set. If

the result is not zero, the zero flag is not set. If the result

of the and is a negative 2’s-complement number, the

negative flag is set. Regardless of the result, the overflow

flag is cleared.

A program which illustrates the operation of the bit

instruction is shown in Fig. 19-20.

The bit instruction is useful when the flags are used to

control branching. You can alter the flags with a logical

condition without actually changing the accumulator or

memory location.

The com/coma/comb Instruction

The complement instruction (com/coma/comb) finds the

l’s complement of each bit in the byte that’s being

complemented. That is, it inverts every bit in the byte. An

example problem and a 6800/6808 program to solve the

problem are shown in Fig. 19-21.

After running this program, you should find 5516 in A

and the carry flag set.

Referring to the 6800/6808 instruction set, you will find

that the com instructions affect the negative and zero flags.

In addition, they always clear the overflow flag and set the

carry flag. In this example the negative flag is clear because

the result (55]6) is not a negative number. Nor is it zero;

therefore the zero flag is not set. The overflow flag is

automatically cleared, and the carry flag automatically set.

The NEG/NEGA/NEGB Instruction

The neg/nega/negb (negate) instructions are very similar

to the com/coma/comb instructions. The neg instructions,

□000 at FF
□□□2 as co
UUUA 3E

LDAA #$FF

BITA #$co
WAI

;load A with 1111 1111
;AND A with 1100 0000
; stop

After running the program:

A = FF flags = 001000

Fig. 19-20 Using the 6800/6808 bita instruction.

10 10 10 10 -original number (AA-|6)

0 10 1 0 10 1 -1's complement of original number (5516)

□ □□□ at, AA LDAA *$AA

0002 A 3 COMA

0003 3E WAI

Fig. 19-21 Using the 6800/6808 com/coma/comb

instructions.

;load A with 1010 1010
;invert all bits (0101 0101) (55h)
; stop

Chapter 19 Logical Instructions 311

-*-original number (95-iq)

-Vs complement

-plus 1

-2's complement (-95-iq)

;load A with DID! 1111

; E 1 s complement of A
; stop

0 10 1 1111

10 10 0 0 0 0

+ 1

10 10 0 0 0 1

□□□□ AG 5F LDAA#$5F
□ DDE A 0 NEGA
□ □□3 3E WAI

Fig. 19-22 Using the 6800/6808 neg/nega/NEGB

instructions.

however, find the 2’s complement of a number instead of

the l’s complement. Recall that the 2’s complement is

found by first finding the l’s complement and then add¬

ing 1.

Figure 19-22 shows an example problem and program

using the negate instruction.

After running the program you will have Al16 in the

accumulator and the negative and carry flags set.

The negative flag is set because the 8th bit of A is set

indicating a 2’s-complement negative number.

Why the carry flag is set requires a little explanation.

One way to look at a 2’s-complement number is to view it

as a l’s-complement number with 1 added to it. There is

another point of view, however.

Remember how we described the creation of negative

numbers as being like rotating an odometer backward? The

original number used in this example is 0101 11112, which

is 9510. If we rotate our odometer backward from 00 by 95

places, we will arrive at the binary number 1010 0001.

Rotating the odometer backward from 00 is the same as

subtracting from 00.

Now think about subtracting a number from 00. Would

a borrow from the carry bit be required? Yes, because any

number is larger than 0 and a borrow would be required to

subtract it from 00. To subtract 95 from 00 requires a

borrow, which is why the carry flag is set.

If you think about it, the carry flag would have been set

regardless of what number we would have used. When you

use the NEG instruction, the only time the carry flag won’t

be set is if you negate the number 00, because subtracting

00 from 00 does not require a borrow.

19-8 8080/8085/Z80 FAMILY

The 8080/8085/Z80 has four of the instructions discussed

in the New Concepts section, although one has a different

name. These are the and (ana [and]), or (ora [OR]), xor

(xra [XOR]), and not (CMA [CPL]) instructions. (Z80 mne¬

monics are shown in brackets.) Let’s look at each.

The ana [and] Instruction

The 8080/8085/Z80 ana [and] instruction works as de¬

scribed in the New Concepts section. If we use the example

from Fig. 19-3 in the New Concepts section, we will find

that the 8080/8085/Z80 does in fact and bytes as discussed.

Figure 19-23 shows our original problem and solution

plus an 8080/8085/Z80 program which solves the problem.

If you will notice the condition of the accumulator and flags

after running this program, you will find that the accumulator

has a 9016 in it as we expected. The sign, auxiliary carry,

and parity flags will be set.

If you check the 8085/Z80 instruction set, you will find

that the and instruction affects the sign, zero, and parity

1 0 0 1 1 0 0 1 -data

and 1111 0000 -*-mask

1001 0000

A0A5 program

1 ACID 3E qq mvi A,qq ; load A with 1001 1DD1
1A02 0G FO MVI B fFO ;load B with mask (1111 DDDD)
1AD4 AQ ANA B ;AND A with mask
IADS ?G HLT ; stop

ZAD ; program

1 ADO 3E qq ld A,qq ;load A with 1DD1 1D01
1ADE □ G FO LD B,FO ;load B with mask (1111 0000)
iack AD AND B ; AND A with mask

1AD5 7G HALT ; stop

Fig. 19-23 Using the 8080/8085/Z80 ana [and] instruction
to mask bits.

312 Digital Computer Electronics

10 0 1 1

OR 1111 0

1111 1

fiOflB program

1600 3E 33 MVI Af33
IflO 3 0b FO MVI B,FO

1A04 B0 ORA B

1605 7b HLT

ZAO program

1600 3E 33 LD A,33
1603 0b FO LD B,FO
1A 04 B0 OR B
1605 7b HALT

Fig. 19-24 Using the 8085/Z80 or instruction to mask bits.

flags. The and instruction always sets the auxiliary carry

[half-carry] flag and always clears the carry flag. (Note: If

you are using an 8080 microprocessor, the auxiliary flag

works a little differently than it does in the 8085 and Z80.

Check the Expanded Table.)

The sign flag is set because this is a negative number.

The zero flag is clear because the result was not zero. The

auxiliary flag is set because it is always set by this instruction.

The parity flag is set because there are an even number of

Is. And the carry flag is clear because that flag is always

cleared by the and instruction.

The ora [or] Instruction

The 8085/Z80 or instruction also works as described in the

New Concepts section. We’ll use the example from Fig.

19-6 in the New Concepts section.

Figure 19-24 shows our original problem and solution

plus an 8085/Z80 program which solves the problem. After

entering and running the program, you will find that the

0 1 -*-data

0 0 -*-mask

0 1

;load A with number (1001 1001)

;load B with mask (1111 □□□□)

;0R number and mask

; stop

;load A with number (!□□! !□□!)

;load B with mask (1111 □□□□)

;OR number and mask

; stop

accumulator has a value of F916 and that the sign and parity

flags have been set.

We expected the accumulator to have F916 after ORing.

The or instruction set the sign flag because F916 is a 2’s-

complement negative number. The parity flag is set because

there are an even number of Is in F916 (1111 10012). The

zero flag is clear because the result (F916) is not zero. All

other flags are automatically cleared by the or instruction.

The xra [xor] Instruction

Let’s look at the 8085/Z80 xor instruction. If we use the

example from Fig. 19-9 in the New Concepts section, we’ll

find that the 8085/Z80 does xor bytes as discussed.

Figure 19-25 shows our original problem and solution

plus an 8085/Z80 program which solves the problem. After

entering and running the program, you will find that the

accumulator contains 6916 and that only the parity flag is

set. Examine the figure and the Expanded Table to find

why this is so.

1 0 0 1 1 0 0 1 -data

xor 1 1 1 1 0 0 0 0 -mask

0110 1001

6065 program

1 ADD 3E 33 MVI A,33 ; load A with number (10D1 1001)
1603 0b FO MVI B,FO ; load B with mask (1111 0000)

1604 Afl XRA B ; XOR number with mask

1605 7b HLT ; stop

zao program

1600 3E 33 LD A,33 ; load A with number (1001 1D01)

1603 0b FO LD B,FO ; load B with mask (1111 0000)

1604 Afl XOR B ; XOR number with mask

1605 7b HALT ; stop

Fig. 19-25 Using the 8085/Z80 xor instruction to mask

bits.

Chapter 19 Logical Instructions 313

NOT 1010 1010 is 0101 0101

A0A5 program

1A 0 0 BE AA MVI A , A A ;load A with 1010 1010

1A0E 2F CMA ;invert all bits (0101 0101) (S5h)
1A03 7b HLT ; stop

ZAO program

1A 00 BE AA LD A,AA ;load A with 1010 1010
1A 02 2F CPL ;invert all bits (0101 0101) (5Sh)
1A03 7b HALT ; stop

Fig. 19-26 Using the 8085/Z80 complement instruction.

The cma [cpl] Instruction

The complement instruction (cma [CPL]) finds the l’s

complement of each bit in the byte that’s being comple¬

mented. That is, it inverts every bit in the byte. An example

problem and an 8085/Z80 program to solve the problem

are shown in Fig. 19-26.

After running this program, you should find the value

5516 in A. If you are using an 8085, you will find that none

of the flags has been affected or changed by the CMA

instruction. If you are using a Z80, you will find that the

half-carry and parity flags have been set. The Z80 always

sets these two flags after the CPL instruction.

19-3 in the New Concepts section, we find that the 8086/

8088 does in fact and bytes as discussed.

Figure 19-27 shows our original problem and solution

plus an 8086/8088 program which solves the problem.

Notice the condition of the accumulator and flags before

and after running this program.

After masking 9916 with F016, 9016 is exactly what we

expected. If you check the 8086/8088 instruction set, you

will find that the and instruction affects the sign, zero, and

parity flags. The overflow and carry flags are always cleared

(NV, NC), and the auxiliary flag is undefined. In this case

the sign flag is set (NG) because the 8th bit of the accumulator

is 1, indicating a 2’s-complement negative number.

19-9 8086/8088 FAMILY

The 8086/8088 has all the instructions discussed in the New

Concepts section. These include the and, or, xor, not,

and neg instructions. Let’s look at each.

The and Instruction

The 8086/8088 and instruction works as described in the

New Concepts section. If we use the example from Fig.

The or Instruction

The 8086/8088 OR instruction also works as described

earlier in the New Concepts section. We’ll use the example

from Fig. 19-6 in the New Concepts section.

Figure 19-28 shows our original problem and solution

plus an 8086/8088 program which solves the problem. After

entering and running the program, you will find that AL

has a value of F9,6 as we expected.

1 0 0 1 1 0 0 1 -data

and 1 1 1 1 0 0 0 0 -mask

1001 0000

ax=oodo bx=oooo cx^ooaa dx=oooo sp=f?be bp=dddd si^odoo di^oooo

ds^boaa es=roaa ss^qoaA cs=qoAA ip=qioo nv up ei pl nz na po nc

qoa a:Bern mov AL,qq

-a 100

R0AA:010D MOV AL,qq

BOA A : 0102 AND AL/EO

BOflAiOlO^ INT 50

B0AA:010b

-g U1UA

AX=00B0 BX=0000 CX=0000 DX=0□□□ SP=F75E BP=D00D SI=DDDD DI=0000

DS=B0AA ES=B0AA SS=B0AA CS=BDAA IP=01QA NV UP EI NG NZ NA PE NC

BOAAiDIOA CD20 INT ED

;load A with 1001 1001

; AND A with mask

;return control to DEBUG

Fig. 19-27 Using the 8086/8088 and instruction to mask bits.

314 Digital Computer Electronics

1001 1001

OR 1 1 1 1 0 0 0 0

1111 1001

data

mask

-r

flX=DD00 BX=0D00 CX=D00D DX=0CD0 SP=Ffl3E BP=0DDD SI=0DDD DI=DDDD
DS=qo7c Es=qa?c ss=qo?c cs=qa?c ip=oiod nv up ei pl nz nr po nc
3D7C:BDqq MOV AL,qq

-a

^□?C:D1DQ MOV AL,99
907C:D1CIE OR AL,F0
907C:D1D4 INT ao
9D7C:Dint

-g IUA

flX=DOFq BX=DDDD CX=0000 DX=D0DD SP=Ffl3E BP=000D SI=0000 DI=DD00
DS=qD7C ES=q07C SS=qD7C CS=qD?C IP=01CK NV UP EI NG NZ NR PE NC
C\U?C:UIUA CDED INT EG

;load A with number (IDDl !□□!)
;OR number and mask
; stop

Fig. 19-28 Using the 8086/8088 or instruction to mask bits.

The or instruction also affects certain flags. The sign

flag is set (NG) because this is a 2’s-complement negative

number. The overflow flag is cleared (NV) because the or

instruction always clears it. The carry flag is also cleared

for the same reason (NC). We have even parity (PE), and

the result is not zero (NZ).

The xor Instruction

Let’s look at the 8086/8088 xor instruction using the

example from Fig. 19-9 in the New Concepts section.

Figure 19-29 shows our original problem and solution

plus an 8086/8088 program which solves the problem. After

entering and running the program, you will find that AL

has a value of 6916. This is what we expected.

The xor instruction affects the flags in the same way as

the OR and and instructions. Examine the flags that are

affected by this instruction to see whether they responded

as you expected.

The not Instruction

The invert instruction (NOT) finds the l’s complement of

each bit in the byte that’s being complemented. That is, it

inverts every bit in the byte. An example problem and an

8086/8088 program to solve the problem are shown in Fig.

19-30.

After running this program, you should find the value

5516 in AL. And since this instruction does not affect any

1 0 0 1 1 0 0 1 -data

XOR 1 1 1 1 0 0 0 0 -mask

0110 1001

-r

AX^DDDD BX=DDCm
DS=ci □ 9F ES=909F
9D9F:7<ED

-a
9D9F:MOV AL
909F:D1DE XOR AL
9G9F:DICK INT EG
9D9F

-g IDA

AX=00L9 BX=DG0Q CX^DDOD DX=0GGD SP=FLGE BP-DGGD SI=000D DI=DG0G
DS=9G9F ES=9G9F SS=9G9F CS=9D9F IP=G1D< NV UP EI PL NZ NA PE NC
9D9F:Q1D4 CDED INT ED

Fig. 19-29 Using the 8086/8088 xor instruction to mask bits.

CX=DDDD DX=DDG0 SP=FLDE BP=00D0 SI=DDDD DI=DDDD
SS=9D9F CS=909F ip=dioo nv up EI PL nz na po nc

JZ D1EE

;load A with number (1D01 IDDl)
;XOR number with mask (1111 □□□□)
;return control to DEBUG

Chapter 19 Logical Instructions 31 5

NOT 10 10 10 10 is 0 10 1 0 10 1

-r
ax=oooo bx=oooo cx=oooo dx=oooq sp=fbie bp=oooo si=dodo di=dddd
DS-HOAE ES=H0AE SS=H0AE CS=R0AE IP=0100 NV UP El PL NZ NA PO NC

HOAE:0100 74E0 JZ 01EE

-a

HOAE:0100 MOV AL, A A

HOAE:010E NOT AL

H0AE:D1Q< INT ED
HOAE:DIDO

-g 104

AX=0055 BX=DDDD CX=OODO DX^OOOO SP-F51E BP=OOOD SI=0000 DI=0000

DS=SOAE ES=SOAE SS=HOAE CS^HOAE IP=0104 NV UP El PL NZ NA PO NC

HDAE:DICK CDED INT EO

Fig. 19-30 Using the 8086/8088 not instruction.

;load A with number (1010 1D1D)

;invert all bits of number (D1D1 D1D1) (55h)

;return control to DEBUG

flags, you should find that every flag is exactly as it was

before the instruction was executed.

The neg Instruction

The neg (negate) instruction is very similar to the not

instruction. The neg instruction, however, finds the 2’s

complement instead of the l’s complement. Recall that the

2’s complement is found by first finding the l’s complement

and then adding 1.

Figure 19-31 shows an example problem and program

using the negate instruction. After running the program,

you will have Al16 in the accumulator.

Notice also that the sign flag is set (NG) as well as the

carry flag (CY).

The negative flag is set because the 8th bit of AL is set

indicating a 2’s-complement negative number.

Why the carry flag is set requires a little explanation.

One way to look at a 2’s-complement number is to view it

as a l’s-complement number with 1 added to it. There is

another point of view, however.

Remember how we described the creation of negative

numbers as being like rotating an odometer backward? The

original number we used in this example is 0101 111 12,

which is 9510. If we rotate our odometer backward from

00 by 95 places, we will arrive at the binary number 1010

0001. Rotating the odometer backward from 00 is the same

as subtracting from 00.

Now think about subtracting a number from 00. Would

a borrow from the carry bit be required? Yes, because any

0 10 1 1111 -original number (95qo)

1 0 1 0 0 0 0 0 -Vs complement

+ 1 -plus 1

1 0 1 0 0 0 0 1 -2's complement (-95io)

-r

AX-0000 BX=D0DD
DS=R0EA ES=H0EA

R0EA:0100 74E0

-a

HDEA:0100 MOV AL

HDE A : OIjOE NEG AL

HOEA:0104 INT E0

HOEA:Q1QL

-g 104

AX=00A1 BX=0000 CX=0000 DX=0000 SP^FISE BP=0000 SI=0000 DI=0000

DS=H0EA ES=H0EA SS^HOEA CS^ROEA IP=D104 NV UP El NG NZ NA PO CY

HOEA:0104 CDE0 INT E0

Fig. 19-31 Using the 8086/8088 neg instruction.

CX^OOOO DX=00□0 SP=F15E BP=0000 SI=0000 DI^OOOO

SS^HOEA CS=H0EA IP=0100 NV UP El PL NZ NA PO NC

JZ 01EE

,5F ;load A with number (0101 1111)

;find E*s complement of number in AL

;return control to DEBUG

316 Digital Computer Electronics

number is larger than 00 and a borrow would be required

to subtract it from 00. To subtract 95 from 00 required a

borrow, which is why the carry flag was set.

If y<>u think about it, the carry flag would have been set

regardless of what number we used. When you use the neg

instruction, the only time the carry flag won’t be set is

when you negate the number 00 itself, because subtracting

00 from 00 does not require a borrow.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Name the four basic logical instructions.

2. (and, or, xor, and NOT) When we and 2 bits, we

are saying that the output bit will be 1 only if both
inputs bits are_

3. (1) A mask allows us to change some bits in a byte

while allowing others to pass through_

4. (unchanged) When we_two bits together,

we are saying that the output bit will be a 1 if either

or both of the input bits are 1.

5. (OR) When ORing bits, the only way to get a_

out is to have both inputs be_

6. (0y 0) When using the XOR instruction, if both input

bits are the same, the output bit will be a_(0, 1).

7. (0) When xoRing bits, the only way to get a 1 out is

for (both, either)-of the input bits to be
a 1.

8. (either) When we not or invert bits, we are saying

that the output bit is the_(same as, oppo¬

site of) the input bit.

9. (opposite of) To NEGate a number is to find the 2’s

complement of the number. This involves finding the

-and then adding_

(1' s complement, l)

PROBLEMS

General

19-1. 1011 1100

AND 0110 1Q1Q

19-2. Devise a mask which, used with the and in¬

struction, would allow all bits to pass through

unaltered except the most significant. The most

significant should be cleared.

19-3. 01101110

or 0011 0101

19-4. Devise a mask which, used with the or instruc¬
tion, would allow all bits to pass through unal¬

tered except the most significant. The most sig¬

nificant should be set.

19-5. 0101 0101

xor oon mi
19-6. Devise a mask which, used with the xor in¬

struction, would invert all bits except the 2 most

significant. The 2 most significant should pass

through unaltered.

19-7. Invert the binary number 0111 1011.

19-8. Negate the number 0110 1110 (8-bit answer).

Specific Microprocessor Families

Solve the following problems by using the microprocessor
of your choice.

19-9. Write and run a program which will place the

binary number 1100 1001 in the accumulator and

then and it with the binary number 1011 1101.

19-10. Write and run a program which will place the

number CC16 in the accumulator and then use

the or instruction to set every bit in the lower

nibble of the accumulator while allowing every

bit in the upper nibble to remain unchanged.

Advanced Problems

Solve the following problems using the microprocessor of
your choice.

19-11. Write and run a program which will;

a. place 4516 in the accumulator.

b. add 2F,6 to the number in the accumulator.

c. use a mask to invert every bit in the lower

nibble of the sum yet not alter the upper
nibble.

d. subtract 0001 11002 from the last result.

e. create another mask (using the AND instruc¬

tion) which will allow all bits of the last result

to remain unchanged except the least signifi¬

cant 3 bits which should be cleared.

Chapter 19 Logical Instructions 317

19-12. ASCII values for the digits 0 through 9 are

shown below.

0 00110000
1 00110001
2 00110010
3 0011 0011

4 00110100

5 0011 0101
6 0011 0110
7 00110111

8 0011 1000
9 00111001

It may sometimes be desirable to change an ASCII number

into its binary equivalent. For this problem, write and run

a program which uses a mask to change the ASCII value

for 5 into its binary equivalent.

318 Digital Computer Electronics

Shift and Rotate Instructions

In this chapter we’ll study two relatively straightforward

concepts—shifting and rotating. Shifts and rotates can be

used for parallel-to-serial data conversion, serial-to-parallel

data conversion, multiplication, division, and other tasks.

New Concepts_

The concepts of rotating and shifting are quite simple. Let’s

look at each in its “generic” form; then, as usual, we’ll

study each microprocessor family. The microprocessors’

instructions which perform each of these functions differ

only slightly.

20-1 ROTATING

Rotating bits is exactly what it sounds like—moving bits

in a circle. Let’s look at a typical rotate instruction to start

our discussion. Figure 20-1 shows a typical rotate left
instruction.

Figure 20-2 illustrates each step involved when a bit is

rotated eight times. Figure 20-2 first shows an 8-bit accu¬

mulator and carry flag. The accumulator is loaded with the

value 0116, and the carry flag is cleared. Next, a sequence

of eight rotate lefts are performed. Notice that the 1 just

keeps moving 1 bit position each time.

Microprocessors can rotate toward the right or left. Some

also have other forms of rotation in which the carry flag is

involved in a slightly different way. We’ll look at those in

the Specific Microprocessor Families section.

20-2 SHIFTING

Shifting, like rotating, is exactly what it sounds like. And,

like rotating, shifting can be toward the left or right. The

-7 ... 0 -

-► C -

Fig. 20-1 Typical rotate left instruction.

8080/8085 is the only microprocessor family being studied

in this text which does not have shift instructions. The

8080/8085 has only rotate instructions.

Let’s look first at the concept of shifting toward the left.

Figure 20-3 illustrates what is known as a logical shift left

or arithmetic shift left. Bits are shifted one at a time toward

the left, with the bit in the 8th position (bit 7) being shifted

into the carry flag.

Two things should be noticed which make this instruction

different from the rotate instruction. First, the contents of

the carry flag do not “wrap around” to bit 0; its contents

are simply lost. Second, 0s are automatically shifted into

bit 0 (least significant bit).

Look at Fig. 20-4 for an example of this type of shifting.

We have loaded the value 9916 into the accumulator and

have cleared the carry flag. Next we execute eight consec¬
utive shifts. Notice that

1. 0s keep coming in from the left.

2. The bits in the accumulator keep shifting 1 bit to the

left.

3. The bits shift from the most significant bit of the

accumulator into the carry flag.

4. Bits shifting out of the carry flag are lost.

Shifts to the right are possible also. Figure 20-5 shows

a typical logical shift to the right. This is basically the

opposite of the shift left.

Figure 20-6 shows a typical arithmetic shift to the right.

The arithmetic shift right instruction duplicates whatever

was in the most significant bit and moves copies of it to

the right with each shift.

319

C -7 ... 0 - 0

Fig. 20-3 Typical arithmetic shift left or logical shift left.
_ Accumulator

0

Carry flag

Fig. 20-2 Rotating left eight times.

20-3 AN EXAMPLE

Let’s look at an example which uses the rotate instruction.

It is often useful to be able to move a nibble of data from

one part of a register to the other.

For example, let’s say we wanted to clear every bit in

320 Digital Computer Electronics

Fig. 20-6 Typical arithmetic shift right.

the upper nibble of the accumulator and then move every

bit of the lower nibble into the upper nibble. There are no

instructions for moving a nibble from one place to another.

The rotate instruction can help accomplish this, though.

Figure 20-7 shows our problem.

First, we’ll use a mask to clear out the upper bit. This

is shown in Fig. 20-8.

Next we’ll clear the carry bit (since this bit will be rotated

into the least significant bit of the lower nibble). Then we’ll

rotate toward the left four times. This is shown in Fig.

20-9.

If you compare the final value in Fig. 20-9 with our

initial value in Fig. 20-9, you’ll see that we have moved

the lower nibble into the upper nibble, which is what we

wanted to do.

Upper nibble Lower nibble

110 0 110 1

Fig. 20-7 Situation in which we want to clear the upper
nibble and then move every bit of the lower nibble into the
upper nibble.

1100 1101

AND 0000 1111

0000 1101

Fig. 20-8 Using the and instruction to mask off the upper
nibble.

Initial value

After 1 rotate to the left

After 2 rotates to the left

After 3 rotates to the left

Final value—after 4 rotates to
the left

Fig. 20-9 Using the rotate through carry instruction to
move the lower nibble into the upper nibble.

Specific Microprocessor
Families

□ □□1 0340 . org f $D34□
□ □□2 □ 340 ;

□ □03 034 0 1A CLC
□ □□4 0341 A3 01 LDA #$□1
□ □□5 0343 2 A ROL A
□ 00b □ 344 3 A ROL A
□ □□7 0345 3 A ROL A
□ □□A □ 34 0 3 A ROL A
□ DDR 0347 3 A ROL A
□ 010 034 A 3 A ROL A
□ Oil 0343 3 A ROL A
0013 □ 34 A 3 A ROL A
0013 □ 34B 00 BRK
0014 034C 1
0015 034C .end

Fig. 20-11 6502 program which rotates left eight times.

The ROR (ROtate Right) instruction uses the same

concept as the ROL instruction and affects flags in the same

way. It simply rotates the bits in the opposite direction.

Figure 20-11 shows a program which clears the carry

flag and rotates the accumulator toward the left eight times.

If you have a monitor which can single-step (“walk”)

through the program, cause it to do so, and check the

accumulator and carry flag after each step.

If you cannot single-step, then use a break (BRK)

instruction after each ROL instruction so that you can

observe the movement of the bits in the accumulator. After

each BRK you will have to make your trainer or computer

begin program execution again at the next ROL instruction

to see the shifting action continue.

Let’s study the shift and rotate instructions for each of our

microprocessor families.

20-4 6502 FAMILY

The 6502 has two rotate instructions and two shift instruc¬
tions. Let’s look at them.

The ROL and ROR Instructions

The 6502 ROL (ROtate Left) instruction works as described

in the New Concepts section of this chapter and as shown

in Fig. 20-10. Figure 20-10 is taken from the Rotate and

Shift Instructions section of the Expanded Table of 6502

Instructions Listed by Category.

In Fig. 20-10 the “7 . . . 0” represents bits 0 through

7 of a byte. Here the “byte” is the value in the accumulator.

The “C” represents the carry bit of the status register.

The ROL instruction causes each bit to move to the left

one place. Bit 7 moves into the carry bit (flag), and the

carry bit moves into bit 0.

- 7 ... 0 -

-► C -

Fig. 20-10 6502 ROtate Left instruction.

The ASL and LSR Instructions

The 6502 shift instructions also work as described in the

New Concepts section of this chapter. The Arithmetic Shift

Left instruction is shown in Fig. 20-12.

C -7 ... 0 - 0

Fig. 20-12 6502 arithmetic shift left instruction.

The Logical Shift Right instruction is shown in Fig.

20-13. Both are quite simple.

0 -► 7 ... 0-► C

Fig. 20-13 6502 logical shift right instruction.

An Example

Let’s look at the same example which was used in the New

Concepts section. Remember, our objective was to clear

the upper nibble and then to move the lower nibble of the

accumulator into the upper nibble of the accumulator.

Figure 20-14 shows our original problem.

Upper nibble Lower nibble

110 0 110 1

Fig. 20-14 Situation in which wc want to clear the upper
nibble and then move every bit of the lower nibble into the
upper nibble.

Chapter 20 Shift and Rotate Instructions 321

□□□1 □ 34 □ -org $0340

□ DDE □ 340 *

ano3 □ 34 □ E3 OF AND #$OF

□ □□4 □ 34E 1A CLC
□ □□5 □ 343 E A ROL A

□ □□b □ 344 E A ROL A

□□□? □ 345 EA ROL A
□ □DA □ 34b EA ROL A
□ □03 □ 347 □ □ BRK

□ □ID □ 34 A *

□ □11 □ 3 4 A .end

Fig. 20-15 6502 program which clears the upper nibble of
the accumulator and then moves the lower nibble into the
upper nibble.

A 6502 program which can solve this problem is shown

in Fig. 20-15. Manually place the initial value of CD16 in

the accumulator before running the program. After the

program is run, you should find the value D016 in the

accumulator.

20-5 6800/6808 FAMILY

The 6800/6808 has two rotate instructions and three shift

instructions.

The ROL/ROLA/ROLB and ROR/RORA/RORB
Instructions

The 6800/6808 ROL/ROLA/ROLB instructions work as

described in the New Concepts section and as shown in

Fig. 20-16. Figure 20-16 is taken from the Rotate and Shift

Instructions section of the Expanded Table of 6800/6808

Instructions Listed by Category.

In Fig. 20-16 the “7 . . . 0” represents bits 0 through

7 of a byte. In this case the “byte” is the value in a

memory location, accumulator A, or accumulator B. The

“C” represents the carry bit of the status register.

The ROL/ROLA/ROLB instructions cause each bit to

move to the left one place. Bit 7 moves into the carry bit

(flag), and the carry bit moves into bit 0.

The ROR/RORA/RORB (ROtate Right) instructions use

the same concept as the ROL/ROLA/ROLB instructions

and affect flags in the same way. They simply rotate the

bits in the opposite direction.

Figure 20-17 shows a program which clears the carry

flag and rotates accumulator A toward the left eight times.

- 7 ... 0 -

-► C -

Fig. 20-16 6800/6808 ROL/ROLA/ROLB instructions.

;mask off upper nibble

;clear the carry flag

;rotate left four times

□ □□1 □ □□□ . org $□□□□
□ □□E □ □□□ »

□ □□3 □ □□□ □ C CLC

□ □□4 □ □□1 Ab □! LD A A & $ □ 1

□ □□5 □ □□3 43 ROLA

□ □□b □ □□4 43 R0LA

□ □□? □ □□5 43 ROLA

□ □□A □ □□b 43 ROLA

□ □□3 □ □□? 43 ROLA

□ □!□ □ □□A 43 ROLA

□ □11 □ □□3 43 ROLA

□ □IE □ □□A 43 ROLA

□ 013 □ □□B 3E WAI

□ 014 □ □□C »

□ □15 □ □□C . end

Fig. 20-17 6800/6808 program which rotates left eight
times.

If you have a monitor which can single-step (“walk”)

through the program, cause it to do so and check the

accumulator and carry flag after each step.

The ASL/ASLA/ASLB, ASR/ASRA/ASRB, and
LSR/LSRA/LSRB Instructions

The 6800/6808 shift instructions also work as described in

the New Concepts section of this chapter. The Arithmetic

Shift Left instruction is shown in Fig. 20-18.

The Arithmetric Shift Right instruction is shown in Fig.

20-19. The Logical Shift Right instruction is shown in Fig.

20-20. All are quite simple.

C -7 ... 0 - 0

Fig. 20-18 6800/6808 arithmetic shift left instruction.

I-► 7...0-► C

Fig. 20-19 6800/6808 arithmetic shift right instruction.

0 -► 7 ... 0-► C

Fig. 20-20 6800/6808 logical shift right instruction.

322 Digital Computer Electronics

7 . . . 0 An Example

Let’s look at the same example which was used in the New

Concepts section. Remember, our objective was to clear

the upper nibble and then to move the lower nibble of the

accumulator into the upper nibble of the accumulator.

Figure 20-21 shows our original problem.

Upper nibble Lower nibble

110 0 110 1

Fig. 20-21 Situation in which we want to clear the upper
nibble and then move every bit of the lower nibble into the
upper nibble.

A 6800/6808 program which can solve this problem is

shown in Fig. 20-22. Manually place the initial value of

CDi6 in the accumulator before running the program. After

the program is run, you should find the value D0I6 in the
accumulator.

20-6 8080/8085/Z80 FAMILY

The 8080 and 8085 have four rotate instructions and no

shift instructions. We will place the Z80 form of the

instructions in square brackets. (The Z80 does have several

multibyte shift instructions which we will not study at this

time because the 8080 and 8085 do not share these

instructions.)

The RAL [RLA] and RAR [RRA] Instructions

The 8080/8085/Z80 RAL [RLA] (Rotate A Left [Rotate

Left A] instructions work as described in the New Concepts

section and as shown in Fig. 20-23. Figure 20-23 is taken

from the Rotate and Shift Instructions section of the

Expanded Table of 8080/8085/Z80 Instructions Listed by
Category.

In Fig. 20-23 the “7 . . . 0” represents bits 0 through

7 of a byte. In this case the “byte” is the value in the

accumulator. The “C” represents the carry bit of the status
register.

i-c-1
Fig. 20-23 The 8080/8085/Z80 RAL [RLA] instruction.

The RAL [RLA] instruction causes each bit to move to

the left one place. Bit 7 moves into the carry bit (flag), and

the carry bit moves into bit 0.

The RAR [RRA] instruction uses the same concept as

the RAL [RLA] instruction and affects flags in the same

way. It simply rotates the bits in the opposite direction.

Figure 20-24 shows a program which clears the carry

flag and rotates the accumulator toward the left eight times.

If you have a monitor which can single-step (“walk”)

through the program, cause it to do so and check the

accumulator and carry flag after each step.

The RLC [RLCA] and RRC [RRCA] Instructions

The RLC [RLCA] (Rotate Left with Carry [Rotate Left

with Carry A]) and RRC [RRCA] (Rotate Right with Carry

[Rotate Right with Carry A]) instructions work just a little

differently from the other rotate instructions we have

discussed. The RLC [RLCA] instruction is shown in Fig.
20-25.

The RRC [RRCA] instruction is shown in Fig. 20-26.

In the case of the RLC [RLCA] instruction, all bits in

the accumulator move toward the left. The bit rotating out

of bit 7 goes into the carry flag and around into bit 0 of

the accumulator.

In the case of the RRC [RRCA] instruction, all bits in

the accumulator move toward the right. The bit rotating

out of bit 0 goes into the carry flag and around into bit 7

of the accumulator.

An Example

Let’s look at the same example which was used in the New

Concepts section. Remember, our objective was to clear

the upper nibble and then to move the lower nibble of the

accumulator into the upper nibble of the accumulator.

Figure 20-27 shows our original problem.

□ □□1 □ □□□ . org $□□□0
□ □□a □ □□□ ;
□ □□3 □ □□□ A4 OF ANDA #$0F
□ □□4 □ □□a OC CLC
□ □□5 □ □□3 43 ROLA
□ DDE, □□□< 43 ROLA
□ □□? □ □□5 43 ROLA
□ □□A □ □□□ 43 ROLA
□ □□q □ □□? 3E WAI
□ □ID □ □□a t
□ nn □ □□A . end

Fig. 20-22 6800/6808 program which moves the lower
nibble of the accumulator into the upper nibble.

;mask off upper nibble
;clear the carry flag
;rotate left four times

Chapter 20 Shift and Rotate Instructions 323

ADAD/ADAB program ZAD program

□ □□1 IflDD .org lADDh □ 001 1 ADD .org lADDh
□ □□3 1ADD j □ DDE 1 ADD ;
□ □□3 IflDD 3E □! MVI A,D1H DDD3 1 ADD BE D1 LD A,D1H
uuua 1AD3 1? RAL UUUA 1A D3 17 RLA
□ □□5 1AD3 17 RAL □ □□5 1AD3 17 RL A
□ □□b 1AD4 17 RAL DDDb 1AD4 17 RLA
□ □□7 ians 17 RAL □ □□7 1AD5 17 RLA
□ □□A lADb 17 RAL □ □□A lADfc 17 RLA
□ □□3 1A 07 17 RAL □ DDR 1AD7 17 RLA
□ □ID 1ADA 17 RAL □ □ID 1 AD A 17 RLA
□ nil iaoq 17 RAL □ Dll 1 ADR 17 RLA
□ □13 1A DA 7b HLT □ □13 1ADA 7b HALT
□ □13 1A0B 9 □ □13 1ADB 9
uuia 1ADB . end uuia 1ADB . end

Fig. 20-24 8080/8085 and Z80 programs which rotate left eight times.

C —i-7 ... o

Fig. 20-25 8080/8085/Z80 RLC [RLCA] instruction.

I-^ 7...0-r—C

Fig. 20-26 8080/8085/Z80 RRC [RRCA] instruction.

An 8080/8085/Z80 program which can solve this problem

is shown in Fig. 20-28. Manually place the initial value of

CD16 in the accumulator before running the program. After

the program is run, you should find the value D016 in the

accumulator.

Upper nibble Lower nibble

110 0 110 1

Fig. 20-27 Situation in which we want to clear the upper
nibble and then move every bit of the lower nibble into the
upper nibble.

20-7 8086/8088 FAMILY

The 8086/8088 has four rotate instructions and three shift

instructions. They are discussed starting on the next page.

ADAD/ADA5 p rogram

□ □□1 1 ADD .org lADDh
□ □□3 1 ADD y

□ □□3 IflDD Eb OF ANI DFH mask off upper nibble

UQUA 1AD3 37 STC set the carry flag then

□ □□5 1 ADB 3F CMC complement it

□ □□b 1AD4 17 RAL rotate left four times

□ □□7 1AD5 17 RAL

□ □□A 1 ADb 17 RAL

□ □□R 1AD7 17 RAL

□ □ID 1ADA 7b HLT

□ Dll 1 ADR >

□ □13 IflDR . end

ZAD program

□ □□1 IflDD .org lADDh
□ □□3 IflDD >

□ □□3 IflDD Eb OF AND DFH mask off upper nibble
UUUA 1AD3 37 SCF set the carry flag then
□ □□5 1AD3 3F CCF complement it
DDDb 1AD A 17 RLA rotate left four times
□ □□7 1 ADB 17 RLA

□□□a IflOb 17 RLA

□ □□R 1AD7 17 RLA

□ □ID IflDfl 7b HALT

□ □11 IflDR >

□ □13 IflDR . end

Fig. 20-28 8080/8085 and Z80 programs which clear the upper nibble of
the accumulator and then move the lower nibble into the upper nibble.

324 Digital Computer Electronics

The RCL and RCR Instructions

The RCL and RCR instructions work as described in the

New Concepts section of this chapter and as shown in Fig.

20-29. Figure 20-29 is taken from the Rotate and Shift

Instructions section of the Expanded Table of 8086/8088

Instructions Listed by Category.

In Fig. 20-29 the “MSB . . . LSB” represents bits 0

- -MSB ... LSB -*-1

-*- C-

Fig. 20-29 The 8086/8088 RCL and RCR instructions.

through 7 of a byte or bits 0 through 15 of a word. The

“C” represents the carry bit of the status register.

The RCL instruction causes each bit to move to the left

one place. The MSB moves into the carry bit (flag), and

the carry bit moves into the LSB.

The RCR instruction uses the same concept as the RCL

instruction and affects flags in the same way. It simply

rotates the bits in the opposite direction.

Figure 20-30 shows a program which clears the carry

flag and rotates AL toward the left eight times. We then

single-step through the program. Follow each step and pay

particular attention to AL and the carry flag.

C>DEBUG
-r

AX=DQDD BX=0QDD CX=DDDD DX=00D0 SP=FFEE
D S=7 7 SB ES=7?5B SS=7 7 5B BS=775B IP=D1DD
77 SB:DIDO 74E0 JZ □ 1EE

-a

775B: CLC
775B:0101 MOV AL, □ 1
77 SB:D103 RCL AL, 1
77SB:0105 RCL AL, 1
775B:D1D7 RCL AL, 1
775B:010S RCL AL, 1
775B:Q10B RCL AL, 1
775B:D10D RCL AL, X
775B:D1DF RCL AL, 1
775B :0111 RCL AL, 1
77SB:D113 INT E0
77SB:0115

-r

AX=DDQ0 : BX=DD0D CX=00D0 DX=DD0D SP=FFEE
DS=77SB ES=77 SB SS-775B CS—77 5B IP
775B: Ffl CLC
-t

AX=D0DD 1 BX=0DD0 CX=D000 DX=DD00 SP^FFEE
DS=775B ES=775B SS=775B CS=77 SB IP=D1D1
77SB:Q101 BDD1 MOV AL, □ 1
-t

AX=0DD1 BX=00D0 CX=DDD0 DX=00DD SP=FFEE
DS=775B ES=775B SS=7 7 SB CS=77 SB IP=D103
77 SB:D1D3 DDD0 RCL AL, 1
-t

AX=0DDE BX=acma CX=D0D0 DX=DDD0 SP=FFEE
DS=775B ES=775B SS=775B CS—77 SB IP=D1D5
7? SB:D1D5 DDD0 RCL AL, X
-t

ax=oooz Bx=oaaa CX=DDDD DX=0DD0 SP=FFEE
DS=77 SB ES=7?5B SS=7 7 SB CS=77 SB IP=D1D7
77SB :D1D7 DDDD RCL AL, 1
-t

AX=000fl BX=0Q00 CX=DDD0 DX=DDD0 SP=FFEE
DS=775B ES=775B SS=77 SB CS=77SB ip^axos
77 SB:DIOR DDD0 RCL AL, X
-t

BP=D000 SI=D0DD DI=D0Q0

NV UP El PL NZ. N'A PQ NC.

BP=D000 SI=000D DI=0000
NV OP El PL NZ NA PO NC

BP=Q0DD SI=0D00 DI=D00D

NV UP El PL NZ NA PO NC

BP=D0D0 SI=0000 DI=00D0
NV UP El PL NZ NA PO NC

BP=D000 SI=0D00 DI=0000

NV UP El PL NZ NA PO NC

BP=ODD0 SI=D000 DI=00D0
NV UP El PL NZ NA PO NC

BP=[]000 SI=00DD DI=0000

NV UP El PL NZ NA PO NC

Fig. 20-30 8086/8088 RCL instruction.

Chapter 20 Shift and Rotate Instructions 325

AX=DD1D BX=DOOO

DS=775B ES=775B
775B:D1DB DDDD

-t

RX=DDED BX=DDOD
DS=77 SB ES=77SB

775B:D1DD DDDD

-t

AX-DD4D BX=OOOD

DS=77SB ES=775B

77SB:DIOF DODD

-t

AX=DDflO BX=ODDO

DS=775B ES=775B

77SB:Dill DDDD

-t

AX=OOOD BX=DDOD

DS=77SB ES=77BB

775B:D113 CD2D

-t

Fig. 20-30 (cont.)

CX=00DQ DX=DDDD SP=FFEE

SS=775B CS=77SB IP=D1DB
RCL AL/1

CX=DDDD DX=DDDD SP—FFEE

SS=775B CS=77SB IP=01DD

RCL AL 11

CX=00Q0 DX=DDDD SP-FFEE
SS=775B CS=77SB IP=D1DF

RCL AL/1

CX=D0DD DX=DD□□ SP=FFEE

SS=77SB CS=775B IP=D111

RCL AL/1

CX=DDD0 DX=DDDD SP=FFEE

SS=775B CS=7?5B IP=D113

INT 20

BP=D0DD SI=DODO DI=ODDD

NV UP El PL NZ NA PO NC

BP=DDDD SI=D000 DI=DDDD

NV UP El PL NZ NA PO NC

BP=00D0 SI^DDDD DI=ODDD

NV UP El PL NZ NA PO NC

BP-DDDD SI=DDDD DI=DDDD

OV UP El PL NZ NA PO NC

BP=DDD0 SI=00DD DI=DDDD

OV UP El PL NZ NA PO CY

The ROL and ROR Instructions

The ROL (ROtate Left) and ROR (ROtate Right) instruc¬

tions work just a little differently from the other rotate

instructions we have discussed. The ROL instruction is

shown in Fig. 20-31.

The ROR instruction is shown in Fig. 20-32.

The drawings shown here are slightly different from

those shown in the instruction-set description, but if you’ll

look closely, you’ll see that they are really the same.

In the case of the ROL instruction, all bits move toward

the left. The bit rotating out of the MSB goes into the carry

flag and around into the LSB.

In the case of the ROR instruction, all bits move toward

the right. The bit rotating out of the LSB goes into the

carry flag and around into the MSB.

C MSB ... LSB

Fig. 20-31 8086/8088 ROL instruction.

MSB ... LSB

Fig. 20-32 8086/8088 ROR instruction.

C

20-34. The SHift logical Right instruction is shown in Fig.

20-35. All are quite simple.

C -MSB ... LSB - 0

Fig. 20-33 8086/8088 SAL/SHL instruction.

I-► MSB ... LSB-► C

Fig. 20-34 8086/8088 shift arithmetic right instruction.

0 -► MSB ... LSB-► C

Fig. 20-35 8086/8088 shift logical right instruction.

An Example

Let’s look at the same example which was used in the New

Concepts section. Remember, our objective was to clear

the upper nibble and then to move the lower nibble of AL

into the upper nibble of AL. Figure 20-36 shows our original

problem.

An 8086/8088 program which can solve this problem is

shown in Fig. 20-37. Manually place the initial value of

CD16 in AL before running the program. After the program

is run, you should find the value D016 in AL.

The SAL/SHL, SAR, and SHR Instructions

The 8086/8088 shift instructions work as described in the

New Concepts Section of this chapter. The Shift Arithmetic

Left/SHift logical Left instruction is shown in Fig. 20-33.

The Shift Arithmetic Right instruction is shown in Fig.

Upper nibble Lower nibble

110 0 110 1

Fig. 20-36 Situation in which we want to clear the upper
nibble and then move every bit of the lower nibble into the
upper nibble.

326 Digital Computer Electronics

ODEBUG
-r
AX=GD00 BX=QDDQ
DS=77BQ ES=77B0
77BD:2ZDF

-rax
AX 0000
: DOcd

CX=0D00 DX=D0DD SP=FFEE
SS=77BD BS=?7B0 IP=D10D

AND AL,GF

BP=00Q0 SI=G00G DI=0G0G
NV UP El PL NZ NA P0 NC

-a
77BD:Q1QD AND AL, OF
77B0:0102 CLC
77B0 :0103 RCL AL,1
77B0:0105 RCL AL,1
77B0:0107 RCL AL,1
77B0:010CI RCL AL,1
77B0:010B INT 20
77B0: 010D

;mask off upper nibble
;clear the carry flag
rrotate left four times

-r
AX=00CD BX=0000
DS=?7B0 ES=77B0
77BQ:0100 240F

-g 01Gb

CX=0000 DX=0000 SP=FFEE
SS=77BQ CS=77B0 IP=0100

AND AL,OF

BP=0000 SI=0QQQ DI=GDDG
NV UP El—Pi NZ NA PO NC

AX=D0Dd BX=00QQ
DS=77BD ES=77BD
77BD:D1DB CD2G

CX=000D DX=G0GQ SP=FFEE
SS=??BQ CS=77BG IP=01DB

INT 2D

Fig. 20-37 8086/8088 program which clears the upper nibble
of AL and then moves the lower nibble into the upper
nibble.

BP=00Q0 SI=0000 DI=DD0D
OV UP El PL NZ NA PO NC

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Does rotating or shifting move the carry bit into one

of the ends of the affected register?_

2. (Rotating) Does rotating or shifting move 0s into one
of the ends of the affected register?_

3. (Shifting) Which of the following instructions dupli¬

cates the current value of the most significant bit and

makes it the new value of the most significant bit?

Rotate right, rotate left, logical shift right, logical

shift left, arithmetic shift right, or arithmetic shift
left?

(Arithmetic shift right)

PROBLEMS

Specific Microprocessor Families

Solve the following problems using the microprocessor of
your choice.

20-1. Write a program which will place the number 3416

in the accumulator, clear the lower nibble (F),

and then move the upper nibble (C) into the lower

nibble by using a rotate instruction. (Write the

program so that if the carry flag happens to be set

(1) prior to running the program, it will not rotate

the 1 from the carry flag into the upper nibble of

the accumulator.)

20-2. The ASCII value for numbers is the same as the

hex value for numbers except that the ASCII

value has a 3 as a prefix. For example, the ASCII

value for 0 is 30, the ASCII value for 1 is 31, the

ASCII value for 2 is 32, the ASCII value for 3 is
33, and so on.

Chapter 20 Shift and Rotate Instructions 327

Write a program that will place the hex value

23 in the accumulator and will then take the upper

nibble (2h), change it to its ASCII value (32h),

and store it in a memory location. The program

should then take the lower nibble (3h), change it

to its ASCII value (33h), and store it in another

memory location.

Restrictions: (1) You cannot use shift instruc¬

tions (but you may use rotate instructions). (2)

You must make the program so that it will work

for any original value, not just 23h. (That value

was picked randomly.)

Hints: (1) You should store the original value

(23) in a memory location so that you can use it

more than once. (2) You will need to use rotate

instructions, masks, and arithmetic instructions.

(3) You need to set aside three memory locations:

one for the original value (23h), one for the ASCII

value for 2 (32h), and one for the ASCII value

for 3 (33h).

20-3. Place the ASCII value for 8 (38h) in one memory

location and the ASCII value for 9 (39h) in an¬

other location. Then write a program which will

take these two ASCII values, convert them to

their hex equivalents (8h and 9h), and combine

them into a 1-byte, 2-digit, hex number (89h).

20-4. Since the value of a binary digit doubles in value

each time it is moved to the left by one place,

and becomes one-half of its previous value each

time it is moved to the right one place, it is

possible to multiply and divide by shifting/rotat¬
ing.

Write a program which will load the value 1C16

into the accumulator and multiply it by 8 by

shifting it.

6502, 6800/6808, and 8086/8088 users: You

should use the arithmetic shift left type of instruc¬

tion because it automatically shifts 0s into the

least significant bit.

8086/8088 users: You have an actual multiply

instruction but shouldn’t use it for this program,

since this chapter is intended to help you write

programs using shift and rotate instructions.

Z80 users: You have an arithmetic shift left

type of instruction, but you cannot use it here

because it is not part of the 8080/8085 instruction

subset. Use the following procedure for the 8080/

8085.

8080/8085 users: You do not have any shift

instructions; therefore, you should alternately

clear the carry flag and rotate to achieve an effect

similar to that of the arithmetic shift left instruc¬

tion.

All users: There are other ways to multiply.

This simply illustrates one way, and not necessar¬

ily the best or easiest for your particular micro¬

processor.

328 Digital Computer Electronics

Addressing Modes—II
New Concepts_
In this chapter we’ll study some of the more complex

addressing modes. The different microprocessor families

will show more variation at this point than they did in our

earlier chapter on basic addressing modes.

The 6502 has more addressing modes than any other

8-bit microprocessor. Some are used quite often, but several

are used with only a few instructions. Since the 6502 has

no general-purpose registers and only one accumulator, it

must use memory very often and is therefore said to have

a memory-intensive architecture.

The 6800/6808 has a moderate number of different

addressing modes, and students learning about it should

not have difficulty. The 6800/6808 also lacks general-

purpose registers but does have two accumulators. It is also

considered to have a memory-intensive architecture.

The 8080/8085 has the fewest number of addressing

modes of any of the 8-bit microprocessors. Students will

find it easiest to learn in this respect. (The Z80 has more

addressing modes, but those beyond the ones the 8080/

8085 has will not be studied at this time.) The 8080/8085

has six general-purpose registers in addition to an accu¬

mulator and is therefore said to have a register-intensive

architecture.

The 8086/8088, being a successor to and relative of the

8080/8085, has many general-purpose registers. Because it

is a 16-bit microprocessor, it also has many addressing

modes.

To summarize, the 6502 has 56 different instructions

which use one or more of 13 addressing modes. When you

combine the instructions and addressing modes, you produce

152 different op codes.

The 6800/6808 has 107 different instructions which use

one or more of seven addressing modes. The 6800/6808

has 197 different op codes.

The 8080/8085 has 246 different instructions which have

only one addressing mode each. There are five different

addressing modes. This provides a total of 246 different op
codes.

The 8086/8088 has 24 addressing modes (they are

presented in 11 addressing-mode categories in this text) and

approximately 91 different assembly-language instructions.

This is just part of the picture, however.

Each 8086/8088 instruction can have many variations,

the MOVe instruction probably being the best example.

MOV is considered one assembly-language instruction; yet

the 8086/8088 recognizes 28 different assembly-language

forms of the MOV instruction (move to a register, move

immediate, move byte to memory, move word to register,

and so on). Each of the 28 assembly-language forms can

have many different machine-level instructions which may

be composed of up to 6 bytes (with eight 8-bit registers;

the ability to move any one of them to any other produces

10s of different machine-level instructions just for moving

8-bit registers).

To put it simply, there are hundreds of variations of the

MOV instruction alone. The possible variations of all 91

different assembly-language instructions number some¬

where between 3,000 and 4,000.

How can anyone learn so many combinations? First, if

you are using the 8086 or 8088, you will be concentrating

on learning about the 91 different assembly-language in¬

structions, not every possible variation. Second, once you

learn any one instruction, MOV, for example, most of the

variations will seem very natural. It’s not like rote memo¬

rization.

Which microprocessor is easiest to learn? That’s hard to

say. They each have strengths and weaknesses. And which

feature is a strength and which is a weakness depend on

what you as the programmer want to do.

(Note: Do not try to memorize all of these addressing

modes at this time. Read this chapter and then refer back

to it as you need to in the chapters to come.)

(Additional Note: Reference will be made in this chapter

to concepts and instructions which have not yet been

covered. This is necessary to explain the various advanced

addressing modes. This method of organizing the text has

the great advantage of placing all necessary information

regarding addressing modes in two easy-to-locate chapters.)

21-1 ADVANCED ADDRESSING
MODES

Some addressing modes which will be described in this

chapter use a multistep process to find the address of the

data or the next instruction to be executed. There may be

one or more intermediate addresses, but the final address

at which the data or instruction is to be found will be

referred to as the effective address.

There are three fundamental advanced addressing modes,

although some microprocessors also feature variations of

these three.

Relative Addressing

□□□□ □ 1 NOP

□ □01 □ 1 NOP

□ □□2 2D BRA $02

□ □□3 □ 2

□ □□4 □ 1 NOP-

□ □□5 □ 1 NOP

□ □□b □ 1 NOP —

□ □□? □ 1 NOP

□ □□A □ 1 NOP

/Vote what is happening here.
The BRanch Always instruction
causes the microprocessor to
branch forward 2 places from the
next instruction in memory!
Thus the next instruction to be
executed is at memory location
0006.

Fig. 21-1 An example of relative branching forward using
the 6800/6808.

The program counter always points to the next memory

location to be accessed. In the case of relative jumps, it

points to the next instruction after the jump instruction.

We start counting from the memory location being pointed

to by the program counter when the jump instruction is

being executed. This memory location is not the location

of the jump instruction itself, and it is not the byte after

the jump instruction, but is the next instruction in memory,

which is usually two memory locations after the jump

instruction.

Relative addressing is a mode in which your destination is

described relative to where you are now. You aren’t directed

to an absolute memory location but rather to an address

higher or lower than where you are now.

This form of addressing is not used to describe where to

find data but rather where the program should find its next

instruction. But let’s back up just a bit.

In an earlier chapter we described the program counter

and its function (the 8086/8088 uses the term instruction

pointer instead of program counter). It keeps track of the

next memory location to be accessed. Normally the locations

are taken in order. The microprocessor gets an instruction,

goes to the next byte in memory to get the next instruction

or data, then to the next, and so forth. Sometimes, however,

we need to “jump” or “branch” to a different area in

memory to get our next instruction, for example, when we

want to repeat a section of the program. (This saves time

compared to writing a portion of a program many times if

it is to be executed many times.)

Relative addressing involves 2 bytes (on 8-bit micropro¬

cessors). The first is the op code for the jump or branch

instruction. The second byte tells how far and in what

direction the microprocessor should jump. The second byte

is a signed binary number—that is, it can be positive or

negative. If it’s positive, the microprocessor jumps forward

in memory (to a higher-numbered address). If it’s negative,

it jumps backward (to a lower-numbered address). There

is a limit, however, to how far you can jump with this

form of addressing. On 8-bit microprocessors the range is

from -128,0 to + 12710 bytes. On 16-bit microprocessors

the range is from -32,76810 to +32,76710 bytes.

The next task is to determine exactly what point we start

counting from. For example, if we tell the microprocessor

to jump forward 10 memory locations, where do we start

counting from? We must again look at the program counter.

Let’s look at an example. Refer to Fig. 21-1. The 6800/

6808 has an instruction called BRA (BRanch Always),

which uses relative addressing.

The four-digit numbers in the left column are memory

addresses. The two-digit numbers in the next column are

op codes. The third column contains the assembly-language

mnemonics. Memory location 0002 contains the op code

20, which is the op code for the BRA instruction. The next

memory location, 0003, contains the number 02, which is

the same 02 referred to in the BRA $02 instruction.

The NOPs are simply dummy instructions placed there,

in this example, so that we have something to skip over

when the branch is implemented. Again, memory address

0002 contains the op code for BRA, which is 20. Address

0003 contains the number of places we wish to move

relative to where the program counter will be while it’s

executing this instruction! Since the program counter is

always pointing to the next instruction in memory, it will

contain 0004. 000416 + 0216 = 000616. This is the next

instruction to be executed.

Now let’s try branching backward. Figure 21-2 shows

an example.

At this point a review of 2’s-complement negative

numbers may be in order. Remember the odometer? Let’s

look at it again, in decimal first.

□ □□□ □ 1 NOP
□ □□1 □ 1 NOP
□ □□2 □ 1 NOP —
□ □□3 □ 1 NOP
UUUA 2D BRA $FC
□ □□5 FC
□ 00b 01 NOP -
□ □□? □ 1 NOP
□ □□A 01 NOP

Fig. 21 -2 An example of
the 6800/6808

This program branches backward
4 places from address 0006. This
is because FC16 is the 2's-
complement hexadecimal number
for -4-16. The NOP at memory
location 0002 will be the next
instruction to be executed.

relative branching backward using

330 Digital Computer Electronics

Negative 2*s-Complement Numbers

Let’s say you buy a brand-new car and the odometer reads

00,000. Now suppose your odometer rolls forward if the

car drives forward, and rolls backward if the car drives

backward. Let’s drive backward from 00,000.

00,000
99,999

99,998

99,997

99,996

use another technique. A two-digit hexadecimal number is

made up of 8 binary bits, each representing a power of 2.

Find 28 and then subtract the number you wish to make

negative. In the case of -4, for instance, take 2?0 - 410

= 25210. Now convert 25210 to hexadecimal; it should be

FC. (To do the same thing with a 16-bit number, use 216

instead of 28.)

Or, should no calculator be handy at the time, use the

technique described in Chap. 6, that of taking the 2’s

complement of the number you wish to make negative. In

the case of —4 it looks like this:

We could say that driving backward is like creating negative

numbers: 99,999 is 1 mile less than 00,000. What’s 1 less

than 0? Minus one, of course. 99,998 is 2 miles less than

00,000. What’s 2 less than 0? Minus two is. Let’s look at

some odometer readings from driving backward and their

negative equivalents, along with some odometer readings

from driving forward and their positive equivalents.

00,003 +3

00,002 -F2

00,001 +1
00,000 0

99,999 -1

99,998 -2

99,997 -3

99,996 -4

Now let’s show the same situation with a 1-byte hexa¬

decimal odometer.

03 +3

02 +2
01 +1
00 0
FF -1

FE -2

FD -3

FC -4

Now look at Fig. 21-2 again. Do you see where the FC

came from? It's —4.

What if you had to have a negative number like — 4010?

Counting backward in hexadecimal would require too much

time. There are several options. First, experiment with your

calculator. Most scientific calculators now convert numbers

back and forth between decimal, binary, octal, and hex¬

adecimal. Many even do calculations in all number bases.

Try entering — 410 and converting it to hexadecimal. If the

calculator handles negative conversions, you’ll get many

F’s and a C at the end. Simply ignore all the leading F’s

and use just the last two digits, the final FC.

If your calculator does conversions between decimal and

hexadecimal but won’t handle negative numbers, you can

0000 0100

mi ion
+ i

mi lioo
I I
F C

+ 4

1 ’s complement (invert all bits)

add 1

2’s complement for —4

convened to hexadecimal

Indirect Addressing

Indirect addressing is an addressing mode in which the

data does not appear after the op code (as in immediate

addressing), nor does its memory location appear after the

op code (as in direct addressing), but rather a memory

location follows the op code, and in this location is another

address where the data may be found. It’s like finding the

address of an address. {Indirect addressing is indeed a

fitting name.)

There are two basic types of indirect addressing: absolute

indirect addressing and register indirect addressing. The

6502 uses absolute indirect addressing. The 8080/8085/Z80

uses register indirect addressing. The 8086/8088 uses reg¬

ister indirect addressing for data and program indirect

addressing for jumps (which we’ll study later). The 6800/

6808 has no indirect addressing (indirect addressing was

added to the 6809).

Let’s look at an example of this addressing mode and

then develop the topic further in the Specific Microprocessor

Families section of this chapter. The 6502 has an instruction

which looks like this

JMP ($aaaa)

which means JuMP indirect (indicated by the parentheses)

to the address indicated by aaaa. If the address were 100016,

it would be written as

JMP ($1000)

This tells us that at memory location 1000 and 1001 we

can find the address the microprocessor should jump to.

The address found at these two locations is loaded into the

program counter. (It takes two locations because addresses

in the 6502 are 16 bits wide but memory locations are only

8 bits wide.)

Chapter 21 Addressing Modes—II 331

Indexed Addressing

Indexed addressing involves using a register called an index

register, with a number called an offset, to calculate the

address where the data is located. Let’s look at an example

using the 6800/6808.

One version of the 6800/6808’s load accumulator A

instruction looks like this

LDAA $ff,X

which means

LoaD Accumulator A with the value in the

memory location found by adding the

contents of the X register to the

hexadecimal offset ff.

For example, if the X register contains the number 100016

and the instruction is written as

LDAA $22,X

we calculate the address where the data is located in this

way

X + ff = address

100016 + 22]6 - 102216

The microprocessor then goes to address 1022 and places

a copy of its contents in accumulator A.

You might be curious as to why we would want an

addressing mode like this. One reason is its usefulness in

accessing individual pieces of data in a data table. The

index register can be incremented (increased by 1) or

decremented (decreased by 1) easily, allowing the program¬

mer to access each item in the table.

The 6502 microprocessor has two index registers, the X

register and the Y register, and it has six different types of

indexed addressing! The 6800/6808 has only one index

register, the X register, with only one type of indexed

addressing. The 8080/8085 has no index registers at all (the

Z80 has two, X and Y) and has no indexed addressing

mode. The 8086/8088 has two index registers, the source

index and the destination index, and has several types of

indexed addressing.

Specific Microprocessor
Families

Go to the section which discusses your particular micro¬

processor.

21-2 6502 FAMILY

The 6502’s numerous addressing modes make it unusual

among 8-bit microprocessors. It has 13 different addressing

modes. Allow us to offer a few words of encouragement

at this time.

First, don’t expect everything to make sense in the

beginning. It takes time before all these new concepts

become clear and you feel comfortable with them. Inciden¬

tally, the subject of addressing modes is the only difficult

aspect of the 6502. In fact, the 6502 has the fewest different

instructions of any of the 8-bit microprocessors—only 56

(the 6800/6808 has 107; the 8080/8085 has 246).

Relative Addressing

The relative addressing mode occurs in only one category

of 6502 instruction, the Conditional Jump (Branch) cate¬

gory. Look at that section of the Expanded Table of 6502

Instructions Listed by Category. No other category uses

this type of addressing, and this category uses no other

type of addressing.

The subject of branching is coming in a later chapter,

but it is necessary to discuss branching instructions for a

moment to continue our coverage of the relative addressing

mode.

The status register is where the 6502’s flags are located.

They keep track of certain events. If the result of the last

calculation were 0, for instance, the zero flag bit would

contain a L If we wanted to know whether the last result

was a 0, we would check the zero flag. A 1 would mean

yes, and a 0 would mean no. If we wanted the program to

perform one action if the result of the last operation was a

0, and another if the result of the last operation was not a

0, we would write our program so that it would check the

zero flag.

Let’s look at the BEQ instruction. The assembler notation

looks like this

BEQ $rr

which means

Branch rr bytes from where the program

counter is now and do what it says to do

there if the result of the last operation

was EQual to 0.

You’ll notice that the Operation column of the instruction

table has a shorter version of that description.

Let’s look at a program fragment. Refer to Fig. 21-3.

After the BEQ instruction and its operand in locations

0007 and 0008 have been fetched, the program counter will

have already incremented to 0009, which is where we start

counting for the branch (jump).

332 Digital Computer Electronics

0005 EA

□ DDL EA

□□□7 FD

□□□a D3
□ooq ea

□ □□A EA

□ □□B EA

□ □□C EA

□□□D EA
□□□E EA

NOP

NOP

BEQ $03

NOP -

NOP

NOP

NOP —

NOP
NOP

Memory location 0007 contains FO,
the op code for BEQ. The next
location, 0008, contains 0316, which
is the distance the program is
going to jump relative to where the
program counter is at the end of
this instruction. Remember:
this jump occurs only if the last
operation set the zero flag (which
we are assuming for this example).

This would load the contents of memory location aaaa

into the low byte of the program counter (PCL). The contents

of memory location aaaa + 1 would be loaded into the high

byte of the program counter (PCH). (This reverse low-byte/

high-byte order is normal for the 6502.)

Let’s look at an example. If you refer to Fig. 21-4, you

will see that the instruction

JMP ($0004)

Fig. 21-3 6502 example of relative addressing. Note: The
zero flag is assumed to be set from a previous operation.

Refer back to the New Concepts section of this chapter

to see how a backward branch or jump would work and

how to use 2’s-complement negative numbers.

Indirect Addressing

There is only one 6502 instruction which uses the indirect

addressing mode. That instruction is the JMP instruction,

which is found in the Unconditional Jump Instructions

category in the Expanded Table of 6502 Instructions Listed

by Category.

This particular instruction can be used with two different

addressing modes. In the absolute addressing mode, the

microprocessor simply jumps to the specified address. When

written this way

JMP $aaaa
it means

Jump to address aaaa16 and continue

program execution from that point.

In the indirect addressing mode, however, it would be

written this way

JMP ($aaaa)

and would mean

JuMP to the address which can be found

at memory location aaaa and aaaa + 1.

0000 tC JMP ($0004)

0001 04

0005 00

□003 EA NOP
0004 IF-*-low byte-

0005 01-high byte

does not mean that address 0004 is where the program is

supposed to jump to, but rather that location 0004 contains

the address it’s supposed to jump to.

Indexed Addressing

Indexed addressing is the subject of the remainder of this

6502 section. There are four basic indexed addressing

modes, and two more which use a mixture of indexed and

indirect addressing.

It should be noted that while the 6502 family has a great

number of addressing modes which use the index registers,

it is the only family which has index registers which are

only 8-bits wide. The 6800/6808, Z80, and 8086/8088 all

have 16-bit index registers. Keep this in mind if you use

the 6502 in addition to one of the other microprocessors.

Zero Page,X and Absolute ,X Addressing

You may remember from the New Concepts section of this

chapter that the 6502 has two index registers, X and Y,

and six different forms of indexed addressing. Here are the

first two of the six forms. The difference between these

two forms is the range of addresses possible.

These first two forms, and the next two, are so similar

to the description in the New Concepts section that you

will probably have little difficulty understanding them. If

you don’t remember how the indexed form of addressing

works, go back and reread the description now.

Look in the Data Transfer Instructions category of the

Expanded Table of 6502 Instructions Listed by Category.

We will use the LDA instruction to illustrate the zero

page,X and absolute,X addressing modes.

This is where the effective address
is being stored. 01 IF is placed in
the program counter.

□ HE next instruction - This is the location of the next

□ 150 instruction to be executed.

Fig. 21-4 Example of 6502 indirect addressing mode.

Chapter 21 Addressing Modes—II 333

First notice the Assembler Notation column for the zero

page,X and absolute,X forms of the LDA instruction. For

these two the assembler notation is

LDA $ff,X <— zero page,X

LDA $ffff,X absolute,X

In both cases the offset (ff or ffff) is a hexadecimal number

which is going to be added to the value in the X register.

The sum of these two values provides the address of the

data which is to be loaded into the accumulator.

For example, if the X register contained the hexadecimal

number 10, the instruction

LDA $034E,X

would add those two values,

034E16 + 10I6 = 035E16

and place a copy of the contents of memory location 035E16

in the accumulator.

When zero page,X addressing is used, the offset (the

number being added to the X register) is two hex digits

wide and the X register is also two hex digits wide. Two

hex digits can address memory locations only in page 0

(0016 to FF16). When this addressing mode is used, it is

assumed that the data is somewhere in page 0. If the sum

of the offset and the X register is greater than FF]6 then

the most significant digit is truncated and only the first two

digits are used! For example, if the X register contained

FF, the instruction

LDA $04,X

would add the offset to the X register

04l6 + FF16 = 10316 (The 1 will be dropped.)

so the data will be retrieved from location 0316! Numbers

larger than FF16 wrap around to the beginning of page 0.

When absolute,X addressing is used, the offset is a four¬

digit hexadecimal number ranging from 0000,6 to FFFF16.

This allows the data to be located anywhere in the entire

6502 address range. If the sum of the offset and the X

register exceeds FFFF16, then the microprocessor again

performs a wraparound back to 000016.

Zero Page,Y and Absolute ,Y Addressing

Notice in the Data Transfer Instructions section of the

Expanded Table of 6502 Instructions Listed by Category

that the LDX instruction uses both absolute,Y and zero

page,Y addressing. These work exactly the same as abso¬

lute^ and zero page,X, except that they use the Y register

instead.

The absolute,X, absolute,Y, and zero page,X addressing

modes are used by many 6502 instructions. Zero page,Y

addressing is used by only two instructions, however—

LDX and STX.

Indirect Indexed Addressing

Indirect indexed addressing, as the name implies, is a

mixture of indirect addressing and indexed addressing.

Notice that the word 4'indirect” is first, and the word

“indexed” is next. In this form of addressing, the indirect

part of the address calculation is accomplished first; then

the indexing is taken into consideration.

Refer to this form of the LDA instruction in the Data

Transfer Instructions section of the Expanded Table of 6502

Instructions Listed by Category. Remember the word or¬

der—indirect, then indexed; and notice the assembler no¬

tation—LDA ($aa),Y.

To understand the assembler notation for this form of

addressing, it helps to remember one of the rules of algebra.

In algebra, expressions are read from left to right, and when

parentheses are encountered, they are read from the inside

to the outside. Let’s look at an example.

LDA ($aa),Y

The $aa stands for a two-digit hexadecimal address. Because

only two digits are allowed, this address must be between

0016 and FF16. At this address, and the one following it (aa

and aa + 1), is a 16-bit address stored in reverse low-byte/

high-byte order. This address is then added to the Y register

to produce the actual (effective) address where the operand

(data) is stored. Notice that we worked our way from left

to right and from the inside toward the outside as we

analyzed this instruction.

For example, let’s say that

Y register = 1016

memory location 2D = 00

memory location 2E = CO

If we write the instruction

LDA ($2D),Y

the microprocessor will look in addresses 2D and 2E and

use their contents to form another address, C000. It will

then take the number C00016 and add it to the Y register:

C00016 + 1016 = C01016

C010,6 is where the data is actually stored.

334 Digital Computer Electronics

To summarize,

LDA ($aa),Y

means

LoaD the Accumulator with the contents

of an address formed by adding the

contents of memory location aa and aa + 1

(low-byte/high-byte order) to the Y

register.

Indexed Indirect Addressing

This form of addressing is also a mixture of indexed and

indirect addressing, but it is the reverse of the previous

indirect indexed addressing.

It will be helpful here, as in the previous explanation, to

think of how algebraic expressions are written, from left to

right and from the inside to the outside.

We will again use the LDA instruction. Look at the

indexed indirect form of this instruction. In the Assembler

Notation column it appears as

LDA ($ff,X)

In this form of addressing, the microprocessor takes the

two-digit offset (ff16) and then adds it to the value found

in the X register. (If the sum of ff and X is greater than

FF16, the sum will be truncated so that only the two least

significant digits remain.) The address formed by the sum

of ff and the X register and the following address contain

the effective address stored in reverse low-byte/high-byte

order.

Let’s try an example. If

X register = 1016

and we write the instruction

LDA ($11,X)

then the microprocessor will add 11]6 to the X register

1 116 + 10l6 = 2116

creating the address 2116. However, this is not where the

operand (data) is stored! At addresses 2116 and 2216 the

effective address is stored in reverse low-byte/high-byte

order. So if

memory location 21 = 00

memory location 22 = CO

then the address C000/6 is created. Memory address C00016

does contain the operand!

To summarize,

LDA ($ff,X)

means

LoaD the Accumulator with the contents

of the memory location pointed to by the

contents of memory location ff + X and ff

+ X + 1.

21-3 6800/6808 FAMILY

The 6800/6808 microprocessor has only two addressing

modes which must be covered in this chapter—relative

addressing and indexed addressing. (The 6800/6808 has no

form of indirect addressing.)

Relative Addressing

The 6800/6808 uses relative addressing with all of its branch

instructions. These fall into three instruction categories,

Unconditional Jump (Branch) Instructions, Conditional Jump

(Branch) Instructions, and Subroutine Instructions. This

form of addressing works exactly as described in the New

Concepts section of this chapter. (In fact, the 6800/6808

was used as our example in that section.)

Let’s go over this mode again by using the program

fragment in Fig. 21-5.

Since 0216 is a positive number, we branch forward by

that many spaces starting with the memory location which

will be pointed to by the program counter after the BRA

instruction and its operand have been fetched.

It is important to remember that the BRA operand is a

2’s-complement signed binary number and thus can be

either negative or positive within a range from -F 12710 to

— 128I0. A negative number indicates a backward branch,

and a positive number indicates a forward branch.

Indexed Addressing

The subject of indexed addressing, as discussed in the New

Concepts section, was illustrated by using the 6800/6808.

We present that information again here for your conven¬

ience.

□ □ID
□ □11

2D
□ 2

BRA $(05)

0012 □ 1 NOP-
□ □13 □ 1 NOP
□ □14 □ 1 NOP —
□ DIB □ 1 NOP

Fig. 21-5 An example of relative addressing.

Chapter 21 Addressing Modes—II 335

One version of the 6800/6808’ s load accumulator A

instruction looks like this

LDAA $ff,X

which means

LoaD Accumulator A with the value in the

memory location found by adding the

contents of the X register to the

hexadecimal offset ff.

For example, if the X register contained the number 100016

and the instruction were written as

LDA $22,X

we would calculate the address where the data was located

in this way:

X + ff = address

100016 + 2216 = 102216

We would go to address 1022 and place a copy of its

contents in accumulator A.

21-4 8080/8085/Z80 FAMILY

The 8080/8085 microprocessor is easier to learn in some

respects than the other 8-bit microprocessors. One reason

is that the 8080/8085 has the fewest number of addressing

modes. And while the 8080/8085 has the most number of

different instructions (246, in contrast to the 6502 with

only 56 and the 6800/6808 with 107), each instruction

works with only one addressing mode (in contrast to the

6502, which has some instructions which operate in as

many as eight different addressing modes).

As we talk about the 8080/8085/Z80 family, you should

remember that although the Z80 is treated as a part of the

8080/8085 family in this text, it is a significantly enhanced

member of the 8080/8085 family. It has many multibyte

instructions and several addressing modes which the 8080/

8085 does not have. At this time we will cover only those

aspects of the Z80 which it has in common with the 8080/

8085.

Register Indirect Addressing

The only advanced addressing mode which the 8080/8085

has is register indirect addressing. Although indirect ad¬

dressing was covered in the New Concepts section of this

chapter, register indirect addressing was not covered since

it is a variation of indirect addressing which, among the

8-bit microprocessors, is unique to this family.

Register indirect addressing uses the contents of a 16-

bit register pair (most often the HL register pair) as a pointer

for the operand.

For example, refer to the Data Transfer Instructions

section of the Expanded Table of 8085/8080 and Z80 (8080

Subset) Instructions Listed by Category and look at the

MOV A,M [Z80 = LD A,(HL)] instruction. (The MOV

A,M instruction is the eighth instruction in this category.)

The 8085 form is written

MOV A,M

which means

MOVe to the Accumulator the number found

at the Memory location pointed to by the

HL register pair.

The Z80 form is written

LD A,(HL)

which means

LoaD the Accumulator with the number

found at the memory location pointed to

(parens) by the HL register pair.

which says the same thing the 8085 form did but in different

words.

To give an example, if

register pair HL = 100016

and you entered MOV A,M [Z80 LD A,(HL)] into your

assembler, the microprocessor would go to memory location

100016 and place a copy of its contents in the accumulator.

There are a few occasions when either the BC or the DE

register pair is used instead of the HL pair. You may want

to page through the Expanded Table of 8085/8080 and Z80

(8080 Subset) Instructions Listed by Category to see some

of the instructions that use this addressing mode.

21-5 8086/8088 FAMILY

Because the 8086/8088 is a 16-bit microprocessor, it uses

a greater number of addressing modes than the 8-bit

microprocessors, and the modes are more complex. We

covered the basic 8086/8088 addressing modes in a previous

chapter and will try to give a simple, yet sufficiently

complete description of each of the advanced modes at this

time.

336 Digital Computer Electronics

Register Relative Addressing

Register relative addressing uses two numbers, added

together, to determine the address of the source. This form

of addressing is especially useful in addressing arrays (tables

of data).

Some examples of register relative addressing using the

format used by DEBUG (an MS-DOS utility which helps

to kkdebug” programs and includes an assembler and

disassembler) are

MOV AL,[BX + 0100]

MOV AX,[DI + 0200]

MOV [SI+ 0500],CL

MOV [BP + 20],BL

MOV DI,[BX + 0400]

Figure 21-6 illustrates how this form of addressing works.

The instruction

MOV AL,[BX + 0100]

is used as an example. Notice first the brackets surrounding

the BX + 0100. This is required by DEBUG and indicates

that the two numbers added together (the value in register

BX + 0100]6) will point to the location of the data being

moved to AL.

We can use the number in the source (0100) to indicate

the location of the beginning of the table. The value in the

register indicated in the source operand tells us which item

in the table is the desired data item.

Notice in Fig. 21-6 that 0100 is the beginning of the

table and that 03 (the value in BX) is the data item we

need. We need the fourth item in the table starting at

address 0100. The contents of memory location 0103 (E3)

have been copied to register AL.

It is important to remember that we have added the

displacement (0100) to the value in the indicated register

(BX) to form an address (0103) in the current data segment!

Program Relative Addressing

Program relative addressing is used with JMP and CALL

instructions. This mode specifies where the next program

instruction is located without using absolute addressing.

This allows you to write relocatable assembly-language

programs.

Figure 21-7 shows an 8086/8088 instruction which is not

using program relative addressing. (We’ll show you program

relative addressing in a moment.) This figure is using direct

addressing. We have listed the same line of code three

times.

The first line shows the code as it appeared on our

computer after being disassembled by DEBUG.

The second line shows DEBUG’s disassembly broken

into its major components. The address is the address of

the current memory location. We did not type the address;

DEBUG picked that address for us. The machine code

contains the actual bits which will tell the 8086/8088 what

to do. The assembly language is what we typed in when

using DEBUG.

The third line shows even greater detail. Notice that the

code segment the program is to jump to (8888) and location

within the segment (0100) are actually contained in the

machine code (the bytes are reversed).

Figure 21-8 shows a JMP instruction written using

DEBUG which does use program relative addressing,

instead of direct addressing as in Fig. 21-7.

Line one shows the information as it appeared on our

screen when disassembled by DEBUG.

Line two illustrates the major components of the disas¬

sembly. We typed in the assembly language, and DEBUG

provided us with the machine code.

The third line shows the components in greater detail.

The most interesting fact is that the address we specified

as our target address is not the same as the address DEBUG

generated. Let’s see what DEBUG did.

The JMP op code, EB, is in memory location 0100 as

indicated in the “location within segment’' portion of the

Chapter 21 Addressing Modes—II 337

864E:0111 EA00018888 JMP 8888:0100

|864E:0111 |EA00018888| | JMP 8888:0100

Address Machine code Assembly language (DEBUG)

Location within segment

Fig. 21-7 Direct addressing.

line. That means the next byte, OE, is in address 0101.

(DEBUG does not show the 0101.) Therefore, the next

instruction is at memory location 0102.

How far is it from memory location 0102 to our target

address of 0110? Remember, these are hexadecimal num¬

bers.

011016 - 010216 = El6

To reach the target address of 0110, the microprocessor

will have to jump forward a number of spaces from the

point (the instruction) at which the instruction pointer is

pointing when this instruction is executed; the number of

spaces is E16. The 0E in Fig. 21-8 was calculated by

DEBUG as the position of our target relative to where the

instruction pointer will be when this instruction is being

executed.

Relative addressing tells the microprocessor how far to

jump forward or backward from the instruction after the

JMP instruction. The next instruction is used because the

instruction pointer always points to the next instruction to

be executed.

Location within segment to jump to

A positive relative address signifies a jump forward; a

negative relative address signifies a jump backward.

Register Indirect Addressing

Register indirect addressing uses a register to point to a

memory location rather than specifying that location di¬

rectly. BX, BP, SI, and DI are used as pointers. All of

them except BP point to locations in the data segment; BP

points to a location in the stack segment. The registers can

point to either the source or the destination operand.

An assembly-language instruction which uses indirect

addressing is shown in Fig. 21-9.

The format of the instruction line in bold print in Fig.

21-9 is the format that DEBUG uses. (The code segment

on your computer will probably not be the same as the one

shown in Fig. 21-9.)

Most of the different components of the instruction line

in bold have been identified in the figure. [BX] is labeled

as the source. The brackets around BX indicate that the

operand is not the contents of BX; rather the operand will

be found at the address pointed to by BX.

864E:0100 EB0E JMP 0110

|864E:0100| | EB0E | | JMP 0110

Address Machine code Assembly language (DEBUG)

Code segment | JMP op code | Address specified

Location within segment Relative address generated by DEBUG

Fig. 21-8 Program relative addressing.

338 Digital Computer Electronics

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

010A

Memory

8B

07

hh

hh

hh

hh

hh

hh

AA

BB

hh

- Code segment

82CC:0100 8B07

Address-1 Machine
within segment code

AA replaces hh-

BB replaces hh -

BX-
points I

to memory
location 0108

Source
destination -

MOV AX,| [BX]

Assembly
language

■ Accumulator AX ■

AH

- hh

AL

hh
Base BX

BH

01

BL

08

Fig. 21-9 Register indirect addressing.

If you look at the contents of BX, you will see the value

0108. That means that the actual operand is in memory

location 0108. In this case we are moving a 16-bit word

rather than an 8-bit byte. Since it takes two memory

locations to hold a whole word, we will find the operand

in locations 0108 and 0109. The 16-bit values in locations

0108 and 0109 are copied into AX, which is the destination.

Figure 21-10 is a screen dump of Fig. 21-9 obtained by

using DEBUG.

In the first line

-d 100 lOf

tells DEBUG to “dump” the contents of memory locations

010016 through 010F16 to the screen so that we can see

them. The hyphen halfway through the memory dump

separates those 16 bytes into two sections to make the

display easier to read. We have shown the contents of

locations 0100 and 0101 in bold because they are the object

code for the

MOV AX,[BX]

instruction. The contents of memory locations 0108 and

0109 are in bold because they are the locations being pointed

to by register BX.

The -r tells DEBUG to display its registers. We have

shown the contents of registers AX and BX in bold in this

illustration because they are the two registers being referred

to in this example.

The -t is the DEBUG trace command. This tells DEBUG

to execute the next instruction and then stop. The next

instruction is

MOV AX,[BX]

Notice the contents of register AX after the trace command.

The contents of memory locations 0108 and 0109 have

been copied to register AX as was illustrated in Fig. 21-9.

Take some time to compare Figs. 21-9 and 21-10. You

may notice that the code segments in the two figures differ.

That’s because we created the figures on two different days,

and the memory arrangement in our computer was not

exactly the same both days. This is normal and something

you should expect to see as you try these figures and

-a mu mt
HDES:AB D7 □□ □□ □□ □□ □□ 00-AA BB □□ □□ DO □□ 0Q □□

-r
AX=DD00 BX=D10A
DS=qDEq es^deh
HDEH:0100 ABD7

CX=00DD DX=DDDD SP—FDbE
ss=qoEq cs^qopq ip=didd

MOV AX,[BX1

BP=D00Q SI=0000 DI=000D
NV UP El PL NZ NA PO NC

DS:010A-BBAA

-t

AX=BBAA BX=D1DA CX^ODOn DX=DDGD SP=FDLE
DS-qnaq ES=qoEs ss=R0Eq cs^hdeh ip=dide
RDEG:010E □□□□ ADD [BX+SI],AL

Fig. 21-10 DEBUG screen dump of Fig. 21-9.

BP=0D00 SI=000D DI=D0DD
NV UP El PL NZ NA PO NC

DS:DIDA=AA

Chapter 21 Addressing Modes—II 339

examples on your computer. Everything will be the same

except the code segment, and that will almost never match
ours.

Again, in the case of register indirect addressing, at least

one of the operands is in a memory location pointed to by

the value in a register (BX, BP, SI, DI).

Program Indirect Addressing

Program indirect addressing is used by CALL and JMP

instructions. It allows the memory location where the

program is to fetch its next instruction to be stored in a

register, in a memory location pointed to by a register, or

in a memory location pointed to by a register with a

displacement.

Normally instructions are stored in memory in sequential

order, with the microprocessor fetching one after another.

When a JMP instruction uses direct addressing, the address

the microprocessor is to jump to is placed immediately after

the jump instruction itself.

A CALL instruction causes the microprocessor to go to

another area of memory where a subroutine is stored,

execute the subroutine, and then return to where it left off

before it began the subroutine. The CALL, like the JMP

instruction, can use direct addressing and place the location

of the subroutine immediately after the CALL instruction.

When either the CALL or the JMP instruction uses one

of the 16-bit registers (AX, BX, CX, DX, SP, BP, SI, or

DI), it means that the destination for the JMP or CALL is

located in that register. For example

JMP AX

instructs the microprocessor to look in register AX and

jump to the location stored in AX. That is, AX “points”

to the correct memory location.

When either the JMP or the CALL instruction uses a

register placed inside brackets ([BX], [BP], [SI], or [DI]),

it means that register contains an address, and that address

contains another address, which is the actual destination

for the JMP or CALL. For example,

JMP [BX]

instructs the microprocessor to look in register BX. Let's

say BX = 0200. Next the microprocessor looks at address

0200 and 0201. There it will find another address which is

its actual destination.

When either the JMP or the CALL instruction uses one

of the registers with brackets ([BX], [BP], [SI], or [DI])

and a displacement, the microprocessor is instructed to add

the displacement to the contents of the register, forming an

address, and then to look at thax address and get another

address, which is the actual destination. For example

JMP [BX + 0100]

instructs the microprocessor to add 010016 to the value in

BX. Let’s say that BX contains 0500J6.

050016 + 010016 = 060016

The microprocessor now looks in addresses 0600 and 0601

and gets another address. This is the destination address

where the next instruction is to be fetched or the subroutine

begins.

Base plus Index Addressing

Base plus index addressing also uses the concept of cal¬

culating the address where data is located rather than using

direct addressing, which explicitly states where the data is

located.

When base plus index addressing is used, the contents

of one of the base registers (either BX or BP) and the

contents of one of the index registers (either SI or DI) are

added to calculate the address of the operand. For example,

MOV AX,[BX + DI]

instructs the microprocessor to add the value in register BX

to the value in register DI. This sum is the location of the

data which is to be copied into register AX. This is illustrated

in Fig. 21-11.

Base plus index addressing is useful for working with

tables of data. The base register (BX or BP) can point to

the beginning of the data table. The index register (SI or

DI) can then point to the specific piece of data within the

table. The program can then increment or decrement the

index register to point to the next or preceding piece of

data in the table.

Base Relative plus Index Addressing

Base relative plus index addressing combines the features

of base plus index addressing and register relative address¬

ing. Examples of base relative plus index addressing are

MOV DX,[BX + SI+10]

MOV [BX + DI + 20],AX

In the first example, the microprocessor would add the

values in registers BX and SI and the number 1016. The

sum is the memory location of the data which is to be

copied into register DX.

In the second example, the microprocessor would copy

the contents of register AX to a memory location whose

address would be calculated by finding the sum of 2016,

the value in register BX, and the value in register DI.

340 Digital Computer Electronics

Fig. 21-11 Base plus index addressing.

1 his addressing mode is useful for working with two- desired data (for example, a field within a record within a

dimensional data tables. The displacement (the number) file, or a specific piece of data in a data table). The program

can point to the beginning of the table, since this is the can then increment or decrement the base register to point

constant value. The base register (BX) can point to the first to the next or previous record in the file and increment or

of the two dimensions (for example, a record in a file or decrement the index register to point to the next or previous

an area in a data table). The index register (SI or Dl) can field in the record,

then point to the specific memory location containing the

Chapter 21 Addressing Modes—II 341

Branching and Loops

In this chapter we’ll study branching and loops. A branch

instruction (or jump instruction) causes the program to

“skip” forward or backward and to execute instructions

from this new memory location.

A loop involves executing a series of microprocessor

instructions and then branching backward to repeat the same

set of instructions. This “loop” is finally broken, or exited

from, when some condition is met.

The previous chapter introduced you to the remainder of

the addressing modes (the more difficult ones) which had

not been covered in the earlier chapter on addressing. From

this point on we will use many of the different types of

addressing modes available to each microprocessor. You

should refer back to either of the chapters on addressing

whenever necessary.

New Concepts
We’ll study unconditional branching (or jumping) first; then

we’ll discuss the slightly more difficult subject of conditional

branching. Later we’ll look at loops and how to control

them through the use of conditions and counters.

22-1 UNCONDITIONAL JUMPS

The simplest type of branch or jump is an unconditional

one. This means that the program will jump to the indicated

memory location every time this part of the program is run.

The jump can be forward or backward.

With unconditional jumps, most of the microprocessors

featured in this text use some form of direct or indirect

addressing to indicate where the next instruction should be

fetched from. The exceptions to this are the 6800/6808,

which can also use relative addressing, and the 8086/8088,

which also uses relative addressing, at least for jumps

within a single memory segment.

To jump forward, you simply indicate the address of the

next instruction to be executed. WeTl look at exactly how

the different addressing modes are used in the Specific

Microprocessor Families section of this chapter.

22-2 CONDITIONAL BRANCHING

Conditional branching, like unconditional branching, causes

program execution to continue with an instruction which is

not the next instruction in memory. We either skip forward

or backward from where we are now. Whether or not

program execution does skip depends on a certain condition.

The microprocessor determines whether a condition is

true or not true by the condition of the flags. To be able to

predict whether or not a condition will be true when the

microprocessor reaches the point at which the conditional

branch occurs, one must know how the preceding instruc¬

tions affect the flags. How each instruction affects each of

the flags is shown in several of the instruction-set tables

for each microprocessor.

When we branch forward, we have the effect of skipping

over a certain number of instructions, if certain conditions

exist, and not skipping over them if those conditions do

not exist. Figure 22-1 shows a generic example of branching

forward.
When we branch backward, the instructions between

where we branched from and where we branched to are

executed again. They could in fact be executed many times.

This creates a loop which will not be exited from until

some condition is met. Figure 22-2 shows a generic example

of branching backward.

In Fig. 22-2, we are not branching backward from address

0009 because of the instruction at that memory location.

Rather, we are branching backward because of the instruc-

□ 000 INSTRUCTION

0001 DATA

□ 000 INSTRUCTION

0003 DATA

0004 INSTRUCTION
0005 INSTRUCTION

□ 000 INSTRUCTION

0007 COND JUMP

□ □□A □ 0 A0

This area is skipped over if
condition exits. If condition
doesn't exist, this area is not
skipped over.

□ 0 A0 INSTRUCTION

□ 0A1 DATA

□ 0 A0 INSTRUCTION

□ 0 A3 END

Fig. 22-1 Example of generic forward conditional jump.

tion at location 0007 and the address at location 0008. The

arrow is drawn from location 0009 because that will be the

instruction pointed to by the program counter or instruction

pointer when the branch occurs. Remember, the instruction

pointer or program counter points to the next instruction to

be executed, not the one currently being executed.

22-3 COMPARE AND TEST
INSTRUCTIONS

Many (but not all) microprocessor instructions affect the

flags. The flags then tell something about the results of the

instruction. There are instructions, however, compare and

test instructions, which actually do nothing except affect

flags.

For example, the arithmetic instructions actually accom¬

plish some task, such as adding, subtracting, multiplying,

or dividing, and also affect the flags depending on the result

of the operation. Compare and test instructions, however,

compare a register or memory location to another, to zero,

or and two registers, without producing any result or

changing any register or memory location—that is, no

answer is produced. The flags, however, respond just as if

an answer had been produced. A conditional branch instruc¬

tion can then check the flags and determine whether a

certain condition is true or false and then branch or not

branch accordingly.

22-4 INCREMENT AND DECREMENT
INSTRUCTIONS

Sometimes you may want to repeat a section of your

program a certain number of times. A register or memory

location is used to count how many times the section has

been repeated. This register or memory location being used

as a counter can either count up (increment) to a certain

value or count down (decrement) to a certain value. Since

it is easy to test for the occurrence of zero (just check the

zero flag), counters often start at a certain number and

decrement to zero. When the counter reaches zero, we

know how many times that section of the program has
repeated.

This technique produces a loop and uses conditional

branching in a way that is similar to that discussed in the

last section, although the intent is a little different. In the

last section we were talking about situations when you want

to branch if an operation produces a certain result. In this

section we are discussing situations when we simply want

something to be repeated a certain number of times.

22-5 NESTED LOOPS

It’s possible to nest loops one inside the other. Figure

22-3 shows what this looks like.

The operand immediately following the conditional branch

instruction may not be the actual address to branch to but

rather the value needed by some other form of addressing

such as relative addressing.

Remember also that we do not branch from the memory

location containing the conditional branch instruction; nor

do we branch from the next address which determines

where we branch to, but from the instruction after that.

In Fig. 22-3 you can see that an inner loop will be

repeated until the conditions necessary for the program to

“drop through” the bottom of the loop exist, in which case

the program may go back to the beginning of the outer

loop, depending again on the conditions which exist.

0000 INSTRUCTION
□ □□1 DATA

□ □□E INSTRUCTION
□ □□3 DATA
0004 INSTRUCTION
0005 INSTRUCTION
□ 00b INSTRUCTION
0007 COND JUMP
00 0 A □ 000
□ ooq INSTRUCTION

Fig. 22-2 Example of generic backward conditional jump.

This area is repeated if certain
condition exists. This area is not
repeated if condition does not
exist.

Chapter 22 Branching and Loops 343

□ □□□ INSTRUCTION -

□□01 data
□□□0 INSTRUCTION

□003 data
□ □□4 INSTRUCTION

□□□5 data
□ □□0 INSTRUCTION -

□□□7 data
□□□fl INSTRUCTION

□□□3 data
□ □□A CONDITIONAL BRANCH BACKWARDS
□□□B □□□L

□□□C INSTRUCTION -
□□□D data
□ □□E INSTRUCTION

□□□E data
□□ID CONDITIONAL BRANCH BACKWARDS
□□11 □□□□
□012 INSTRUCTION -

Fig. 22-3 Generic nested loops.

Specific Microprocessor
Families
Let’s look at each of our microprocessors’ instructions to

see how branching and loops are handled.

22-6 6502 FAMILY

The 6502 microprocessor family has a variety of instructions

to handle unconditional jumps, conditional branching, com¬

paring, incrementing, and decrementing. We’ll look at

several tasks and see how the 6502 microprocessor handles

them.

You should enter each program into your computer or

microprocessor trainer and single-step through it, watching

the appropriate registers, memory locations, and flags to

understand how each program works.

Unconditional Jumps

The forward unconditional jump using absolute addressing

is easiest to understand. An example is shown in Fig.

22-4.

The program begins by loading the accumulator with

FF16. In a moment we are going to subtract another number

from FF16. First, however, we need to jump to the area of

memory where the subtract instruction is. We have placed

the subtract instruction several memory locations forward

from this point to show, in a very simple manner, how the

unconditional jump instruction operates.

The next instruction is our jump instruction. In the source

code column of line 0004 the instruction

JMP MINUS

appears, which might be different from what you were

expecting.

The instruction is saying to jump to a place called

MINUS. To be able to jump to a place with a certain name

is not a native ability of the 6502 microprocessor. Our

assembler is making this possible. Line 0008 has the label

MINUS in the label column. This is the place we want to

jump to. Notice the address at the MINUS label. The

address is 0348. Now look back at line 0004. In the op

code column you see 4C, which is the op code for an

unconditional jump. Then come the numbers 48 03. If you

reverse those two sets of numbers, you have 0348. This is

the memory location of the instruction labeled MINUS. If

you use an assembler, you can use labels and the assembler

will calculate the address for you. If you are hand-assembling

these programs, you must enter the address as shown in

the op code column, in the reverse low-byte/high-byte

order. If you are using an assembler which does not allow

labels, you will need to use the format shown in the 6502

tables. Namely,

JMP $0348

□ □□1 □ 340 . org $□340 ;beginning of code
□□□a □ 34D
□ □□3 □ 34D A3 FE START: LDA #$FF ;minuend
□ □□4 □ 343 4 C 4a □ 3 JMP MINUS ;forward unconditional jump
□ □□5 □ 345 EA NOP
□ □□£> □ 34 L EA NOP ;misc. instructions
□ □□? □ 347 EA NOP
□ □□a □ 34a 3a MINUS: SEC jprepare for subtraction
□ □□□ □ 345 E5 EE SBC #$EE ;subtrahend

□ □ID □ 34B aD 4 F □ 3 STA ANSWER ;store difference
□ □11 □ 34E □□ BRK ; stop
□Die □ 34F
□ □13 □ 34F □□ ANSWER .db $□□ ;memory area for answer
□ □14 □ 35D ; (initialized to □□)
□ □15 □ 3 5 □ . end

Fig. 22-4 Forward unconditional jump with the 6502
microprocessor.

344 Digital Computer Electronics

After the jump instruction are several NOPs which could

be other instructions or just unused memory in a particular

microprocessor system.

Line 0008 is the next instruction to be executed. It sets

the carry flag in preparation for the subtraction instruction.

In line 0009 we subtract EE16 from FF16 (in the accumulator).

In line 0010 we store the result of our subtraction in a

memory location called ANSWER. Look at line 0013, labeled

ANSWER. In the op code column are the initials .db. They

stand for define byte. We are telling the assembler to reserve

a memory location, namely, a single byte of memory, with

the name ANSWER. The assembler is initializing the

memory location ANSWER with a value of 0. Our program

can then put any other number we wish in that location.

Notice also that the memory location of ANSWER is

034F16. In the op code column of line 0010 we see 8D 4F

03. 8D is the op code for storing the value of the accumulator

in a certain memory location. If you reverse the order of

4F 03, you have 034F, which is the memory location of

ANSWER. Again, the assembler made life simpler by

figuring out where the next available memory location

would be and setting aside that location for the ANSWER.

Finally, in line 0011 the program stops.

You should enter this program and single-step through

it, making sure that everything works as described.

Conditional Branches

Now let’s see an example of conditional branching. Figure

22-5 shows such an example.

In this program we are going to do several things

differently from the way they were done in the last program.

First, we are using a conditional jump or branch rather than

an unconditional one. Second, we are branching backward

rather than forward. Third, we are creating a loop by

branching backward and repeating a section of the program.

Finally, we are using a register as a counter to control how

many times the loop repeats.

In line 0003 we place the number 316 in the X register.

This register controls how many times we will branch

backward. In line 0004 we clear the Y register making it

00,6 so that it can be used to count how many times the

loop repeats.

Line 0005 marks the beginning of the loop; we have

named that location REPEAT. In this line we increment the

Y register since we are beginning to pass through the loop,

in this case for the first time. The Y register is keeping

track of how many times the loop is passed through. Line

0006 represents the fact that there could be many instructions

inside the loop which are going to be repeated.

Line 0007 decrements (reduces by 1) the X register. The

X register keeps track of how many times through the loop

are remaining.

Line 0008 is where we meet our conditional branch

instruction. BNE means Branch if Not Equal. Your first

thought might be, “Not equal to what?” If you check the

Expanded Table for the 6502, you’ll see it is Branch if the

last result is Not Equal to 0.

All the conditional branch instructions are influenced by

the most recent instruction that affected the flag they check.

In this case the zero flag is checked. What was the last

instruction which sets or clears the zero flag? The DEX

(DEcrement X register) instruction. If the X register were

reduced to 0, the zero flag would be set. Has the X register

been reduced to 0? On this first pass through the loop, it

gets reduced from 3 to 2. No, the X register is not equal

to 0.

The branch instruction says, “Branch if the last result is

Not Equal to 0.” Clearly this is true: the last result is not

0, so we branch. Branch to where? We branch to the

memory location known as REPEAT. Notice that the location

called REPEAT, in line 0005, is memory location 034416.

Now look again at line 0008. DO is the op code for the

BNE instruction, and FB is where it is branching to. Is FB

the memory location of REPEAT? No. The BNE instruction

uses relative addressing. FB]6 is a negative-signed binary

number telling us how many places to move from where

we are now. FBi6 is — 510. We must branch five memory

location backward from memory location 034916.

It will be helpful to enter this program into your computer

or microprocessor trainer and single-step through it. We’ve

gone through the loop only once in our discussion here.

□ □□1 □ 34D .ORG $□340
□ □□a □ 340
□ □□3 □ 34 □ AE □ 3 START: LDX *$□3 ;initialize X (repeats)
□ □□4 □34 a AD □ □ LDY #$□□ jinitialize Y
□ □□5 □ 344 CB REPEAT: INY ;times loop has repeated
□ □□□ □ 345 EA NOP ;misc instructions
□ □□? □ 341 CA DEX jdecrement X
□□□a □ 347 DO FB BNE REPEAT ;if X not equal to □ then
□□□3 □ 343 ; branch back to start of
□ □10 □ 343 ; loop
□ □ii □ 343 □ □ BRK ; stop
□ DIE □ 34 A
□ □13 □ 34 A .END

Fig. 22-5 A backward conditional jump creating a loop
with the 6502 microprocessor.

Chapter 22 Branching and Loops 345

Pay special attention to the X register, the Y register, and

the zero flag.

Compare Instructions

The compare instructions allow us to compare the values

in two registers and/or memory locations, and to set the

flags accordingly, without changing either of the original

values. The appropriate branch instruction can then cause

program execution to continue at the desired location. The

program in Fig. 22-6 will allow you to observe the compare

instructions.

The program simply loads the value 0516 into the accu¬

mulator and compares the numbers 0416, 0616, and 0516 to

it. If you will refer to the Expanded Table of 6502

Instructions and look in the Operation column, you will

see what we mean by “compare.”

To “compare” means to subtract the number you are

“comparing” from the number being “compared to.” For

example, line 0004 of the program in Fig. 22-6 sets the

flags as though 04l6 had been subtracted from 0516, without

actually changing the value in the accumulator.

Lines 0005 and 0006 likewise subtract 0616 and 0516,

respectively, from the value in the accumulator without

altering the accumulator.

A point needs to be made at this time about the carry

flag in the 6502 microprocessor. Most microprocessors set

a flag (value of 1) to say, “Yes, this condition exists.”

For example, setting the zero flag (value of I) means,

“Yes, the last value (or current value) is a zero.” When a

flag is reset (value of zero) it means “No, this condition

does not exist.”

The 6502 handles the carry flag in an unusual way. It is

inverted. After addition this flag will appear as expected.

A 1 means that a carry occurred, and a 0 means that a

carry did not occur. After subtraction, however, a 1 means

that a borrow did not occur, and a 0 means that a borrow

did occur. Be careful to remember this exception when

using 6502 compare instructions to prepare for branch

instructions.

This program’s only purpose is to allow you to see how

the flags are affected by each compare instruction. Enter

the program and single-step through it. Watch the flags

after each instruction and make sure that you understand

why they react the way they do.

An Example Program

We’ll now look at an example program which uses a com¬

pare instruction, increment instructions, and a conditional

branch instruction. This program looks at two numbers in

memory, determines which is larger, and then places the

larger value in a third memory location. It also uses a form

of indexed addressing. Refer to Fig. 22-7 at this time.

After entering this program into your computer or trainer,

but before running it, you must place values of your choice

into the two memory locations indicated in the notes at the

beginning of the program.

This program uses the X register to help point to the

next memory location to load a number from or store a

number in. The first instruction in line 0008 initializes the

X register with a value of 0016.

Memory location 03A016 is the beginning of a series of

memory locations which this program uses. A common

way to address successive memory locations is to use some

form of indexed addressing. Location 03A016 is the begin¬

ning of the list, and the X register will point to each

successive number in the list. In line 0009 we load the

accumulator with the first number from the list. The memory

location of this number is formed by adding 03A016 to the

value of the X register, which is 0016 at this moment, to

form the address of the first number in the list, in location

03A016.

In line 0010 we increment the X register to a value of

0116 so that it points to the next number.

In line 0011 we compare the value held in memory

location 03A116 to the value in the accumulator. If the value

in the accumulator is larger, then no borrow will be needed

to perform the comparison (which involves subtraction).

Therefore the carry flag will be set.

We find in line 0012 that, if the carry flag is set, then

we branch forward to line 0014. This will be the case if

the value in the accumulator is the larger value. In line

0014 the X register is incremented so that it points to the

last memory location. In line 0015 we store the value now

in the accumulator in that final memory location.

If during the comparison in line 0011 the value in the

accumulator is smaller, a borrow is required to perform the

comparison (involving subtraction) and the carry flag is

cleared. In line 0012 the carry flag is not set and the branch

does not occur. Therefore, the next instruction in line 0013

is executed. This instruction loads the second number into

□ □Dl □ 34D .org $D34□
□ □□5 □ 34D
□ □□3 □ 340 A3 □ 5 START: LDA
□ □□4 □ 342 C3 □ 4 CMP #$D4
□ □□5 □ 344 C9 □ b CMP *$Db
□ □□b □ 34 b C9 □ 5 CMP #$05
□ 0 □? □ 34 A □ □ BRK
OOOfl □ 34 3
□ □□4 □ 343 . end

Fig. 22-6 Using the compare instruction.

initial value
compare each of these numbers

to A and set flags as though
each had been subtracted from A

346 Digital Computer Electronics

□ 001
□ □□e
□ □03
□ □□4

□ □□5
□ not
□ □□?

□ □□□
□ ODD
□ □□□
□ 000
0000

□ 34D
□ 34D

;place a number in memory location $0340 and another in $D3A1,
, this program will determine which is larger and place
, the larger in location $03AE (Note: Do not use two
; numbers which are equal.)

.org $D34 0

□ □□A □ 340 AE □ □ START: LDX #$00
□ □□3 □ 34 E BD AD □ 3 LD A $03A0 , X
□ 010 0345 EA I NX
□ on □ 341 DD AD □ 3 CMP $03 A0 , X

□ DIE □ 34 3 BD □ 3 BCS FOUND
□ 013 034B BD AD 03 LDA $03A0, X

□ 014 034E EA FOUND: INX
0015 034F 3D A0 03 STA $03A0, X
□ □It 035E □ □ BRK
0017 □ 353
001A □ 353 .end

;initialize X register
I load A from mem 03AD + □□ = 03AD
;point to next mem loc
;compare data in mem D3AD +

□1 = D3A1 to A
;if A is larger jump forward to Found;
; otherwise load A from mem 03A0 +

□1 = 03A1
;point to next mem loc
;store A in mem 03A0 + 0E = 03A3
; stop

Fig. 22-7 An example 6502 program.

the accumulator. Obviously, if the first number is not the

larger, the second one must be. After loading the accu¬

mulator with the second number in line 0013, we continue

in lines 0014 and 0015 to store that value in the third
memory location.

This program will give you an idea how to use some of

the new instructions in this chapter and how to use indexed
addressing.

22-7 6800/6808 FAMILY

The 6800/6808 microprocessor family has a variety of

instructions to handle unconditional jumps and branches,

conditional branching, comparing, incrementing, and dec¬

rementing. We’ll look at several tasks and see how the

6800/6808 microprocessor handles them.

You should enter each program into your computer or

microprocessor trainer and single-step through it, watching

the appropriate registers, memory locations, and flags to

understand how each program works.

Unconditional Jumps

The forward unconditional jump using extended addressing

is probably easiest to understand. An example is shown in
Fig. 22-8.

(Technical Note: We have started this program at address

010016 rather than our usual 000016. Addresses from 000016

to 00FF,6 form page 0 of memory. Some instructions can

use direct addressing, if the desired location is on page 0,

or extended addressing, if the desired location is on a

memory page other than page 0. Our particular assembler

had trouble handling forward references on page 0. Switch¬

ing to a page other than page 0 provided a simple solution

to this problem.)

The program begins by loading accumulator A with FF16.

In a moment we are gong to subtract another number from

this one. First we need to jump to the area of memory

where the subtract instruction is. We have placed the

subtract instruction several memory locations forward from

this point to show, in a very simple manner, how the

unconditional jump instruction operates.

0001 □ !□□ . org $□!□□
□ DDE □ 100
□ 003 □ 100 At FF START: LDA A *$FF
0004 010E 7E 01 □ A JMP MINUS
□ □□5 □ 105 □ 1 NOP
□ oot □ IDt □ 1 NOP
□ 007 □ 107 □ 1 NOP
□ □□A □ IDA A0 EE MINUS: SUBA #$EE
□ □□3 □ 10 A B7 □ 1 □ E ST A A ANSWER
0010 □ 1DD 3E WAI
□ □11 010E
□ □IE □ 10E 00 ANSWER .db $□□
□ □13 □ IDF
□ □14 □ 10F . end

Fig. 22-8 Forward unconditional jump with the 6800/6808
microprocessor. (Note that address is $0100 rather than
$0000. This prevents an assembler error caused by a
forward reference to a label on zero page.)

;beginning of code

;minuend
;forward unconditional jump

;misc. instructions

;subtrahend
;store difference
; stop

;memory area for answer
; (initialized to □□)

Chapter 22 Branching and Loops 347

The next instruction is our jump instruction. In the source

code column of line 0004 the instruction

JMP MINUS

appears, which might be different than what you were

expecting.

The instruction is saying to jump to a place called

MINUS. To be able to jump to a place with a certain name

is not a native ability of the 6800/6808 microprocessor.

Our assembler is making this possible. Line 0008 has the

label MINUS in the label column. This is the place we

want to jump to. Notice the address at the MINUS label.

The address is 0108. Now look back at line 0004. In the

op code column you see 7E, which is the op code for an

unconditional jump. Then come the numbers 01 08. This

is the memory location of the instruction labeled MINUS.

If you use an assembler, you can use labels and the

assembler will calculate the address for you. If you are

hand-assembling these programs, you must enter the address

as shown in the op code column. If you are using an

assembler which does not allow labels, you will need to

use the format shown in the 6800/6808 instruction-set

tables. Namely

JMP $0108

After the jump instruction are several NOPs which could

be other instructions or just unused memory in a particular

microprocessor system.

In line 0008 we subtract EE16 from FF16 (in accumulator

A). In line 0009 we store the result of our subtraction in a

memory location called ANSWER. Look at line 0012,

labeled ANSWER. In the op code column are the initials

.db. They stand for define byte. We are telling the assembler

to reserve a memory location, namely, a single byte of

memory, with the name ANSWER. The assembler is

initializing the memory location ANSWER with a value of

0. Our program can then put any other number we wish in

that location.

Notice also that the memory location of ANSWER is

010E16. In the op code column of line 0009 we see B7 01

0E. The op code for storing the value of the accumulator

in a certain memory location is B7. 010E is the memory

location of ANSWER. Again, the assembler made life

simpler by figuring out where the next available memory

location would be and setting aside that location for the

ANSWER.

Finally, in line 0010 the program stops.

You should enter this program and single-step through

it, making sure everything works as described.

Conditional Branches

Now let’s see an example of conditional branching. Figure

22-9 shows such an example.

In this program we are going to do several things

differently from the way they were done in the last program.

First, we are using a conditional jump or branch rather than

an unconditional one. Second, we are branching backward

rather than forward. Third, we are creating a loop by

branching backward and repeating a section of the program.

Finally, we are using a register as a counter to control how

many times the loop repeats.

In line 0003 we place the number 3]6 in the X register.

This register controls how many times we will branch

backward. In line 0004 we clear accumulator B, making it

0016 so that it can be used to count how many times the

loop repeats.

Line 0005 marks the beginning of the loop, and we have

named that location REPEAT. In this line we increment

accumulator B since we are beginning to pass through the

loop, in this case for the first time. Accumulator B is

keeping track of how many times the loop is passed through.

Line 0006 represents the fact that there could be many

instructions inside this loop which are going to be repeated.

Line 0007 decrements (reduces by 1) the X register. The

X register keeps track of how many times to go through

the loop remain.

Line 0008 is where we meet our conditional branch

instruction. BNE means Branch if Not Equal. Your first

thought might be, “Not equal to what?” If you check the

Expanded Table for the 6800/6808, you’ll see that it is

Branch if Not Equal to 0.

□ □□1 □ ODD .ORG $□□□□
□ □□5 □ □00
□ 003 □ □□□ CE □ □ 03 START: LDX #$DDD3 ;initialize X (repeats)

□ 004 □ 003 Ct □ 0 LDAB *$00 initialize B

0005 □ □□5 5C REPEAT: INCB ;times loop has repeated

□ 000 □ □□£> □ 1 NOP ;misc. instructions

0007 □ □07 □ 3 DEX ;decrement X

□ □□a □ □□a E0 FB BNE REPEAT ;iT X not equal to □ then

□ □□3 □ □□A ; branch back to start of

0010 □ □□A ; loop

□ Oil □ □□A 3E WAI ; stop

ooia □ DOB
□ 013 □ 00B .END

Fig. 22-9 A backward conditional jump creating a loop
with the 6502 microprocessor.

348 Digital Computer Electronics

All the conditional branch instructions are influenced by
the most recent instruction that affected the flag they check.
In this case the zero flag is checked. What was the last
instruction which sets or clears the zero flag? The DEX
(DEcrement X register) instruction. If the X register was
reduced to 0, the zero flag would be set. Has the X register
been reduced to 0? On this first pass through the loop, it
gets reduced from 3 to 2. No, the X register is not equal
to 0.

The branch instruction says, “Branch if Not Equal to
0.” Clearly this is true: the last result is not 0, so we
branch. Branch to where? We branch to the memory location
known as REPEAT. Notice that the location called RE¬
PEAT, in line 0005, is memory location 000516. Now look
again at line 0008. The op code for the BNE instruction is
26, and FB is where it’s branching to. Is FB the memory
location of REPEAT? No. The BNE instruction uses relative
addressing. FB]6 is a negative-signed binary number telling
us how many places to move from where we are now. FB16
is 510. We must branch five memory locations backward
from memory location 000A16.

It will be helpful to enter this program into your computer
or microprocessor trainer and single-step through it. Pay
special attention to the X register, accumulator B, and the
zero flag.

Compare Instructions

The compare instructions allow us to compare the values
in two registers and/or memory locations and to set the
flags accordingly without changing either of the original
values. The appropriate branch instruction can then cause
program execution to continue at the desired location. The
program in Fig. 22-10 allows you to observe how the
compare instructions work.

The program simply loads the value 0516 into accumulator
A and compares the numbers 04,6, 0616, and 0516 to it. If
you refer to the Expanded Table of 6800/6808 Instructions
and look in the Operation column, you will see what we
mean by “compare.”

To “compare” means to subtract the number you are
comparing” from the number being “compared to.” For

example, line 0004 of the program in Fig. 22-10 sets the
flags as though 0416 had been subtracted from 0516, in
accumulator A, without actually changing the value in the
accumulator.

□□□1 □ □□□ . org $□□□□
□ □□2 □ □□□
□ 003 □ □□□ fib □ 5 START: LDAA #$□5
□ □04 □ □□2 A1 □ 4 CMPA #$04
□ □05 □ □□4 A1 □ t CMP A ft $ G b
□ □□□ □ □□t, A1 □ 5 CMPA ft$us
□ □□? □□□a 3E WAI
□ □□A □ □□3
□ □05 □ □□5 . end

Fig. 22-10 Using the compare instruction.

Line 0005 and 0006 likewise subtract 0616 and 0516,
respectively, from the value in accumulator A without
altering the accumulator.

This program’s only purpose is to allow you to see how
the flags are affected by each compare instruction. Enter
the program and single-step through it. Watch the flags
after each step and make sure that you understand why they
react the way they do.

An Example Program

We’ll now look at an example program which uses a
compare instruction, increment instructions, and a condi¬
tional branch instruction. This program looks at two numbers
in memory, determines which is larger, and then places the
larger value in a third memory location. It also uses a form
of indexed addressing. Refer to Fig. 22-11 at this time.

After entering this program into your computer or trainer
but before running it, you must place values of your choice
into the two memory locations indicated in the notes at the
beginning of the program.

This program uses the X register to help point to the
next memory location to load a number from or store a
number in. The first instruction in line 0008 initializes the
X register with a value of 01A016.

Memory location 01A016 is the beginning of a series of
memory locations which this program uses. A common
way to address successive memory locations is to use some
form of indexed addressing. Location 01A016 is the begin¬
ning of the list, and the X register will point to each
successive number in the list. In line 0009 we load the
accumulator with the first number from the list. The memory
location of this number is formed by adding 0016 to the
value in the X register, which is 01A016, to form the address
of the first number in the list, at location 01A016.

In line 0010 we increment the X register to a value of
01A116 so that it points to the next number.

In line 0011 we compare the value held in memory
location 01A116 to the value in accumulator A. If the value
in the accumulator is larger, then no borrow will be needed
to perform the comparison (which involves subtraction).
Therefore the carry flag will be clear.

We find in line 0012 that, if the carry flag is clear, then
we branch forward to line 0014. This will be the case if
the value in the accumulator is the larger value. In line
0014 the X register is incremented, so it points to the last

initial value
compare each of these numbers

to A and set flags as though
each had been subtracted from A

Chapter 22 Branching and Loops 349

□□□1 □□□□ ; place a number in memory location $Q1AD and another in $D1A1;

nan? □□□□ ; this program will determine which is larger and place
□ ana □ □□□ ; the larger in location $D1A? (Note: Do not use two
□ □□4 □□□□ ; numbers which are equal.)
□ nan □ □□□
□ nan □ i □ □ .org $□!□□
□ □□? □ i □ □
□ □□A □i □ □ CE □ 1 AD START: LDX #$□!AD ;initialize X register
□ nan □ 1D3 At □ □ LDAA $□□,X ;load A from mem 01AD + □□ = D1AD
ama □ 1D5 □ A INX ;point to next mem loc
ami □ IQ t A1 □ □ CMPA $□□/X ;compare data in mem Q1AD + □□ -

□1A1 to A

□ □15 □ IQfl 54 □ 5 BCC FOUND ;if A is larger jump forward to Found
□ □in □ IGA At □ □ LDAA $□□fX ; otherwise load A from mem D1A1 +

□□ = D1A1
□ Q14 □ 1 DC □ A FOUND : INX ;point to next mem loc
□ □15 □ 1DD A? □ □ STAA $□□,X ;store A in mem D1A5 + □□ = D1A5

□ nib □ IDF 3E WAI ; stop
□ □17 QUO
□aifl □ 11" . end

Fig. 22-11 An example 6800/6808 program.

memory location. In line 0015 we store the value now in
accumulator A in that final memory location.

If, during the comparison in line 0011 the value in the
accumulator is smaller, a borrow is required to perform the
comparison (involving subtraction) and the carry flag is set.
In line 0012 the carry flag is not clear and the branch does
not occur. Therefore, the next instruction in line 0013 is
executed. This instruction loads the second number into the
accumulator. Obviously, if the first number is not the larger,
the second one must be. After loading accumulator A with
the second number in line 0013, we continue in lines 0014
and 0015 to store that value in the third memory location.

This program will give you an idea how to use some of
the new instructions in this chapter and how to use indexed

addressing.

22-8 8080/8085/Z80 FAMILY

The 8080/8085/Z80 microprocessor family has a variety of
instructions to handle unconditional jumps, conditional
branching, comparing, incrementing, and decrementing.
We’ll look at several tasks and see how the 8080/8085/Z80
microprocessor handles them.

You should enter each program into your computer or
microprocessor trainer and single-step through it, watching
the appropriate registers, memory locations, and flags to
understand how each program works.

Remember that we will show both 8080/8085 and Z80
programs in the figures and that in the text we will show
8080/8085 mnemonics first with Z80 mnemonics in
brackets.

Unconditional Jumps

The forward unconditional jump using direct addressing is
probably easiest to understand. An example is shown in
Fig. 22-12.

The program begins by loading the accumulator with
FF16. In a moment we are going to subtract another number
from this one. First we need to jump to the area of memory
where the subtract instruction is. We have placed the
subtract instruction several memory locations forward from
this point to show, in a very simple manner, how the
unconditional jump instruction operates.

The next instruction is our jump instruction. In the source
code column of line 0004 the instruction

JMP MINUS [JP MINUS]

appears, which might be different than what you were
expecting.

The instruction is saying to jump to a place called
MINUS. To be able to jump to a place with a certain name
is not a native ability of the 8080/8085/Z80 microprocessor.
Our assembler is making this possible. Line 0008 has the
label MINUS in the label column. This is the place we
want to jump to. Notice the address at the MINUS label.
The address is 1808. Now look back at line 0004. In the
op code column you see C3, which is the op code for an
unconditional jump. Then come the numbers 08 18. If you
reverse these two sets of numbers, you have 1808. This is
the memory location of the instruction labeled MINUS. If
you use an assembler, you can use labels and the assembler
will calculate the address for you. If you are hand-assembling
these programs, you must enter the address as shown in
the op code column, in the reverse low-byte/high-byte
order. If you are using an assembler which does not allow
labels, you will need to use the format shown in the 8080/
8085/Z80 instruction-set tables. Namely

JMP aaaa [JP aaaa]

After the jur n instruction are several NOPs which could
be other instructions or just unused memory in a particular
microprocessor system.

350 Digital Computer Electronics

ADAD/ADA5 program

□ □□1 1A 0 □ .org lAOOh ;beginning of code
□ □□a 1A □□
□ □□3 1A □ □ 3E FF START: MVI A,DFFh ;minuend
□ □□4 1A0E C3 □ A 1A JMP MINUS ;forward unconditional jump
□ □□5 1AD5 □ □ NOP
□ 00b lAOb □ □ NOP ;misc. instructions
0007 1A07 □ □ NOP
□ □□A 1 ADA Db EE MINUS: SUI DEEh ;subtrahend
□ □09 1ADA 3E 0E 1A STA ANSWER ;store difference
□ 010 1 ADD 7b HLT ; stop
□ □11 1ADE
□ □IE 1A0E □ □ ANSWER .db DDh ;memory area for answer
□ □13 1ADF ; (initialized to 00)
□ □14 1A0F . end

ZAO] program

□ □□1 1A 00 .org lADDh ;beginning of code
0005 1A00
□ □□3 1 ADD 3E FF START: LD A,DFFh ;minuend
□ □□4 1A0E C3 □ A 1A JP MINUS ;forward unconditional jump
□ □□5 1AQ5 □ □ NOP
000b 1 A0b □ □ NOP ;misc. instructions
0007 1AQ7 00 NOP
□ □□A 1AQA Db EE MINUS: SUB DEEh ; subtrahend
□ □□9 1A0 A 3E □ E 1A LD (ANSWER),A ;store difference
0010 1A0D 7b HALT ; stop
□ □11 1A0E
□ □IE 1A0E □ □ ANSWER .db D0h ;memory area for answer
□ □13 1ADF ; (initialized to 00)
□ 014 1AQF .end

Fig. 22-12 Forward unconditional jump with the 8080/8085/
Z80 microprocessor.

In line 0008 we subtract EE16 from FF16 (in the accu¬
mulator). In line 0009 we store the result of our subtraction
in a memory location called ANSWER. Look at line 0012,
labeled ANSWER. In the op code column are the initials
.db. They stand for define byte. We are telling the assembler
to reserve a memory location, namely, a single byte of
memory, with the name ANSWER. The assembler is
initializing the memory location ANSWER with a value of
0. Our program can then put any other number we wish in
that location.

Notice also that the memory location of ANSWER is
180E]6. In the op code column of line 0009 we see 32 0E
18. The op code for storing the value, of the accumulator
in a certain memory location is 32. If you reverse 0E 18,
you have 180E, which is the memory location of ANSWER.
Again the assembler made life simpler by figuring out
where the next available memory location would be and
setting aside that location for the ANSWER.

Finally, in line 0010, the program stops.
You should enter this program and single-step through

it, making sure that everything works as described.

Conditional Branches

Now let’s see an example of conditional branching. Figure
22-13 shows such an example.

In this program we are going to do several things
differently from the way they were done in the last program.
First, we are using a conditional jump or branch rather than
an unconditional one. Second, we are branching backward
rather than forward. Third, we are creating a loop by
branching backward and repeating a section of the program.
Finally, we are using a register as a counter to control how
many times the loop repeats.

In line 0003 we place the number 316 in register B. This
register controls how many times we will branch backward.
In line 0004 we clear register C making it 00,6 so that it
can be used to count how many times the loop repeats.

Line 0005 marks the beginning of the loop, and we have
named that location REPEAT. In this line we increment
register C since we are beginning to pass through the loop,
in this case for the first time. Register C is keeping track
of how many times the loop is passed through. Line 0006
represents the fact that there could be many instructions
inside this loop which are going to be repeated.

Line 0007 decrements (reduces by one) register B.
Register B keeps track of how many times we have left to
go through the loop.

Line 0008 is where we meet our conditional branch
instruction. JNZ means Jump if Not Zero. [JP NZ means
JumP if Not Zero.] Your first thought might be, “If what
isn’t zero?”

Chapter 22 Branching and Loops 351

ADAD/ADA5 program

□ □□1 1 ADD .ORG lADDh
□ ODE 1A0D
□ □□3 1 ADD □ b □ 3 START: M VI B, D3h ;initialize B (repeats)

□ □□4 1ADE □ E □ □ M VI C, DDh ;initialize C

□ □□3 1A D4 □ C REPEAT: INR C ;times loop has repeated

□ □□b 1A D 5 □ □ NOP ;misc instructions

□ □□? 1 ADb □ 5 DCR B decrement B

□ □□A 1AD? CE □ 4 1A JNZ REPEAT ;if B not equal to □ then

□ □□3 1 ADR ; branch back to start of

□ DID 1 ADR ; loop

□ □11 1 ADR ?b HLT ; stop

□ □IE 1ADB
□ □13 1ADB .END

ZAD program

0D01 1 ADO .ORG lAODh

□ DDE 1ADD
□ □□3 1 ADD 0b D3 START: LD B/D3h ;initialize B (repeats)

□ 004 1ADE 0E □ D LD C/DDh initialize C

□ □□5 1AD4 DC REPEAT: INC C ;times loop has repeated

□ □□b 1AD5 □ D NOP ;misc instructions
□ □□? 1 AOb □ 5 DEC B ; decrement B

□ □□A 1A □? CE □ 4 1A JP NZ,REPEAT ;if B not equal to □ then

□ □□3 1 AD A ; branch back to start of

□ □ID 1 AD A ; loop

□ □11 1 ADR 7b HALT ; stop

□ □IE 1ADB
□ □13 1ADB .END

Fig. 22-13 A backward conditional jump creating a loop
with the 8080/8085/Z80 microprocessor.

All the conditional branch instructions are influenced by

the most recent instruction that affected the flag they check.

In this case the zero flag is checked. What was the last

instruction which sets or clears the zero flag? The DCR B

(DeCRement B) [DEC B (DECrement B)] instruction. If

register B were reduced to 0, the zero flag would be set.

Has register B been reduced to zero? On this first pass

through the loop, it gets reduced from 3 to 2. No, register

B is not equal to 0.

The jump instruction says, “Jump if not zero.” Clearly

this is true: the last result is not 0, so we do jump. Jump

to where? We jump to the memory location known as

REPEAT. Notice that the location called REPEAT, in line

0005, is memory location 180416. Now look again at line

0008. C2 is the op code for the JNZ [JP NZ] instruction.

If you reverse the two sets of numbers 04 18, you form

1804, which is the memory location of the REPEAT label.

It will be helpful to enter this program into your computer

or microprocessor trainer and single-step through it. Pay

special attention to register B, register C, and the zero flag.

Compare Instructions

The compare instructions allow us to compare the values

in two registers and/or memory locations and to set the

flags accordingly without changing either of the original

values. The appropriate jump instruction can then cause

program execution to continue at the desired location. The

program in Fig. 22-14 allows you to experiment with the

compare instructions.

This program loads the value 0516 into the accumulator

and compares the numbers 0416, 0616, and 0516 to it. If you

will refer to the Expanded Table of 8080/8085/Z80 Instruc¬

tions and look in the Operation column, you will see what

we mean by “compare.”

To “compare” means to subtract the number you are

comparing from the number being “compared to.” For

example, line 0004 of the program in Fig. 22-14 sets the

flags as though 0416 had been subtracted from 0516, without

actually changing the value in the accumulator.

Lines 0005 and 0006 likewise subtract 0616 and 0516,

respectively, from the value in the accumulator without

altering the accumulator.

This program’s only purpose is to allow you to see how

the flags are affected by each compare instruction. Enter

the program and single-step through it. Watch the flags

after each step and make sure you understand why they

react the way they do.

An Example Program

We’ll now look at an example program which uses a

compare instruction, increment instructions, and a condi-

352 Digital Computer Electronics

ADAD/AOAS program

□ □□1 1A □□ .org lADDh
□ □02 1 ADD
□ □□3 1A 0 □ 3E □ 5 START: MVI A, 05h
□ □□4 1 ADD FE □ 4 CPI 04h
□ □□5 1A D4 FE □ t CPI Dbh
□ □□£> 1ADL FE □ 5 CPI D5h
□ □□? 1 AD A 7b HLT
□ □□A 1AD9
□□□q 1A09 .end

ZAO program

□ □□1 1 ADD .org lAOOh
□ □□2 1 ADD
□ □□3 1 ADD 3E □ 5 START: LD A,D5h
□ □□4 1 ADD FE □ 4 CP 04h
□ □□5 1A D4 FE □ b CP 0bh
□ DDL 1 ADD FE □ 5 CP 05h
□ □□7 1 AD A 70 HALT
□ □□A 1A 09
□ 003 1A D9 . end

Fig. 22-14 Using the compare instruction.

initial value
compare each of these numbers

to A and set flags as though
each had been subtracted from A

initial value
compare each of these numbers

to A and set flags as though
each had been subtracted from A

tional branch instruction. This program looks at two numbers

in memory, determines which is larger, and then places the

larger value in a third memory location. It also uses register

indirect addressing. Refer to Fig. 22-15 at this time.

After entering this program into your computer or trainer,

but before running it, you must place values of your choice

into the two memory locations indicated in the notes at the
beginning of the program.

This program uses the HL register pair to help point to

the next memory location to load a number from or store

a number in. The first instruction in line 0008 initializes

the HL register pair with a value of 18A016.

Memory location 18A016 is the beginning of a series of

memory locations which this program uses. A common

way to address successive memory locations is to use some

form of indexed addressing. The 8080/8085 does not actually

have an index register; however, the HL register pair can

be used with register indirect addressing to accomplish

much the same thing. Location 18A016 is the beginning of

the list, and the HL register pair will point to each successive

number in the list. In line 0009 we load the accumulator

with the first number from the list. The memory location

of this number is pointed to by the value in the HL register
pair.

In line 0010 we increment the HL register pair to a value

of 18A116 so that it points to the next number.

In line 0011 we compare the value held in memory

location 18A116 to the value in the accumulator. If the value

in the accumulator is larger, then no borrow will be needed

to perform the comparison (which involves subtraction).
Therefore the carry flag will be clear.

We find in line 0012 that, if the carry flag is clear, then

we branch forward to line 0014. This will be the case if

the value in the accumulator is the larger value. In line

0014 the HL register pair is incremented so that it points

to the last memory location. In line 0015 we store the value

now in the accumulator in that final memory location.

If, during the comparison in line 0011 the value in the

accumulator is smaller, a borrow is required to perform the

comparison (involving subtraction) and the carry flag is set.

In line 0012 the carry flag is not clear and the branch does

not occur. Therefore the next instruction in line 0013 is

executed. This instruction loads the second number into the

accumulator. Obviously, if the first number is not the larger,

the second one must be. After loading the accumulator with

the second number in line 0013, we continue in lines 0014

and 0015 to store that value in the third memory location.

This program will give you an idea how to use some of

the new instructions in this chapter and how to use register
indirect addressing.

22-9 8086/8088 FAMILY

The 8086/8088 microprocessor family has a variety of

instructions to handle unconditional jumps, conditional

branching, comparing, incrementing, and decrementing.

We’ll look at several typical tasks and see how the 8086/

8088 microprocessor handles them.

You should enter each program into your computer or

microprocessor trainer and single-step through it, watching

the appropriate registers, memory locations, and flags to

understand how each program works.

Chapter 22 Branching and Loops 353

ADAD/ADA5 program

□ □□1 □□□□ ; place a number in memory location lAADh and another in lAAlh
□ DDE □□□□ ; this program will determine which is larger and place
□ □□3 □ □□□ ; the larger in location lAAEh (Note: Do not use two
□ DDZ □□□□ ; numbers which are equal.)
□ □□5 □ □□□
□ □□b 1 ADD * org 1A □ □ h
□ □□? 1 ADD
□ □□A 1ADD El AD ia START: LXI H,lAADh ;initialize HL register
□□□q 1AD3 7E MOV A, M ;load A from mem IAAO
□ DID 1ADZ E3 INX H ;point to next mem loc
□ □ii IADS BE CMP M ;compare data in mem 1AA1 to A
□ die 1A Db DE □ A 1A JNC BOUND ;if A is larger jump forward to Bound
□ □13 lAoq 7E MOV A f M ; otherwise load A from mem 1AA1
□ □1Z 1 ADR E3 BOUND : INX H ;point to next mem loc
□ □IS 1A DB 77 MOV M, A ;store A in mem IA AE
□ nib 1A DC 7b HLT ; stop
□ □17 1 ADD
□□Ifl 1ADD .end

ZAD program

□ □□1 □ □□□ ;place a number in memory location lAADh and another in lAAlh
□ □□E □ □□□ ; this program will determine which is larger and place
□ □□3 □ □□□ ; the larger in location lAAEh (Note: Do not use two
□ DOZ □ □□□ ; numbers which are equal.)
□ □□5 □ □□□
□ □□b 1 ADD .org lAODh
□ □□7 1 ADD
□ □□A 1 ADD El AD IA START: LD HL,lAADh ;initialize HL register
□ □□3 1A03 7E LD A,(HL) ;load A from mem 1AAD
□ DID 1 ADZ E 3 INC HL ;point to next mem loc
□ □11 IADS BE CP (HL) ;compare data in mem 1AA1 to A
□ □IE 1A Db DE □ A IA JP NC,BOUND ;if A is larger jump forward to Bound
□ □13 1A □□ 7E LD A,(HL) ; otherwise load A from mem 1AA1
□ □1Z 1 AD A E3 FOUND: INC HL ;point to next mem loc
□ □15 1ADB 77 LD (HL),A ;store A in mem 1AAE
□ □lb 1 ADC 7b HALT ; stop
□ □17 1 ADD
□ □IA 1 ADD .end

Fig. 22-15 An example 8080/8085/Z80 program.

Using An Assembler

We need to explain a few things about using an assembler

with the 8086/8088 microprocessor. Look at Fig. 22-16 for

a moment. The

page ,132

command tells the assembler to create a list file (Fig. 22-

lb is a list file) that is up to 132 columns wide. This gives

us more room for the comments at the ends of the lines.

The top portion above the program, which reads

CODE SEGMENT

ASSUME CS:CODE, DS:CODE, SS:CODE

ORG lOOh

and the bottom portion, which reads

CODE ENDS

END START

are required by the assembler. This information has to do

with where in memory we want the program to be and how

we want to handle memory segmentation. This model

allows the program to be assembled and linked to form an

.EXE file which can then be converted to a .COM file with

the EXE2B1N DOS utility. A complete discussion of these

concepts is beyond the scope of this text. If you will use

this model, however, you will be able to use DEBUG to

examine the file and use the trace command to single-step

through it.

After you assemble and link the file, use the EXE2BIN

354 Digital Computer Electronics

1
E

3 □□□□
4
5 D1DD
L
? □ i □ n
A D10E
3 0104

ID 01D5
11 0105
IE
13 0103
14 nine
15
it niDE

17
1A
13 D1DF
En
El

BD FF
EB D3
3D
3D
3D
EC EE
AE D1DE R
CD ED

DD

page , 13 E

CODE SEGMENT
ASSUME CS:CODE,
ORG lODh

START: MOV AL,OFFh
JMP SHORT MINUS
NOP
NOP
NOP

MINUS: SUB AL,DEEh
MOV ANSWER,AL
INT EOh

ANSWER DB □ Dh

CODE ENDS

END STA

DS:CODE, SSrCODE

;minuend
jforward unconditional jump

;misc. instructions

;subtrahend
;store difference
; stop

;memory area for answer
; (initialized to □)

Fig. 22-16 Forward unconditional jump with the 8086/8088
microprocessor (using an assembler).

utility to change it to a .COM file. Then load the file

(filename.ext) by typing

debug filename.ext

at the DOS prompt.

Unconditional Jumps

The forward unconditional jump using direct addressing is

probably the easiest to understand. Look again at Fig.

22-16. The same program entered with DEBUG is shown

in Fig. 22-17.

The program begins by loading AL with FF16. In a

moment we are going to subtract another number from this

one. First we need to jump to the area of memory where

the subtract instruction is. We have placed the subtract

instruction several memory locations forward from this

point to show, in a very simple manner, how the uncon¬

ditional jump instruction operates.

ODEBUG
-r
AX=Q000
DS=3F3D

-a

BX-0000 CX-0000 DX—□□□□ SP=FFEE BP=000D SI=0000 DI=00DD
ES=3F3D SS=3F3D CS=3F3D IP D1DD NV UP El PL NZ NA PO NC

3F3D:010E

BDFF MOV AL,FF

MOV AL, FF ;minuend
JMP D107 ;forward unconditional jump
NOP
NOP ;misc. instructions
NOP
SUB AL, EE ;subtrahend
MOV [□IDE] /AL ;store difference
INT ED ; stop

-u lOd

3F3D:010D BDFF
3F3D:010E EBD3
3F3D:DICK 3D
3F3D:0105 3D
3F3D:010b 3D
3F3D:Q1D7 ECEE
3F3D:D1D3 AEDED1
3F3D:D1DC CDED

MOV AL,FF
JMP D1D7
NOP
NOP
NOP
SUB AL,EE
MOV [D1DE]/AL
INT ED

Fig. 22-17 Forward unconditional jump with the 8086/8088
microprocessor (using DEBUG).

Chapter 22 Branching and Loops 355

The next instruction is our jump instruction. In the

source-code column of line 8 in Fig. 22-16 the instruction

JMP SHORT MINUS

appears, which might be different from what you were

expecting.

The instruction is saying to jump to a placed called

MINUS. To be able to jump to a place with a certain name

is not a native ability of the 8086/8088 microprocessor.

Our assembler is making this possible. Line 12 has the

label MINUS in the label column. This is the place we

want to jump to. Notice the address at the MINUS label.

The address is 0107. Now look back at line 8. In the op

code column you see EB, which is the op code for an

unconditional jump. Then comes the number 03. This is

the number of memory locations by which we must move

forward from the instruction after the JMP instruction.

Moving forward 03 places takes us to memory location

0107. This is the memory location of the instruction labeled

MINUS. If you use an assembler, you can use labels and

the assembler will calculate the relative address for you.

The term SHORT tells the assembler that this place called

MINUS is within 127 bytes of our current location.

If you are using DEBUG to assemble these programs,

you must enter the program as shown in Fig. 22-17. Toward

the top of Fig. 22-17 we simply say

JMP 0107

Notice further down in Fig. 22-17 where we disassembled

the program that JMP 0107 disassembles to EB03. Our

assembler and DEBUG produced the same code.

After the jump instruction are several NOPs which could

be other instructions or just unused memory in a particular

microprocessor system.

In line 12 of Fig. 22-16 we subtract EE16 from FF16 (in

AL). In line 13 we store the result of our subtraction in a

memory location called ANSWER. Look at line 16, labeled

ANSWER. In the op code column are the initials DB. This

stands for define byte. We are telling the assembler to

reserve a memory location, namely, a single byte of

memory, with the name ANSWER. The assembler is

initializing the memory location ANSWER with a value of

0. Our program can then put any other number we wish in

that location.

Notice also that the memory location of ANSWER is

010E16. In the op code column of line 13 we see A2 010E.

A2 is the op code for storing the value of AL in a certain

memory location. Again the assembler made life simpler

by figuring out where the next available memory location

would be and setting aside that location for the ANSWER.

If you used DEBUG as shown in Fig. 22-17, then you

had to specify memory location 010E as shown.

Finally, in line 14 of Fig. 22-16, the program stops.

You should enter this program and single-step through

it, making sure that everything works as described. This is

shown in Fig. 22-18.

-r

AX-DDDD BX=0000 CX=0Q00 DX=DDD0 SP-FFEE BP=Q000 SI-DODO DI=D00D

D S=3F3D ES=3F3D SS=3F3D CS=3F3D IP-D1DD NV UP El PL NZ NA PO NC

3F3D:0100 B0FF MOV AL, FF

-t

AX=00FF BX=0000 CX=D000 DX=000D SP=FFEE BP = 0000 SI=0D00 DI=0000

DS=3F3D ES=3F3D SS=3F3D CS = 3F3D IP=0102 NV UP El PL NZ NA P0 NC

3F3D:0102 EBD3 JMP DID?

AX=00FF BX^DDOD CX^DDDD DX=0000 SP=FFEE BP=0000 SI=DDDD DI=0000

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=0107 NV UP El PL NZ NA PO NC

3F3D:DID?

-t

eCEE SUB AL, - EE

AX=0011 BX=0000 cx=oooo DX=DDDD SP^FFEE BP=0000 SI=0000 DI=0DD0

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=D1D3 NV UP El PL NZ NA PE NC

3F3D:D1D3

-t

A2DED1 MOV [010E],AL DS:010E=S3

AX=0011 BX=00DD CX=0D00 DX—00DD SP=FFEE BP=000D SI-0000 DI=000D

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=010C NV UP El PL NZ NA PE NC

3F3D:010C CD20 INT 2D

-d DIDO 010F
3F3D:010D BO FF EB Q3 3D 3D 3D 2C-EE A2 DE 01 CD 2D 11 3F

Fig. 22-18 Forward unconditional jump with the 8086/8088
microprocessor (single-stepping with the Trace command).

356 Digital Computer Electronics

page ,135

3 □ □□□ CODE SEGMENT
A

ASSUME CS:CODE ,
5
ta

0RG IDDh

7 □ 1D0 B1 □ 3 START: MOV CL,03h
A □ 105 B5 □ 0 MOV CH,00h
9 Q1U4 FE C5 REPEAT: INC CH

ID □ 10b SO NOP
11 □ ID? FE CS DEC CL
15 □ IDS 75 FS JNZ REPEAT
13

1A
15 □ 1DB CD 50 INT 50h
1L

17 □ 1DD CODE ENDS
1A

IS END START

Fig. 22-19 A backward conditional jump creating a loop
with the 8086/8088 microprocessor (using an assembler).

DS:CODE, SS:CODE

;initialize CL (repeats)

;initialize CH

;times loop has repeated

;misc. instructions

;decrement CL

;if CL not equal to □ then

; branch back to start of
; loop

; stop

Conditional Branches

Now let’s see an example of conditional branching. Figure

22-19 shows such an example using an assembler.

Figure 22-20 shows the same program using DEBUG.

In this program we are going to do several things

differently from the way they were done in the last program.

First, we are using a conditional jump or branch rather than

an unconditional one. Second, we are branching backward

rather than forward. Third, we are creating a loop by

branching backward and repeating a section of the program.

Finally, we are using a register as a counter to control how

many times the loop repeats.

In line 7 of Fig. 22-19 we place the number 316 in CL.

This register controls how many times we will branch

backward. In line 8 we clear CH, making it 0016 so that it

can be used to count how many times the loop repeats.

-a 100
77B3:01D0 MOV CL,03

77B3:0105 MOV CH,00
77B3:0104 INC CH
77B3:Q1QL NOP

77B3:0107 DEC CL

77B3:0109 JNZ 0104
77B3:010B

77B3:010B

77B3:010B INT 50

7 7 B3:010D

Line 9 marks the beginning of the loop, and we have

named that location REPEAT. In this line we increment

CH since we are beginning to pass through the loop, in

this case for the first time. Register CH is keeping track of

how many times the loop is passed through. Line 10

represents the fact that there could be many instructions

inside this loop which are going to be repeated.

Line 11 decrements (reduced by 1) register CL. Register

CL keeps track of how many times we have left to go
through the loop.

Line 12 is where we meet our conditional branch instruc¬

tion. JNZ means Jump if Not Zero. Your first thought

might be, “If what isn’t zero?”

All the conditional branch instructions are influenced by

the most recent instruction that affected the flag they check.

In this case the zero flag is checked. What was the last

instruction which sets or clears the zero flag? The DEC CL

;initialize CL (repeats)
;initialize CH
;times loop has repeated
;misc instructions
;decrement CL

;if CL not equal to □ then

; branch back to start of
; loop

; stop

-u 100 IDc

77B3:0100 B1D3 MOV CL,03
77B3:0105 B500 MOV CH, DO
77B3:DICK FEC5 INC CH
77B3:010k 3D NOP
77B3.-0107 FEC3 DEC CL
77B3:0103 7SF3 JNZ Q1UA
77B3:010B CD30 INT 50

Fig. 22-20 A backward conditional jump creating a loop
with the 8086/8088 microprocessor (using DEBUG).

Chapter 22 Branching and Loops 357

(DECrement CL) instruction. If register CL were reduced

to 0, the zero flag would be set. Has CL been reduced to

0? On this first pass through the loop it gets reduced from

3 to 2. No, CL is not equal to 0.

The jump instruction says, “Jump if not zero.” Clearly

this is true: the last result is not 0, so we do jump. Jump

to where? We jump to the memory location known as

REPEAT. Notice that the location called REPEAT, in line

9, is memory location 010416. Now look again at line 12.

The op code for the JNZ instruction is 75. F9 is a negative-

signed binary number telling us how many places to move

backward through memory to reach the place labeled

REPEAT.

If you are using DEBUG to enter this program a shown

in Fig. 22-20, you will actually enter address 0104. DEBUG

then calculates the relative address (F9) for you as shown

in the disassembled area at the bottom of Fig. 22-20.

It will be helpful to enter this program into your computer

and single-step through it. Pay special attention to register

CL, register CH, and the zero flag.

Compare Instructions

The compare instructions allow us to compare the values

in two registers and/or memory locations and to set the

flags accordingly without changing either of the original

values. The appropriate jump instruction can then cause

program execution to continue at the desired location. The

program in Figs. 22-21 and 22-22 allows you to observe

how the compare instructions work.

The program simply loads the value 0516 into AL and

compares the numbers 0416, 0616, and 0516 to it. If you will

refer to the Expanded Table of 8086/8088 Instructions and

read the description, you will see what we mean by

“compare.”

To “compare” means to subtract the number you are

“comparing” from the number being “compared to.” For

example, line 8 of the program in Fig. 22-21 sets the flags

as though 0416 had been subtracted from 0516, without

actually changing the value in AL. Lines 9 and 10 likewise

subtract 06]6 and 0516, respectively, from the value in AL

without altering AL.

This program’s only purpose is to allow you to see how

the flags are affected by each compare instruction. Enter

the program and single-step through it. Watch the flags

after each step and make sure that you understand why they

react the way they do. This has been done in Fig. 22-22.

An Example Program

We’ll now look at an example program which uses a

compare instruction, increment instructions, and a condi¬

tional branch instruction. This program looks at two numbers

in memory, determines which is larger, and then places the

larger value in a third memory location. It also uses register

indirect addressing. Refer to Figs. 22-23 and 22-24 at this

time.

After entering this program into your computer or trainer

but before running it, you must place values of your choice

into the two memory locations indicated in the note at the

top of Fig. 22-23.

This program uses BX to help point to the next memory

location to load a number from or store a number in. The

first instruction in line 12 of Fig. 22-23 initializes BX with

a value of 0016.

Memory location Oil916 (referred to as DATA, line 22)

is the beginning of a series of memory locations which this

program uses. A common way to address successive memory

locations is to use register relative addressing. Location

0119l6 is the beginning of the list, and the BX register will

point to each successive number in the list. In line 13 we

load the accumulator with the first number from the list.

The memory location of this number is pointed to by adding

011916 (DATA) to the value in BX.

In line 14 we increment the BX register to a value of

0116 so that we can point to the next number.

In line 15 we compare the value held in memory location

[DATA + BX] to the value in the accumulator. If the

value in the accumulator is larger, then no borrow will be

needed to perform the comparison (which involves sub-

1 page ,132

3 □ □□□ CODE SEGMENT

4 ASSUME CS:CODE

5 ninn 0RG lOOh

b

7 010D BD D5 START: MOV AL,D5h

A □ IDE 3C □ 4 CMP AL,04 h

q □ 1D4 3 C 0b CMP AL,Obh

ID 010b 3 C □ 5 CMP AL,05h

11 □ IDA CD 2D INT 20h

12

13 DID A CODE ENDS

14

15 END START

Fig. 22-21 Using the compare instruction (8086/8088 using
an assembler).

DS:CODE, SSrCODE

initial value

compare each of

to AL and set

each had been

these numbers

flags as though

subtracted from AL

358 Digital Computer Electronics

ODEBUG
-r

AX=0000 BX=0000

DS=3F3D ES=3F3D

3F3D:0100 BOOS

CX=0000 DX=0000 SP=FFEE

SS=3F3D CS=3F3D IP=0100

MOV AL,D5

BP=0000 SI=0DGG DI=0000

NV OP El PL NZ NA PO NC

-a

3F3D:0100 MOV AL,05

3F3D: 010E CMP AL,04

3F3D:0104 CMP AL,0t

3F3D: 0100 CMP AL,D5

3F3D:OlOfl INT 30

3F3D:DIDA

initial value

compare each of these numbers

to AL and set flags as though

each had been subtracted from AL

-u 1Q0 IDS

3F3D:0100 BODS

3F3D:0102 3C04

3F3D:0104 3C0G

3F3D:0100 3C0S

3F3D:OIOS CDEO

MOV AL, 05

CMP AL,04

CMP AL/Ot

CMP AL,05

INT 50

-r

AX=0000 BX=0000

DS=3F3D ES=3F3D
3F3D:0100 BOOS

-t

CX=0000 DX=0000 SP=FFEE BP=0000 SI-0D00 DI=0000
SS=3F3D CS=3F3D IP 010D NV UP El PL NZ NA PO NC

MOV AL,0 S

AX=0005 BX=0000 CX=0000 DX=0000 SP=FFEE

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=01DE
3F3D:OlOE 3C04 CMP AL,04
-t

BP=0000 SI=0000 DI=0000
NV OP El PL NZ NA PO NC

AX=0005 BX=0000 CX=0000 DX=0000 SP =FFEE

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP-0104
3F3D:0104 3C0t CMP AL,Ot
-t

BP-0000 SI=0000 DI=0000

NV OP El PL NZ NA PO NC

AX=0005 BX=0000 CX=0000 DX=0000 SP=FFEE

DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=OlOt
3F3D:OlOt 3C0S CMP AL,05
- t

BP=D0DD SI=0G00 DI=0DDD
NV UP El NG NZ AC PE CY

AX=0D05 BX=0DDD

DS=3F3D ES=3F3D

3F3D:DlDfl CDED

CX=0000 DX=DD00 SP=FFEE BP-DDOD SI^OOOD DI^DDOQ

SS=3F3D CS—3F3D IP---DlDfl NV UP El PL ZR NA PE NC
INT ED

Fig. 22-22 Using the compare instruction (8086/8088 using
DEBUG).

traction), nor will the result of the comparison be 0; there¬

fore both the carry flag and the zero flag will be clear.

We find in line 16 that, if both the carry flag and the

zero flag are clear, then we branch forward to line 18. This

will be the case if the value in AL is the larger value. In

line 18 the BX register is incremented so that it points to

the last memory location. In line 19 we store the value now

in AL in that final memory location.

If during the comparison in line 15 the value in the

accumulator is smaller, a borrow is required to perform the

comparison (involving subtraction) and the carry flag is set.

In line 16 the carry flag is not clear and the jump does not

occur. Therefore the next instruction in line 17 is executed.

This instruction loads the second number into AL. Ob¬

viously, if the first number is not the larger, the second

one must be. After loading the accumulator with the second

number in line 17, we continue in lines 18 and 19 to store

that value in the third memory location.

This program will give you an idea how to use some of

the new instructions in this chapter and how to use register

relative addressing.

Compare the program as shown in Figs. 22-23 and 22-

24. In Fig. 22-24 the program is entered by using DEBUG

and then single-stepping through (using trace). As in all

programs shown in this text, you’ll learn the most if you

enter the program yourself and experiment with it.

Chapter 22 Branching and Loops 359

1
2
3
4
5
b
7
A □ □□□
3

IQ □ 1QQ
11
13 □ BB □ □□□
13 □ 103 AA A7 □ 113 R
14 □ 107 4 3
15 □ IDA 3 A A7 □ 113 R
lb □ 1QC 77 U4
17 □ IDE AA A7 □ 113 R

1A □ 113 43
13 □ 113 AA A7 □ 113 R
3Q □ 117 CD 3Q
31
33 □ 113 D5 U4 □ □
S3

34
ss mile
3b

3?

page ,133

;place a number in memory location DATA and another in DATA+1;

; this program will determine which is larger and place

; the larger in location DATA+3 (Note: Do not use two

; numbers which are equal.)

CODE SEGMENT

ASSUME CS:CODE, DS : CODE, SS:CODE

ORG □inoh

START: MOV BX,□□h ;initialize BX register

MOV AL,[DATA + BX] ;move byte to AL from mem loc DATA

INC BX ;point to next mem loc (DATA + 1)
CMP AL,[DATA + BX] ;compare byte in mem DATA + 1 to AL

JA FOUND ;if AL is larger jump forward to Found

MOV AL,[DATA + BX] ; otherwise move byte

DATA + 1

to AL from mem

FOUND: INC BX ;point to next mem loc (DATA + 2)
MOV [DATA + BX] , AL ;move byte in AL to mem DATA + 3

INT 3Dh ; stop

DATA DB □5h,D4h, □ □h ;you can use different values for the

; first two numbers

CODE ENDS

END START

Fig. 22-23 An example 8086/8088 program (using an
assembler).

ODEBUG

—
AX=DDDD BX=DDDD CX=QQ0D DX= □□□□ SP FFEE BP=DDDD SI=DDDD DI=DDDD

DS=3F3D ES=3F3D SS=3F3D CS= 3F3D IP=D1DD NV UP El PL NZ NA P0 NC

3F3D:□!□□ BBDDDD MOV BX,□□□□

-a
3F3D:□!□□ MOV BX , □□□□ ;initialize BX register

3F3D:D1D3 MOV AL,[BX+D113] ;move byte to AL from mem loc 0113 + □

3F3D: D1D7 INC BX ;point to next mem loc D113 + 1

3F3D:DlDfl CMP AL,[BX+Q113] ;compare byte in mem 0113 + 1 to AL

3F3D: D1DC JA □ 113 ;if AL is larger jump forward to D113,

3F3D: D1DE MOV AL,[BX+0113] | ; otherwise move byte to AL from D113

3F3D:□!13 INC BX ;point to next mem loc D113 + 3

3F3D:0113 MOV [BX+D113],AL ;move byte in AL to mem D113 + 3

3F3D:0117 INT 3D ; stop

3F3D:0113

-u □!□□ Ollfl

3F3D:□!□□ BBDQDD MOV BX,□□□□
3F3D:0103 flAA713D1 MOV AL,[BX+D113]

3F3D: 0107 43 INC BX

3F3D:DlDfl 3 Afi713□! CMP AL,[BX+D113]
3F3D:D1DC 71U4 JA □ 113

3F3D:D1DE fiA6713D1 MOV AL,[BX+D113]

3F3D:D113 43 INC BX

3F3D:D113 fiflfi713Dl MOV [BX+D113],AL

3F3D:0117 CD3D INT 3D

Fig. 22-24 An example 8086/8088 program (using DEBUG).

360 Digital Computer Electronics

-e 0113
3F3D : 0113 5E.05 Ft.. DA 6B.00 07.□□

-d 0110 Ollf

3F3D:0110 13 01 A3 66 67 13 01 CD-50 05 UA □□ □□ 63 AL EE ..C

AX=D000 BX=0000 CX=0000 DX=000D SP=FFEE
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=0100
3F3D:DIDO

-t
1 BBDD0D MOV BX, 0000

AX=DDDD BX=0000 CX=0DDD DX=Q0Q0 SP=FFEE
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=01D3
3F3D:0103

-t

6A6713I □ 1 MOV AL / [BX+0113

AX=DDD5 BX=0D0D CX=0000 DX-0000 SP=FFEE
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP=0107
3F3D:DID?

-t
A 3 INC BX

AX^DDDS BX=0D01 CX=0000 DX=QQ00 SP=FFEE
DS=3F3D E S=3F3D SS=3F3D CS=3F3D IP=0106
3F3D:0106

-t
3A671301 CMP AL, [BX+0113

AX=DD05 BX=D001 CX=00D0 DX=00 00 SP=FFEE
DS=3F3D ES=3F3D SS=3 F3D CS=3F3D IP=D10C
3F3D:D1DC
-t

??UA JA □ 113

AX=0n05 BX=0001 cx=oooo DX=0000 SP FFEE
DS=3F3D ES-3F3D SS=3F3D CS=3F3D IP=D113
3F3D : DUE
-t

A 3 INC BX

AX=0005 BX=0003 CX-0000 DX=000D SP=FFEE
DS=3F3D ES=3F3D SS=3F3D CS=3F3D IP—0113
3F3D:0113

-t
mov [BX+0113]/A]

AX=DDD5 BX=0003 CX=0000 DX=0000 SP=FFEE
D S—3F3D ES = 3F3D SS=3F3D CS=3F3D IP=0117
3F3D:Dll? CD30 INT 30

-d DUO 011 f

3 F3D:0110 13 01 A 3 flfl 67 13 01 CD- 30 05 UA

BP^DOOO SI=DOOD DI=0000
NV UP El PL NZ NA PO NC

BP=0000 SI=0000 DI=0000

NV UP El PL NZ NA PO NC

DS:0113=05

BP=DOOO SI=0000 DI=0000
NV UP El PL NZ NA PO NC

BP=0000 SI=0000 DI=0000

NV UP El PL NZ NA PO NC

DS:DllA=04

bp=oooo si=oooo di=odod

NV UP El PL NZ NA PO NC

bp=oooo si=oooo di=odoo

NV UP El PL NZ NA PO NC

BP-oooo si=aaoo di-oooo
NV UP El PL NZ NA PO NC

DS:011B=00

BP=0000 SI=0000 DI=0000

NV UP El PL NZ NA PO NC

05 00 63 AL EE ..C F .

Fig. 22-24 (cont.)

GLOSSARY

decrement To decrease. Most microprocessors decrement

registers or memory locations by 1.

increment To increase. Most microprocessors increment
registers or memory locations by 1.

loop A group of instructions which can be executed more

than once. The program “falls through” the loop when

some condition exists or when the loop has been executed

a predetermined number of times.
nest To fit one inside another. Loops can be nested by

having one small loop executing within a larger loop.

Chapter 22 Branching and Loops 361

SELF-TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. Branches or jumps can be made to execute all the

time or only when certain conditions exist. That is,

branches and loops can be_or

2. (conditional, unconditional) When a program

branches backward and repeats a group of instruc¬

tions, it is called a_

3. (loop) Compare instructions generally (though not

always) set and clear the microprocessor’s flags as

though_had occurred.

(subtraction)

PROBLEMS

Solve the following problems by using the microprocessor

of your choice.

You may have some difficulty with the following two

problems; therefore only two are given. As you begin each

problem, do not immediately think of which microprocessor

instructions to use. Instead, think about the problem itself

and visualize what the memory locations will contain. Think

of how to move the data between registers and memory

locations to solve the problem, and then think about what

instructions can be used to accomplish the moves.

22-1. Write a program which will use the first number

in a list of unsigned binary numbers as a refer¬

ence, will compare that number to each of the

following numbers in the list, and will then stop

when it finds the first number in the list which is

smaller than or equal to the reference number.

Finally, the program should store that first number

which was smaller or equal to the reference num¬

ber in a memory location called ANSWER.

(Important: The numbers in the list must be considered

unsigned binary numbers. At least one number in the list

must be smaller than or equal to the reference number.

All the numbers may be smaller or equal to the reference.

The program will be most interesting if more than one,

but not all, the numbers are smaller than or equal to the

reference.)

(Note: You will need to enter the list of numbers

before running the program. The list must have a mini¬

mum of two numbers and can have as many additional

numbers as you wish. We have started the list of numbers

at memory location $03AO for the 6502, $01 AO for the

6800/6808, and at 18A0h for the 8080/8085/Z80, and at a

location labeled LIST for the 8086/8088.)

22-2. Write a program which will look at a list of

numbers which you will store in memory. The

end of this list will be indicated by the number

00. The number 00 cannot be used anywhere in

the list except to mark its end. Write the program

so that it will add each pair of consecutive num¬

bers. That is, if the list contained the numbers

0616, 2E16, 3616, 4216, and 0016, it would perform

the following additions:

0616 + 2E16 = 3416

2E16 + 3616 — 6416

36j6 + 4216 = 7816

The program should not add the 0016 to the preceding

number since 0016 is not one of the numbers in the list

but indicates the end of the list.

When the program adds the first two numbers, it

should place their sum in a memory location called

LRGST (largest). As it adds each of the following pairs,

it should compare their sum with the number in LRGST.

If the new sum is larger than the number in LRGST, then

the new largest number should be placed in LRGST.

Thus, after the program has added all the pairs together,

LRGST will contain the largest sum that was created. All

numbers should be considered unsigned binary numbers.

(Note: The list must contain at least one number, with

the number 00 following it to indicate the end of the list.

In this case no sum should appear in LRGST because

there can be no sum with a list of only one number. The

list can contain any number of numbers beyond one.)

(Note: We have used the numbers 2E16, 3C16, 1B16, 4616,

and 0016 to end the list, in that order, in the answer key.

You should try altering your list to make sure it works

under various circumstances.)

362 Digital Computer Electronics

Subroutine and Stack Instructions
At this point we have covered most of the instruction set

of each of the microprocessors featured in this text. Two

final topics, however, the stack and subroutines, may be

the most important ones. Without subroutines, programs

written for these microprocessors would be unmanageable.

Subroutines are used when there are tasks which must be

executed or used many times. The subroutine provides a

way to write a program segment which can handle a specific

task and be reused.

The stack is important because it supports subroutines

by storing information the microprocessor needs when it

tries to return from a subroutine.

New Concepts

This chapter deals with subroutines and with the stack,

especially as the stack relates to subroutines. The use of

the stack in passing parameters between subroutines or in

mixed-language programs is beyond the scope of this text

and is not discussed.

We discussed the stack in Chap. 15. We’ll review a

portion of that chapter here.

Memory

0000

A
0001

0002 Top-of-stack d

d

r
0003 Data item #6 — Stack pointer—

0004 Data item #5 0002 e

s

s
0005 Data item #4

e 0006 Data item #3

s
0007 Data item #2

0008 Data item #1

Fig. 23-1 Typical stack and stack pointer.

23-1 STACK AND STACK POINTER

The stack, in the case of the microprocessors used in this

text, is located in RAM. Refer to Fig. 23-1.

The structure of the stack is a first-in-last-out (F1LO)

type of structure. Unlike main memory, where you can

access any data item in any order, the stack is designed so

that you can access only the top of the stack. If you want

to place data in the stack, it must go on top, and if you

wish to remove data from the stack, it must be on top

before it can be removed.

Let’s see how the situation in Fig. 23-1 has come to be.

To do that, refer to Fig. 23-2. Data item #1 is the first

item we wish to place on the stack.

At this time the stack pointer is '‘pointing” to memory

location 0008; therefore, data item #1 will be placed in

the stack at that memory location. Putting a piece of data

in the stack is called pushing data onto the stack. It is as

though the data is being pushed in from the top. Now look

at Fig. 23-3.

We have pushed data item #1 onto the stack, and the

stack pointer has been decremented or decreased by 1,

Memory

0000

A
0001

d 0002

d

r
0003 — Stack pointer —

0004 0008 e

s

s
0005

e 0006

s
0007

0008 Top-of-stack
r

Fig. 23-2 Typical stack and stack pointer.

Memory

0000

A
0001

d 0002

d

r
0003 — Stack pointer—

0004 0007 e

s

s
0005

e 0006

s
0007 Top-of-stack

0008 Data item #1

Fig. 23-3 Typical stack and stack pointer.

which means that it is now pointing to memory location

0007. Now 0007 is the top-of-the-stack. Now let’s push

data item #2 onto the stack. The stack will appear as it

does in Fig. 23-4.

When data item #2 was pushed onto the stack, it went

into the location which was being pointed to by the stack

pointer, which was 0007. The stack pointer was then

decremented to 0006. This process will be repeated until

the stack appears as it did in Fig. 23-1.

At some point we will need this data in the stack, so we

will remove it from the top-of-the-stack. This is called

popping or pulling the data from the stack. We simply

reverse the whole process. As each data item is removed,

the stack pointer will drop, which in this case means that

it will increment or point to the next-greater memory address.

23-2 BRANCHING VERSUS
SUBROUTINES

another section of the program. This may be an unconditional

jump or a conditional jump. In either case the instructions

immediately following the jump instruction may not be

executed. If we branch to another section of the program,

it is because we don’t want to execute the instructions

immediately following the branch instructions.

Subroutines also allow us to jump to another section of

the program to execute instructions there. Subroutines differ

from jumps or branches, however, in that the instructions

which immediately follow the subroutine instruction are

executed later. (The act of starting to execute a subroutine

is referred to as jumping to a subroutine if you are using a

6502 or 6800/6808 microprocessor. It is referred to as

calling a subroutine if you are using an 8080/8085/Z80 or

8086/8088 microprocessor.)

After the microprocessor jumps to a subroutine or calls

a subroutine, the instructions in the subroutine begin to

execute. At the end of the subroutine is an instruction called

the return instruction. The return instruction is usually the

last instruction in the subroutine; it tells the microprocessor

to go back to the place in the program where it was when

the subroutine was called and to pick up where it left off.

This is shown in Fig. 23-5.

It is also possible for a subroutine to call another

subroutine. These nested subroutines then sort of “unwind”

and return in the reverse order relative to that in which they

were called. This is illustrated in Fig. 23-6.

23-3 HOW DO SUBROUTINES
RETURN?

The ability of a subroutine to return to the exact location

it came from, especially when nested several layers deep,

raises the question of how it knows where to return to.

In Chap. 22, where branching was discussed, we saw that

branching causes program execution to jump or branch to

Memory

0000

A
0001

d 0002

d

r
0003 — Stack pointer —

0004 0006 e

s

s
0005

0006 Top-of-stack e

s
0007 Data item #2

0008 Data item #1

Fig. 23-4 Typical stack and stack pointer.

A

d

d

r

e

s

s

e

s

Main program Subroutine

Memory Memory

0000 hh hh

0001 hh hh

0002 hh hh

0003 hh hh

0004 Call sub hh

0005 Address hh

0006 Next inst hh

0007 hh hh

0008 hh hh

0009 hh Return

Fig. 23-5 “Calling’’ or “jumping” to a subroutine.

364 Digital Computer Electronics

Second Subroutine

A

d

d

r

e

s

s

e

s

Main program First Subroutine

Memory Memory Memory

0000 hh hh hh

0001 hh hh hh

0002 hh Jump sub hh

0003 hh Address hh

0004 Jump sub Next inst hh

0005 Address hh hh

0006 Next inst hh hh

0007 hh hh hh

0008 hh hh hh

0009 hh Return Return

Fig. 23-6 Nested subroutines.

That is, how does it know where it came from? The answer

lies in what happens just before the microprocessor leaves

the main program, or current subroutine, to go to the

subroutine being called.

The microprocessor must know two things before a

subroutine can be called or jumped to. First, it must know

where it’s going, and second, it must know how to get

back.

The instruction jump to subroutine or call subroutine

contains the address of the desired subroutine. This may

be in the form of an absolute address or an offset of some
sort. This is the destination.

The program counter (8086/8088 instruction pointer)

contains the address of the next instruction to be executed.

This is the point to which the microprocessor needs to

return. Refer to Fig. 23-7.

When the subroutine is called, the contents of the program

counter are pushed onto the stack. This requires more than

one push, since in the case of the 8-bit microprocessors the

stack is only 8 bits wide but the program counter is 16 bits

wide. (The 8088 stores not only the instruction pointer but

may also store the code segment, depending on the type of

call—near or far.)

After the program counter (instruction pointer) is pushed

onto the stack, the address of the subroutine which is being

called or jumped to is placed in the program counter

(instruction pointer), and program execution begins at this

new address.

Execution now continues in the subroutine until a return

instruction is encountered. Refer to Fig. 23-8.

At this point, the address of the next instruction which

was to be executed after the subroutine jump or call, which

A

d

d

r

e

s

s

e

s

Main program

Memory

0000 hh

0001 hh

0002 hh

0003 hh

0004 Jump sub

0005 Addr F000

0006 Next inst

0007 hh

0008 hh

0009 hh

Program counter

Addr next inst

Stack

Ret addr

hh

hh

hh

hh

hh

Fig. 23-7 Calling a subroutine.

Subroutine

Memory

F000 hh

F001 hh

F002 hh

F003 hh

F004 hh

F005 hh

F006 hh

F007 hh

F008 hh

F009 Return

Chapter 23 Subroutine and Stack Instructions 365

Subroutine Main program

Memory

0000 hh

A
0001 hh

d 0002 hh

d

r
0003 hh

e 0004 Jump sub

s

s
0005 Addr F000

e 0006 Next inst

s
0007 hh

0008 hh

0009 hh

Fig. 23-8 Returning from a subroutine.

Program counter

A

d

d

r

e

s

s

e

s

Memory

F000 hh

F001 hh

F002 hh

F003 hh

F004 hh

F005 hh

F006 hh

F007 hh

F008 hh

F009 Return

has been stored on the stack, is pulled or popped from the

stack and placed in the program counter (instruction pointer).

Execution then proceeds from that point forward in the

main program.

To summarize:

1. The call or jump to subroutine instruction is encoun¬

tered.

2. The program counter (instruction pointer) is already

pointing to the next instruction to be executed (in this

section of the program code).

3. The contents of the program counter (instruction pointer)

are pushed onto the stack.

4. The address of the subroutine is placed in the program

counter (instruction pointer).

5. Program execution now begins in the subroutine.

6. When a return instruction is encountered, the return

address, which has been previously stored in the stack,

is pulled from the stack and placed in the program

counter (instruction pointer).

7. Program execution continues from where it left off

before the subroutine was called or jumped to.

23-4 PUSHING AND POPPING
REGISTERS

When a subroutine is called or jumped to, the use and

operation of the stack are automatic. You don’t have to tell

the microprocessor to store the return address on the stack.

It is done automatically.

In addition to the automatic use of the stack in subroutine

calls, the stack can be used directly by the programmer for

other purposes. Although each microprocessor is different,

in general, you can push onto the stack, and pull from the

stack, the contents of some or most of the microprocessor’s

registers. This is often used to pass values from the main

program to subroutines and back, or from subroutine to

subroutine. These values are sometimes referred to as

parameters. The use of the stack in parameter passing,

however, is beyond the scope of this text.

Specific Microprocessor
Families

Let’s look at each of our featured microprocessors. We will

not go into great detail about what each microprocessor

does automatically before and after a subroutine is called.

Rather, we will give examples which show how to call a

subroutine and how to nest subroutines.

23-5 6502 FAMILY

The 6502 microprocessor works as described in the New

Concepts section of this chapter. There is one point worth

noting, however.

The stack pointer of the 6502 is a little different from

that of the other microprocessors featured in this text. The

changeable portion of the stack pointer is only 8 bits wide

(all the others are 16 bits wide) and a 9th bit is always set

to 1. This means that the location of the stack must lie in

the range from address 0100 to 01FF. This is shown in

Fig. 23-9.

Setting the Stack Pointer

Our first example program illustrates how to set the stack

pointer to a desired address and then call a subroutine. It

366 Digital Computer Electronics

Memory

is important to note that, with the simple programs we have

used throughout this text, setting the stack pointer is

normally not required. The microprocessor trainer or com¬

puter you are working with will have an operating system

that will set the stack pointer to a logical address based on

available memory.

Figure 23-10 contains our example program. It sets the

stack pointer to a desired address and then calls a subroutine.

The subroutine does not actually do anything. It gives you

a chance to single-step through a program and watch the

stack pointer and program counter.

Calling More than One Subroutine (Not Nested)

Our next example program is shown in Fig. 23-11.

The two subroutines shown here occur one after the

other. They are not nested. You should single-step through

this program and watch the stack pointer and program

counter. This is important because the next program will

also contain two subroutines, but they will be nested. We

want you to see the difference between the two.

Again, these first programs do not do anything. Just

observe the behavior of the program counter and the stack

pointer.

Nesting Subroutines

The program shown in Fig. 23-12 also has two subroutines.

They are nested, however.

Single-step through this program and watch the stack

pointer and the program counter carefully. Notice how they

act differently from the way they did in the last program.

When you are inside the second subroutine, the stack is

holding the return addresses for both subroutines. That’s

why it decrements further.

Pushing Registers

The example program shown in Fig. 23-13 shows how to

use the stack to move information from one register to
another.

The program pushes the flags onto the stack and then

pulls them from off the stack into the accumulator. The

□ □□1 □ 34D .ORG $0340
□ □□3 □ 34D y

□ □□3 □ 340 A3 F3 START: LDX *$F3
□ □□4 □ 343 3 A TXS
□ □05 □ 343 EA NOP
□ □□fa □ 344 ED 4A 03 JSR SUBRTN
□ □□7 □ 347 □ □ BRK
□ □□A □ 34 A EA SUBRTN: NOP
□ □□3 □ 34 3 to RTS
□ □ID □ 34 A 7

□ □11 □ 34 A .END

;load number for stack pointer

;load stack pointer

;misc instructions

;jump to subroutine (watch stack pointer)
; stop

;misc instructions

;return from subroutine

Fig. 23-10 6502 program

subroutine.
loading stack pointer and calling a

□ □□1 □ 34 □ .ORG $0340
□ □□3 □ 340
□ □□3 □ 34 □ EA START: NOP

□ □□4 □ 341 3D 43 □ 3 JSR RTNE_1

□ □□5 □ 344 EA NOP

□ □□fa □ 345 3D 4B □ 3 JSR RTNE_3
□ □07 □ 34 A □ □ BRK

□ □□a □ 343 EA RTNE_1: NOP
□ □□3 □ 34 A faD RTS
□ □ID □ 34B EA RTNE_3: NOP

□ □11 □ 34C faD RTS
□ □13 □ 34D

□ □13 □ 3 4D .END

Fig. 23-11 6502 program with two subroutines not nested.

Watch the stack pointer as
each subroutine is
"called" or "jumped to,"
and as execution returns
from each back to the main
program. These subroutines
are not nested.

Chapter 23 Subroutine and Stack Instructions 367

□ □01 □ 34 0 .ORG $034□
□□□0 □ 34 □
□ □□3 □ 340 EA START: NOP
□ □□4 □ 341 00 45 □ 3 JSR RTNE_1
□ □□5 □ 344 □ □ BRK
□ 00b □ 345 EA RTNE_1: NOP
□ □□? □ 34b 00 4 A □ 3 JSR RTNE_0
□ □□A □ 3 4 3 GO RTS
□ □□3 □ 34 A EA RTNE_0: NOP
□ □10 □ 34B b0 RTS
□ □11 □ 34C
□ 010 □ 34C .END

Fig. 23-12 6502 program with two nested subroutines.

Again, watch the stack
pointer as each subroutine
is “called" or "jumped to,"
and as execution returns
from each subroutine. These
subroutines are nested.

□ □□1 □ 34 □
□ □□0 034 □
□ □□3 □ 340 □ A
□ □□4 0341 bA
□ □□5 0340 □ 0
000b 0343
□ □□? 0343

.ORG $0340

START: PHP

PLA

BRK

.END

:push flags then decrement stack pointer

;pull then increment stack pointer
; stop

Fig. 23-13 6502 program which pushes a register.

bits of the accumulator, which represent the status of the

flags, can now be examined by the program or stored in

memory.

A Useful Program Containing a Subroutine

Let’s take a look at the program shown in Fig. 23-14.

This program’s purpose is as follows:

it is positive or 0, it will do nothing with the num¬

ber. If the number is negative, a subroutine will be

entered. This subroutine will find the absolute value

of the number (that is, it will make the negative num¬

ber positive). It will then write this positive number

into memory in place of the original negative number.

(We used the decimal numbers 3, —4, —2, 0, and 5.)

(Note: If the microprocessor being used here has a

negate instruction, that instruction will not be used.)

This program will read a list of five signed binary

numbers. As it reads each number, it will determine

whether that number is positive or 0 or negative. If

Enter this program into your microprocessor trainer or

computer and single-step through it. Study the program and

make sure that you understand its operation.

□ □□1 034 □ . org $0340
□ □00 0340

□ □03 □ 340 A0 □ 0 START: LDX #$□□
0004 □ 340 AD □ b LDY $ $ □ b
□ □□5 □ 344 A A GETNUM : DEY
□ 00b □ 345 F0 13 BEQ DONE
□ □□? □ 347 BD bl □ 3 LDA SLIST, X
□ □□A 034 A C3 □ □ CMP *$□□
□ □□3 ’□34 C 10 05 BPL NEXT
□ □ID 034E F0 □ 3 BEQ NEXT
□ Oil 0350 00 57 □ 3 JSR NEGNUM
0010 □ 353 EA NEXT: INX
□ □13 □ 354 4C 44 □ 3 JMP GETNUM
□ □14 □ 357 43 FF NEGNUM: EOR * IFF
□ □15 □ 353 1A CLC
□ □lb □ 35 A b3 01 ADC #$□1
0017 035C 3D bl □ 3 STA SLIST, X

□ D1A □ 35E bO RTS
□ 013 □ 3 b 0 □ 0 DONE : BRK
□ □00 □ 3bl

□ □01 03bl □3FCFEDDD5 LIST: .db 3,
□ □00 □ 3bb

□ □03 □ 3bb . end

Fig. 23-14 A useful 6502 program which contains a
subroutine.

;address of beginning of list

;counter

;decrement counter

; if no items left end program

;load number from list

;is it positive/zero or negative?

;if positive get next number now

;if zero get next number now

;if negative call subroutine

;point to next number in list
;branch back to beginning

jinvert all bits of negative number

;prepare for addition

;add 1 to inverted bits

;write absolute value over

old negative value

; return*

; stop

-2, □, 5 ;list of 5 numbers

368 Digital Computer Electronics

□□□1 0100 .ORG $0100
□ DDE □ 100 ;
□ 003 □ 100 flE □ 1 FF START: LDS *$01FF
□ 0D4 0103 01 NOP
□ 005 0104 BD 01 □ A JSR SUBRTN
0000 □ ID? 3E WAI
0007 OlOfl □ 1 SUBRTN : NOP
OOOfi □ 103 33 RTS
0003 □ 10 A

0010 □ IDA .END

Fig. 23-15 6800/6808 program loading stack pointer and
calling a subroutine.

; load stack pointer

;misc instructions

;jump to subroutine (watch stack pointer)
; stop

;misc instructions

; return from subroutine

23-6 6800/6808 FAMILY

The 6800/6808 microprocessor works as described in the

New Concepts section of this chapter. We’ll look at several

sample programs which you can enter into your micropro¬

cessor trainer or computer and examine.

Setting the Stack Pointer

Our first example program illustrates how to set the stack

pointer to a desired address and then call a subroutine. It

is important to note that, with the simple programs we have

used throughout this text, setting the stack pointer is

normally not required. The microprocessor trainer or com¬

puter you are working with will have an operating system

that will set the stack pointer to a logical address based on

available memory.

Figure 23-15 contains our example program. It sets the

stack pointer to a desired address and then calls a subroutine.

The subroutine does not actually do anything. It gives you

0001 □ 1D0 .ORG $0100
0003 □ 100
0003 010D □ 1 START: NOP
□ 004 0101 BD 01 03 JSR RTNE_1
0005 □ 1D4 □ 1 NOP
□ 000 □ 105 BD 01 DA JSR RTNE_3
0007 OlOfl 3E WAI
OOOfi 0103 01 RTNE_1: NOP
□ ooq □ 10 A 33 RTS
□ □10 010B □ 1 RTNE_3: NOP
□ Oil □ 10C 33 RTS
□ 013 010D
0013 □ 1DD .END

Fig. 23-16 6800/6808 program with two subroutines not nested.

□ 001 0100 .ORG $0100
0003 0100
0003 0100 □ 1 START: NOP
0004 01D1 BD 01 05 JSR RTNE_1
0005 □ 104 3E WAI
□ 000 0105 □ 1 RTNE_1: NOP
0007 0100 BD □ 1 0A JSR RTNE_3
OOOfi 0103 33 RTS
0003 010A 01 RTNE_3: NOP
□ 010 □ 10B 33 RTS
□ Oil 010C
0013 □ 1DC .END

Fig. 23-17 6800/6808 program with two nested subroutines.

a chance to single-step through a program and watch the

stack pointer and program counter.

Calling More than One Subroutine (Not Nested)

Our next example program is shown in Fig. 23-16.

The two subroutines shown here occur one after the

other. They are not nested. You should single-step through

this program and watch the stack pointer and program

counter. This is important because the next program will

also contain two subroutines, but they will be nested. We

want you to see the difference between the two.

Again, these first programs do not do anything. Just

observe the behavior of the program counter and the stack
pointer.

Nesting Subroutines

The program shown in Fig. 23-17 also has two subroutines.

They are nested, however.

Watch the stack pointer as
each subroutine is
"called" or "jumped to,"
and as execution returns
from each back to the main
program. These subroutines
are not nested.

3
3

Again, watch the stack
pointer as each subroutine
is "called" or "jumped to,"
and as execution returns
from each subroutine. These
subroutines are nested.

Chapter 23 Subroutine and Stack Instructions 369

□ □□1 □ 1 □ □ .ORG $□!□□
□ □□e □
□ □□3 □ !□□ at IE START: LD A A #$1E ; load values into

□ □□4 oide Ct 34 LDAB #$34 ; registers

□ □□5 U1U4 3t PSHA ; push then decrement stack pointer
□ □□t □ ids 37 PSHB ; push then decrement stack pointer
□ □□? □ IDb 3E PULA ; puli then increment stack pointer

□ □□a □ ID? 33 PULB ; puli then increment stack pointer
□ □□3 □ IDA 3E WAI ; stop

□ □ID □ IDS
□ □11 □ 1D3 .END

again

again

Fig. 23-18 6800/6808 program which pushes a register.

Single-step through this program and watch the stack

pointer and the program counter carefully. Notice how they

act differently from the way they did in the last program.

When you are inside the second subroutine, the stack is

holding the return addresses for both subroutines. That's

why it decrements further.

Pushing Registers

The example program shown in Fig. 23-18 shows how to

use the stack to move information from one register to

another.

The program loads accumulators A and B with a value,

pushes A and B onto the stack, and then pulls them from

the stack in reverse order. This places the data that was in

A in B and the data that was in B in A.

A Useful Program Containing a Subroutine

Let’s take a look at the program shown in Fig. 23-19.

This program’s purpose is as follows:

This program will read a list of five signed binary

numbers. As it reads each number, it will determine

whether that number is positive or 0 or negative. If

it is positive or 0, it will do nothing with the num¬

ber. If the number is negative, a subroutine will be

entered. This subroutine will find the absolute value

of the number (that is, it will make the negative num¬

ber positive). It will then write this positive number

into memory in place of the original negative number.

(We used the decimal numbers 3, — 4, —2, 0, and 5.)

(Note: If the microprocessor being used here has a

negate instruction, that instruction will not be used.)

Enter this program into your microprocessor trainer or

computer and single-step through it. Study the program and

make sure that you understand its operation.

23-7 8080/8085/Z80 FAMILY

The 8080/8085/Z80 microprocessor works as described in

the New Concepts section of this chapter. We’ll look at

several sample programs which you can enter into your

microprocessor trainer or computer and examine.

The 8080/8085/Z80 microprocessors do have two features

□ □□1 □ !□□ . org $□!□□
□ DDE □ !□□
□ □□3 □ !□□ CE □ 1 IB START: LDX *$LIST
□ □□4 0103 Ct □ t LDAB # $ □ t

□ □□5 □ IDS 5 A GETNUM: DECB

□ □□□ □ 1DL E7 IE BEQ DONE

□ □□? □ IDA At □ □ LD AA $□□, X

□□□a □ IDA A1 □ □ CMP A #$□□
□ □□3 01 DC EC □ 3 BGE NEXT

□ □ID □ IDE BD □ 1 14 JSR NEGNUM
□ □11 □ 111 □ a NEXT: I NX

□ □IE □ HE ED FI BRA GETNUM

□ □13 □ 114 43 NEGNUM : COMA

□ □ 14 □ 115 QB □ 1 ADDA #$□1

□ □IB □ 117 A7 □ □ STAA $□□, X

□ □It □ 113 33 RTS

□ □17 □ HA 3E DONE: WAI

□ □Ifl □ 1 IB

□ □13 0HB □3FCFEDDD5 LIST: .db 3 ,
□ □ED DIED

□ □El DIED . end

;address of beginning of list

;counter

; decrement counter

; if no items left end program

;load number from list

;is it positive/zero or negative?

;if positive get next number now

;if negative call subroutine

;point to next number in list

;branch back to beginning

;invert all bits of negative number

;add 1 to inverted bits

;write absolute value over

old negative value

;return

; stop

-4/ -E, □, 5 ; list of 5 numbers

Fig. 23-19 A useful 6800/6808 program which contains a

subroutine.

370 Digital Computer Electronics

that the other microprocessors featured in this text don’t

have: They have the ability to perform conditional subrou¬

tine calls and to perform conditional returns from subrou¬

tines. All the other microprocessors featured in this text

have only unconditional calls and unconditional returns.

Setting the Stack Pointer

Our first example program illustrates how to set the stack

pointer to a desired address and then call a subroutine. It

is important to note that, with the simple programs we have

used throughout this text, setting the stack pointer is

normally not required. The microprocessor trainer or com¬

puter you are working with will have an operating system

that will set the stack pointer to a logical address based on

available memory.

Figure 23-20 contains our example program. It sets the

stack pointer to a desired address and then calls a subroutine.

The subroutine does not actually do anything. It gives you

a chance to single-step through a program and watch the

stack pointer and program counter.

Calling More than One Subroutine (Not Nested)

Our next example program is shown in Fig. 23-21.

The two subroutines shown here occur one after the

other. They are not nested. You should single-step through

this program and watch the stack pointer and program

counter. This is important because the next program will

also contain two subroutines, but they will be nested. We

want you to see the difference between the two.

ADAD/ADA5 program

□ □□1 1AD0 .ORG lADOh
□ □02 1 ADD
□ □□3 1 ADD 31 DE IF START: LXI SP, IFDEh
□ □□4 1AD3 DO NOP
□ 005 1AD4 CD □ A 1A CALL SUBRTN
□ □□b 1 AD? 7b HLT
□ □□7 1 AD A □ □ SUBRTN : NOP
□ □□A 1 ADD CD RET
□ □□3 1A DR y

□ □ID 1ADA .END

ZAD program

□ DD1 1 ADO .ORG lADDh
□ □□2 1 ADD ;
□ □□3 1 ADD 31 DE IF START: LD SP , IFDEh
□ □□4 1AD3 □ □ NOP
□ DD5 1AD4 CD □ A 1A CALL SUBRTN
□ DDL 1 AD? 7b HALT
□ DD7 1ADA □ □ SUBRTN: NOP
□ □□A 1 ADD CD RET
□ ODD 1A 0 A
□ DID 1 AD A .END

Fig. 23-20 8080/8085/Z80 program loading stack pointer and
calling a subroutine.

Again, these first programs do not do anything. Just

observe the behavior of the program counter and the stack

pointer.

Nesting Subroutines

The program shown in Fig. 23-22 also has two subroutines.
They are nested, however.

Single-step through this program and watch the stack

pointer and the program counter carefully. Notice how they

act differently from the way they did in the last program.

When you are inside the second subroutine, the stack is

holding the return addresses for both subroutines. That’s

why it decrements further.

Pushing Registers

The example program shown in Fig. 23-23 shows how to

use the stack to move information from one register to

another.

The program loads register pairs BC and DE with a

value, pushes BC and DE onto the stack, and then pulls

them from the stack in reverse order. This places the data

that was in BC in DE, and the data that was in DE in BC.

A Useful Program Containing a Subroutine

Let’s take a look at the program shown in Fig. 23-24.

This program’s purpose is as follows:

This program will read a list of five signed binary

numbers. As it reads each number, it will determine

;load stack pointer
;misc instructions
;call subroutine (watch stack pointer)
; stop
;misc instructions
;return from subroutine

;load stack pointer
;misc instructions
;call subroutine (watch stack pointer)
; stop
;misc instructions
;return from subroutine

Chapter 23 Subroutine and Stack Instructions 371

AD AD/AD A 5 program

□□□1 1 ADD .ORG 1800h

odde 1 ADO

□ □□3 1A DO □ □ START: NOP

□ DDZ 1AD1 CD DD 1A CALL RTNE_1

□ DDD 1A DZ □ □ NOP

□ □□b 1 ADD CD □ B 1A CALL RTNE_5

□ □□? 1 AD A 7b HLT

□ □□A 1 ADD □ D RTNE_1: NOP

□ □□3 1 AD A CD RET

□ □ID 1A OB □ □ RTNE__E: NOP

□ Oil 1A DC CD RET

□ 012 1 ADD

□ □13 1 ADD .END

ZAD] program

0001 1A □□ .ORG lADDh

□□□a 1ADD

□ □□3 1 ADD DD START: NOP

□ DDZ 1 ADI CD □ D 1A CALL RTNE_1

□ □□5 1A0Z □ □ NOP

□ DDL 1 ADD CD DB 1A CALL RTNE_E
□ □□? 1 ADA 7b HLT
□ □□A 1A 0 D □ □ RTNE_1: NOP
□ DDD 1A 0 A CD RET

□ DID 1A0B 00 RTNE_E: NOP

□ Dll 1A DC CD RET

□ DIE 1 ADD

□ 013 1A DD .END

Fig. 23-21 8080/8085/Z80 program with two subroutines not
nested.

ADAD/ADA5 program

Watch the stack pointer as
each subroutine is
"called" or "jumped to,"
and as execution returns
from each back to the main
program. These subroutines
are not nested.

Watch the stack pointer as
each subroutine is
"called" or "jumped to,"
and as execution returns
from each back to the main
program. These subroutines
are not nested.

□ □□1 1ADD .ORG lADDh
DDOE 1 ADD

□ □□3 1 ADO □ □ START: NOP
□ DDZ 1A01 CD 05 1A CALL RTNE_1
□ DDD 1A0Z 7b HLT ^_

□ DDb 1AD5 □ □ RTNE_1: NOP
00D7 1 ADh CD □ A 1A CALL RTNE_E
DDD A 1 ADD CD RET —
□ DDD 1 AD A □ D RTNE_E: NOP
□ DID 1ADB CD RET
□ Dll 1AOC

□ DIE 1 ADC .END

ZAD urogram

□ Q01 1ADD .ORG lADDh
□ DDE 1 ADO

□ □□3 1A0D DD START: NOP
□ □□4 1AQ1 CD □ D 1A CALL RTNE_1
□ □□5 1 ADZ 7b HALT
□ DDb 1 ADD DD RTNE_1: NOP ^—

□ DD7 1 ADb CD DA 1A CALL RTNE_2
□ □□A 1ADD CD RET i
0 0 0 D 1A D A DD RTNE_E: NOP
DD1D 1ADB CD RET

DO 11 1A DC

□ DIE 1 AOC .END

Fig. 23-22 8080/8085/Z80 program with two nested
subroutines.

Again, watch the stack
pointer as each subroutine is
"called" or "jumped to,"
and as execution returns
from each subroutine. These
subroutines are nested.

Again, watch the stack
pointer as each subroutine is
"called" or "jumped to,"
and as execution returns
from each subroutine. These
subroutines are nested.

372 Digital Computer Electronics

A0A0/A0A5 program

□ □□1 IflOO .ORG lAOOh
□ doe iaoo
0003 IflOO □ 1 34 IE START: LXI B,1E34 h
□ □□4 1603 11 7 A 50 LXI D/507Ah
0003 1600 C5 PUSH B
0000 1A07 D5 PUSH D
0007 IfiOfl Cl POP B
0DDA laoq D1 POP D
0003 1A0A 70 HLT
0010 1A 0B

□ 011 1A 0B .END

ZAO program

0001 1A 0 0 .ORG lAOOh
□ 00E 1A 0 0

0003 1A 00 01 34 15 START: LD BC/lE34h
0004 1A03 11 ? A 5 b LD DE, 507 Ah
0005 1A 0 0 C5 PUSH BC
□ 000 1A07 D5 PUSH DE
0007 1A 0 A Cl POP BC
000 A 1603 D1 POP DE
0 0 03 1A 0 A 70 HALT
0010 1A 0B
0011 1A 0B .END

Fig. 23-23 8080/8085/Z80 program which pushes a register.

whether that number is positive or 0 or negative. If

it is positive or 0, it will do nothing with the num¬

ber. If the number is negative, a subroutine will be

entered. This subroutine will find the absolute value

of the number (that is, it will make the negative num¬

ber positive). It will then write this positive number

into memory in place of the original negative number.

(We used the decimal numbers 3, —4, —2, 0, and 5.)

{Note: If the microprocessor being used here has a

negate instruction, that instruction will not be used.)

Enter this program into your microprocessor trainer or

computer and single-step through it. Study the program and

make sure that you understand its operation.

23-8 8086/8088 FAMILY

The 8086/8088 microprocessor works as described in the

New Concepts section of this chapter. The 8086/8088 can

have a very large stack, up to 64K (65,536 bytes). The

location of the top-of-the-stack is calculated by using both

the stack pointer and the stack segment.

We’ll look at several sample programs which you can

enter into your microprocessor trainer or computer and

examine.

Setting the Stack Pointer

Our first example program illustrates how to set the stack

pointer to a desired address and then call a subroutine. It

;load values into

; registers

;push then decrement stack pointer

;push then decrement stack pointer again

;pull then increment stack pointer

;pull then increment stack pointer again
; stop

;load values into

; registers

;push then decrement stack pointer

;push then decrement stack pointer again

;pull then increment stack pointer

;pull then increment stack pointer again
; stop

is important to note that, with the simple programs we have

used throughout this text, setting the stack pointer is

normally not required. The microprocessor trainer or com¬

puter you are working with will have an operating system

that will set the stack pointer to a logical address based on

available memory.

Figure 23-25 contains our example program. It sets the

stack pointer to a desired address and then calls a subroutine.

The subroutine does not actually do anything. It gives you

a chance to single-step through a program and watch the

stack pointer and program counter.

Calling More than One Subroutine (Not Nested)

Our next example program is shown in Fig. 23-26.

The two subroutines shown here occur one after the

other. They are not nested. You should single-step through

this program and watch the stack pointer and program

counter. This is important because the next program will

also contain two subroutines, but they will be nested. We

want you to see the difference between the two.

Again, these first programs do not do anything. Just

observe the behavior of the program counter and the stack
pointer.

Nesting Subroutines

The program shown in Fig. 23-27 also has two subroutines.

They are nested, however.

Chapter 23 Subroutine and Stack Instructions 373

A06D/ADA5 program

□□□1 1 AO □ • or9 lADOh
□ □□2 1 ADD
□ □□3 1AQQ 21 1C 1A START: LXI H,LIST
UUUA 1AQ3 □ b □ b MVI B, Dbh
□ □□5 1A □ 5 □ 5 GETNUM: DCR B
□ □□b 1A □ b CA IB 1A JZ DONE
□ □□? iAoq 7E MOV A , M
ODD A 1 ADA FE □ □ CPI □ □h
□ □□3 1 ADC F2 12 1A JP NEXT
□ □ID 1ADF CD lb 1A CALL NEGNUM
□ □11 1A12 23 NEXT: INX H
□ □12 1A13 C3 □ 5 1A JMP GETNUM
□ □13 1A1 b 2F NEGNUM : CM A
unit 1A1? Cb □ 1 ADI □ Ih
□ □15 1A13 77 MOV M, A
□ □lb 1A1A C3 RET
□ □1? 1A IB 7b DONE : HLT
□ □1A 1A 1C
□ □13 1A 1C □3FCFEDDD5 LIST: . db 3,
□ □2D 1A21
□ □21 1A21 .end

ZAO program

□ □□1 1 ADD .org lAODh

□ □□2 1 ADO

□ □□3 1ADD 21 1C 1A START: LD HL,LIST

UUUA 1603 □ b □ b LD B/Dbh

□ □□5 1A □ 5 □ 5 GETNUM: DEC B

□ □□b 1A Db CA IB 1A JP Z,DONE

0007 1A 03 7E LD A,(HL)

□ □□A 1 AD A FE □ □ CP DDh

□ □□3 1A DC F2 12 1A JP P,NEXT

□ □ID 1ADF CD lb 1A CALL NEGNUM

□ □11 1612 23 NEXT: INC HL

□ □12 1613 C3 □ 5 1A JP GETNUM

□ □13 1 Alb 2F NEGNUM: CPL

unit 1A17 Cb 01 ADD A,01h

□ □15 1613 77 LD (HL),A

□ □lb 1A1A C3 RET

□ □17 1A IB 7b DONE : HALT
□ D1A 1A1C
□ □13 1A1C □3ECFEDDD5 LIST: .db 3,

□ □2D 1A21

□ □21 1A21 . end

Fig. 23-24 A useful 8080/8085/Z80 program which contains
a subroutine.

Single-step through this program and watch the stack

pointer and the program counter carefully. Notice how they

act differently from the way they did in the last program.

When you are inside the second subroutine, the stack is

holding the return addresses for both subroutines. That’s

why it decrements further.

Pushing Registers

The example program shown in Fig. 23-28 shows how to

use the stack to move information from one register to

another.

address of beginning of list
counter
decrement counter
if no items left end program
load number from list
is it positive/zero or negative?
if positive get next number now
if negative call subroutine
point to next number in list
branch back to beginning
invert all bits of negative number
add 1 to inverted bits
write absolute value over old negative value
return
stop

-2, □, 5 ;list of 5 numbers

address of beginning of list
counter
decrement counter
if no items left end program
load number from list
is it positive/zero or negative?
if positive get next number now
if negative call subroutine
point to next number in list
branch back to beginning
invert all bits of negative number
add 1 to inverted bits
write absolute value over old negative value
return
stop

-2, □ , 5 ;list of 5 numbers

The program loads registers AX and BX with a value,

pushes AX and BX onto the stack, then pulls them from

the stack in reverse order. This places the data that was in

AX in BX, and the data that was in BX in AX.

A Useful Program Containing a Subroutine

Let’s take a look at the program shown in Fig. 23-29.

This program’s purpose is as follows:

This program will read a list of five signed binary

numbers. As it reads each number, it will determine

374 Digital Computer Electronics

ADAb/ADAA program (with assembler)

1 page , 13 E
E
3 □ □□□ CODE SEGMENT
4 ASSUME CS:CODE , D
5 □ 1DD ORG DlDOh
b
7 □ 1DD BC EEF3 START: MOV SP/0FFF3h
A 0103 3D NOP
3 0104 EA □ 1D3 R CALL SHORT SUBRTN

ID □ ID? CD ED INT EOh
11 □ 103 3D SUBRTN : NOP
IE □ IDA C3 RET
13
14 □ 1QB CODE ENDS
15

It END START

ADAb/ADAA program (with DEBUG)

MOV SP,FFF3 ; load stack pointer
NOP ; misc instructions
CALL D1D3 ; call subroutine (watch
INT ED ; stop
NOP ; misc instructions
RET ;return from subroutine

Fig. 23-25 8086/8088 program loading stack pointer and
calling a subroutine.

S:CODE, SS:CODE

;load stack pointer
;misc instructions
;call subroutine (watch stack pointer)
;stop
;misc instructions
;return from subroutine

tack pointer)

ADAb/ADAA program (with assembler)

1 page , 13 E
E
3 □ ODD CODE SEGMENT
4 ASSUME CS:CODE,
5 □ 1DD ORG DlDOh
b
7 D1DD 3D START: NOP
A D1D1 EA □ IDA R CALL SHORT RTNE.
3 01D4 3D NOP

ID □ 1D5 EA D1DC R CALL SHORT RTNE.
11 □ IDA CD ED INT EOh
IE □ IDA 3D RTNE_1 : NOP
13 D1DB C3 RET
14 D1DC 3D RTNE_E : NOP
15 □ 1DD C3 RET
lb
17 01DE CODE ENDS
1A
13 END START

DS:CODE, SS:CODE

Watch the stack pointer as
each subroutine is
"called" or "jumped to,"
and as execution returns
from each back to the main
program. These subroutines
are not nested.

A □ A b./A □ A A program (with DEBUG)

NOP
CALL DID A
NOP
CALL 01DC
INT ED
NOP
RET
NOP
RET

Watch the stack pointer as
each subroutine is
"called" or "jumped to,"
and as execution returns
from each back to the main
program. These subroutines
are not nested.

Fig. 23-26 8086/8088 program with two subroutines not

nested.

Chapter 23 Subroutine and Stack Instructions 375

ADAb/ADAA program (with assembler)

1 page , i3a
a

3 □□□□ CODE SEGMENT
4 ASSUME CS:CODE,
5 DIDO ORG niODh
b

7 0100 qo START: NOP
A EA □ 10L R CALL SHORT RTNE_
3 U1UA CD ao INT aOh

10 010L 3D RTNE_ .1: NOP
11 DID? EA 010B R CALL SHORT RTNE_
ia DIDA C3 RET
13 □10B qo RTNE_ .a: NOP
IA EDI DC C3 RET
15

10 010D CODE ENDS
17

IA END START

ADAb/ADAA program (with DEBUG)

NOP
CALL 010 L —

int ao ^_ Again, watch the stack

NOP pointer as each subroutine is

CALL DiDB
"called" or "jumped to,"
and as execution returns

RET ** from each subroutine. These
NOP —* subroutines are nested.
RET —

SS:CODE

Again, watch the stack
pointer as each subroutine is
"called" or "jumped to,"
and as execution returns
from each subroutine. These
subroutines are nested.

Fig. 23-27 8086/8088 program with two nested subroutines.

ADAb/ADAA program (with assembler)

1 page ,132

a
3 0000 CODE SEGMENT

A ASSUME CS:CODE, DS:CODE, SS:CODE

5
r

□ 100 ORG OlODh

b

7 0100 BA 133A START: MOV AX,ia34h ;load values into

A 0103 BB 5L7 A MOV BX,5L7 Ah ; registers

q OlDta 5D PUSH AX ;push then decrement stack pointer
10 □ 107 53 PUSH BX ;push then decrement stack pointer aga
11 □ IDA 5 A POP AX ;pop then increment stack pointer

ia oioq 5B POP BX ;pop then increment stack pointer agai

13 □ IDA CD ao INT ODh ; stop

1A
15 □ 10C CODE ENDS

1L

17 END START

ADA L/A □ A A program

MOV AX,ia34

MOV BX,5L7 A

PUSH AX

PUSH BX

POP AX

POP BX

INT ao

(with DEBUG)

;load values into

; registers

;push then decreme

;push then decreme

;pop then incremen

;pop then incremen

; stop

nt stack pointer

nt stack pointer again

t stack pointer

t stack pointer again

Fig. 23-28 8086/8088 program which pushes a register.

376 Digital Computer Electronics

AOAk/AOAA program (with assembler)

1 page ,132
2
3 □□□□ CODE SEGMENT

ASSUME CS:CODE, DS:CODE, SS:CODE

;address of beginning of list
;counter
;decrement counter
;if no items left end program
;load number from list
;is it positive/zero or negative?
;if positive get next number now
;if negative call subroutine
;point to next number in list
;branch back to beginning
jinvert all bits of negative number
;add 1 to inverted bits
;write absolute value over old

negative value
; return
; stop

; list of 5 numbers

A 0 A k/A 0 A A program (with DEBUG)

jaddress of beginning of list
;counter
;decrement counter
;if no items left end program
;load number from list
;is it positive/zero or negative?
;if positive get next number now
;if negative call subroutine
;point to next number in list
;branch back to beginning
jinvert all bits of negative number
;add 1 to inverted bits
;write absolute value over old negative value
;return
; stop

e 0125 03 FC FE □□ 05

Fig. 23-29 A useful 8086/8088 program which contains a
subroutine.

whether that number is positive or 0 or negative. If

it is positive or 0, it will do nothing with the num¬

ber. If the number is negative, a subroutine will be

entered. This subroutine will find the absolute value

of the number (that is, it will make the negative num¬

ber positive). It will then write this positive number

into memory in place of the original negative number

Chapter 23 Subroutine and Stack Instructions 377

(We used the decimal numbers 3, -4, -2, 0, and 5.)

(Note: If the microprocessor being used here has a

negate instruction, that instruction will not be used.)

Enter this program into your microprocessor trainer or

computer and single-step through it. Study the program and

make sure that you understand its operation.

a D100
MOV BX,□□□□
MOV CL,0k
DEC CL
JZ 0120
MOV AL,[BX+0122]
CMP AL,00
JGE DllA
CALL 0117
INC BX
JMP 0105
NOT AL
ADD AL, 01
MOV [BX+0122],AL
RET
INT 20

SELF TESTING REVIEW

Read each of the following and provide the missing words.

Answers appear at the beginning of the next question.

1. _are used when there are common tasks

which must be executed or used many times.

2. (Subroutines) The structure of the stack is a

_type of structure.

3. (FILO) The act of putting a piece of data on the top

of the stack is called_the data onto the

stack.

4. (pushing) The act of removing a piece of data from

the top of the stack is called-or

_the data from the stack.

5. (pulling, popping) The instruction that is usually the

last instruction in a subroutine, and that tells the

microprocessor to go back to the place where it was

before the subroutine was called, is the-

instruction.

6. (return) In general, the programmer can push onto

and pull from the stack one or more of the micropro¬

cessor’s _

(registers)

PROBLEMS

Solve the following problem using the microprocessor of

your choice. This will be the longest program you have

written thus far. Therefore, this chapter has only this one

program for you to write. The program can be considered

correct only if it causes the correct values to be placed in

the counter variables and alters the original list correctly.

23-1. A 1 -byte unsigned number can range from 00 to

FF. Each number in this range has a correspond¬

ing ASCII value. The primary categories within

the ASCII table are shown below. (The characters

from 80-FF are not actually official ASCII char¬

acters but are used to form the extended IBM

character set.)

00-IF various control characters

20-2F punctuation marks

30-39 numbers

o
 I

<

C
O

 punctuation marks

41 -5A uppercase letters

5B-60 punctuation marks

61 -7A lowercase letters

7B-7F punctuation marks

80-FF foreign letters, boxes,

math symbols, miscellaneous

Write a program in which the main part of the

program examines consecutive bytes from a list

which ends with the number FF. This main pro¬

gram section then determines which category each

value in the list is from. Different subroutines will

then be called, depending on which category a

value belongs to.

If the value represents a lowercase letter, a

subroutine called LOWER will increment a mem¬

ory location called NUM_LW, which indicates

the number of lowercase letters found.

If the value represents an uppercase letter, a

subroutine called UPPER will increment a mem¬

ory location called NUM_UP, which indicates the

number of uppercase letters found.

If the value represents a number, a subroutine

called NUM will change the number to its corre¬

sponding binary value. (The ASCII value for a

number and the binary value for that number are

not the same.) The subroutine will then store the

binary value in the list in place of the original

ASCII value and then increment a memory loca¬

tion called NUM_N, which indicates the number

of numbers found.

If the number represents a control character, the

program will do nothing.

If the value represents a punctuation mark, a

subroutine called PUNCT will increment a mem¬

ory location called NUM_P, which indicates the

number of punctuation marks found.

If the value represents one of the special char¬

acters in the range from 80 to FF, a subroutine

called SPECL will change the uppermost bit of

the number from a 1 to a 0. This change will

cause the value to fit into one of the previously

mentioned categories. The subroutine SPECL will

then return to the main program, which is to be

arranged in such a way that this converted value

will be evaluated a second time to determine its

new category and have the appropriate subroutine

called.

Place the following hexadecimal values in the

list: 00, IF, 20, 2F, 30, 39, 3A, 40, 41, 5A, SB,

60, 61, 7A, 7B, 7F, 80, and FF. (FF is not

actually a value to be evaluated but marks the end

of the list.)

378 Digital Computer Electronics

PART 4
MICROPROCESSOR INSTRUCTION SF.T TARIFS

0F 8085,8080 AND 280 (8080subset) instructions listed

Micro Mnemonic Operation 8085>sz-a-p^ T # Address Op Boolean/Arith.

Z80 > sz-H-PNC Mode Operation

CPU Control Instruction.*}

8085 NOP No Operation xx-x-x-x

1 Implied 00 nothing
Can be used to create time

Z80 NOP No Operation
4

xx-x-xxx
delays or leave extra spaces for

instructions to be inserted at a

later time.

8085 HLT HALT xx-x-x-x 5

1 Implied 76 stop processing
(8080 = 7 states)

Z80 HALT HALT xx-x-xxx 4

Data Transfer Instructions

8085 MOV AA MOVe data to A from A xx-x-x-x

1 Register
(8080 = 5 T states)

Z80 LD AyA LoaD data into A

from A
xx-x-xxx

4 7F A A

8085 MOV A,B MOVe data to A from B xx-x-x-x

1 Register
(8080 = 5 T states)

Z80 LD A,B LoaD data into A

from B
xx-x-xxx

4 78 A<-B

8085 MOV A.C MOVe data to A from C xx-x-x-x

1 Register
(8080 = 5 T states)

Z80 LD A,C LoaD data into A

from C
xx-x-xxx

4 79 A C

8085 MOV A,D MOVe data to A from D xx-x-x-x

1 Register
(8080 = 5 T states)

Z80 LD A,D LoaD data into A xx-x-xxx

4 7A A <- D

from D

8085 MOV A,E MOVe data to A from E xx-x-x-x

Z80 LD A,E
4 1 Register 7B A <- E

LoaD data into A xx-x-xxx

from E

(8080 = 5 T states)

381

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085>s2>a-p-c T # Address Op Boolean/Arith. Notes

Z80>sZtH-pnc Mode Operation

8085 MOV A,H MOVe data to A from H xx-x-x-x
4 1 Register 7C A «- H

Z80 LD A,H LoaD data into A xx-x-xxx

from H

(8080 = 5 T states)

8085 MOV A,L MOVe data to A from L xx-x-x-x
4 1 Register 7D A «- L

Z80 LD A,L LoaD data into A xx-x-xxx

from L

(8080 = 5 T states)

8085 MOV A,M MOVe data to A from M xx-x-x-x
7 1

Z80 LD A,(HL) LoaD data into A xx-x-xxx

from (HL)

The data byte found at the

Reg Ind 7E A «- MHL memory location pointed to by

the HL register pair is copied

into the accumulator.

8085 MOV B,A MOVe data to B from A xx-x-x-x
4 1 Register 47 B «- A

Z80 LD BA LoaD data into B xx-x-xxx

from A

(8080 = 5 T states)

8085 MOV B,B MOVe data to B from B xx-x-x-x
4 1 Register 40 B «- B

Z80 LD B,B LoaD data into B xx-x-xxx

from B

(8080 = 5 T states)

8085 MOV B,C MOVe data to B from C xx-x-x-x
4 1 Register 41 B «- C

Z80 LD B,C LoaD data into B xx-x-xxx

from C

(8080 = 5 T states)

8085 MOV B,D MOVe data to B from D xx-x-x-x
4 1 Register 42 B <- D

Z80 LD B,D LoaD data into B xx-x-xxx

from D

8085 MOV B,E MOVe data to B from E xx-x-x-x
4 1 Register 43 B *■ E

Z80 LD B,E LoaD data into B xx-x-xxx

from E

(8080 = 5 T states)

(8080 = 5 T states)

8085 MOV B,H MOVe data to B from H xx-x-x-x
4 1 Register 44 B «- H

Z80 LD B,H LoaD data into B xx-x-xxx

from H

(8080 = 5 T states)

382 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085>sz-a-P-c T # Address Op Boolean/Arith.

Z80>sZtH-pnc Mode Operation

8085 MOV B,L MOVe data to B from L xx-x-x-x

Z80 LD B,L LoaD data into B xx-x-xxx

from L

Register 45 B «- L
(8080 = 5 T states)

8085 MOV B,M MOVe data to B from xx-x-x-x

mhl
Z80 LD B,(HL) LoaD data into B xx-x-xxx

from (HL)

1 Reg Ind 46 B «- M.
HL

The data byte found at the

memory location pointed to by

the HL register pair is copied

into register B.

8085

Z80

MOV CA

LD CA

MOVe data to C from A xx-x-x-x

4 1 Register 4F C «- A
(8080 = 5 T states)

LoaD data into C

from A
xx-x-xxx

8085

Z80

MOV C,B

LD C,B

MOVe data to C from B xx-x-x-x

4 1 Register 48 C <- B
(8080 = 5 T states)

LoaD data into C

from B
xx-x-xxx

8085

Z80

MOV C,C

LD C,C

MOVe data to C from C xx-x-x-x

4 1 Register 49 C«-C
(8080 = 5 T states)

LoaD data into C

from C
xx-x-xxx

8085 MOV C,D MOVe data to C from D xx-x-x-x

Z80 LD C,D LoaD data into C xx-x-xxx

from D

Register 4A C «- D
(8080 = 5 T states)

8085 MOV C,E MOVe data to C from E xx-x-x-x
(8080 = 5 T states)

Z80 LD C,E
4 1 Register 4B C«- E

LoaD data into C xx-x-xxx

from E

8085 MOV C,H

Z80 LD C,H

8085 MOV C,L MOVe data to C from L xx-x-x-x
(8080 = 5 T states)

Z80 LD C,L
4 1 Register 4D C«- L

LoaD data into C xx-x-xxx

from L

MOVe data to C from H xx-x-x-x

LoaD data into C xx-x-xxx

from H

4 1 Register 4C C«- H
- 5 T states)

Microprocessor Instruction Set Tables 383

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80 > sz-H-PNC Mode Operation

8085 MOV C,M MOVe data to C from xx-x-x-x

M„l
LoaD data into C xx-x-xxx

7 1 Reg Ind 4E c-mhl

The data byte found at the

memory location pointed to by

Z80 LD C,(HL) the HL register pair is copied

from (HL) into register C

8085 MOV DA MOVe data to D from A xx-x-x-x

4 1 Register 57 D ♦* A

(8080 = 5 T states)

Z80 LD DA LoaD data into D xx-x-xxx

from A

8085 MOV D,B MOVe data to D from B xx-x-x-x

4 1 Register 50 D <- B

(8080 = 5 T states)

Z80 LD D,B LoaD data into D xx-x-xxx

from B

8085 MOV D,C MOVe data to D from C xx-x-x-x

4 1 Register 51 D <- C

(8080 = 5 T states)

Z80 LD D,C LoaD data into D xx-x-xxx

from C

8085 MOV D,D MOVe data to D from D xx-x-x-x

4 1 Register 52 D <- D

(8080 = 5 T states)

Z80 LD D,D LoaD data into D xx-x-xxx

from D

8085 MOV D,E MOVe data to D from E xx-x-x-x

4 1 Register 53 D «- E

(8080 = 5 T states)

Z80 LD D,E LoaD data into D xx-x-xxx

from E

8085 MOV D,H MOVe data to D from H xx-x-x-x

4 1 Register 54 D <- H

(8080 = 5 T states)

Z80 LD D,H LoaD data into D xx-x-xxx

from H

8085 MOV D,L MOVe data to D from L xx-x-x-x

4 1 Register 55 D <- L

(8080 = 5 T states)

Z80 LD D,L LoaD data into D xx-x-xxx

from L

8085 MOV D,M MOVe data to D from xx-x-x-x The data byte found at the

mhl 7 1 Reg Ind 56 d<-mhl memoiy location pointed to by

Z80 LD D,(HL) LoaD data into D xx-x-xxx the HL register pair is copied

from (HL) into register D.

384 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085 > S2>A-P-c T # Address Op Boolean/Arith.

Z80 > sz-H-PNc Mode Operation

8085 MOV EA MOVe data to E from A xx-x-x-x

Z80 LD EA
4 1 Register 5F E «* A

LoaD data into E xx-x-xxx

from A

(8080 = 5 T states)

8085 MOV E,B MOVe data to E from B xx-x-x-x

Z80 LD E,B LoaD data into E xx-x-xxx
from B

Register 58 E B
(8080 = 5 T states)

8085 MOV E,C MOVe data to E from C xx-x-x-x

Z80 LD E,C
4

LoaD data into E xx-x-xxx
1 Register 59 E «- C

from C

8085 MOV E,D MOVe data to E from D xx-x-x-x

Z80 LD E,D
4 1 Register 5A E«- D

LoaD data into E xx-x-xxx
from D

8085 MOV E,E MOVe data to E from E xx-x-x-x

Z80 LD E,E
4

LoaD data into E xx-x-xxx

from E

1 Register 5B E«- E

8085 MOV E,H MOVe data to E from H xx-x-x-x

Z80 LD E,H
4

LoaD data into E xx-x-xxx

from H

1 Register 5C E«- H

(8080 = 5 T states)

(8080 = 5 T states)

(8080 = 5 T states)

(8080 = 5 T states)

8085 MOV E,L MOVe data to E from L xx-x-x-x

Z80 LD E,L
4

LoaD data into E xx-x-xxx
1 Register 5D E«- L

from L

(8080 - 5 T states)

8085 MOV E,M MOVe data to E from xx-x-x-x

Mhl
Z80 LD Et(HL) LoaD data into E

from (HL)

1 Reglnd 5E E«- M,
xx-x-xxx

HL

The data byte found at the

memory location pointed to by

the HL register pair is copied

into register E.

8085 MOV HA MOVe data to H from A xx-x-x-x

4
Z80 LD HA LoaD data into H xx-x-xxx

from A

Register 67 H * A
(8080 = 5 T states)

Microprocessor Instruction Set Tables 385

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085>sz-A-p.c T # Address Op Boolean/Arith. Notes

Z80>sz-h-pnc Mode Operation

8085 MOV H,B MOVe data to H from B xx-x-x-x

4 1 Register 60 H «- B

(8080 = 5 T states)

Z80 LD H,B LoaD data into H

from B

xx-x-xxx

8085 MOV H,C MOVe data to H from C xx-x-x-x

4 1 Register 61 H «- C

(8080 = 5 T states)

Z80 LD H,C LoaD data into H

from C

xx-x-xxx

8085 MOV H,D MOVe data to H from D xx-x-x-x

4 1 Register 62 H «• D

(8080 = 5 T states)

Z80 LD H,D LoaD data into H

from D

xx-x-xxx

8085 MOV H,E MOVe data to H from E xx-x-x-x

4 1 Register 63 H <- E

(8080 = 5 T states)

Z80 LD H,E LoaD data into H

from E

xx-x-xxx

8085 MOV H,H MOVe data to H from H xx-x-x-x

4 1 Register 64 H<-H

(8080 a 5 T states)

Z80 LD H,H LoaD data into H

from H

xx-x-xxx

8085 MOV H,L MOVe data to H from L xx-x-x-x

4 1 Register 65 H L

(8080 = 5 T states)

Z80 LD H,L LoaD data into H

from L

xx-x-xxx

8085 MOV H,M MOVe data to H from

mhl
LoaD data into H

xx-x-x-x

7 1 Reg Ind 66 H*Mhl

The data byte found at the

memory location pointed to by

Z80 LD H,(HL) xx-x-xxx the HL register pair is copied

from (HL) into register H.

8085 MOV LA MOVe data to L from A xx-x-x-x

4 1 Register 6F L<- A

(8080 = 5 T states)

Z80 LD LA LoaD data into L

from A

xx-x-xxx

8085 MOV L,B MOVe data to L from B xx-x-x-x

4 1 Register 68 L«~B

(8080 = 5 T states)

Z80 LD L,B LoaD data into L

from B

xx-x-xxx

386 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085>sZtA-p-c T # Address Op Boolean/Arith.

Z80>sz-h-pnc Mode Operation

8085 MOV L,C MOVe data to L from C xx-x-x-x

Z80 LD L,C LoaD data into L xx-x-xxx

from C

Register 69 L <- C
(8080 = 5 T states)

8085 MOV L,D MOVe data to L from D xx-x-x-x

Z80 LD L,D LoaD data into L xx-x-xxx

from D

Register 6A L <- D

8085 MOV L,E MOVe data to L from E xx-x-x-x

Z80 LD L,E LoaD data into L xx-x-xxx

from E

8085 MOV L,H MOVe data to L from H xx-x-x-x

Z80 LD L,H LoaD data into L

from H
xx-x-xxx

8085 MOV L,L MOVe data to L from L xx-x-x-x

Z80 LD L,L LoaD data into L

from L
xx-x-xxx

1 Register 6B L «- E

1 Register 6C L «- H

1 Register 6D L«- L

(8080 = 5 T states)

(8080 = 5T states)

(8080 * 5 T states)

(8080 = 5 T states)

8085 MOV L,M

Z80 LD L,(HL)

MOVe data to L from xx-x-x-x

Mhl

LoaD data into L xx-x-xxx

from (HL)

Reg Ind 6E L «- MHL
The data byte found at the

memory location pointed to by

the HL register pair is copied

into register L.

8085 MOV M^A MOVe data to MHL

from A

Z80 LD (HL),A LoaD data into (HL)

from A

1 Reg Ind 77 MHL «■ A
The data in the accumulator is

copied into the memory

location pointed to by the HL

register pair.

8085 MOV M,B MOVe data to MHL xx-x-x-x
from B 7 1

Z80 LD (HL),B LoaD data into (HL) xx-x-xxx
from B

The data in register B is copied
Reg Ind 70 MHL«- B into the memory location

pointed to by the HL register

pair.

8085 MOV M,C MOVe data to MHL xx-x-x-x
from C 7 1

Z80 LD (HL),C LoaD data into (HL) xx-x-xxx
from C

The data in register C is copied

Reg Ind 71 MHL <- C into the memory location

pointed to by the HL register

pair.

Microprocessor Instruction Set Tables 387

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c

Z80>sm-pnc

T # Address

Mode

Op Boolean/Arith.

Operation

Notes

8085

Z80

MOV M,D

LD (HL),D

MOVe data to MHL

from D

LoaD data into (HL)

from D

xx-x-x-x

xx-x-xxx

7 1 Reg Ind 72 Mhl*d

The data in register D is copied

into the memory location

pointed to by the HL register

pair.

8085

Z80

MOV M,E

LD (HL),E

MOVe data to MHL

from E

LoaD data into (HL)

from E

xx-x-x-x

xx-x-xxx

7 1 Reg Ind 73

The data in register E is copied

into the memory location

pointed to by the HL register

pair.

8085

Z80

MOV M,H

LD (HL),H

MOVe data to MHL

from H

LoaD data into (HL)

from H

xx-x-x-x

xx-x-xxx

7 1 Reg Ind 74 mhl*h

The data in register H is copied

into the memory location

pointed to by the HL register

pair.

8085

Z80

MOV M,L

LD (HL),L

MOVe data to MHL

from L

LoaD data into (HL)

from L

xx-x-x-x

7

xx-x-xxx

1 Reg Ind 75 Mhl4- L

The data in register L is copied

into the memory location

pointed to by the HL register

pair.

8085 MVI A.dd MoVe Immediate dd xx-x-x-x The data byte immediately

to A 7 2 Immed 3E A «- dd following the op code is copied

Z80 LD A,dd LoaD dd into A xx-x-xxx into the accumulator.

8085 MVI B,dd MoVe Immediate dd

to B

xx-x-x-x

7 2 Immed 06 B <- dd

The data byte immediately

following the op code is copied

Z80 LD B,dd LoaD dd into B xx-x-xxx into register B.

8085 MVI C,dd MoVe Immediate dd

to C

xx-x-x-x

7 2 Immed 0E C <- dd

The data byte immediately

following the op code is copied

Z80 LD C,dd LoaD dd into C xx-x-xxx into register C.

8085 MVI D,dd MoVe Immediate dd

to D

xx-x-x-x

7 2 Immed 16 D ♦* dd

The data byte immediately

following the op code is copied

Z80 LD D,dd LoaD dd into D xx-x-xxx into register D.

8085 MVI E,dd MoVe Immediate dd

to E

xx-x-x-x

7 2 Immed IE E <- dd

The data byte immediately

following the op code is copied

Z80 LD E,dd LoaD dd into E xx-x-xxx into register E.

8085 MVI H,dd MoVe Immediate dd

to H

xx-x-x-x

7 2 Immed 26 H «- dd

The data byte immediately

following the op code is copied

Z80 LD H,dd LoaD dd into H xx-x-xxx into register H.

388 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085>sz^a-p-c T # Address Op Boolean/Arith.

Z80 > sz-h-pnc Mode Operation

8085 MVI L,dd MoVe Immediate dd xx-x-x-x
to L 7

Z80 LD L.dd LoaD dd into L xx-x-xxx

8085 MVI M,dd MoVe Immediate dd xx-x-x-x
t° mhl 10

Z80 LD (HL),dd LoaD dd into (HL) xx-x-xxx

2 Immed 2E
The data byte immediately

following the op code is copied

into register L.

2 Immed/ 36 MHL <- dd

Reg Ind

The data byte immediately

following the op code is copied

into the memory location

pointed to by the HL register

pair.

8085 LXI B,dddd Load extended Im¬

mediate dddd into

register pair BC

Z80 LD BC,dddd LoaD dddd into

register pair BC

xx-x-x-x

10 3 Immed 01 BC«- dddd
xx-x-xxx

Copy bytes 3 and 2 of the

instruction into registers B and

C respectively.

8085 LXI D,dddd Load extended Im¬

mediate dddd into

register pair DE

Z80 LD DE,dddd LoaD dddd into

register pair DE

xx-x-x-x

10 3 Immed II DE *- dddd
xx-x-xxx

Copy bytes 3 and 2 of the

instruction into registers D and

E respectively.

8085 LXI H,dddd Load extended Im¬

mediate dddd into

register pair HL

Z80 LD HL,dddd LoaD dddd into

register pair HL

10 3 Immed 21 HL«- dddd

Copy bytes 3 and 2 of the

instruction into registers H and

L respectively.

8085 LDAX B LoaD Accumulator xx-x-x-x

extended with data

from mem loc BC 7

Z80 LD A,(BC) LoaD Accumulator with xx-x-xxx

data from mem loc (BC)

1 Reg Ind 0A A«-

Copy the data byte found at

the memory location pointed to

by the BC register pair into the

accumulator.

8085 LDAX D LoaD Accumulator xx-x-x-x

extended with data

from mem loc DE 7

Z80 LD A,(DE) LoaD Accumulator with xx-x-xxx

data from mem loc (DE)

Reg Ind 1A A *• MDE

Copy the data byte found at

the memory location pointed to

by the DE register pair into the

accumulator.

8085 LHLD aaaa

Z80 LD HL,(aaaa)

Load HL Direct with

data starting at aaaa

LoaD HL with data

starting at (aaaa)

xx-x-x-x

xx-x-xxx

Copy the data byte found at

16 3 Direct 2A L«- memory location aaaa into the

H * Maaaa+1 L register and the data byte

found at the next memory

location (aaaa + 1) into the H

register.

Microprocessor Instruction Set Tables 389

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80>sz-h-pnc Mode Operation

8085 LDA aaaa LoaD Accumulator with xx-x-x-x Copy the contents of memory

data from mem loc aaaa 13 3 Direct 3A A *• MaaM
location aaaa into the

Z80 LD A,(aaaa) LoaD Accumulator with

data from mem loc

(aaaa)

xx-x-xxx Accumulator.

8085 STA aaaa STore Accumulator in xx-x-x-x Copy the contents of the

mem loc aaaa 13 3 Direct 32 M^A accumulator into memory

Z80 LD (aaaa)A LoaD mem loc (aaaa)

with the contents of

xx-x-xxx location aaaa.

the Accumulator

8085 STAX B STore Accumulator xx-x-x-x Copy the contents of the

extended at mem accumulator into the memory

loc BC 7 1 Reg Ind 02 ^BC * A location pointed to by the BC

Z80 LD (BC)A LoaD mem loc (BC)

with the contents of

the Accumulator

xx-x-xxx register pair.

8085 STAX D STore Accumulator xx-x-x-x Copy the contents of the

extended at mem accumulator into the memory

loc DE 7 1 Reg Ind 12 ^DE * A location pointed to by the DE

Z80 LD (DE)A LoaD mem loc (DE)

with the contents of

the Accumulator

xx-x-xxx register pair.

8085

Z80

SHLD aaaa

LD (aaaa),HL

Store HL Direct at

mem loc aaaa

LoaD mem loc starting

at (aaaa) with con¬

tents of HL)

XX-X-X-X

xx-x-xxx

16 3 Direct 22 M^L

M^, ♦ H

Copy the contents of register L

into memory location aaaa and

the contents of register H into

the next (aaaa + 1) memory

location.

8085 XCHG eXCHanGe DE with HL xx-x-x-x Exchange the contents of the

4 1 Register EB DE~HL DE and HL register pairs.

Z80 EX DE,HL Exchange DE with HL xx-x-xxx

Flag Instructions

8085 STC SeT Carry flag xx-x-x-1 The carry flag is normally

4 1 Implied 37 C <* 1 designated as "CY* for the

Z80 SCF Set Carry Flag xx-x-xxl 8080/8085.

390 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085 > sz-a-p-c T # Address Op Boolean/Arith.

Z80 > sz-h-pnc Mode Operation

8085 CMC CoMpIement Carry flag xx-x-x-C
The carry flag is normally

Z80 CCF
4 1 Implied 3F C«- C

Complement Carry Flag xx-x-xxC
designated as "CY" for the

8080/8085.

Arithmetic Instructions

8085 ADD A ADD A to A SZ-A-P-C

Z80 ADD AA ADD A to A
4

SZrH-POC

1 Register 87 A «- A + A

8085 ADD B ADD B to A SZ-A-P-C

Z80 ADD A,B ADD B to A
4

SZ-H-P0C

1 Register 80 A <- A + B

8085 ADD C ADD C to A SZ-A-P-C

Z80 ADD A,C ADD C to A
4

SZ-H-P0C

1 Register 81 A <- A + C

8085 ADD D ADD D to A SZ-A-P-C

Z80 ADD A,D ADD D to A
4

SZ-H-P0C

1 Register 82 A «- A + D

8085 ADD E ADD E to A SZ-A-P-C

Z80 ADD A,E ADD E to A
4

SZ-H-P0C

1 Register 83 A «- A + E

8085 ADD H ADD H to A SZ-A-P-C

Z80 ADD A,H ADD H to A
4

SZ-H-P0C

1 Register 84 A <- A + H

8085 ADD L ADD L to A SZ-A-P-C

Z80 ADD A,L ADD L to A
4

SZ-H-P0C

1 Register 85 A «- A + L

8085 ADD M ADD Mhl to A SZ-A-P-C Add the data byte whose

Z80 ADD A,(HL) ADD (HL) to A
7

SZ-H-P0C

1 Reg Ind 86 A «- A + Mhl memory location is pointed to

by the HL register pair to the

accumulator and store the

results in the accumulator.

8085

Z80

ADC A

ADC A,A

AdD with Carry A to A

AdD with Carry A to A

SZ-A-P-C

4

SZH-P0C

1 Register 8F
The carry flag is usually

A <- A + A + C designated by "CY” for the

8080/8085.

Microprocessor Instruction Set Tables 301

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085>s2^ap-c T # Address Op Boolean/Arith. Notes

Z80 > SZ-H-PNC Mode Operation

8085 ADC B AdD with Carry B to A SZ-A-P-C

4 1 Register 88 A «- A + B + C

The carry flag is usually

designated by "CY" for the

Z80 ADC A,B AdD with Carry B to A SZ-H-P0C 8080/8085.

8085 ADC C AdD with Carry C to A SZ-A-P-C

4 1 Register 89 A «- A + C + C

The carry flag is usually

designated by "CY* for the

Z80 ADC A,C AdD with Carry C to A SZ-H-P0C 8080/8085.

8085 ADC D AdD with Carry D to A SZ-A-P-C

4 1 Register 8A A <- A + D + C

The carry flag is usually

designated by "CY" for the

Z80 ADC A,D AdD with Carry D to A SZ-H-P0C 8080/8085.

8085 ADC E AdD with Carry E to A SZ-A-P-C

4 1 Register 8B A «- A + E + C

The carry flag is usually

designated by "CY" for the

Z80 ADC A,E AdD with Carry E to A SZ-H-P0C 8080/8085.

8085 ADC H AdD with Carry H to A SZ-A-P-C

4 1 Register 8C A *■ A + H + C

The carry flag is usually

designated by "CY* for the

Z80 ADC A,H AdD with Carry H to A SZ-H-P0C 8080/8085.

8085 ADC L AdD with Carry L to A SZ-A-P-C

4 1 Register 8D A «- A + L + C

The carry flag is usually

designated by "CY" for the

Z80 ADC A,L AdD with Carry L to A SZ-H-P0C 8080/8085.

8085 ADC M AdD with Carry MHL SZ-A-P-C Add to the accumulator both

to A 7 1 Reg Ind 8E A «- A + Mhl + C the contents of the memory

Z80 ADC A,(HL) AdD with Carry (HL) SZ^H-POC location pointed to by the HL

to A register pair, and the carry flag,

and then place this result in the

accumulator.

8085 SUB A SUBtract A from A SZ-A-P-C

4 1 Register 97 A«- A - A

Z80 SUB A SUBtract A from A SZ-H-P1C

8085

Z80

SUB B

SUB B

SUBtract B from A

SUBtract B from A

SZ-A-P-C

4

SZ-H-P1C

1 Register 90 A* A-B

8085 SUB C SUBtract C from A SZ-A-P-C

4 1 Register 91 A <- A - C

Z80 SUB C SUBtract C from A SZ-H-P1C

392 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085 > sz-a-p-c T # Address Op Boolean/Arith.

Z80>sz-h-pnc Mode Operation

8085 SUB D SUBtract D from A SZ-A-P-C

Z80 SUB D SUBtract D from A
4

SZ-H-P1C

1 Register 92 A <- A - D

8085 SUB E SUBtract E from A SZ-A-P-C

Z80 SUB E SUBtract E from A
4

SZ-H-P1C

1 Register 93 A «■ A - E

8085 SUB H SUBtract H from A SZ-A-P-C

Z80 SUB H SUBtract H from A
4

SZ-H-P1C

1 Register 94 A «- A - H

8085 SUB L SUBtract L from A SZ-A-P-C

Z80 SUB L
4 1 Register 95 A <- A - L

SUBtract L from A SZ-H-P1C

8085 SUB M SUBtract MHL from A SZ-A-P-C
Subtract the contents of the

Z80 SUB (HL) SUBtract (HL) from A
7

SZ-H-P1C

1 Reg Ind 96 a*a-mhl memoiy location pointed to by

the HL register pair from the

contents of the accumulator.

8085 SBB A SuBtract with Borrow SZ-A-P-C

Z80 SBC AA

A from A 4 1 Register 9F A «- A - A - C
SuBtract with Carry

A from A
SZ-H-P1C

8085 SBB B SuBtract with Borrow SZ-A-P-C

Z80 SBC A,B

B from A 4 1 Register 98 A A - B - C
SuBtract with Cany

B from A
SZ-H-P1C

8085 SBB C SuBtract with Borrow SZ-A-P-C

Z80 SBC A,C

C from A 4 1 Register 99 A «- A - C - C
SuBtract with Cany

C from A
SZ-H-P1C

8085 SBB D SuBtract with Borrow SZ-A-P-C

Z80 SBC A,D

D from A 4 1 Register 9A A «- A - D - C
SuBtract with Carry

D from A
SZ-H-P1C

8085 SBB E SuBtract with Borrow SZ-A-P-C

Z80 SBC A,E

E from A 4 1 Register 9B A«- A-E-C
SuBtract with Carry

E from A
SZ-H-P1C

Microprocessor Instruction Set Tables 393

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-C T # Address Op Boolean/Arith. Notes

Z80 > SZ-H-PNC Mode Operation

8085 SBB H SuBtract with Borrow

H from A

SZ-A-P-C

4 1 Register 9C A A - H - C

Z80 SBC A,H SuBtract with Carry

H from A

SZ-H-P1C

8085 SBB L SuBtract with Borrow

L from A

SZ-A-P-C

4 1 Register 9D A «- A - L- C

Z80 SBC A,L SuBtract with Carry

L from A

SM-PIC

8085 SBB M SuBtract with Borrow SZrA-P-C Subtract from the contents of

Mut from A 7 1 Reg Ind 9E A «■ A - Mhl - C the accumulator both the carry

Z80 SBC A,(HL)
nt

SuBtract with Carry

(HL) from A

SM-P1C flag and the contents of the

memory location pointed to by

the HL register pair.

8085 DAD B Double AdD BC to HL xx-x-x-C 10

1 Register 09 HL <- HL + BC

Z80 ADD HL,BC ADD BC to HL xx-x-xOC 11

8085 DAD D Double AdD DE to HL xx-x-x-C 10

1 Register 19 HL <- HL + DE

Z80 ADD HL,DE ADD DE to HL xx-x-xOC 11

8085 DAD H Double AdD HL to HL xx-x-x-C 10

1 Register 29 HL <- HL + HL

Z80 ADD HL,HL ADD HL to HL xx-x-xOC 11

8085 ADI dd AdD Immediate dd to A SZ-A-P-C

7 2 Immed C6 A «- A + dd

Z80 ADD A,dd ADD dd to A SZ-H-P0C

8085 ACI dd AdD with Carry Im¬

mediate dd to A

SZ-A-P-C

7 2 Immed CE A «• A + dd + C

Z80 ADC A,dd AdD with Carry dd

to A

SZ-H-P0C

8085 SUI dd Subtract Immediate

dd from A

SZ-A-P-C

7 2 Immed D6 A «- A - dd

Z80 SUB dd SUBtract dd from A SZ-H-P1C

394 Microprocessor Instruction Set Tables

Micro Mnemonic Operation 8085 > sz^A-P-c T # Address Op Boolean/Arith.

Z80 > sZrH-PNC Mode Operation
Notes

8085

Z80

SBI dd

SBC A.dd

Subtract with Borrow

Immediate dd from A

SuBtract with Carry

dd from A

SZrA-P-C
7

SZ-H-P1C

2 Immed DE A «- A - dd - C

8085 DAA Decimal Adjust A SZ-A-P-C The 8-bit contents of the
4 1 Implied 27 A «- BCD (A) accumulator are adjusted to

Z80 DAA Decimal Adjust A SZ-H-PxC form two 4-bit binary-coded-

decimal (BCD) digits.

Logical Instructions

8085 ANA A ANd A with A SZ-A-P-0 (8085) A flag = l

Z80 AND A AND A with A SZ-1-P00

4 1 Register A7 A «- A AND A (8080) A = ORing of bit 3

of the operands

8085 ANA B ANd A with B SZ-A-P-0 (8085) A flag = l

Z80 AND B AND B with A SZ-1-P00

4 1 Register A0 A «- A AND B (8080) A flag-ORing of bit 3

of the operands

8085 ANA C ANd A with C SZ-A-P-0 (8085) A flag =1

Z80 AND C AND C with A SZ.1-P00

4 1 Register A1 A <- A AND C (8080) A flag-ORing of bit 3

of the operands

8085 ANA D ANd A with D SZ-A-P-0 (8085) A flag =1

Z80 AND D AND D with A SZ-1-P00

4 1 Register A2 A «- A AND D (8080) A flag = ORing of bit 3

of the operands

8085 ANA E ANd A with E SZ-A-P-0 (8085) A flag=1

Z80 AND E AND E with A SZ-1-P00

4 1 Register A3 A «- A AND E (8080) A flag-ORing of bit 3

of the operands

8085 ANA H ANd A with H SZ-A-P-0 (8085) A flag=1

Z80 AND H AND H with A SZ-1-P00

4 1 Register A4 A <- A AND H (8080) A flag-ORing of bit 3

of the operands

8085 ANA L ANd A with L SZ-A-P-0 (8085) A flag=1

Z80 AND L AND L with A SZ-1-P0O

4 1 Register A5 A «* A AND L (8080) A flag-ORing of bit 3

of the operands

8085 ANA M ANd A with MHL SZ-A-P-0 (8085) A flag-1

Z80 AND (HL) AND (HL) with A SZ-1-P00

7 1 Reg Ind A6 A * A AND Mhl (8080) A flag-ORing of bit 3

of the operands

Microprocessor Instruction Set Tables 395

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80>sz>h-pnc Mode Operation

8085 XRA A exclusively OR A

with A

SZ-O-P-O

4 1 Register AF A «- A XOR A

Z80 XOR A exclusively OR A

with A

SZ-O-POO

8085 XRA B exclusively OR A

with B

SZ-O-P-O

4 1 Register A8 A <- A XOR B

Z80 XOR B exclusively ORA

with B

SZ-0-P00

8085 XRA C exclusively OR A

with C

SZ-O-P-O

4 1 Register A9 A <- A XOR C

Z80 XOR C exclusively OR A

with C

SZ-0-P00

8085 XRA D exclusively ORA

with D

SZ-O-P-O

4 1 Register AA A «- A XOR D

Z80 XOR D exclusively OR A

with D

SZ4J-P00

8085 XRA E exclusively OR A

with E

SZ-O-P-O

4 1 Register AB A «- A XOR E

Z80 XOR E exclusively ORA

with E

SZ-O-POO

8085 XRA H exclusively OR A

with H

SZ-O-P-O

4 1 Register AC A <- A XOR H

Z80 XOR H exclusively OR A

with H

SZ-0-P00

8085 XRA L exclusively OR A

with L

SZ-O-P-O

4 1 Register AD A <- A XOR L

Z80 XOR L exclusively OR A

with L

SZ4-P00

8085 XRA M exclusively OR A SZ-O-P-O Exclusively or the contents of

with Mhl 7 1 Reg Ind AE A «- A XOR MHL the accumulator with the

Z80 XOR (HL) exclusively OR A SZ4)-P00 contents of the memory

with (HL) location pointed to by the HL

register pair.

8085 ORA A OR A with A SZ-O-P-O

4 1 Register B7 A «- A OR A

Z80 ORA OR A with A SZ-O-POO

396 Microprocessor Instruction Set Tables

Micro Mnemonic Operation 8085 > sz-a-p-c

Z80>sz-h-pnc

T # Address

Mode

Op Boolean/Arith.

Operation

Notes

8085 ORA B OR A with B SZ-O-P-O

Z80 ORB OR A with B SZ-0-P00

4 1 Register B0 A*A ORB

8085 ORA C OR A with C SZ-O-P-O

Z80 OR C OR A with C SZ-0-P00

4 1 Register B1 A <- A OR C

8085 ORAD OR A with D SZ-O-P-O

Z80 OR D OR A with D SZ-0-P00

4 1 Register B2 A <- A OR D

8085 ORA E OR A with E SZ-O-P-O

Z80 OR E OR A with E SZ-0-P00

4 1 Register B3 A «- A OR E

8085 ORA H OR A with H SZO-P-O

Z80 OR H OR A with H SZ-0-P00

4 1 Register B4 A A OR H

8085 ORA L OR A with L SZ-O-P-O

Z80 OR L OR A with L SZ-0-P00

4 1 Register B5 A «- A OR L

8085

Z80

ORA M

OR (HL)

OR A with Mhl

OR A with (HL)

SZ-O-P-O

SZ-0-P00

7 1 Reg Ind B6 A <- A OR Mhl

or the contents of the

accumulator with the contents

of the memory location pointed

to by the HL register pair.

8085

Z80

ANI dd

AND dd

ANd Immediate dd

with A

AND dd with A

SZA-P-0

SZ1-P00

7 2 Immed E6 A <- A AND dd

(8085) A flag = 1

(8080) A flag = ORing of bit

3 of operands

8085 XR] dd exclusively OR Im- SZ-O-P-O

mediate dd with A 7 2 Immed EE A «- A XOR dd
Z80 XOR dd exclusively OR dd SZ-O-P00

with A

8085 ORJ dd OR Immediate dd SZO-P-O

with A 7 2 Immed F6 A «- A OR dd
Z80 OR dd OR dd with A SZ0-P00

8085 CMA CoMplement A xx-x-x-x Invert every bit in the
4 1 Implied 2F A «- A accumulator. Form the Vs

Z80 CPL ComPLement A xx-l-xlx complement.

Microprocessor Instruction Set Tables 397

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED
BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80>sz-h-pnc Mode Operation

Rotate and Shift Instructions

8085 RLC Rotate Left with xx-x-x-C

Carry 4 1 Implied 07 C^-i-A7..

xx-0-x0C 1

• • A0-*—|

Z80 RLCA Rotate Left with

Carry A

8085

Z80

RRC

RRCA

Rotate Right with

with Carry

Rotate Right with

Carry A

xx-x-x-C

4

xx-0-x0C

1 Implied OF |—... Aq—p* C

8085 RAL Rotate A Left xx-x-x-C

4 1 Implied 17 r— C^—A7 ... Ao^i

Z80 RLA Rotate Left A xx-0-xOC L . _ I

8085 RAR Rotate A Right xx-x-x-C

4 1 Implied IF 1 >

>

0
 1 O

J

Z80 RRA Rotate Right A xx-O-xOC ___1

Increment and Decrement Instructions

8085 INR A INcRement A SZ-A-P-x

4 1 Register 3C A <- A + 1

(8080 = 5 states)

Z80 INC A INCrement A SZ-H-POx

8085 INR B INcRement B SZ-A-P-x

4 1 Register 04 B «- B + 1

(8080 = 5 states)

Z80 INC B INCrement B SZ-H-POx

8085 INR C INcRement C SZ-A-P-x

4 1 Register oc C<- C + 1

(8080 = 5 states)

Z80 INC C INCrement C SZ-H-POx

8085 INR D INcRement D SZ-A-P-x

4 1 Register 14 D «-D + 1

(8080 = 5 states)

Z80 INC D INCrement D SZrH-P0x

8085 INR E INcRement E SZ-A-P-x

4 1 Register 1C E «* E + 1

(8080 = 5 states)

Z80 INC E INCrement E SZ-H-POx

398 Microprocessor Instruction Set Tables

Micro Mnemonic Operation 8085 > sz-a-p-c

Z80>sz-h-pnc

T # Address

Mode

Op Boolean/Arith.

Operation

Notes

8085 INR H INcRement H SZ-A-P-x (8080 = 5 states)
4 1 Register 24 H «- H + 1

Z80 INC H INCrement H SZ-H-POx

8085 INR L INcRement L SZ-A-P-x (8080 » 5 states)
4 1 Register 2C L «* L + 1

Z80 INC L INCrement L SZ-H-PGx

8085 INR M INcRement MHL SZ-A-P-x 10

Z80 INC (HL) INCrement (HL) SZ-H-POx 11

1 Reg Ind 34
mhl mhl + 1

8085 I NX B INcrement extended B xx-x-x-x (8080 = 5 states)
6 1 Register 03 BC «- BC + 1

Z80 INC BC INCrement reg pair BC xx-x-xxx

8085 I NX D INcrement extended D xx-x-x-x (8080 = 5 states)
6 1 Register 13 DE «• DE + 1

Z80 INC DE INCrement reg pair DE xx-x-xxx

8085 I NX H INcrement extended H xx-x-x-x (8080 = 5 states)
6 1 Register 23 HL «* HL + 1

Z80 INC HL INCrement reg pair HL xx-x-xxx

8085 DCR A DeCRement register A SZ-A-P-x

Z80 DEC A DECrement register A SZ-H-Plx
4 1 Register 3D A «- A - 1

(8080 = 5 states)

8085

Z80

DCR B DeCRement register B SZ-A-P-x

4 1 Register 05 B B - 1

(8080 as 5 states)

DEC B DECrement register B SZ-H-Plx

8085 DCR C DeCRement register C SZ-A-P-x

4 1 Register 0D C«- C- 1

(8080 = 5 states)

Z80 DEC C DECrement register C SZ-H-Plx

8085

Z80

DCR D DeCRement register D SZ-A-P-x

4 1 Register 15 D «- D - 1

(8080 = 5 states)

DEC D DECrement register D SZ-H-Plx

8085 DCR E DeCRement register E SZ-A-P-x

4 1 Register ID E E - 1

(8080 = 5 states)

Z80 DEC E DECrement register E SZ-H-Plx

Microprocessor Instruction Set Tables 399

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80>sZtH-pnc Mode Operation

8085 DCRH DeCRement register H SZ-A-P-x

4 1 Register 25 H<~H-1

(8080 = 5 states)

Z80 DECH DECrement register H SZ-H-Plx

8085 DCRL DeCRement register L SZ-A-P-x

4 1 Register 2D L «- L - 1

(8080 = 5 states)

Z80 DEC L DECrement register L SZ-H-Plx

8085 DCRM DeCRement MHL SZ-A-P-x

10 1 Reg Ind 35 mhl * mhl ' 1
Z80 DEC (HL) DECrement (HL) SZ-H-Plx

8085 DCX B Decrement extended

register pair BC

xx-x-x-x

6 1 Register 0B BC «- BC - 1

(8080 = 5 states)

Z80 DEC BC DECrement register

pair BC

xx-x-xxx

8085 DCX D Decrement extended

register pair DE

xx-x-x-x

6 1 Register IB DE «- DE - 1

(8080 = 5 states)

Z80 DEC DE DECrement register

pair DE

xx-x-xxx

8085 DCX H Decrement extended

register pair HL

xx-x-x-x

6 1 Register 2B HL ^ HL - 1

(8080 = 5 states)

Z80 DEC HL DECrement register

pair HL

xx-x-xxx

Unconditional Jump Instructions

8085 JMP aaaa JuMP to mem loc aaaa xx-x-x-x

10 3 Direct C3 PC «- aaaa

Z80 JP aaaa JumP to mem loc aaaa xx-x-xxx

8085 PCHL transfer to the Pro- xx-x-x-x 6 (8080 = 5 states)

gram Counter HL 1 Register E9 PC«^H Transfer the contents of

Z80 JP (HL) JumP to (HL) xx-x-xxx 4 PCx.<-L register H to the high-order

byte of the program counter

and the contents of register L

to the low-order byte of the

program counter.

400 Microprocessor Instruction Set Tables

Micro Mnemonic Operation 8085 > sz^a-p-c T # Address Op Boolean/Arith.

Z80 > sz-H-PNc Mode Operation
Notes

Test ('Compare') Instructions

8085 CMP A CoMPare A to A SZ-A-P-C If A = A then the Z flag = 1.

Z80
4 1 Register BF A - A If A < A then the C flag = 1.

CPA ComPare A to A SZ-H-P1C

8085 CMP B CoMPare B to A SZ-A-P-C If A = B then the Z flag = 1.

Z80
4 1 Register B8 A - B If A < B then the C flag = 1.

CP B ComPare B to A SZ-H-P1C

8085 CMP C CoMPare C to A SZ-A-P-C If A = C then the Z flag = 1.

Z80
4 1 Register B9 A- C If A < C then the C flag = 1.

CP C ComPare C to A SZ-H-P1C

8085 CMP D CoMPare D to A SZ-A-P-C If A = D then the Z flag = 1.

Z80
4 1 Register BA A - D If A < D then the C flag = 1.

CP D ComPare D to A SZ-H-P1C

8085 CMP E CoMPare E to A SZ-A-P-C If A = E then the Z flag = 1.

Z80
4 1 Register BB A-E If A < E then the C flag = 1.

CP E ComPare E to A SZ-H-P1C

8085 CMP H CoMPare H to A SZ-A-P-C If A = H then the Z flag = 1.

Z80
4 1 Register BC A-H If A < H then the C flag = 1.

CP H ComPare H to A SZ-H-P1C

8085 CMP L CoMPare L to A SZ-A-P-C If A = L then the Z flag = 1.

Z80
4 1 Register BD A - L If A < L then the C flag = 1.

CP L Compare L to A SZ-H-P1C

8085 CMP M CoMPare MHL to A SZ-A-P-C If A = Mhl then the Z flag »
7 1 Reg Ind BE a-mhl 1.

Z80 CP (HL) Compare (HL) to A SZ-H-P1C If A < Mhl then the C flag =

1.

8085 CPI dd ComPare Immediate SZ-A-P-C If A = dd then the Z flag * 1.
dd to A 7 2 Immed FE A-dd If A < dd then the C flag = 1.

Z80 CP dd ComPare dd to A SZ-H-P1C

Microprocessor Instruction Set Tables 401

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-C T # Address Op Boolean/Arith. Notes

Z80>sZtH-pnc Mode Operation

Conditional Jumo (Branch"! Instructions

8085 JNZ aaaa Jump if Not Zero xx-x-x-x 7/10 (8080 = 10 states)

to aaaa 3 Direct C2 PC «- aaaa PCl <- byte 2

Z80 JP NZ,aaaa Jump if Not Zero xx-x-xxx 10 if Z = 0 PCjj <- byte 3

to aaaa

8085 JZ aaaa Jump if Zero to aaaa xx-x-x-x 7/10

3 Direct CA PC «• aaaa

(8080 = 10 states)

PC^ <* byte 2

Z80 JP Z,aaaa JumP if Zero to aaaa xx-x-xxx 10 if Z = 1 PCjj «* byte 3

8085

Z80

JNC aaaa

JP NC,aaaa

Jump if No Carry

to aaaa

JumP if No Carry

to aaaa

xx-x-x-x

xx-x-xxx

7/10

3

10

Direct D2 PC «- aaaa

if C = 0

(8080 * 10 states)

PCl *■ byte 2

PCj^ *- byte 3

8085 JC aaaa Jump if Carry to aaaa xx-x-x-x 7/10 (8080 = 10 states)

3 Direct DA PC «- aaaa PCl «- byte 2

Z80 JP C.aaaa JumP if Carry to aaaa xx-x-xxx 10 if C = 1 PCjj «■ byte 3

8085

Z80

JPO aaaa

JP PO.aaaa

Jump if Parity Odd

to aaaa

JumP if Parity Odd

to aaaa

xx-x-x-x

xx-x-xxx

7/10

3

10

Direct E2 PC «- aaaa

if P * 0

(8080 = 10 states)

PC^ <- byte 2

PCh «- byte 3

8085 JPE aaaa Jump if Parity Even xx-x-x-x 7/10 (8080 = 10 states)

to aaaa 3 Direct EA PC «* aaaa PCl <- byte 2

Z80 JP PE,aaaa JumP if Parity Even xx-x-xxx 10 if P = 1 PC^ «- byte 3

to aaaa

8085 JP aaaa Jump if Plus to aaaa xx-x-x-x 7/10 (8080 = 10 states)

3 Direct F2 PC «- aaaa PCl «- byte 2
Z80 JP P,aaaa JumP if Plus to aaaa xx-x-xxx 10 if S = 0 PC^ «- byte 3

8085 JM aaaa Jump if Minus to aaaa xx-x-x-x 7/10

3 Direct FA PC «* aaaa

(8080 = 10 states)

PCl «■ byte 2
Z80 JP M,aaaa JumP if Minus to aaaa xx-x-xxx 10 if S = 1 PCj^ *■ byte 3

Subroutine Instructions

8085 CALL aaaa CALL subroutine

at aaaa

xx-x-x-x 18

3 Direct/ CD S «- PC^

(8080 = 17 states)

The stack pointer is

Z80 CALL aaaa CALL subroutine

at aaaa

xx-x-xxx 17 Reg Ind S^Pq

PC «- aaaa

decremented as each new byte

is pushed onto the stack.

PCjj <- byte 3

PCl «* byte 2

402 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085>S2tA*p-c T # Address Op Boolean/Arith.

Z80>sz-h-pnc Mode Operation

8085 CNZ aaaa Call if Not Zero

subroutine at aaaa

Z80 CALL NZ,aaaa CALL if Not Zero

subroutine at aaaa

xx-x-x-x 9/18 if Z = 0
3 Direct/ C4 S-PCH

xx-x-xxx 10/17 Reg Ind S *■ PCl
PC *■ aaaa

(8080 = 11/17 states)

The stack pointer is

decremented as each new byte

is pushed onto the stack.

PCn «* byte 3

PCl <- byte 2

8085 CZ aaaa Call if Zero

subroutine at aaaa

Z80 CALL Z,aaaa CALL if Zero

subroutine at aaaa

xx-x-x-x 9/18 if Z = 1 (8080 = 11/17 states)
3 Direct/ CC S-PCh The stack pointer is

xx-x-xxx 10/17 Reg Ind
S<-PCL decremented as each new byte
PC «- aaaa is pushed onto the stack.

PCH * byte 3
PCl «- byte 2

8085 CNC aaaa Call if No Carry xx-x-x-x 9/18 if C = 0

Z80
subroutine at aaaa 3 Direct/ D4 S*PCh

s <- PC,^

PC «- aaaa

CALL NC.aaaa CALL if No Cany

subroutine at aaaa
xx-x-xxx 10/17 Reg Ind

(8080 = 11/17 states)

The stack pointer is

decremented as each new byte

is pushed onto the stack.

PCjj «- byte 3

PCl <- byte 2

8085 CC aaaa

Z80 CALL C,aaaa

Call if Carry

subroutine at aaaa

CALL if Cany

subroutine at aaaa

9/18 if C = 1

3 Direct/ DC S <- PC„

10/17 Reg Ind S «- PC^

PC «- aaaa

(8080 = 11/17 states)

The stack pointer is

decremented as each new byte

is pushed onto the stack.

PC^ ♦- byte 3

PCl <- byte 2

8085 CPO aaaa Call if Parity Odd

subroutine at aaaa

Z80 CALL PO,aaaa CALL if Parity Odd

subroutine at aaaa

xx-x-x-x 9/18 if P = 0
3 Direct/ E4 S^PCh

xx-x-xxx 10/17 Reg Ind S^PCl
PC <- aaaa

(8080 = 11/17 states)

The stack pointer is

decremented as each new byte

is pushed onto the stack.

PCjj «• byte 3

PCl *■ byte 2

8085 CPE aaaa

Z80 CALL PE,aaaa

Call if Parity Even

subroutine at aaaa

CALL if Parity Even

subroutine at aaaa

xx-x-x-x 9/18 if P = 1 (8080 = 11/17 states)
3 Direct/ EC S*PC„ The stack pointer is

xx-x-xxx 10/17 Reg Ind s-r^ decremented as each new byte
PC «- aaaa is pushed onto the stack.

PCjj «• byte 3

PCl <- byte 2

8085 CP aaaa

Z80 CALL P,aaaa

Call if Plus

subroutine at aaaa

CALL if Plus

subroutine at aaaa

9/18

3 Direct/ F4

10/17 Reg Ind

if S = 0 (8080 = 11/17 states)

s * pCn The stack pointer is

S PCl decremented as each new byte

PC ♦* aaaa is pushed onto the stack.

PCn «- byte 3

PC^ «- byte 2

Microprocessor Instruction Set Tables 403

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085>sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80>sz^h-pnc Mode Operation

8085 CM aaaa

Z80 CALL M,aaaa

Call if Minus

subroutine at aaaa

CALL if Minus

subroutine at aaaa

xx-x-x-x

xx-x-xxx

9/18

3

10/17

Direct/ FC

Reg Ind

if S = 1

s «- PCh

S<-PCl

PC <- aaaa

(8080 = 11/17 states)

The stack pointer is

decremented as each new byte

is pushed onto the stack.

PCjj <- byte 3

PCY <- byte 2

8085 RET RET urn xx-x-x-x The stack pointer is

10 1 Reg Ind C9 PCj, *■ s incremented as each byte is

Z80 RET RETum xx-x-xxx PCh^S popped from the stack.

8085 RNZ Return if Not Zero xx-x-x-x 6/12 if Z = 0 (8080 = 5/11 states)

1 Reg Ind CO PCl + S The stack pointer is

Z80 RET NZ RETum if Not Zero xx-x-xxx 5/10 PCh^-S incremented as each byte

popped from the stack.

is

8085 RZ Return if Zero xx-x-x-x 6/12 if Z = 1 (8080 = 5/11 states)

1 Reg Ind C8 PCl<-S The stack pointer is

Z80 RET Z RETum if Zero xx-x-xxx 5/10 PCh-S incremented as each byte is

popped from the stack.

8085 RNC Return if No Carry xx-x-x-x 6/12 if C = 0 (8080 = 5/11 states)

1 Reg Ind DO PC^ «- S The stack pointer is

Z80 RET NC RETum if No Carry xx-x-xxx 5/10 PC^VS incremented as each byte

popped from the stack.

is

8085 RC Return if Carry xx-x-x-x 6/12

1

if C = 1

Reg Ind D8 PC^ *■ S

(8080 = 5/11 states)

The stack pointer is

Z80 RET C RETum if Carry xx-x-xxx 5/10 PCh * S incremented as each byte is

popped from the stack.

8085 RPO Return if Parity Odd xx-x-x-x 6/12

1 Reg Ind E0

if P = 0

PC^ *■ S

(8080 - 5/11 states)

The stack pointer is

Z80 RET PO RETum if Parity Odd xx-x-xxx 5/10 PC^S incremented as each byte is

popped from the stack.

8085 RPE Return if Parity Even xx-x-x-x 6/12 if P = 1 (8080 = 5/11 states)

1 Reg Ind E8 PCl *" S The stack pointer is

Z80 RET PE RETum if Parity Even xx-x-xxx 5/10 PCh^S incremented as each byte is

popped from the stack.

404 Microprocessor Instruction Set Tables

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes
Z80>sz-h-pnc Mode Operation

8085 RP Return if Plus xx-x-x-x 6/12 if S = 0 (8080 = 5/11 states)

Z80 RET P RETurn if Plus xx-x-xxx

1

5/10

Reg Ind F0 PC^S

PC„ * S

The stack pointer is

incremented as each byte is

popped from the stack.

8085 RM Return if Minus xx-x-x-x 6/12 if S = 1 (8080 = 5/11 states)

Z80 RET M RETurn if Minus xx-x-xxx

1

5/10

Reg Ind F8 PC^S

PCh*S
The stack pointer is

incremented as each byte is

popped from the stack.

8085 RSTO ReStarT 0 xx-x-x-x 12 S * PC„ (8080 = 11 states)

Z80 RST00H ReStarT 00H xx-x-xxx
1

11

Reg Ind C7 S *" PCl
PC *• OOOOH

The stack pointer is

decremented as each new byte

is pushed onto the stack.

8085 RST 1 ReStaiT 1 xx-x-x-x 12 S.PCh (8080 = 11 states)

Z80 RST08H ReStaiT 08H xx-x-xxx
1

11

Reg Ind CF S^PCl
PC «- 0008H

The stack pointer is

decremented as each new byte

is pushed onto the stack.

8085 RST 2 ReStaiT 2 xx-x-x-x 12 s^PCh (8080 = 11 states)

Z80 RST 10H
1 Reg Ind D7 S«-PCl The stack pointer is

decremented as each new byte
ReStarT 10H xx-x-xxx 11 PC <- 0010H

is pushed onto the stack.

8085 RST 3 ReStarT 3 xx-x-x-x 12 S-PCn (8080 = 11 states)

Z80 RST 18H ReStarT 18H xx-x-xxx

1

11

Reg Ind DF s PCl
PC «■ 0018H

The stack pointer is

decremented as each new byte

is pushed onto the stack.

8085 RST 4 ReStaiT 4 xx-x-x-x 12 s-P^ (8080 = 11 states)

Z80 RST20H ReStaiT 20H xx-x-xxx
1

11

Reg Ind E7 S <- PCl
PC <- 0020H

The stack pointer is

decremented as each new byte

is pushed onto the stack.

8085 RST 5 ReStaiT 5 xx-x-x-x 12 s^PC„ (8080 = 11 states)

Z80 RST28H
1 Reg Ind EF S *■ PCl The stack pointer is

ReStaiT 28H xx-x-xxx 11 PC «■ 0028H decremented as each new byte

is pushed onto the stack.

8085 RST 6 ReStaiT 6 xx-x-x-x 12 S«-PCh (8080 = 11 states)

Z80 RST30H
1 Reg Ind F7 PCl The stack pointer is

ReStaiT 30H xx-x-xxx 11 PC «- 0030H decremented as each new byte

is pushed onto the stack.

Microprocessor Instruction Set Tables 405

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz-a-p-c T # Address Op Boolean/Arith. Notes

Z80>sZtH-pnc Mode Operation

8085 RST 7 ReStarT 7 xx-x-x-x 12 S'PCh (8080 = 11 states)

1 Reg Ind FF S«-PCl The stack pointer is

Z80 RST 38H ReStaiT 38H xx-x-xxx 11 PC <- 0038H decremented as each new byte

is pushed onto the stack-

Stack Instructions

8085 LXI SP,dddd Load extended Im- xx-x-x-x Copy bytes 3 and 2 of the

mediate dddd into instruction into the stack

the Stack Pointer 10 3 Immed 31 SP <- dddd pointer.

Z80 LD SP,dddd LoaD dddd into

the Stack Pointer

xx-x-xxx

8085 DAD SP Double AdD SP to HL xx-x-x-C 10

1 Register 39 HL «- HL + SP

Z80 ADD HL,SP ADD SP to HL xx-x-xOC 11

8085 INX SP INcrement extended

Stack Pointer

xx-x-x-x

6 1 Register 33 SP «• SP + 1

(8080 = 5 states)

Z80 INC SP INCrement Stack

Pointer

xx-x-xxx

8085 DCX SP Decrement extended

Stack Pointer

xx-x-x-x

6 1 Register 3B SP «- SP - 1

(8080 = 5 states)

Z80 DEC SP DECrement Stack

Pointer

xx-x-xxx

8085 PUSH B PUSH reg pair BC xx-x-x-x 12

1 Reg Ind C5 S «- B

(8080 = 11 states)

The stack pointer is

Z80 PUSH BC PUSH reg pair BC xx-x-xxx 11 s«-c decremented as each new byte

is pushed onto the stack.

8085 PUSH D PUSH reg pair DE xx-x-x-x 12

1 Reg Ind D5 S «- D

(8080 = 11 states)

The stack pointer is

Z80 PUSH DE PUSH reg pair DE xx-x-xxx 11 S<-E decremented as each new byte

is pushed onto the stack.

8085 PUSH H PUSH reg pair HL xx-x-x-x 12

1 Reg Ind E5 S ♦* H

(8080 = 11 states)

The stack pointer is

Z80 PUSH HL PUSH reg pair HL xx-x-xxx 11 S <- L decremented as each new byte

is pushed onto the stack.

406 Microprocessor Instruction Set Tables

Micro Mnemonic Operation
Notes 8085 > sz-A-P-c T # Address Op Boolean/Arith.

Z80>sz>h-pnc Mode Operation

8085 PUSH PSW PUSH Processor

Status Word
XX-X-X-X 12

Z80 PUSH AF PUSH Accumulator

and Flags
XX-X-XXX 11

(8080 = 11 states)

Reg Ind F5 S <- A The stack pointer is

S «- flags decremented as each new byte

is pushed onto the stack. The

"flags" byte is assembled in the

normal order of the flags

(8080/8085 = SZ-A-P-C and

Z80 = SZ-H-PNC) for that

microprocessor.

8085 POP B POP reg pair BC

Z80 POP BC POP reg pair BC

xx-x-x-x

10 1 Reg Ind Cl C <-S

xx-x-xxx B «- S

The stack pointer is

incremented as each byte is

popped from the stack.

8085 POP D POP reg pair DE

Z80 POP DE POP reg pair DE

xx-x-x-x

10 1 Reg Ind D1 E <- S

xx-x-xxx D <- S

The stack pointer is

incremented as each byte is

popped from the stack.

8085 POP H POP reg pair HL

Z80 POP HL POP reg pair HL

xx-x-x-x

10 1 Reg Ind El L «■ S

xx-x-xxx H «* S

The stack pointer is

incremented as each byte is

popped from the stack.

8085 POP PSW POP Processor SZ-A-P-C
Status Word 10 1

Z80 POP AF POP Accumulator SZ-H-PNC
and Flag

The stack pointer is

Reg Ind FI flags «- S incremented as each byte is

A + S popped from the stack.

8085 XTHL eXchange top of xx-x-x-x 16

sTack with reg pair HL

Z80 EX (SP),HL Exchange M(Sp) with xx-x-xxx 19

reg pair HL

Reg Ind E3 L *♦ S

HwSo~o

(8080 = 18 states)

Stack pointer does not change

8085 SPHL move into SP the con¬

tents of reg pair HL

Z80 LD SP,HL LoaD into SP the con¬

tents of reg pair HL

6 1 Register F9 SP «- HL
(8080 = 5 states)

Interrupt Instructions

8085 DI Disable Interrupts

Z80 DI Disable Interrupts

XX-X-X-X

4 1 Implied F3 IFF «* 0
XX-X-XXX

Microprocessor Instruction Set Tables 407

EXPANDED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

Micro Mnemonic Operation 8085 > sz^a-p-c T # Address Op Boolean/Arith. Notes

Z80>sz-h-pnc Mode Operation

8085 El Enable Interrupts xx-x-x-x

4 1 Implied FB IFF *■ 1

Z80 El Enable Interrupts xx-x-xxx

8085 RIM (not covered here - see note at end of table)

8085 SIM (not covered here - see note at end of table)

Input-Output Instructions

8085 OUT dd OUTput to port dd xx-x-x-x 10 The contents of the

contents of A 2 Direct D3 dd port «■ A accumulator are sent to a

Z80 OUT ddA OUTput to port dd

contents of A

xx-x-xxx 11 specified output port.

8085 IN dd INput into A one byte xx-x-x-x 10 One byte from the specified

from port dd 2 Direct DB A «- dd port port is copied into the

Z80 IN A,dd INput into A one byte

from port dd

xx-x-xxx 11 (byte) accumulator.

Address Modes

Implied

Register

Immediate

Direct

Register Indirect (Reg Ind)

Abbreviations and Explanations

a = address (a single hex digit)

aa = address (two hex digits - 1 byte)

aaaa = address (four hex digits - 2 bytes)

Flags_

If one of the flag letter designations is in the column for that

particular flag it indicates that the flag is affected by this operation

and could be set or cleared depending on the result of the operation.

One of the following could also appear in a flag column:

PSW = program status word (flags)

S = stack

SP = stack pointer

PC = program counter

IFF = interrupt enable flip-flop

A = accumulator

B,C,D,E,H,L = registers

L = low-order byte

H = high-order byte

A?..A0 = accumulator bits 0 through 7

d = data (a single hex digit)

dd = data (two hex digits - 1 byte)

dddd = data (four hex digits - 2 bytes)

- = no flag is represented by this column, a blank bit in the

status register

x = flag not affected by this operation

1 = flag always set by this operation

0 = flag always cleared by this operation

8085

S - sign flag

Z = zero flag

A = auxiliary carry flag (usually labeled "AC")

P = parity flag

C = carry flag (usually labeled "CY")

408 Microprocessor Instruction Set Tables

Z80

S = sign

Z = zero flag

H = half carry flag

P = parity/overflow flag (usually labeled "P/V")

N * negative flag

C = carry flag

RIM & SIM- These two instructions related to interrupts are not

covered in this table. They apply only to the 8085

(neither is available in either the 8080 or Z80).

Addressing Modes - A Summary

Implied: These instructions contain the source and destination of
the data by implication.

Symbols in the Page Heading

T = T states

= number of bytes

Special Notes

Register: In this mode the operand and its source are specified and

data is operated on in the registers only.

Immediate: The data to be operated on follows the instruction op

code in memory; that is, it is the next byte in memory after the
instruction.

States = When two numbers appear in the "States*’ column

separated by a slash, the lower number indicates the

number of states if the condition is false and the

operation does not occur, and the larger number indicates

the number of states if the condition is true and the

operation does occur.

8080 = The 8080 behaves the same as the 8085 unless special

information is provided in the "Notes" column for the
8080.

Direct: The full address of the location of the operand in contained

in bytes 2 and 3, that is, the next two bytes in memory after the

instruction. The low-order byte comes first, and the high-order
second.

Register Indirect (Reg Ind): In this addressing mode several steps

are involved. Included in the instruction is a register pair, the

contents of that register pair contains the address where that

operand may be found, not the operand itself.

Microprocessor Instruction Set Tables 409

MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY

8085 Z80 Op Operation 8085 Z80 Op Operation

CPU Control Instructions MOV C,M LD C,(HL) 4E c*mhl

NOP NOP 00 Nothing happens
MOV DA LD DA 57 D «- A

HLT HALT 76 Stop processing
MOV D3 LD D3 50 D «* B

MOV D,C LD D,C 51 D «- C

Data Transfer Instructions MOV D,D LD D,D 52 D <- D

MOV AA LD AA 7F A <- A MOV D,E LD D,E 53 D <- E

MOV A,B LD A,B 78 A <- B MOV D,H LD D,H 54 D <- H

MOV A,C LD A,C 79 A <- C MOV D,L LD D,L 55 D <- L

MOV A,D LD A,D 7A A <- D MOV DtM LD D,(HL) 56 D * mhl

MOV A,E LD A,E 7B A «- E MOV EA LD EA 5F E <- A

MOV A,H LD A,H 1C A<-H MOV E3 LD E,B 58 E <- B

MOV A,L LD A,L ID A<-L MOV E,C LD E,C 59 E <-C

MOV A,M LD A,(HL) 7E A <* Mhl MOV E,D LD E,D 5A E<-D

MOV BA LD BA 47 B «- A MOV E,E LD E,E 5B E «* E

MOV B,B LD B3 40 B «- B MOV E,H LD E,H 5C E <- H

MOV B,C LD B,C 41 B <- C MOV E,L LD E,L 5D E<-L

MOV B,D LD B,D 42 B <* D MOV E,M LD E,(HL) 5E e-mhl

MOV B,E LD B,E 43 B <- E MOV HA LD HA 67 H <- A

MOV B,H LD B,H 44 B<-H MOV H3 LD H3 60 H<-B

MOV B,L LD B,L 45 B L MOV H,C LD H,C 61 H «- C

MOV B,M LD B,(HL) 46 b"mhl
MOV H,D LD H,D 62 H <- D

MOV CA LD CA 4F C <- A MOV H,E LD H,E 63 H <- E

MOV C,B LD C3 48 C<r B MOV H,H LD H,H 64 H H

MOV C,C LD C,C 49 c*-c MOV H,L LD H,L 65 H «■ L

MOV C,D LD C,D 4A C<-D MOV H,M LD H,(HL) 66 h-mhl

MOV C,E LD C,E 4B C<-E MOV LA LD LA 6F L <- A

MOV C,H LD C,H 4C C<-H MOV L3 LD L,B 68 L+ B

MOV C,L LD C,L 4D C «- L MOV L,C LD L,C 69 L <- C

410 Microprocessor Instruction Set Tables

8085 Z80 Op Operation 8085 Z80 Op Operation

MOV L,D LD L,D 6A L«- D STAX D LD (DE)A 12 ^DE A

MOV L,E LD L,E 6B L <- E SHLD aaaa LD (aaaa),HL 22

MOV L,H LD L,H 6C L<-H Maaaa+1 ” H

MOV L,L LD L,L 6D L «- L
XCHG EX DE,HL EB DE » HL

MOV L,M LD L,(HL) 6E l-mhl

MOV MA LD (HL)A 77 Mhl ** A
Flag Instructions

MOV M,B LD (HL),B 70 Mhl «- B STC SCF 37 C+ 1

MOV M,C LD (HL),C 71
mhl ** c CMC CCF 3F c<- C

MOV M,D LD (HL),D 72
mhl * D

MOV M,E LD (HL),E 73 Mhl E Arithmetic Instructions

MOV M,H LD (HL),H 74 MHl H

MOV M,L LD (HL),L 75 Mhl L

ADDA ADD AA 87 A *■ A + A

MVI A,dd LD A,dd 3E A <- dd

ADD B ADD A.B 80 A <- A + B

MVI B,dd LD B,dd 06 B <- dd

ADD C ADD A,C 81 A <- A + C

MVI C,dd LD C,dd 0E C <- dd

ADD D ADD A,D 82 A «-A + D

MVI D,dd LD D,dd 16 D <- dd

ADD E ADD A.E 83 A «- A + E

MVI E,dd LD E,dd IE E <- dd

ADD H ADD A,H 84 A <■ A + H

MVI H,dd LD H,dd 26 H <- dd

ADD L ADD A,L 85 A «■ A + L

MVI L,dd LD L,dd 2E L «- dd

ADD M ADD A,(HL) 86 A <- A + Mhl

MVI M,dd LD (HL),dd 36
mhl *■ dd

ADC A ADC AA 8F A <■ A + A + C

LXI B,dddd LD BC.dddd 01 BC «- dddd

ADC B ADC A,B 88 A «• A + B + C

LXI D,dddd LD DE.dddd 11 DE *■ dddd

ADC C ADC A,C 89 A *■ A + C + C

LXI H,dddd LD HL.dddd 21 HL <- dddd

ADC D ADC A,D 8A A «■ A + D + C

LDAX B LD A,(BC) 0A a^mbc

ADC E ADC A,E 8B A «- A + E + C

LDAX D LD A,(DE) 1A A *■ Mde

ADC H ADC A,H 8C A «- A + H + C

LHLD aaaa LD HL,(aaaa) 2A
ADC L ADC A,L 8D A «- A + L + C

H - M_m ADC M ADC A,(HL) 8E A <- A + Mhl + C

LDA aaaa LD A,(aaaa) 3A SUB A SUB A 97 A <- A - A

STA aaaa LD (aaaa)^A 32 A SUB B SUB B 90 A <- A - B

STAX B LD (BC)A 02
MBC *" A SUB C SUB C 91 A «■ A - C

Microprocessor Instruction Set Tables 411

MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued)

8085 Z80 Op Operation 8085 Z80 Op Operation

SUB D SUB D 92 A «• A - D ANA H AND H A4 A <- A AND H

SUB E SUB E 93 A <- A - E ANAL AND L A5 A «- A AND L

SUB H SUB H 94 A *■ A - H ANA M AND (HL) A6 A «- A AND Mhl

SUB L SUB L 95 A «- A - L XRA A XOR A AF A «- A XOR A

SUB M SUB (HL) 96 A <• A - XRA B XORB A8 A «- A XOR B

SBB A SBC AA 9F A <-A - A - C XRA C XOR C A9 A «- A XOR C

SBB B SBC A,B 98 A «-A - B - C XRA D XOR D AA A «- A XOR D

SBB C SBC A,C 99 A *■ A - C - C XRA E XOR E AB A «- A XOR E

SBB D SBC A,D 9A A <- A - D - C XRA H XOR H AC A <- A XOR H

SBB E SBC A,E 9B A <- A - E - C XRA L XOR L AD A «- A XOR L

SBB H SBC A,H 9C A*- A-H-C XRA M XOR (HL) AE A +■ A XOR Mhl

SBB L SBC A,L 9D A «- A - L - C ORA A ORA B7 A <- A OR A

SBB M SBC A,(HL) 9E A *■ A - Mhl - C ORAB ORB B0 A «- A OR B

DAD B ADD HLJBC 09 HL «- HL + BC ORA C OR C B1 A «- A OR C

DAD D ADD HL,DE 19 HL <- HL + DE ORAD ORD B2 A^-AORD

DAD H ADD HL,HL 29 HL «- HL + HL ORAE ORE B3 A «■ A OR E

ADI dd ADD A,dd C6 A <- A + dd ORAH OR H B4 A A OR H

A Cl dd ADC A,dd CE A <- A + dd + C ORAL ORL B5 A<*AORL

SUI dd SUB dd D6 A <■ A - dd ORA M OR (HL) B6 A *- A OR Mhl

SBI dd SBC A,dd DE A <- A - dd - C ANI dd AND dd E6 A *■ A AND dd

DAA DAA 27 A «- BCD (A) XRI dd XOR dd EE A A XOR dd

ORI dd OR dd F6 A A OR dd

Logical Instructions —

CMA CPL 2F A «- A

ANA A AND A A7 A <- A AND A

ANA B AND B A0 A ♦- A AND B Rotate and Shift Instructions

ANA C AND C A1 A <- A AND C

RLC RLCA 07 n

-
t

>

>

o
 J

ANA D AND D A2 A «- A AND D 1...J

ANA E AND E A3 A *■ A AND E RRC RRCA OF |—*-a7 ... Aq p^c

412 Microprocessor Instruction Set Tables

8085 Z80 Op Operation 8085 Z80 Op Operation

RAL RLA 17 |“c*-A7 .. . A0-*~ Unconditional Jump Instructions

RAR RRA IF p^A7 .. . A0—►C—| JMP aaaa JP aaaa C3 PC *■ aaaa

PCHL JP (HL) E9 PCh-H

PCl *■ L

Increment and Decrement Instruction*

INR A INCA 3C A «- A + 1
Test (Compare) Instructions

INRB INC B 04 B <- B + 1 CMP A CPA BF A - A

INR C INC C OC C «- C + 1 CMP B CP B B8 A - B

INR D INC D 14 D «• D + 1 CMP C CP c B9 A-C

INR E INC E 1C E «- E + 1 CMP D CP D BA A-D

INR H INCH 24 H <- H + 1 CMP E CPE BB A - E

INR L INC L 2C L «- L + 1 CMP H CP H BC A- H

INR M INC (HL) 34
^HL *■ ^HL + 1 CMP L CP L BD A-L

INXB INC BC 03 BC *■ BC + 1 CMPM CP (HL) BE a-mhl

INXD INC DE 13 DE «- DE + 1 CPI dd CP dd FE A - dd

INX H INC HL 23 HL *■ HL + 1

DCR A DEC A 3D A «- A - 1
Conditional Jumo (Branch) Instructions

DCR B DEC B 05 B <- B - 1

DCR C DEC C 0D C<- C- 1
JNZ aaaa JP NZ,aaaa C2 PC <* aaaa

If Z = 0

DCR D DEC D 15 D «- D - 1
JZ aaaa JP Z,aaaa CA PC «- aaaa

DCR E DEC E ID E «- E - 1 If Z = 1

DCR H DECH 25 H «• H - 1 JNC aaaa JP NC,aaaa D2 PC <- aaaa

If C = 0
DCR L DEC L 2D L «- L - 1

JC aaaa JP C,aaaa DA PC *- aaaa
DCR M DEC (HL) 35

mhl *■ mhl ■1 If C - 1

DCX B DEC BC OB BC «- BC - 1 JPO aaaa JP PO.aaaa E2 PC <- aaaa

If P = 0
DCXD DEC Dk IB DE «- DE - 1

JPE aaaa JP PE,aaaa EA PC <- aaaa
DCX H DEC HL 2B HL «- HL - 1 If P = 1

JP aaaa JP P,aaaa F2 PC aaaa

If S = 0

Microprocessor Instruction Set Tables 413

MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued)

g085 Z80 Op Operation 8085_Z80_Op_Operation_

JM aaaa JP M,aaaa FA PC «- aaaa RNZ RET NZ CO If Z = 0

If S = 1 PCL<-S

PCh * S

RZ RETZ C8 If Z = 1

Subroutine Instructions PCl *■ S
PCh-S

CALL aaaa CALL aaaa CD S PCjr
S^PCl

PC «- aaaa

RNC RET NC DO If C = 0

PCl *■ S

PCh-S

CNZ aaaa CALL NZ,aaaa C4 If Z = 0 RC RET C D8 If C = 1

S-PCn

S *■ PCl

PCl *■ S
PCh-S

PC <- aaaa
RPO RET PO E0 If P = 0

CZ aaaa CALL Z,aaaa CC If Z = 1

S^PC„

S *■ PCx
PC <- aaaa RPE RET PE E8

PCl^S

PCh^S

If P = 1

pcl *■ s

CNC aaaa CALL NC,aaaa D4 If C - 0

S^PCH

S<-PCl

PCh-S

RP RET P F0 If S = 0

PC «- aaaa PCl *" S
PCh-S

CC aaaa CALL C,aaaa DC If C = 1
F8 If S = 1

PCl *■ S

PC„^S

s «- PCH

S-PCl

PC «- aaaa

RM RET M

CPO aaaa CALL PO,aaaa E4 If P = 0

s <- PCh

S^PCL

PC <- aaaa

RST0 RST00H C7 S *" PCh
S «■ PCl

PC «- OOOOH

S-PCn RST 1 RST08H CF

CPE aaaa CALL PE,aaaa EC If P = 1

s<-PCh

S *■ PCl
PC «- 0008H

S * PCl

PC«- aaaa
RST 2 RST 10H D7 S *" PCh

S «• PCl

PC «- 0010H
If S = 0 CP aaaa CALL P,aaaa F4

S-PCh

PC «■ aaaa

RST 3 RST 18H DF s *■ PCh

S «• PCl

PC «■ 0018H

CM aaaa CALL M,aaaa FC If S = 1

S<-PCh

S * PCl
PC «- aaaa

RST 4 RST 20H E7 s «- PCh

S «• PCl

PC «- 0020H

C9 PCl«-S

PCh^S

RST 5 RST 28H EF S<- PCh
RET RET

S *■ PCl

PC «- 0028H

414 Microprocessor Instruction Set Tables

8085 Z80 Op Operation 8085 Z80 Op Operation

RST6 RST30H F7 S-PCh POP D POP DE DI E «- S
S PCL D <- S
PC <- 0030H

RST 7 RST38H FF S-PCh
POPH POP HL El L<-S

H «- S
S * PCl
PC «- 0038H POP PSW POP AF FI flags <- S

A<-S

Stack Instructions XTHL EX (SP),HL E3 h ** S

LXI SP,dddd LD SP,dddd 31 SP <- dddd
H"s<n~o

SPHL LD SP.HL F9 SP *• HL
DAD SP ADD HL,SP 39 HL <- HL + SP

I NX SP INC SP 33 SP <- SP + 1

DCX SP DEC SP 3B SP <- SP - 1 Interrupt Instructions

PUSH B PUSH BC C5 S <- B

S <- C DI DI F3 IFF 0

PUSH D PUSH DE D5 S<-D El El FB IFF «• 1

S <- E

PUSH H PUSH HL E5 S <- H

S <- L

Input-Outout InstrnrtioTiQ
PUSH PSW PUSH AF F5 S «- A

S «- flags

POP B POP BC Cl C 4- S

OUT dd OUT ddA D3 dd port A

B «- S IN dd IN A,dd DB A <- dd port (byte)

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY

8085 Z80 Op

CPU Control Instructions

NOP NOP 00
HLT HALT 76

Data Transfer Instructions

MOV AA LD AA 7F

MOV A,B LD A,B 78

MOV A,C LD A,C 79

MOV A,D LD A,D 7A

MOV A,E LD A,E 7B

8085 Z80 Op

MOV A,H LD A,H 1C
MOV A,L LD A,L 7D
MOV A,M LD A,(HL) 7E
MOV BA LD BA 47
MOV B,B LD B,B 40
MOV B,C LD B,C 41
MOV B,D LD B,D 42
MOV B,E LD B,E 43
MOV B,H LD B,H 44
MOV B,L LD B,L 45
MOV B,M LD B,(HL) 46
MOV CA LD CA 4F
MOV C,B LD C,B 48
MOV C,C LD C,C 49
MOV C,D LD C,D 4A
MOV C,E LD C,E 4B

8085 Z80 Op

MOV C,H LD C,H 4C
MOV C,L LD C,L 4D
MOV C,M LD C,(HL) 4E
MOV DA LD DA 57
MOV D,B LD D,B 50
MOV D,C LD D,C 51
MOV D,D LD D,D 52
MOV D,E LD D,E 53
MOV D,H LD D,H 54
MOV D,L LD D,L 55
MOV D,M LD D,(HL) 56
MOV EA LD EA 5F
MOV E,B LD E,B 58
MOV E,C LD E,C 59
MOV E,D LD E,D 5A
MOV E,E LD E,E 5B

Microprocessor Instruction Set Tables 415

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY CATEGORY (Continued)

8085 Z80 Op 8085 Z80 Op 8085 Z80 Op

MOV E,H LD E,H 5C Arithmetic Instructions ANAL AND L A5

MOV E,L LD E,L 5D ANA M AND (HL) A6

MOV E,M LD E,(HL) 5E XRA A XOR A AF

MOV HA LD HA 67 ADDA ADD AA 87 XRA B XORB A8

MOV H,B LD H,B 60 ADD B ADD A,B 80 XRA C XOR C A9

MOV H,C LD H,C 61 ADD C ADD A,C 81 XRA D XOR D AA

MOV H,D LD H,D 62 ADD D ADD A,D 82 XRA E XOR E AB

MOV H,E LD H,E 63 ADD E ADD A,E 83 XRA H XOR H AC

MOV H,H LD H,H 64 ADD H ADD A,H 84 XRA L XOR L AD

MOV H,L LD H,L 65 ADD L ADD A,L 85 XRA M XOR (HL) AE

MOV H,M LD H,(HL) 66 ADD M ADD A,(HL) 86 ORA A ORA B7

MOV LA LD LA 6F ADC A ADC AA 8F ORAB ORB B0

MOV L,B LD L,B 68 ADC B ADC A,B 88 ORA C ORC B1

MOV L,C LD L,C 69 ADC C ADC A,C 89 ORA D ORD B2

MOV L,D LD L,D 6A ADC D ADC A,D 8A ORAE ORE B3

MOV L,E LD L,E 6B ADC E ADC A,E 8B ORA H OR H B4

MOV L,H LD L,H 6C ADC H ADC A,H 8C ORA L ORL B5

MOV L,L LD L,L 6D ADC L ADC A,L 8D ORA M OR (HL) B6

MOV L,M LD L,(HL) 6E ADC M ADC A,(HL) 8E ANI dd AND dd E6

MOV MA LD (HL)A 77 SUB A SUB A 97 XRI dd XOR dd EE

MOV M,B LD (HL),B 70 SUB B SUB B 90 ORI dd OR dd F6

MOV M,C LD (HL),C 71 SUB C SUB C 91 CMA CPL 2F

MOV M,D LD (HL),D 72 SUB D SUB D 92

MOV M,E LD (HL),E 73 SUB E SUB E 93

MOV M,H LD (HL),H 74 SUB H SUB H 94

MOV M,L LD (HL),L 75 SUB L SUB L 95 Rotate and Shift Instructions

MVI A,dd LD A,dd 3E SUB M SUB (HL) 96

MVI B,dd LD B,dd 06 SBB A SBC AA 9F

MVI Qdd LD C,dd OE SBBB SBC A,B 98 RLC RLCA 07

MVI D,dd LD D,dd 16 SBB C SBC A,C 99 RRC RRCA OF

MVI E,dd LD E,dd IE SBB D SBC A,D 9A RAL RLA 17

MVI H,dd LD H,dd 26 SBB E SBC A,E 9B RAR RRA IF

MVI L,dd LD L,dd 2E SBB H SBC A,H 9C

MVI M,dd LD (HL),dd 36 SBB L SBC A,L 9D

LXI B,dddd LD BC,dddd 01 SBB M SBC A,(HL) 9E

LXI D,dddd LD DE,dddd 11 DAD B ADD HL,BC 09 Increment and Decrement Instructions

LXI H,dddd LD HL,dddd 21 DAD D ADD HL,DE 19

LDAXB LD A,(BC) 0A DAD H ADD HL,HL 29

LDAXD LD A,(DE) 1A ADI dd ADD A,dd C6 INR A INCA 3C

LHLD aaaa LD HL,(aaaa) 2A ACI dd ADC A,dd CE INR B INC B 04

LDA aaaa LD A,(aaaa) 3A SUI dd SUB dd D6 INR C INC C OC

STA aaaa LD (aaaa)A 32 SBI dd SBC A,dd DE INR D INC D 14

STAX B LD (BC)A 02 DAA DAA 27 INR E INC E 1C

STAX D LD (DE)A 12 INR H INCH 24

SHLD aaaa LD (aaaa),HL 22 INR L INC L 2C

XCHG EX DE,HL EB INR M INC (HL) 34

Logical Instructions INX B INC BC 03

I NX D INC DE 13

INX H INC HL 23

Flag Instructions ANA A AND A A7 DCR A DEC A 3D

ANA B AND B A0 DCR B DEC B 05

ANA C AND C A1 DCR C DEC C 0D

STC SCF 37 ANA D AND D A2 DCR D DEC D 15

CMC CCF 3F ANA E AND E A3 DCR E DEC E ID

ANA H AND H A4 DCR H DEC H 25

416 Microprocessor Instruction Set Tables

Z80 Op
8085 Z80 Op

DCRL DEC L 2D
DCRM DEC (HL) 35
DCXB DEC BC 0B
DCX D DEC DE IB
DCX H DEC HL 2B

Unconditional Jump Instructions

JMP aaaa JP aaaa C3
PCHL JP (HL) E9

Test (Compare) Instructions

CMP A CPA BF
CMP B CP B B8
CMP C CP C B9
CMP D CP D BA
CMP E CPE BB
CMP H CP H BC
CMP L CP L BD
CMP M CP (HL) BE
CPI dd CP dd FE

Conditional Jump (Branch) Instructions

JNZ aaaa JP NZ,aaaa C2
JZ aaaa JP Z,aaaa CA
JNC aaaa JP NC,aaaa D2

8085 Z80 Op

JC aaaa JP C,aaaa DA
JPO aaaa JP PO,aaaa E2
JPE aaaa JP PE,aaaa EA
JP aaaa JP P,aaaa F2
JM aaaa JP M,aaaa FA

Subroutine Instructions

CALL aaaa CALL aaaa CD
CNZ aaaa CALL NZ,aaaa C4
CZ aaaa CALL Z,aaaa CC
CNC aaaa CALL NC,aaaa D4
CC aaaa CALL C,aaaa DC
CPO aaaa CALL PO,aaaa E4
CPE aaaa CALL PE,aaaa EC
CP aaaa CALL P,aaaa F4
CM aaaa CALL M,aaaa FC
RET RET C9
RNZ RET NZ CO
RZ RETZ C8
RNC RET NC DO
RC RETC D8
RPO RET PO E0
RPE RET PE E8
RP RET P FO
RM RET M F8
RST 0 RST00H C7
RST 1 RST08H CF
RST 2 RST 10H D7
RST 3 RST18H DF
RST 4 RST20H E7
RST 5 RST28H EF
RST 6 RST30H F7
RST 7 RST38H FF

8085

Stack Instructions

LXI SP,dddd LD SP,dddd 31
DAD SP ADD HL,SP 39
INX SP INC SP 33
DCX SP DEC SP 3B
PUSH B PUSH BC C5
PUSH D PUSH DE D5
PUSH H PUSH HL E5
PUSH PSW PUSH AF F5
POP B POP BC Cl
POP D POP DE DI
POP H POP HL El
POP PSW POP AF FI
XTHL EX (SP),HL E3
SPHL LD SP,HL F9

Interrupt Instructions

DI DI F3
El El FB

Input-Output Instructions

OUT dd OUT ddA D3
IN dd IN A,dd DB

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY OP CODE

Op 8080/8085 Z80_ Op 8080/8085 Z80_ Op 8080/8085 Z80

00 NOP NOP
01 LXI B,dddd LD BC,dddd
02 STAX B LD (BC)A
03 INX B INC BC
04 INR B INC B
05 DCR B DEC B
06 MVI B,dd LD B,dd
07 RLC RLCA
09 DAD B ADD HL,BC
0A LDAX B LD A,(BC)
0B DCX B DEC BC

0C INR C INC C
0D DCR C DEC C
0E MVI C,dd LD C,dd
OF RRC RRCA
11 LXI D,dddd LD DE.dddd
12 STAX D LD (DE)A
13 INX D INC DE
14 INR D INC D
15 DCR D DEC D
16 MVI D,dd LD D,dd
17 RAL RLA

19 DAD D ADD HL,DE
1A LDAX D LD A,(DE)
IB DCX D DEC DE
1C INRE INCE
ID DCR E DEC E
IE MVI E,dd LD E,dd
IF RAR RRA
21 LXI H,dddd LD HL,dddd
22 SHLD aaaa LD (aaaa),HL
23 INX H INC HL
24 INR H INC H

Microprocessor Instruction Set Tables 417

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED

BY OP CODE (Continued)

Op 8080/8085 zso Qp 8080/8085

25 DCRH DECH 5F MOV EA

26 MVI H,dd LD H,dd 60 MOV H,B

27 DAA DAA 61 MOV H,C

29 DAD H ADD HL,HL 62 MOV H,D

2A LHLD aaaa LD HL,(aaaa) 63 MOV H,E

2B DCX H DEC HL 64 MOV H,H

2C INR L INC L 65 MOV H,L

2D DCRL DEC L 66 MOV H,M

2E MVI L,dd LD L,dd 67 MOV HA

2F CMA CPL 68 MOV L,B

31 LXI SP,dddd LD SP,dddd 69 MOV L,C

32 STA aaaa LD (aaaa)A 6A MOV L,D

33 INX SP INC SP 6B MOV L,E

34 INR M INC (HL) 6C MOV L,H

35 DCR M DEC (HL) 6D MOV L,L

36 MVI M,dd LD (HL),dd 6E MOV L,M

37 STC SCF 6F MOV LA

39 DAD SP ADD HL,SP 70 MOV M,B

3A LDA aaaa LD A,(aaaa) 71 MOV M,C

3B DCX SP DEC SP 72 MOV M,D

3C INR A INCA 73 MOV M,E

3D DCR A DEC A 74 MOV M,H

3E MVI A,dd LD A,dd 75 MOV M,L

3F CMC CCF 76 HLT

40 MOV B,B LD B,B 77 MOV MA

41 MOV B,C LD B,C 78 MOV A,B

42 MOV B,D LD B,D 79 MOV A,C

43 MOV B,E LD B,E 7A MOV A,D

44 MOV B,H LD B,H 7B MOV A,E

45 MOV B,L LD B,L 7C MOV A,H

46 MOV B,M LD B,(HL) 7D MOV A,L

47 MOV BA LD BA 7E MOV A,M

48 MOV C,B LD C,B 7F MOV AA

49 MOV C,C LD C,C 80 ADD B

4A MOV C,D LD C,D 81 ADD C

4B MOV C,E LD C,E 82 ADD D

4C MOV C,H LD C,H 83 ADD E

4D MOV C,L LD C,L 84 ADD H

4E MOV C,M LD C,(HL) 85 ADD L

4F MOV CA LD CA 86 ADD M

50 MOV D,B LD D,B 87 ADDA

51 MOV D,C LD D,C 88 ADC B

52 MOV D,D LD D,D 89 ADC C

53 MOV D,E LD D,E 8A ADC D

54 MOV D,H LD D,H 8B ADC E

55 MOV D,L LD D,L 8C ADC H

56 MOV D,M LD D,(HL) 8D ADC L

57 MOV DA LD DA 8E ADC M

58 MOV E,B LD E,B 8F ADC A

59 MOV E,C LD E,C 90 SUB B

5A MOV E,D LD E,D 91 SUB C

5B MOV E,E LD E,E 92 SUB D

5C MOV E,H LD E,H 93 SUB E

5D MOV E,L LD E,L 94 SUB H

5E MOV E,M LD E,(HL) 95 SUB L

Z80 Qp 8080/8085 Z80

LD EA 96 SUB M SUB (HL)

LD H,B 97 SUB A SUB A

LD H,C 98 SBB B SBC A,B

LD H,D 99 SBB C SBC A,C

LD H,E 9A SBB D SBC A,D

LD H,H 9B SBB E SBC A,E

LD H,L 9C SBB H SBC A,H

LD H,(HL) 9D SBB L SBC A,L

LD HA 9E SBB M SBC A,(HL)

LD L,B 9F SBB A SBC AA

LD L,C A0 ANAB AND B

LD L,D A1 ANA C AND C

LD L,E A2 ANA D AND D

LD L,H A3 ANA E AND E

LD L,L A4 ANA H AND H

LD L,(HL) A5 ANA L AND L

LD LA A6 ANA M AND (HL)

LD (HL),B A7 ANA A AND A

LD (HL),C A8 XRA B XORB

LD (HL),D A9 XRA C XOR C

LD (HL),E AA XRA D XORD

LD (HL),H AB XRA E XOR E

LD (HL),L AC XRA H XOR H

HALT AD XRA L XOR L

LD (HL)A AE XRA M XOR (HL)

LD A,B AF XRA A XOR A

LD A,C B0 ORA B OR B

LD A,D B1 ORA C OR C

LD A,E B2 ORA D OR D

LD A,H B3 ORA E ORE

LD A,L B4 ORA H OR H

LD A,(HL) B5 ORAL ORL

LD A A B6 ORA M OR (HL)

ADD A,B B7 ORA A ORA

ADD A,C B8 CMP B CP B

ADD AD B9 CMP C CP C

ADD A,E BA CMP D CP D

ADD A,H BB CMP E CP E

ADD A,L BC CMP H CP H

ADD A,(HL) BD CMP L CP L

ADD A A BE CMP M CP (HL)

ADC A,B BF CMP A CPA

ADC A,C CO RNZ RET NZ

ADC A,D Cl POP B POP BC

ADC A,E C2 JNZ aaaa JP NZ,aaaa

ADC A,H C3 JMP aaaa JP aaaa

ADC A,L C4 CNZ aaaa CALL NZ,aaaa

ADC A,(HL) C5 PUSH B PUSH BC

ADC AA C6 ADI dd ADD A,dd

SUB B C7 RST0 RST00H

SUB C C8 RZ RET Z

SUB D C9 RET RET

SUBE CA JZ aaaa JP Z,aaaa

SUB H CC CZ aaaa CALL Z,aaaa

SUB L CD CALL aaaa CALL aaaa

418 Microprocessor Instruction Set Tables

Z80 Op 8080/8085 Z80 Op 8080/8085 Z80

CE ACI dd ADC A,dd
CF RST1 RST08H
DO RNC RET NC
D1 POP D POP DE
D2 JNC aaaa JP NC.aaaa
D3 OUT dd OUT ddA
D4 CNC aaaa CALL NC,aaaa
D5 PUSH D PUSH DE
D6 SUI dd SUB dd
D7 RST 2 RST 10H
D8 RC RET C
DA JC aaaa JP C,aaaa
DB IN dd IN A,dd
DC CC aaaa CALL C,aaaa
DE SBI dd SBC A,dd
DF RST 3 RST18H

E0 RPO RET PO
El POP H POP HL
E2 JPO aaaa JP PO,aaaa
E3 XTHL EX (SP),HL
E4 CPO aaaa CALL PO,aaaa
E5 PUSH H PUSH HL
E6 ANI dd AND dd
E7 RST 4 RST20H
E8 RPE RET PE
E9 PCHL JP (HL)
EA JPE aaaa JP PE,aaaa
EB XCHG EX DE,HL
EC CPE aaaa CALL PE,aaaa
EE XRI dd XOR dd
EF RST 5 RST28H

F0 RP RET P
FI POP PSW POP AF
F2 JP aaaa JP P,aaaa
F3 DI DI
F4 CP aaaa CALL P,aaaa
F5 PUSH PSW PUSH AF
F6 ORI dd OR dd
F7 RST 6 RST30H
F8 RM RET M
F9 SPHL LD SP,HL
FA JM aaaa JP M,aaaa
FB El El
FC CM aaaa CALL M,aaaa
FE CPI dd CP dd
FF RST 7 RST38H

BY 8085^8080 MNEMONIC8085 8080 ^ Z8° (8°8° SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY

8085 Z80 Op

ACI dd ADC A,dd CE
ADC A ADC A A 8F
ADC B ADC A,B 88
ADC C ADC A,C 89
ADC D ADC A,D 8A
ADC E ADC A,E 8B
ADC H ADC A,H 8C
ADC L ADC A,L 8D
ADC M ADC A,(HL) 8E
ADD A ADD AA 87
ADD B ADD A,B 80
ADD C ADD A,C 81
ADD D ADD A,D 82
ADD E ADD A,E 83
ADD H ADD A,H 84
ADD L ADD A,L 85
ADD M ADD A,(HL) 86
ADI dd ADD A,dd C6
ANA A AND A A7
ANA B AND B A0
ANA C AND C A1
ANA D AND D A2
ANA E AND E A3
ANA H AND H A4
ANA L AND L A5
ANA M AND (HL) A6
ANI dd AND dd E6
CALL aaaa CALL aaaa CD
CC aaaa CALL C,aaaa DC
CM aaaa CALL M,aaaa FC
CMA CPL 2F
CMC CCF 3F
CMP A CP A BF
CMP B CP B B8

8085 Z80 Op

CMP C CP c B9
CMP D CP D BA
CMP E CP E BB
CMP H CP H BC
CMP L CP L BD
CMP M CP (HL) BE
CNC aaaa CALL NC,aaaa D4
CNZ aaaa CALL NZ,aaaa C4
CP aaaa CALL P,aaaa F4
CPE aaaa CALL PE,aaaa EC
CPI dd CP dd FE
CPO aaaa CALL PO,aaaa E4
CZ aaaa CALL Z,aaaa CC
DAA DAA 27
DAD B ADD HL,BC 09
DAD D ADD HL,DE 19
DAD H ADD HL,HL 29
DAD SP ADD HL,SP 39
DCR A DEC A 3D
DCRB DEC B 05
DCR C DEC C 0D
DCR D DEC D 15
DCR E DECE ID
DCR H DECH 25
DCR L DEC L 2D
DCR M DEC (HL) 35
DCXB DEC BC 0B
DCXD DEC DE IB
DCX H DEC HL 2B
DCX SP DEC SP 3B
DI DI F3
El El FB
HLT HALT 76
IN dd IN A,dd DB

8085 Z80 Op

INR A INCA 3C
INRB INC B 04
INR C INC C OC
INR D INC D 14
INRE INC E 1C
INR H INCH 24
INR L INC L 2C
INR M INC (HL) 34
I NX B INC BC 03
INX D INC DE 13
I NX H INC HL 23
INX SP INC SP 33
JC aaaa JP C,aaaa DA
JM aaaa JP M,aaaa FA
JMP aaaa JP aaaa C3
JNC aaaa JP NC,aaaa D2
JNZ aaaa JP NZ,aaaa C2
JP aaaa JP P,aaaa F2
JPE aaaa JP PE,aaaa EA
JPO aaaa JP PO,aaaa E2
JZ aaaa JP Z,aaaa CA
LDA aaaa LD A,(aaaa) 3A
LDAX B LD A,(BC) 0A
LDAXD LD A,(DE) 1A
LHLD aaaa LD HL,(aaaa) 2A
LXI B,dddd LD BC,dddd 01
LXI D,dddd LD DE,dddd 11
LXI H,dddd LD HL,dddd 21
LXI SP,dddd LD SP,dddd 31
MOV AA LD AA 7F
MOV A,B LD A,B 78
MOV A,C LD A,C 79
MOV A,D LD A,D 7A
MOV A,E LD A,E 7B

Microprocessor Instruction Set Tables 419

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY

BY 8085/8080 MNEMONIC (Continued)

8085 Z80 Op

MOV A,H LD A,H 7C

MOV A,L LD A,L 7D

MOV A,M LD A,(HL) 7E

MOV BA LD BA 47

MOV B,B LD B,B 40

MOV B,C LD B,C 41

MOV B,D LD B,D 42

MOV B,E LD B,E 43

MOV B,H LD B,H 44

MOV B,L LD B,L 45

MOV B,M LD B,(HL) 46

MOV CA LD CA 4F

MOV C,B LD C,B 48

MOV C,C LD C,C 49

MOV C,D LD C,D 4A

MOV C,E LD C,E 4B

MOV C,H LD C,H 4C

MOV C,L LD C,L 4D

MOV C,M LD C,(HL) 4E

MOV DA LD DA 57

MOV D,B LD D,B 50

MOV D,C LD D,C 51

MOV D,D LD D,D 52

MOV D,E LD D,E 53

MOV D,H LD D,H 54

MOV D,L LD D,L 55

MOV D,M LD D,(HL) 56

MOV EA LD EA 5F

MOV E,B LD E,B 58

MOV E,C LD E,C 59

MOV E,D LD E,D 5A

MOV E,E LD E,E 5B

MOV E,H LD E,H 5C

MOV E,L LD E,L 5D

MOV E,M LD E,(HL) 5E

MOV HA LD HA 67

MOV H,B LD H,B 60

MOV H,C LD H,C 61

MOV H,D LD H,D 62

MOV H,E LD H,E 63

MOV H,H LD H,H 64

MOV H,L LD H,L 65

MOV H,M LD H,(HL) 66

MOV LA LD LA 6F

MOV L,B LD L,B 68

MOV L,C LD L,C 69

MOV L,D LD L,D 6A

MOV L,E LD L,E 6B

8085 Z80 Op

MOV L,H LD L,H 6C

MOV L,L LD L,L 6D

MOV L,M LD L,(HL) 6E

MOV MA LD (HL)A 77

MOV M,B LD (HL),B 70

MOV M,C LD (HL),C 71

MOV M,D LD (HL),D 72

MOV M,E LD (HL),E 73

MOV M,H LD (HL),H 74

MOV M,L LD (HL),L 75

MVI A,dd LD A,dd 3E

MVI B,dd LD B,dd 06

MVI C,dd LD C,dd OE

MVI D.dd LD D,dd 16

MVI E,dd LD E,dd IE

MVI H,dd LD H,dd 26

MVI L,dd LD L,dd 2E

MVI M,dd LD (HL),dd 36

NOP NOP 00

ORA A ORA B7

ORA B ORB B0

ORA C ORC B1

ORA D ORD B2

ORA E ORE B3

ORA H OR H B4

ORAL ORL B5

ORAM OR (HL) B6

ORI dd OR dd F6

OUT dd OUT ddA D3

PCHL JP (HL) E9

POP B POP BC Cl

POP D POP DE D1

POPH POP HL El

POP PSW POP AF FI

PUSH B PUSH BC C5

PUSH D PUSH DE D5

PUSH H PUSH HL E5

PUSH PSW PUSH AF F5

RAL RLA 17

RAR RRA IF

RC RET C D8

RET RET C9

RLC RLCA 07

RM RET M F8

RNC RET NC DO

RNZ RET NZ CO

RP RET P F0

8085 Z80_Op_

RPE RET PE E8

RPO RET PO E0

RRC RRCA OF

RST 0 RST 00H C7

RST1 RST 08H CF

RST 2 RST 10H D7

RST 3 RST 18H DF

RST 4 RST 20H E7

RST 5 RST 28H EF

RST 6 RST 30H F7

RST 7 RST 38H FF

RZ RET Z C8

SBB A SBC AA 9F

SBB B SBC A,B 98

SBB C SBC AC 99

SBB D SBC A,D 9A

SBB E SBC A,E 9B

SBB H SBC A,H 9C

SBB L SBC A,L 9D

SBB M SBC A,(HL) 9E

SBI dd SBC A,dd DE

SHLD aaaa LD (aaaa),HL 22

SPHL LD SP,HL F9

STA aaaa LD (aaaa)A 32

STAX B LD (BQA 02

STAX D LD (DE)A 12

STC SCF 37

SUB A SUB A

SUB B SUB B

SUB C SUB C

SUB D SUB D

SUB E SUB E

SUB H SUB H

SUB L SUB L

SUB M SUB (HL)

SUI dd SUB dd

XCHG EX DE,HL

XRA A XOR A

XRA B XOR B

XRA C XOR C

XRA D XOR D

XRA E XOR E

XRA H XOR H

XRA L XOR L

XRA M XOR (HL)

XRI dd XOR dd

XTHL EX (SP),HL

420 Microprocessor Instruction Set Tables

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET)
BY Z80 MNEMONIC

INSTRUCTIONS LISTED ALPHABETICALLY

Z80 8080/8085 Op

ADC A,(HL) ADC M 8E
ADC AA ADC A 8F
ADC A,B ADC B 88
ADC A,C ADC C 89
ADC A,D ADC D 8A
ADC A,dd ACI dd CE
ADC A,E ADC E 8B
ADC A,H ADC H 8C
ADC A,L ADC L 8D
ADD A,(HL) ADD M 86
ADD AyA ADDA 87
ADD A,B ADD B 80
ADD A,C ADD C 81
ADD A,D ADD D 82
ADD A,dd ADI dd C6
ADD A F Ann p? Q-> o3
ADD A,H ADD H 84
ADD A,L ADD L 85
ADD HL,BC DAD B 09
ADD HL,DE DAD D 19
ADD HL,HL DAD H 29
ADD HL,SP DAD SP 39
AND (HL) ANA M A6
AND A ANA A A7
AND B ANA B A0
AND C ANA C A1
AND D ANA D A2
AND dd ANI dd E6
AND E ANA E A3
AND H ANA H A4
AND L ANA L A5
CALL aaaa CALL aaaa CD
CALL C,aaaa CC aaaa DC
CALL M,aaaa CM aaaa FC
CALL NC,aaaa CNC aaaa D4
CALL NZ,aaaa CNZ aaaa C4
CALL P,aaaa CP aaaa F4
CALL PE,aaaa CPE aaaa EC
CALL PO,aaaa CPO aaaa E4
CALL Z,aaaa CZ aaaa CC
CCF CMC 3F
CP (HL) CMP M BE
CPA CMP A BF
CP B CMP B B8
CP C CMP C B9
CP D CMP D BA
CP dd CPI dd FE
CP E CMP E BB
CP H CMP H BC
CP L CMP L BD
CPL CMA 2F
DAA DAA 27
DEC (HL) DCR M 35
DEC A DCR A 3D
DEC B DCR B 05

Z80 8080/8085 Op

DEC BC DCX B 0B
DEC C DCR C 0D
DEC D DCR D 15
DEC DE DCX D IB
DECE DCR E ID
DECH DCR H 25
DEC HL DCX H 2B
DEC L DCR L 2D
DEC SP DCX SP 3B
DI DI F3
El El FB
EX (SP),HL XTHL E3
EX DE,HL XCHG EB
HALT HLT 76
IN A,dd IN dd DB
INC (HL) INRM 34
INCA INR A 3C
INC B INRB 04
INC BC INX B 03
INC C INR C OC
INC D INR D 14
INC DE INX D 13
INC E INRE 1C
INC H INR H 24
INC HL INX H 23
INC L INR L 2C
INC SP INX SP 33
JP (HL) PCHL E9
JP aaaa JMP aaaa C3
JP C,aaaa JC aaaa DA
JP M,aaaa JM aaaa FA
JP NC,aaaa JNC aaaa D2
JP NZ,aaaa JNZ aaaa C2
JP P,aaaa JP aaaa F2
JP PE,aaaa JPE aaaa EA
JP PO.aaaa JPO aaaa E2
JP Z,aaaa JZ aaaa CA
LD (aaaa)A STA aaaa 32
LD (aaaa),HL SHLD aaaa 22
LD (BC)A STAX B 02
LD (DE)A STAX D 12
LD (HL)A MOV MA 77
LD (HL),B MOV M,B 70
LD (HL),C MOV M,C 71
LD (HL),D MOV M,D 72
LD (HL),dd MVT M,dd 36
LD (HL),E MOV M,E 73
LD (HL),H MOV M,H 74
LD (HL),L MOV M,L 75
LD A,(aaaa) LDA aaaa 3A
LD A,(BC) LDAX B 0A
LD A,(DE) LDAX D 1A
LD A,(HL) MOV A,M 7E
LD AA MOV AA 7F
LD A,B MOV A,B 78

Z80 8080/8085 Op

LD A,C MOV A,C 79
LD A,D MOV A,D 7A
LD A,dd MVI A,dd 3E
LD A,E MOV A,E 7B
LD A,H MOV A,H 7C
LD A,L MOV A,L 7D
LD B,(HL) MOV B,M 46
LD BA MOV BA 47
LD B,B MOV B,B 40
LD B,C MOV B,C 41
LD BC,dddd LXI B,dddd 01
LD B,D MOV B,D 42
LD B,dd MVI B,dd 06
LD B,E MOV B,E 43
LD B,H MOV B,H 44
LD B,L MOV B,L 45
LD C,(HL) MOV C,M 4E
LD CA MOV CA 4F
LD C,B MOV C,B 48
LD C,C MOV C,C 49
LD C,D MOV C,D 4A
LD C,dd MVI C,dd 0E
LD C,E MOV C,E 4B
LD C,H MOV C,H 4C
LD C,L MOV C,L 4D
LD D,(HL) MOV D,M 56
LD DA MOV DA 57
LD D,B MOV D,B 50
LD D,C MOV D,C 51
LD D,D MOV D,D 52
LD D,dd MVI D,dd 16
LD D,E MOV D,E 53
LD DE,dddd LXI D,dddd 11
LD D,H MOV D,H 54
LD D,L MOV D,L 55
LD E,(HL) MOV E,M 5E
LD EA MOV EA 5F
LD E,B MOV E,B 58
LD E,C MOV E,C 59
LD E,D MOV E,D 5A
LD E,dd MVI E,dd IE
LD E,E MOV E,E 5B
LD E,H MOV E,H 5C
LD E,L MOV E,L 5D
LD H,(HL) MOV H,M 66
LD HA MOV HA 67
LD H,B MOV H,B 60
LD H,C MOV H,C 61
LD H,D MOV H,D 62
LD H,dd MVI H,dd 26
LD H,E MOV H,E 63
LD H,H MOV H,H 64
LD H,L MOV H,L 65
LD HL,(aaaa) LHLD aaaa 2A
LD HL,dddd LXI H.dddd 21

Microprocessor Instruction Set Tables 421

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY

BY Z80 MNEMONIC (Continued)

Z80 8080/8085 Op Z80 8080/8085 Op Z80 8080/8085 Op

LD L,(HL) MOV L,M 6E PUSH BC PUSH B C5 SBC A,B SBB B 98

LD LA MOV LA 6F PUSH DE PUSH D D5 SBC A,C SBB C 99

LD L,B MOV L,B 68 PUSH HL PUSH H E5 SBC A,D SBB D 9A

LD L,C MOV L,C 69 RET RET C9 SBC A,dd SBI dd DE

LD L,D MOV L,D 6A RET C RC D8 SBC A,E SBB E 9B

LD L,dd MVI L,dd 2E RET M RM F8 SBC AH SBB H 9C

LD L,E MOV L,E 6B RET NC RNC DO SBC AL SBB L 9D

LD L,H MOV L,H 6C RET NZ RNZ CO SCF STC 37

LD L,L MOV L,L 6D RET P RP F0 SUB (HL) SUB M 96

LD SP,dddd LXI SP,dddd 31 RET PE RPE E8 SUB A SUB A 97

LD SP,HL SPHL F9 RET PO RPO E0 SUB dd SUI dd D6

NOP NOP 00 RET Z RZ C8 SUB B SUB B 90

OR (HL) ORA M B6 RLA RAL 17 SUB C SUB C 91

ORA ORA A B7 RLCA RLC 07 SUB D SUB D 92

ORB ORAB B0 RRA RAR IF SUB E SUB E 93

OR C ORA C B1 RRCA RRC OF SUB H SUB H 94

OR D ORA D B2 RST00H RST 0 C7 SUB L SUB L 95

OR dd ORI dd F6 RST08H RST 1 CF XOR (HL) XRA M AE

OR E ORA E B3 RST10H RST 2 D7 XOR A XRA A AF

OR H ORA H B4 RST18H RST 3 DF XOR B XRA B A8

OR L ORA L B5 RST20H RST 4 E7 XOR C XRA C A9

OLTr ddA OUT dd D3 RST 28H RST 5 EF XOR D XRA D AA

POP AF POP PSW FI RST30H RST 6 F7 XOR dd XRI dd EE

POP BC POP B Cl RST38H RST 7 FF XOR E XRA E AB

POP DE POP D D1 SBC A,(HL) SBBM 9E XOR H XRA H AC

POP HL POPH El SBC AA SBB A 9F XOR L XRA L AD

PUSH AF PUSH PSW F5

EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY

Mne- Operation Boolean/Arith. Flags Address Assembler Op - #

monic Operation HINZVC Mode_Notation_

NOP No Operation

WAI WAIt for

interrupt

CPU Control Instructions

Nothing xxxxxx Implied NOP

PC + 1 -> PC xlxxxx Implied WAI

pcl">S

PCh + S

XL + S

x„ + s
A + S

B + S

CCR S

01 2 1 Only the program counter is

incremented. No operation

occurs.

3E 9 1 After those actions shown in

the "Boolean/Arithmetic

Operation" column take place,

the current program is

suspended. If 1 = 0 and the

Interrupt Request line is taken

low then 1 = 1 and the

microprocessor will begin to

execute a program whose

address is found in memory

locations FFF8 and FFF9.

422 Microprocessor Instruction Set Tables

Mne- Operation
monic

Boolean/Arith. Flags Address Assembler
Operation_HINZVC Mode Notation

Op # Notes

Data Transfer Instructions

LDAA LoaD Accumulator A M -> A xxNZOx Immediate LDAA #$dd 86 2 2
Direct LDAA Saa 96 3 2
Indexed LDAA Sff,X A6 5 2
Extended LDAA $aaaa B6 4 3

LDAB LoaD Accumulator B M -> B xxNZOx Immediate LDAB #$dd C6 2 2
Direct LDAB $aa D6 2 2
Indexed LDAB Sff,X E6 5 2
Extended LDAB $aaaa F6 4 3

STAA STore Accumulator A A -* M xxNZOx Direct STAA Saa 97 4 2
Indexed STAA $ff,X A7 6 2
Extended STAA Saaaa B7 5 3

STAB STore Accumulator B B -» M xxNZOx Direct STAB Saa D7 4 2
Indexed STAB $ff,X E7 6 2
Extended STAB Saaaa F7 5 3

TAB Transfer A to B A -* B xxNZOx Implied TAB 16 2 1

TBA Transfer B to A B -> A xxNZOx Implied TBA 17 2 1

LDX LoaD X register M -> XH xxNZOx Immediate LDX #$dddd CE 3 3
(M + 1) -> XL Direct LDX Saa DE 4 2

Indexed LDX Sff.X EE 6 2
Extended LDX Saaaa FE 5 3

STX STore X register XH ■+ M xxNZOx Direct STX Saa DF 5 2
XL *» (M + 1) Indexed STX Sff.X EF 7 2

Extended STX Saaaa FF 6 3

CLR CLeaR memory 00 ■+ M xxOlOO Indexed CLR $ff,X 6F 7 2
location Extended CLR Saaaa 7F 6 3

CLRA CLeaR accumulator A 00 ■+ A xxOlOO Implied CLRA 4F 2 1

CLRB CLeaR accumulator B 00 •+ B xxOlOO Implied CLRB 5F 2 1

Flag Instructions

CLC CLear Cany flag 0 - C xxxxxO Implied CLC

Microprocessor Instruction Set Tables 423

Mne¬
monic

EXPANDED

Operation

TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Boolean/Arith. Flags Address Assembler Op ~ # Notes
Operation HINZVC Mode Notation

CLI CLear Interrupt flag 0 -► I xOxxxx Implied CLI OE 2 1

CLV CLear overflow flag 0 ■+ V xxxxVx Implied CLV QA 2 1

SEC SEt Carry flag 1 -> C xxxxxl Implied SEC OD 2 1

SEI SEt Interrupt flag 1 -► I xlxxxx Implied SEI OF 2 1

SEV SEt overflow flag 1 -► V xxxxlx Implied SEV OB 2 1

TAP Transfer Accumulator
A to Processor con¬

dition code register

A + CCR HINZVC Implied TAP 06 2 1

TPA Transfer Processor
condition code reg¬
ister to accumulator
A

CCR ■* A xxxxxx Implied TPA 07 2 1

Arithmetic Instructions

ADDA ADO accumulator A A + M -> A HxNZVC Immediate ADDA #$dd 8B 2 2

to memory location Direct ADDA $aa 9B 3 2

Indexed ADDA $ff,X AB 5 2

Extended ADDA Saaaa BB 4 3

ADDB ADD accumulator B B + M -» B HxNZVC Immediate ADDB #$dd CB 2 2

to memory location Direct ADDB $aa DB 3 2
Indexed ADDB $ff,X EB 5 2

Extended ADDB Saaaa FB 4 3

ABA Add accumulator B
to accumulator A

A + B -» A HxNZVC Implied ABA IB 2 1

ADCA AdD with Carry A + M + C -» A HxNZVC Immediate ADCA #$dd 89 2 2

accumulator A to Direct ADCA Saa 99 3 2

memory location Indexed ADCA $ff,X A9 5 2

Extended ADCA Saaaa B9 4 3

ADCB AdD with Carry B + M + C -» B HxNZVC Immediate ADCB #$dd C9 2 2

accumulator B to Direct ADCB Saa D9 3 2

memory location Indexed ADCB $ff,X E9 5 2

Extended ADCB Saaaa F9 4 3

424 Microprocessor Instruction Set Tables

Mne¬

monic

SUBA

SUBB

SB A

SBCA

SBCB

DAA

ANDA

ANDB

ORAA

ORAB

Operation Boolean/Arith.

___Operation

SUBtract memory A - M -> A

location from

accumulator A

SUBtract memory B - M -> B

location from

accumulator B

Subtract accumulator A - B -> A

B from accumulator A

SuBtract with

Carry memory

location from

accumulator A

A - M - C A

SuBtract with

Carry memory

location from

accumulator B

B - M - C -► B

Decimal Adjust (converts bin¬
accumulator A ary number into

BCD number)

Flags Address Assembler Op ~ # Notes

HINZVC Mode Notation

xxNZVC Immediate SUBA #$dd 80
Direct SUBA $aa 90
Indexed SUBA $ff,X AO
Extended SUBA Saaaa BO

xxNZVC Immediate SUBB #$dd CO
Direct SUBB $aa DO
Indexed SUBB $ff,X E0
Extended SUBB Saaaa F0

xxNZVC Implied SBA 10

xxNZVC Immediate SBCA #$dd 82
Direct SBCA Saa 92
Indexed SBCA $ff,X A2
Extended SBCA Saaaa B2

xxNZVC Immediate SBCB #Sdd C2
Direct SBCB Saa D2
Indexed SBCB $ff,X E2
Extended SBCB Saaaa F2

xxNZVC Implied DAA 19

2 2

3 2

5 2

4 3

2 2

3 2

5 2

4 3

2 1

2 2

3 _2_

5 2

4 3

2 2

3 2

5 2

4 3

2 1 Converts the number in A to

the BCD number it would be if

the last two operands had been

BCD numbers.

Logical Instructions

AND accumulator A A AND M -» A

with memory loc¬

ation

AND accumulator B B AND M -> B

with memory loc¬

ation

OR Accumulator A A OR M -» A

with memory loc¬

ation

OR Accumulator B B OR M ■» B

with memory loc¬

ation

xxNZOx Immediate ANDA #$dd 84 2 2
Direct ANDA Saa 94 3 2
Indexed ANDA $ff,X A4 5 2
Extended ANDA Saaaa B4 4 3

xxNZOx Immediate ANDB #$dd C4 2 2
Direct ANDB Saa D4 3 2
Indexed ANDB Sff,X E4 5 2
Extended ANDB Saaaa F4 4 3

xxNZOx Immediate ORAA #Sdd 8A 2 2
Direct ORAA Saa 9A 3 2
Indexed ORAA Sff,X AA 5 2
Extended ORAA Saaaa BA 4 3

xxNZOx Immediate ORAB #$dd CA 2 2
Direct ORAB $aa DA 3 2
Indexed ORAB $ff,X EA 5 2
Extended ORAB Saaaa FA 4 3

Microprocessor Instruction Set Tables 42 5

EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne¬

monic

Operation Boolean/Arith.

Operation

Flags Address

HINZVC Mode

Assembler

Notation

Op # Notes

EORA Exclusively OR A EOR M * A xxNZOx Immediate EORA #ttd 88 2 2

accumulator A Direct EORA Saa 98 3 2

with memory Indexed EORA $ff,X A8 5 2

location Extended EORA Saaaa B8 4 3

EORB Exclusively OR B EOR M *B xxNZOx Immediate EORB #$dd C8 2 2

accumulator A Direct EORB Saa D8 3 2

with memory Indexed EORB $ff,X E8 5 2

location Extended EORB Saaaa F8 4 3

BIT A BIT test A AND M xxNZOx Immediate BITA #$dd 85 2 2 Accumulator A and a memory

accumulator A Direct BITA Saa 95 3 2 location are ANDed but neither

Indexed BITA $ff,X A5 5 2 is changed. However, flags N

Extended BITA Saaaa B5 4 3 and Z are affected accordingly.

BITB BIT test BAND M xxNZOx Immediate BITB #$dd C5 2 2 Accumulator B and a memory

accumulator B Direct BITB Saa D5 3 2 location are ANDed but neither

Indexed BITB $ff,X E5 5 2 is changed. However, flags N

Extended BITB Saaaa F5 4 3 and Z are affected accordingly.

COM COMpIement memory _

location (l’s com- M -* M

plement)

xxNZOl Indexed

Extended

COM $ff,X

COM Saaaa

63

73

7 2

6 2

COMA COMpIement ac¬

cumulator A A -» A

(l’s complement)

xxNZOl Implied COMA 43 2 1

COMB COMpIement ac¬

cumulator B B -* B

(l’s complement)

xxNZOl Implied COMB 53 2 1

NEG NEGate memory loc- 00 - M -» M

ation (2’s comple¬

ment)

xxNZVC Indexed

Extended

NEG $ff,X

NEG Saaaa

60

70

7 2

6 3

Affects the carry flag as if the

memory location had been

subtracted from zero.

NEGA NEGate accumu- 00 - A -> A

lator A (2’s com¬

plement)

xxNZVC Implied NEGA 40 2 1 Affects the carry flag as if

accumulator A had been

subtracted from zero.

NEGB NEGate accumu- 00 - B + B

lator B (2’s com¬

plement)

xxNZVC Implied NEGB 50 2 1 Affects the carry flag as if

accumulator B had been

subtracted from zero.

Rotate and Shift Instructions

ROL ROtate memory loc- j— M7 ... Mo

ation Left | r c I

xxNZVC Indexed

Extended

ROL $ff,X

ROL Saaaa

69

79

7 2

6 3

426 Microprocessor Instruction Set Tables

Mne- Operation Boolean/Arith. Flags Address Assembler Op - #

Operation HINZVC Mode Notation

ROLA ROtate to the Left

accumulator A
A7 ••• A0 ^-1 xxNZVC Implied ROLA 49 2 1

ROtate to the Left I B7... B0 xxNZVC Implied ROLB

accumulator B |__|

ROR ROtate memory loc- r*~ M7... M0 i xxNZVC Indexed ROR $ff,X

ation Right I-C„-1 Extended ROR Saaaa

RORA ROtate to the Right

accumulator A

A? • ■ • A0 I xxNZVC Implied RORA r .-l
RORB ROtate to the Right

accumulator B

B7.. . Bp | xxNZVC Implied RORB

ASL Arithmetic Shift C -«-M7 ... M0*- 0 xxNZVC Indexed ASL $ff,X 68 7 2

Left memory Extended ASL Saaaa 78 6 3
location

ASLA Arithmetic Shift C A7 .. . A0^- 0 xxNZVC Implied ASIA

Left accumulator A
48 2 1

ASLB Arithmetic Shift C B? ... B0 ^ 0 xxNZVC Implied ASLB

Left accumulator B
58 2 1

ASR Arithmetic Shift j~^M7 . • • M0~^ C xxNZVC Indexed ASR $ff,X 67 7 2

Right memory loc- Extended ASR Saaaa 77 6 3

ASRA Arithmetic Shift p-A7...A0-^C xxNZVC Implied ASRA

Right accumulator A j [
47 2 1

ASRB Arithmetic Shift i-^ B7 . . . B0 -► C xxNZVC Implied ASRB
Right accumulator B I

57 2 1

LSR Logical Shift Right 0 -HV17... M<f^C xxOZVC Indexed LSR $ff,X 64 7 2

memory location Extended LSR Saaaa 74 6 3

LSRA Logical Shift Right 0-> A?..A0^ C xxOZVC Implied LSRA

accumulator A
44 2 1

LSRB Logical Shift Right 0-> Br..B0-> C xxOZVC Implied LSRB

accumulator B
54 2 1

Microprocessor Instruction Set Tables 427

EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne¬ Operation Boolean/Arith. Flags Address Assembler Op ~ #

monic Operation HINZVC Mode Notation

Increment and Decrement Instructions

INC INCrement memory M + 1 -» M xxNZVx Indexed INC $ff,X 6C 7 2

location Extended INC Saaaa 7C 6 3

INCA INCrement accum¬

ulator A

A + 1 A xxNZVx Implied INCA 4C 2 1

INCB INCrement accum¬

ulator B

B + 1 -> B xxNZVx Implied INCB 5C 2 1

DEC DECrement memory M - 1 M xxNZVx Indexed DEC $ff,X 6A 7 2

location Extended DEC Saaaa 7A 6 3

DECA DECrement accum¬

ulator A

A - 1 -> A xxNZVx Implied DECA 4A 2 1

DECB DECrement accum¬

ulator B

B- 1 B xxNZVx Implied DECB 5A 2 1

I NX INcrement X

(index) register

X + 1 ->X xxxZxx Implied INX 08 4 1

DEX DEcrement X X-l + X XXXzXX Implied DEX 09 4 1

(index) register

Unconditional Jump Instructions

JMP JuMP to memory X + ff 4 PC xxxxxx Indexed JMP Sff,X 6E 4 2

location (indexed)

aaaa -> PC

Extended JMP Saaaa 7E 3 3

(extended)

BRA BRanch Always PC + 2 xxxxxx Relative BRA Srr 20 4 2

to memory loc¬

ation

+ rr -» PC

Test ('Compare') Instructions

CM PA CoMPare memory A-M xxNZVC Immediate CM PA #$dd 81 2 2

location to Direct CMPA Saa 91 3 2

accumulator A Indexed CMPA $ff,X A1 5 2

Extended CMPA Saaaa B1 4 3

CMPB CoMPare memory B - M xxNZVC Immediate CMPB #$dd Cl 2 2

location to Direct CMPB $aa D1 3 2

accumulator B Indexed CMPB Sff,X El 5 2

Extended CMPB Saaaa FI 4 3

Notes

428 Microprocessor Instruction Set Tables

Mne¬

monic

CBA

CPX

TST

TSTA

TSTB

BCC

BCS

BEQ

BGE

BGT

Operation Boolean/Arith.

Operation

Flags

HINZVC

Address

Mode

Assembler

Notation

Op #

Compare accum¬ A - B xxNZVC Implied CBA 11 2 1
ulator B to

accumulator A

Compare memory XH - M xxNZVx Immediate CPX #$dddd 8C 3 3
location to X Xl-(M + 1) Direct CPX $aa 9C 4 2
(index) register Indexed CPX $ff,X AC 6 2

Extended CPX Saaaa BC 5 3

TEsT memory loc¬ M - 00 xxNZOO Indexed TST $ff,X 6D 7 2
ation for zero or Extended TST Saaaa 7D 6 3
minus

TEsT accumulator A

for zero or minus

A - 00 xxNZOO Implied TSTA 4D 2 1

TEsT accumulator B

for zero or minus

B -00 xxNZOO Implied TSTB 5D 2 1

Conditional Jump fBranch") Instructions

Branch if Cany PC + 2 + rr xxxxxx Relative BCC $rr 24 4 2
Clear PC

if C=0

Branch if Carry PC + 2 + rr xxxxxx Relative BCS $rr 25 4 2
Set -► pc

if C=1

Branch if result of PC + 2 + rr

last operation was -» PC

EQual to zero ifZ=l

xxxxxx Relative BEQ $rr 27 4 2

Branch if Greater

than or Equal to

zero

PC + 2 + rr xxxxxx Relative BGE $rr

* PC

if N EOR V = 0

Branch if Greater PC + 2 + rr xxxxxx Relative BGT $rr

Than zero ■+ PC

if Z AND (N

EOR V) = 0

2C 4 2 This branch occurs after the

instructions CBA, CMP, SBA,

or SUB if the 2’s-complement

minuend is greater than or

equal to the 2’s-complement

subtrahend creating an answer

which is greater than or equal

to zero.

2E 4 2 This branch occurs after the

instructions CBA, CMP, SBA,

or SUB if the 2’s-complement

minuend is greater than the 2’s-

complement subtrahend,

creating an answer which is

greater than zero.

Microprocessor Instruction Set Tables 429

EXPANDED TABLE OE 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne¬

monic

BHI

BLE

BLS

BLT

BMI

BNE

BVC

BVS

BPL

Operation Boolean/Arith. Flags Address Assembler Op ~ # Notes

Operation _HINZVC Mode_Notation_

Branch if Higher PC + 2 + rr

■+ PC

if C AND Z = 0

xxxxxx Relative BHI Srr 22 4 2 This branch occurs after the

instructions CBA, CMP, SBA,

or SUB if the unsigned binary

minuend is greater than the

unsigned binary subtrahend.

Branch if Less

than or Equal to

zero

PC + 2 + rr

+ PC

if Z AND (N EOR

V) = 1

xxxxxx Relative BLE Srr 2F 4 2 This branch occurs after the

instructions CBA, CMP, SBA,

or SUB if the 2’s-complement

minuend is less than or equal

to the 2,s-complement

subtrahend, creating an answer

which is less than or equal to

zero.

Branch if Lower

or the Same

PC + 2 + rr

-> PC

if C OR Z = 1

xxxxxx Relative BLS Srr 23 4 2 This branch occurs after the

instructions CBA, CMP, SBA,

or SUB if the unsigned binary

minuend is less than or equal

to the unsigned binary

subtrahend.

Branch if Less

Than zero

PC + 2 + rr

-> PC

if N EOR V = 1

xxxxxx Relative BLT Srr 2D 4 2 This branch occurs after the

instructions CBA, CMP, SBA,

or SUB if the 2’s-complement

minuend is less than the 2’s-

complement subtrahend,

creating an answer which is less

than zero.

Branch is Minus PC + 2 + rr

-> PC

if N=1

xxxxxx Relative BMI Srr 2B 4 2

Branch if Not Equal

to zero

PC + 2 + rr

PC

if Z = 1

xxxxxx Relative BNE Srr 26 4 2

Branch if overflow

Clear

PC + 2 + rr

* PC

if V=0

xxxxxx Relative BVC Srr 28 4 2

Branch if overflow

Set

PC + 2 + rr

+ PC

if V=1

xxxxxx Relative BVS Srr 29 4 2

Branch if PLus PC + 2 + rr

•* PC

if N-0

xxxxxx Relative BPL Srr 2A 4 2

430 Microprocessor Instruction Set Tables

Mne- Operation

monic
Boolean/Arith.

Operation

Flags Address

HINZVC Mode

Assembler

Notation

Op - # Notes

JSR Jump SubRoutine PC + 2 -» PC

PCL S

PCH-S

SP - 2 -> SP

(ff+X) -> PC

PC + 3 -> PC

PCl + S

PCh-S

SP - 2 ^ SP

(aaaa) *♦ PC

Subroutine Instructions

ocx Indexed JSR $ff,X

Extended JSR $aaaa

AD 8 2

BD 9 3

The program counter is

incremented by 2 (Indexed) or

3 (Extended) and the program

counter is pushed onto the

stack 1 byte at a time. At the

memory location indicated by

the addressing mode will be

found the address of the first

instruction of the subroutine.

This address is placed in the

program counter.

RTS ReTum from

Subroutine

BSR Branch to

SubRoutine

S + PC„

S^PCl
SP + 2 -> SP

PC + 2 -> PC

PC^S

PCh + S
SP - 2 -» SP

PC + rr ** PC

Implied RTS

xxxxxx Relative BSR $rr

39 5 1 The address of the next

instruction in the main program

after the last JSR is loaded

from the stack into the

program counter 1 byte at a

time.

8D 8 2 The program counter is

incremented by 2 and pushed

onto the stack 1 byte at a time.

The memory location of the

next instruction is then

calculate by adding the 2’s-

complement binary number rr

to the program counter. This

instruction differs from JSR in

the form of addressing it uses.

Stack Instructions

LDS LoaD Stack pointer M -* SPH xxNZOx Immediate LDS #$dddd 8E 3 3
(M + 1) -» SPL Direct LDS $aa 9E 4 2

Indexed LDS $ff,X AE 6 2
Extended LDS $aaaa BE 5 3

STS STore Stack pointer SPH -> M xxNZOx Direct STS Saa 9F 5 2
SPL -> (M + 1) Indexed STS $ff,X AF 7 2

Extended STS $aaaa BF 6 3

PSHA PuSH accumulator A

onto the stack

A •* S

SP - 1 -* SP

xxxxxx Implied PSHA 36 4 1 Whenever A or B is pushed

onto the stack the stack pointer

PSHB PuSH accumulator B

onto the stack
B -> S

SP - 1 -* SP

xxxxxx Implied PSHB 37 4 1

is decremented by 1. When the

contents of the stack are placed

in A or B the stack pointer is

PULA PUIL accumulator A

from the stack

S ■* A

SP + 1 -» SP

xxxxxx Implied PULA 32 4 1

incremented by 1.

PULB PUIL accumulator B

from the stack

S -> B

SP + 1 -» SP

xxxxxx Implied PULB 33 4 1

Microprocessor Instruction Set Tables 431

EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne¬

monic

DBS

INS

TXS

TSX

RTI

SWI

none

Operation Boolean/Arith. Flags Address Assembler Op ~ # Notes

Operation HINZVC Mode Notation

DEcrement Stack

pointer

SP - 1 -» SP xxxxxx Implied DES 34 4 1

INcrement Stack

pointer

SP + 1 -> SP xxxxxx Implied INS 31 4 1

Transfer X (index)

register to Stack

pointer

X - 1 + SP xxxxxx Implied TXS 35 4 1

Transfer Stack

pointer to the X

(index) register

SP + 1 -> X xxxxxx Implied TSX 30 4 1

Interrupt Instructions

ReTum from

Interrupt

S + CCR

S 4 B

S -> A

s + xH
s->xL
S->PCH

S *♦ PCl

HINZVC Implied RTI 3B 10 1

Software Interrupt PC + 1 + PC

PCL *+ s

PC^-S

xL ■* s

xH-s

A * S

B + S

CCR *♦ S

xlxxxx Implied SWI 3F 12 1 After the actions shown in the

"Boolean/Arithmetic

Operation" column take place,

the microprocessor will begin to

execute a program whose

address is found in memory

locations FFFA and FFFB.

Input-Output Instructions

The 6800/6808 has no special

input and output instructions

but rather memory-maps these

operations.

432 Microprocessor Instruction Set Tables

Notes

Addressing Modes

Immediate

Direct

Indexed

Extended

Implied

Relative

Assembler Notation

Mnemonic #$dd

Mnemonic $aa

Mnemonic $ff,X

Mnemonic $aaaa

Mnemonic

Mnemonic $rr

Abbreviations and Explanations

a = address (one hex digit)

d = data (one hex digit)

f = offset (one hex digit) to be added to the X register (ff is

positive - $00-$ff which is decimal 0-255)

r = relative displacement (one hex digit) to be added to the

program counter (rr is 2,s-complement number and thus

can be positive or negative, -128 to +127)

$ = indicates a hexadecimal number

= indicates the data follows immediately after the instruction

L = low byte (lower byte of a two byte number)

H = high byte (upper byte of a two byte number)

Flags

H = instruction affects the half carry-flag

I = instruction affects the interrupt flag

N = instruction affects the negative flag

Z = instruction affects the zero flag

V = instruction affects the overflow flag

C = instruction affects the carry flag

0 = instruction always clears affected flag

1 = instruction always sets affected flag

x = flag not affected by instruction

CCR = condition code register (flags)
S = stack

SP = stack pointer

PC = program counter

0 = contents of the memory location in the parenthesis

M7,..M0 = memory bits 0-7 of a particular memory location

A7..j\q = bits 0-7 of accumulator a

Br..B0 - bits 0-7 of accumulator b

X = Index register

0 = One zero bit.

00 = One zero byte.

Symbols in the Page Heading

~ = clock cycles

” # °f bytes used by instruction (and following address or data
if used)

Addressing Modes - Summary

Immediate (Mnemonic #$dd): In this addressing mode, the operand

(data or number that something is being done to) is contained in the

memory location(s) immediately following the instruction.

Direct (Mnemonic $aa): Direct addressing places the address of the

operand in the byte following the instruction.

Indexed (Mnemonic $ff,X): This mode involves a couple of steps.

First, the number ff (which is the byte after the instruction) is added

to the value in the X register. The number ff is an 8-bit number

which can only be positive (0-255 decimal). Then the operand is
fetched from this newly formed address.

Extended (Mnemonic $aaaa): Extended addressing is the same as

Direct except that a wider range is possible. The first byte is the

instruction as in Direct addressing. The second and third bytes then

form a 16-bit address where the operand can be found.

Implied (Mnemonic): When the operand is within the

microprocessor itself implied addressing is used. In these cases the

location of the operand is contained within the instruction itself.

CLRA (CLeaR accumulator A) is an example of implied addressing.

Relative (Mnemonic $rr): Relative addressing is used exclusively

with the branch and jump instructions. The byte following the

instruction is an 8-bit 2’s-complement number (+ 127 to -128) which

is added to the contents of the program counter. This then is the

address of the next instruction. The location of the next instruction

is being indicated relative to the current location in memoiy (the

current contents of the program counter).

Microprocessor Instruction Set Tables 433

SHORT TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY

Mne¬

monic

Operation Assembler

Notation

Op Mne¬

monic

Operation Assembler

Notation

Op

ABA Add accumulator B ABA IB BCS Branch if Carry BCS Srr 25

to accumulator A Set

ADCA AdD with Carry ADCA #$dd 89 BEQ Branch if result of BEQ Srr 27

accumulator A to ADCA $aa 99 last operation was

memory location ADCA $ff,X A9 EQual to zero

ADCA Saaaa B9

BGE Branch if Greater BGE Srr 2C

ADCB AdD with Carry ADCB #$dd C9 than or Equal to

accumulator B to ADCB Saa D9 zero

memory location ADCB $ff,X E9

ADCB $aaaa F9 BGT Branch if Greater BGT Srr 2E

Than zero

ADDA ADD accumulator A ADDA #$dd 8B

to memory location ADDA Saa 9B BHI Branch if Higher BHI Srr 22

ADDA $ff,X AB

ADDA Saaaa BB BITA BIT test BITA #$dd 85

accumulator A BITA Saa 95

ADDB ADD accumulator B ADDB #Sdd CB BITA $ff,X A5

to memory location ADDB $aa DB BITA Saaaa B5

ADDB $ff,X EB

ADDB Saaaa FB BITB BIT test BITB #$dd C5

accumulator B BITB Saa D5

ANDA AND accumulator A ANDA #$dd 84 BITB $ff,X E5

with memory loc¬ ANDA Saa 94 BITB Saaaa F5

ation ANDA $ff,X A4

ANDA Saaaa B4 BLE Branch if Less BLE Srr 2F

then or Equal to

ANDB AND accumulator B ANDB #$dd C4 zero

with memory loc¬ ANDB Saa D4

ation ANDB $ff,X E4 BLS Branch if Lower BLS Srr 23

ANDB Saaaa F4 or the Same

ASL Arithmetic Shift ASL $ff,X 68 BLT Branch if Less BLT Srr 2D

Left memory ASL Saaaa 78 Than zero

location

BMI Branch is Minus BMI Srr 2B

ASLA Arithmetic Shift ASLA 48

Left accumulator A BNE Branch if Not Equal BNE Srr 26

to zero

ASLB Arithmetic Shift ASLB 58

Left accumulator B BPL Branch if PLus BPL Srr 2A

ASR Arithmetic Shift ASR $ff,X 67 BRA BRanch Always BRA Srr 20

Right memory loc¬ ASR Saaaa 77 to memory loc¬
ation ation

ASRA Arithmetic Shift ASRA 47 BSR Branch to BSR Srr 8D

Right accumulator A SubRoutine

ASRB Arithmetic Shift ASRB 57 BVC Branch if oVerflow BVC Srr 28

Right accumulator B Clear

BCC Branch if Carry BCC Srr 24 BVS Branch if oVerflow BVS Srr 29

Clear Set

434 Microprocessor Instruction Set Tables

Mne¬ Operation Assembler Op
monic Notation

CBA Compare accum¬

ulator B to
CBA 11

accumulator A

CLC CLear Carry flag CLC oc

CLI CLear Interrupt flag CLI OE

CLR CLeaR memory CLR $ff,X 6F
location CLR $aaaa 7F

CLRA CLeaR accumulator A CLRA 4F

CLRB CLeaR accumulator B CLRB 5F

CLV CLear overflow flag CLV OA

CMPA CoMPare memory CMPA #$dd 81
location to CMPA $aa 91
accumulator A CMPA $ff,X A1

CMPA $aaaa B1

CMPB CoMPare memory CMPB #$dd Cl
location to CMPB $aa D1
accumulator B CMPB $ff,X El

CMPB $aaaa FI

COM COMplement memory COM $ff,X 63
location (l’s com¬

plement)
COM $aaaa 73

COMA COMplement ac¬

cumulator A

(l’s complement)

COMA 43

COMB COMplement ac¬

cumulator B

(l’s complement)

COMB 53

CPX ComPare memory CPX #$dd 8C
location to X CPX $aa 9C
(index) register CPX $ff,X AC

CPX $aaaa BC

DAA Decimal Adjust

accumulator A

DAA 19

DEC DECrement memory DEC $ff,X 6A
location DEC $aaaa 7A

DECA DECrement accum¬

ulator A
DECA 4A

DECB DECrement accum¬

ulator B
DECB 5A

DES DEcrement Stack

pointer
DES 34

Mne¬ Operation Assembler Op
monic Notation

DEX DEcrement X

(index) register
DEX 09

EORA Exclusively OR EORA #$dd 88
accumulator A EORA $aa 98
with memory EORA $ff,X A8
location EORA Saaaa B8

EORB Exclusively OR EORB #$dd C8
accumulator A EORB $aa D8
with memory EORB Sff,X E8
location EORB Saaaa F8

INC INCrement memory INC $ff,X 6C
location INC Saaaa 7C

INCA INCrement accum¬

ulator A
INCA 4C

INCB INCrement accum¬

ulator B

INCB 5C

INS INcrement Stack

pointer

INS 31

INX INcrement X

(index) register

INX 08

JMP JuMP to memory JMP $ff,X 6E
location JMP Saaaa 7E

JSR Jump SubRoutine JSR $ff,X AD

JSR Saaaa BD

LDAA LoaD Accumulator A LDAA #$dd 86

LDAA Saa 96

LDAA $ff,X A6

LDAA Saaaa B6

LDAB LoaD Accumulator B LDAB #Sdd C6
LDAB Saa D6

LDAB $ff,X E6

LDAB Saaaa F6

LDS LoaD Stack pointer LDS #$dddd 8E

LDS Saa 9E

LDS $fftX AE
LDS Saaaa BE

LDX LoaD X register LDX #$dd CE

LDX Saa DE

LDX $ff,X EE

LDX Saaaa FE

LSR Logical Shift Right LSR $ff,X 64
memory location LSR Saaaa 74

Microprocessor Instruction Set Tables 435

SHORT TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY (Continued)

Mne¬ Operation Assembler Op Mne¬ Operation Assembler Op

monic Notation monic Notation

LSRA Logical Shift Right LSRA 44 RORB ROtate to the Right RORB 56

accumulator A accumulator B

LSRB Logical Shift Right LSRB 54 RTI ReTum from RTI 3B

accumulator B Interrupt

NEG NEGate memory loc¬ NEG $ff,X 60 RTS ReTum from RTS 39

ation (2’s comple¬ NEG $aaaa 70 Subroutine

ment)

SBA Subtract accumulator SBA 10

NEGA NEGate accumu¬

lator A (2’s com¬

NEGA 40 B from accumulator A

plement) SBCA SuBtract with SBCA #$dd 82

Carry memory SBCA Saa 92

NEGB NEGate accumu¬ NEGB 50 location from SBCA $ff,X A2

lator B (2’s com¬

plement)

accumulator A SBCA Saaaa B2

SBCB SuBtract with SBCB #$dd C2

NOP No OPeration NOP 01 Carry memory SBCB Saa D2

location from SBCB $ff,X E2

ORAA OR Accumulator A ORAA #$dd 8A accumulator B SBCB Saaaa F2

with memory loc¬ ORAA $aa 9A

ation ORAA $ff,X AA SEC SEt Carry flag SEC 0D

ORAA Saaaa BA

SEI SEt Interrupt flag SEI OF

ORAB OR Accumulator B ORAB #$dd CA

with memory loc¬ ORAB $aa DA SEV SEt oVerflow flag SEV OB

ation ORAB $ff,X EA

ORAB $aaaa FA STAA STore Accumulator A STAA Saa 97

STAA Sff,X A7

PSHA PuSH accumulator A PSHA 36 STAA Saaaa B7

onto the stack

STAB STore Accumulator B STAB Saa D7

PSHB PuSH accumulator B PSHB 37 STAB $ff,X E7

onto the stack STAB Saaaa F7

PULA PU1L accumulator A PULA 32 STS STore Stack pointer STS Saa 9F

from the stack STS $ff,X AF

STS Saaaa BF
PULB PU1L accumulator B

from the stack

PULB 33

STX STore X register STX Saa DF

STX $ff,X EF

ROL ROtate memory loc¬ ROL $ff,X 69 STX Saaaa FF
ation Left ROL Saaaa 79

SUBA SUBtract memory SUBA #$dd 80

ROLA ROtate to the Left ROLA 49 location from SUBA Saa 90

accumulator A accumulator A SUBA $ff,X A0

SUBA Saaaa B0

ROLB ROtate to the Left

accumulator B

ROLB 59

SUBB SUBtract memory SUBB #$dd CO

location from SUBB Saa DO
ROR ROtate memory loc¬ ROR $ff,X 66 accumulator B SUBB $ff,X E0

ation Right ROR Saaaa 76 SUBB Saaaa F0

RORA ROtate to the Right

accumulator A

RORA 46 SWI Software Interrupt SWI 3F

436 Microprocessor Instruction Set Tables

Mne- Operation

monic
Assembler Op

Notation
Mne- Operation

monic
Assembler Op

Notation

TAB Transfer A to B TAB 16 TSTA TEsT accumulator A TSTA 4D

TAP Transfer Accumulator TAP 06
for zero or minus

A to Processor con¬

dition code register
TSTB TEsT accumulator B

for zero or minus

TSTB 5D

TBA Transfer B to A TBA 17 TSX Transfer Stack TSX 30

TPA Transfer Processor

condition code reg¬
TPA 07

pointer to the X

(index) register

ister to accumulator TXS Transfer X (index) TXS 35
A register to Stack

TST TEsT memory loc¬ TST $ff,X 6D

pointer

ation for zero or TST Saaaa 7D WAI WAit for WAI 3E
Interrupt

SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY

Assembler Op Booiean/Arith Flags

Notation_Operation HINZVC

CPU Control Instructions

NOP 01 nothing xxxxxx

WAI 3E PC + 1 -» PC

PCl -* S

PCh-S

xL + s
xH ■* s
A -» S

B ■» S

CCR -* S

xlxxxx

Data Transfer Instructions

LDAA #$dd

LDAA $aa

LDAA $ff,X

LDAA Saaaa

86 M -> A

96

A6

B6

xxNZOx

LDAB #$dd

LDAB $aa

LDAB $ff,X

LDAB Saaaa

C6 M -> B

D6

E6

F6

xxNZOx

STAA $aa

STAA $ff,X

STAA Saaaa

97 A *♦ M

A7

B7

xxNZOx

STAB $aa

STAB $ff,X

STAB Saaaa

D7 B -► M

E7

F7

xxNZOx

Assembler

Notation

Op Booiean/Arith

Operation

Flags

HINZVC

TAB 16 A->B xxNZOx

TBA 17 B *+ A xxNZOx

LDX #$dddd CE M -> xH xxNZOx
LDX Saa DE (M + 1) -> XL
LDX $ff,X EE

LDX Saaaa FE

STX Saa DF XH ** M xxNZOx
STX $ff,X EF XL -> (M + 1)
STX Saaaa FF

CLR $ff,X 6F 00 -> M xxOlOO
CLR Saaaa 7F

CLRA 4F 00 -» A xxOlOO

CLRB 5F 00 *♦ B xxOlOO

Flag Instructions

CLC oc 0->C xxxxxO

LI 0E 0 -> I xOxxxx

CLV 0A 0 4 V xxxxVx

SEC 0D 1 *» c xxxxxl

SEI OF 1 -> I xlxxxx

Microprocessor Instruction Set Tables 437

SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Assembler

Notation

Op Boolean/Arith

Operation

Flags

HINZVC

SEV OB 1 -> V xxxxlx

TAP 06 A 4 CCR HINZVC

TPA 07 CCR -» A xxxxxx

Arithmetic Instructions

ADDA #$dd 8B A + M -> A HxNZVC

ADDA Saa 9B

ADDA $ff,X AB

ADDA $aaaa BB

ADDB #$dd CB B + M 4 B HxNZVC

ADDB $aa DB

ADDB $ff,X EB

ADDB Saaaa FB

ABA IB A + B 4 A HxNZVC

ADCA #$dd 89 A + M + C + A HxNZVC

ADCA $aa 99

ADCA $ff,X A9

ADCA Saaaa B9

ADCB #Sdd C9 B + M + C-> B HxNZVC

ADCB $aa D9

ADCB $ff,X E9

ADCB Saaaa F9

SUBA #$dd 80 A - M •+ A xxNZVC

SUBA Saa 90

SUBA $ff,X A0

SUBA Saaaa B0

SUBB #$dd CO B - M -► B xxNZVC

SUBB Saa DO

SUBB $ff,X E0

SUBB Saaaa F0

SBA 10 A - B -> A xxNZVC

SBCA #$dd 82 A - M - C -> A xxNZVC

SBCA Saa 92

SBCA $ff,X A2

SBCA Saaaa B2

SBCB #$dd C2 B - M - C B xxNZVC

SBCB Saa D2

SBCB $ff,X E2

SBCB Saaaa F2

Assembler

Notation

Op Boolean/Arith

Operation

Flags

HINZVC

DAA 19 (converts bin¬

ary add. of BCD

characters into

BCD format)

xxNZVC

Logical Instructions

ANDA #$dd 84 A AND M A xxNZOx

ANDA Saa 94

ANDA $ff,X A4

ANDA Saaaa B4

ANDB #$dd C4 B AND M -► B xxNZOx

ANDB Saa D4

ANDB $ff,X E4

ANDB Saaaa F4

ORAA #$dd 8A A OR M -> A xxNZOx

ORAA Saa 9A

ORAA Sff,X AA

ORAA Saaaa BA

ORAB #$dd CA B OR M 4 B xxNZOx

ORAB Saa DA

ORAB $ff,X EA

ORAB Saaaa FA

EORA #$dd 88 A EOR M -> A xxNZOx

EORA $aa 98

EORA $ff,X A8

EORA Saaaa B8

EORB #$dd C8 B EOR M + B xxNZOx

EORB Saa D8

EORB Sff.X E8

EORB Saaaa F8

BITA #$dd 85 A AND M xxNZOx

BITA Saa 95

BITA $ff,X A5

BITA Saaaa B5

BITB #Sdd C5 B AND M xxNZOx

BITB Saa D5

BITB $ff,X E5

BITB Saaaa F5

COM $ff,X 63 M -> M xxNZOl

COM Saaaa 73

COMA 43 A -> A xxNZOl

COMB 53 B * B xxNZOl

438 Microprocessor Instruction Set Tables

Assembler

Notation

Op Boolean/Arith

Operation

Flags

HINZVC

NEG $ff,X 60 00 - M -» M xxNZVC
NEG $aaaa 70

NEGA 40 00 - A ■» A xxNZVC

NEGB 50 00 - B -» B xxNZVC

Rotate and Shift Instructions

ROL $ff,X 69 |—M7 ... Mo 1 xxNZVC
ROL $aaaa 79 1 .c_ I

ROLA 49 1— A7 ... A0

‘-i-C-

j xxNZVC

ROLB 59 1— B7 ... B0 | xxNZVC

ROR $ff,X 66 (-► M7 ... Mq —I
ROR Saaaa 76 LI c, 1

| xxNZVC

RORA 46 a7 ... a0 —| xxNZVC

1-c-^—1

RORB 56 !-► B7 ... B0 —I xxNZVC

*-c+-—1

ASL $ff,X 68 C^M7...Mo^0 1 xxNZVC
ASL Saaaa 78

ASLA 48 C *+- A7 ... A0 o i xxNZVC

ASLB 58 C-*-B7 ... Bo^0 1 xxNZVC

ASR $ff,X 67 P^M7 ... M0“^ C xxNZVC
ASR Saaaa 77 u
ASRA 47 p>A7... a0-»-c : xxNZVC

ASRB 57 B7... B0 —»-C xxNZVC

LSR $ff,X 64 0+ c xxOZVC
LSR Saaaa 74

LSRA 44 0-* AC xxOZVC

LSRB 54 0* Bj.-Bq-* c xxOZVC

Increment and Decrement Instructions

INC $ff,X 6C M + 1 -> M xxNZVx
INC Saaaa 7C

Assembler

Notation

Op Boolean/Arith

Operation

Flags

HINZVC

INCA 4C A + 1 -* A xxNZVx

INCB 5C B + 1 -* B xxNZVx

DEC $ff,X 6A M - 1 -» M xxNZVx
DEC Saaaa 7A

DECA 4A A - 1 ■* A xxNZVx

DECB 5A B - 1 -> B xxNZVx

INX 08 X + 1 X xxxZxx

DEX 09 X - 1 -* X xxxZxx

Unconditional Jump Instructions

JMP $ff,X

JMP Saaaa

6E

7E

X + ff -» PC

(indexed)

aaaa -> PC

(extended)

xxxxxx

BRA Srr 20 PC + 2 xxxxxx

+ rr -> PC

Test (Compare) Instructions

CM PA #$dd 81 A - M xxNZVC
CMPA Saa 91

CMPA $ff,X A1

CMPA Saaaa B1

CMPB #$dd Cl B-M xxNZVC
CMPB Saa D1

CMPB $ff,X El

CMPB Saaaa FI

CBA 11 A - B xxNZVC

CPX #$dddd 8C xh-m xxNZVx
CPX Saa 9C XL - (M +1)
CPX Sff,X AC

CPX Saaaa BC

TST Sff,X 6D M - 00 xxNZOO
TST Saaaa 7D

TSTA 4D >

i o

o

xxNZOO

TSTB 5D B - 00 xxNZOO

Microprocessor Instruction Set Tables 439

SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Assembler Op Boolean/Arith Flags Assembler Op Boolean/Arith

Notation Operation_HINZVC Notation_°Peration

Conditional .lump (Branch) Instructions

BCC $rr 24 PC + 2 + rr xxxxxx

-> PC

If C=0

BPL $rr 2A PC + 2 + rr

-» PC

If N = 0

Subroutine Instructions

BCS Srr 25 PC + 2 + rr xxxxxx JSR $ff,X AD PC + 2 -* PC

-> PC PCl ■* S

If C-l PCh-s

SP - 2 -> SP

BEQ Srr 27 PC + 2 + rr xxxxxx (ff+X) ■» PC

-> PC

If Z=1 JSR Saaaa BD PC + 3 ■» PC

PCl ■* S

BGE $rr 2C PC + 2 + rr xxxxxx PC„-S

-> PC SP - 2 -» SP

If N EOR V = 0 (aaaa) ■» PC

BGTSrr 2E PC + 2 + rr xxxxxx RTS 39 S -> PCH

-» PC S -» PCl

If Z AND (N SP + 2 -> SP

EOR V) = 0

BSR Srr 8D PC + 2 PC

BHI Srr 22 PC + 2 + rr xxxxxx pcl + s

-> PC PCh-S

If C AND Z - 0 SP - 2 -* SP

PC + rr -* PC

BLE Srr 2F PC + 2 + rr xxxxxx

* PC

If Z AND (N EOR Stack Instructions

V) = 1
LDS #$dddd 8E M -> SPH

BLS Srr 23 PC + 2 + rr xxxxxx LDS Saa 9E (M + 1) -> SPL

-> PC LDS $ff,X AE

If C OR Z = 1 LDS Saaaa BE

BLTSrr 2D PC + 2 + rr xxxxxx STS Saa 9F SPH ■» M

->PC STS $ff,X AF SPL -> (M + 1)

If N EOR V = 1 STS Saaaa BF

BMI Srr 2B PC + 2 + rr xxxxxx PSHA 36 A -* S

->PC SP - 1 -» SP

II

U
-4

PSHB 37 B S

BNE Srr 26 PC + 2 + rr xxxxxx SP - 1 -> SP

-> PC

If Z=1 PULA 32 S ■» A

SP + 1 -> SP

BVC Srr 28 PC + 2 + rr xxxxxx

^ PC PULB 33 S -> B

o
 ii

>
 SP + 1 SP

BVS Srr 29 PC + 2 + rr xxxxxx DES 34 SP - 1 -> SP

PC

If V = 1 INS 31 SP + 1 -» SP

Flags

HINZVC

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxNZGx

xxNZGx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

440 Microprocessor Instruction Set Tables

Assembler

Notation
Op Boolean/Arith Flags

_Operation HINZVC
Assembler Op Boolean/Arith Flags

Notation___Operation HINZVC

TXS 35 X - 1 -► SP XXXXXX

TSX 30 SP + 1 •* X xxxxxx

IntemiDt Instructions

RTI 3B S -» CCR

S ■* B

S ■* A

s^xH

S + XL

s -»PCH

s-pq

HINZVC

3F PC + 1 -> PC xlxxxx

PCL->S

PCh + S

xL->s
xH^s
A -* S

B->S

CCR -> S

Input-Output Instructions

none

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY

°P Assembler_Op Assembler _Op Assembler

CPU Control

Instructions

NOP 01

WAI 3E

Data Transfer

Instructions

LDAA #$dd 86
LDAA $aa 96

LDAA Sff.X A6

LDAA Saaaa B6

LDAB #$dd C6

LDAB $aa D6

LDAB Sff.X E6
LDAB Saaaa F6

STAA Saa 97

STAA Sff.X A7

STAA Saaaa B7

STAB Saa D7

STAB $ff,X E7
STAB Saaaa F7

TAB 16
TBA 17

LDX #$dddd CE
LDX Saa DE
LDX Sff.X EE
LDX Saaaa FE

STX Saa DF
STX $ff,X EF
STX Saaaa FF

CLR $ff,X 6F
CLR Saaaa 7F

CLRA 4F
CLRB 5F

Flag Instructions

CLC OC
LI 0E
CLV 0A
SEC 0D
SEI OF
SEV OB
TAP 06
TPA 07

Arithmetic

Instructions

ADDA #$dd 8B
ADDA Saa 9B
ADDA $ff,X AB
ADDA Saaaa BB

ADDB #$dd CB

ADDB Saa DB

ADDB $ff,X EB
ADDB Saaaa FB

ABA IB

ADCA #$dd 89

ADCA Saa 99

ADCA Sff.X A9

ADCA Saaaa B9

ADCB #$dd C9

ADCB Saa D9

ADCB Sff.X E9

ADCB Saaaa F9

SUBA #$dd 80

SUBA Saa 90

SUBA Sff.X A0

SUBA Saaaa B0

SUBB #$dd CO
SUBB Saa DO
SUBB $ff,X E0

SUBB Saaaa F0

SBA 10

SBCA #$dd 82

SBCA Saa 92
SBCA Sff.X A2

SBCA Saaaa B2

SBCB #$dd C2
SBCB Saa D2

SBCB Sff.X E2
SBCB Saaaa F2

DAA 19

Logical

Instructions

ANDA #Sdd 84

ANDA $aa 94

ANDA $ff,X A4
ANDA Saaaa B4

ANDB #$dd C4

ANDB Saa D4

ANDB Sff,X E4

ANDB Saaaa F4

ORAA #$dd 8A
ORAA Saa 9A

ORAA $ff,X AA
ORAA Saaaa BA

ORAB #$dd CA

ORAB Saa DA

ORAB $ff,X EA

ORAB Saaaa FA

EORA #$dd 88

EORA Saa 98

EORA $ff,X A8

EORA Saaaa B8

EORB #$dd C8

EORB $aa D8
EORB $ff,X E8

EORB Saaaa F8

Microprocessor Instruction Set Tables 441

Assembler

BITA #$dd

BITA Saa

BITA $ff,X

BITA Saaaa

BITB #$dd

BITB Saa

BITB $ff,X

BITB Saaaa

COM $ff,X

COM Saaaa

COMA

COMB

NEG $ff,X

NEG Saaaa

NEGA

NEGB

Rotate and i

Instructions

ROL $ff,X

ROL Saaaa

ROLA

ROLB

ROR $ff,X

ROR Saaaa

RORA

RORB

ASL $ff,X

ASL Saaaa

ASLA

ASLB

ASR $ff,X

ASR Saaaa

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Op

85

95

A5

B5

C5

D5

E5

F5

63

73

43

53

60

70

40

50

69

79

49

59

66

76

46

56

68

78

48

58

67

77

Assembler Op Assembler Op Assembler Op

ASRA 47 CMPB #$dd Cl RTS 39

ASRB 57 CMPB Saa D1 BSR Srr 8D

CMPB $ff,X El

LSR $ff,X 64 CMPB Saaaa FI Stack

LSR Saaaa 74 CBA 11 Instructions

LSRA 44 CPX #$dddd 8C LDS #$dddd 8E

LSRB 54 CPX Saa 9C LDS Saa 9E

cpx $ff,x AC LDS Sff,X AE

Increment and CPX Saaaa BC LDS Saaaa BE

Decrement

Instructions TST Sff,X 6D STS Saa 9F

TST Saaaa 7D STS $ff,X AF

INC $ff,X 6C STS Saaaa BF

INC Saaaa 1C TSTA 4D

TSTB 5D PSHA 36

INCA 4C PSHB 37

INCB 5C Conditional Jump

(Branch) PULA 32

DEC $ff,X 6A Instructions PULB 33

DEC Saaaa 7A

BCC Srr 24 DES 34

DECA 4A BCS Srr 25 INS 31

DECB 5A BEQ Srr 27

BGE Srr 2C TXS 35

INX 08 BGT Srr 2E TSX 30

DEX 09 BHI Srr 22

BLE Srr 2F Interrupt

Unconditional BLS Srr 23 Instructions

Jump Instructions BLTSrr 2D

BMI Srr 2B RTI 3B

JMP $ff,X 6E BNE Srr 26 SWI 3F

JMP Saaaa 7E BVC Srr 28

BVS Srr 29 Input-Output

BRA Srr 20 BPL Srr 2A Instructions

Test (Compare) Subroutine none

Instructions Instructions

CMPA #$dd 81 JSR Sff.X AD

CMPA Saa 91 JSR Saaaa BD

CMPA $ff,X A1

CMPA Saaaa B1

442 Microprocessor Instruction Set Tables

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY

Assembler Op

ABA IB
ADCA $aa 99
ADCA Saaaa B9
ADCA $ff,X A9
ADCA #$dd 89
ADCB $aa D9
ADCB Saaaa F9
ADCB $ff,X E9
ADCB #$dd C9
ADDA $aa 9B
ADDA Saaaa BB
ADDA $ff,X AB
ADDA #$dd 8B
ADDB $aa DB
ADDB Saaaa FB
ADDB $ff,X EB
ADDB #$dd CB
ANDA $aa 94
ANDA Saaaa B4
ANDA $ff,X A4
ANDA #$dd 84
ANDB $aa D4
ANDB Saaaa F4
ANDB $ff,X E4
ANDB #$dd C4
ASL Saaaa 78
ASL $ff,X 68
ASLA 48
ASLB 58
ASR Saaaa 77
ASR $ff,X 67
ASRA 47
ASRB 57
BCC Srr 24
BCS Sir 25
BEQ Srr 27
BGE Srr 2C
BGT Srr 2E
BHI $rr 22
BITA Saa 95
BITA Saaaa B5
BITA $ff,X A5
BITA #$dd 85
BITB $aa D5
BITB Saaaa F5
BITB $ff,X E5
BITB #$dd C5
BLE Srr 2F
BLS Srr 23
BLTSrr 2D

Assembler Op

BMI Srr 2B
BNE Srr 26
BPL Srr 2A
BRA Srr 20
BSR $rr 8D
BVC Srr 28
BVS Srr 29
CBA 11
CLC OC
CLI 0E
CLR Saaaa 7F
CLR $ff,X 6F
CLRA 4F
CLRB 5F
CLV 0A
CMPA Saa 91
CMPA Saaaa B1
CMPA $ff,X A1
CMPA #$dd 81
CMPB Saa D1
CMPB Saaaa FI
CMPB $ff,X El
CMPB #$dd Cl
COM Saaaa 73
COM $ff,X 63
COMA 43
COMB 53
CPX Saa 9C
CPX Saaaa BC
CPX Sff,X AC
CPX #$dd 8C
DAA 19
DEC Saaaa 7A
DEC $ff,X 6A
DECA 4A
DECB 5A
DES 34
DEX 09
EORA $aa 98
EORA Saaaa B8
EORA $ff,X A8
EORA #$dd 88
EORB Saa D8
EORB Saaaa F8
EORB $ff,X E8
EORB #$dd C8
INC Saaaa 7C
INC $ff,X 6C
INCA 4C
INCB 5C

Assembler Op

INS 31
INX 08
JMP Saaaa 7E
JMP $ff,X 6E
JSR Saaaa BD
JSR $ff,X AD
LDAA Saa 96
LDAA Saaaa B6
LDAA $ff,X A6
LDAA #$dd 86
LDAB Saa D6
LDAB Saaaa F6
LDAB $ff,X E6
LDAB #$dd C6
LDS $aa 9E
LDS Saaaa BE
LDS $ff,X AE
LDS #Sdddd 8E
LDX Saa DE
LDX Saaaa FE
LDX $ff,X EE
LDX #$dd CE
LSR Saaaa 74
LSR $ff,X 64
LSRA 44
LSRB 54
NEG Saaaa 70
NEG Sff,X 60
NEGA 40
NEGB 50
NOP 01
ORAA Saa 9A
ORAA Saaaa BA
ORAA $ff,X AA
ORAA #$dd 8A
ORAB Saa DA
ORAB Saaaa FA
ORAB $ff,X EA
ORAB #Sdd CA
PSIIA 36
PSHB 37
PULA 32
PULB 33
ROL Saaaa 79
ROL Sff,X 69
ROLA 49
ROLB 59
ROR Saaaa 76
ROR $ff,X 66
RORA 46

Assembler Op

RORB 56
RTI 3B
RTS 39
SBA 10
SBCA Saa 92
SBCA Saaaa B2
SBCA Sff,X A2
SBCA #Sdd 82
SBCB Saa D2
SBCB Saaaa F2
SBCB $ff,X E2
SBCB #$dd C2
SEC 0D
SEI OF
SEV 0B
STAA Saa 97
STAA Saaaa B7
STAA $ff,X A7
STAB Saa D7
STAB Saaaa F7
STAB $ff,X E7
STS Saa 9F
STS Saaaa BF
STS Sff,X AF
STX Saa DF
STX Saaaa FF
STX $ff,X EF
SUBA Saa 90

SUBA Saaaa B0
SUBA $ff,X A0
SUBA #$dd 80
SUBB Saa DO
SUBB Saaaa FO
SUBB $ff,X E0

SUBB #$dd CO
SWI 3F
TAB 16
TAP 06
TBA 17
TPA 07
TST Saaaa 7D
TST $ff,X 6D
TSTA 4D
TSTB 5D
TSX 30
TXS 35
WAI 3E

Microprocessor Instruction Set Tables 443

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY OP CODE

Op Assembler Op Assembler

01 NOP 49 ROLA

06 TAP 4A DECA

07 TPA 4C INCA

08 INX 4D TSTA

09 DEX 4F CLRA

0A CLV 50 NEGB

OB SEV 53 COMB

OC CLC 54 LSRB

0D SEC 56 RORB

0E CLI 57 ASRB

OF SEI 58 ASLB

10 SBA 59 ROLB

11 CBA 5A DECB

16 TAB 5C INCB

17 TBA 5D TSTB

19 DAA 5F CLRB

IB ABA 60 NEG $ff,X

20 BRA $rr 63 COM $ff,X

22 BHI Srr 64 LSR $ff,X

23 BLS $rr 66 ROR $ff,X

24 BCC $rr 67 ASR $ff,X

25 BCS Srr 68 ASL $ff,X

26 BNE Srr 69 ROL $ff,X

27 BEQ Sit 6A DEC $ff,X

28 BVC Srr 6C INC $ff,X

29 BVS Srr 6D TST $ff,X

2A BPL Srr 6E JMP $ff,X

2B BMI Srr 6F CLR $ff,X

2C BGE Srr 70 NEG Saaaa

2D BLT Srr 73 COM Saaaa

2E BGT Srr 74 LSR Saaaa

2F BLE Srr 76 ROR Saaaa

30 TSX 77 ASR Saaaa

31 INS 78 ASL Saaaa

32 PULA 79 ROL Saaaa

33 PULB 7A DEC Saaaa

34 DES 7C INC Saaaa

35 TXS 7D TST Saaaa

36 PSHA 7E JMP Saaaa

37 PSHB 7F CLR Saaaa

39 RTS 80 SUBA #$dd

3B RTI 81 CMPA #$dd

3E WAI 82 SBCA #$dd

3F SWI 84 ANDA #Sdd

40 NEGA 85 BITA #$dd

43 COMA 86 LDAA #Sdd

44 LSRA 88 EORA #$dd

46 RORA 89 ADCA #$dd

47 ASRA 8A ORAA #$dd

48 ASLA 8B ADDA #$dd

Op Assembler Op Assembler

8C CPX #Sdd C4 ANDB #$dd

8D BSR Srr C5 BITB #$dd

8E LDS #$dddd C6 LDAB #$dd

90 SUBA $aa C8 EORB #$dd

91 CMPA $aa C9 ADCB #$dd

92 SBCA Saa CA ORAB #Sdd

94 ANDA $aa CB ADDB #$dd

95 BETA Saa CE LDX #$dd

96 LDAA Saa DO SUBB Saa

97 STAA Saa D1 CMPB Saa

98 EORA Saa D2 SBCB Saa

99 ADCA Saa D4 ANDB Saa

9A ORAA Saa D5 BITB Saa

9B ADDA Saa D6 LDAB Saa

9C CPX Saa D7 STAB $aa

9E LDS Saa D8 EORB Saa

9F STS $aa D9 ADCB Saa

A0 SUBA $ff,X DA ORAB $aa

A1 CMPA $ff,X DB ADDB Saa

A2 SBCA Sff,X DE LDX Saa

A4 ANDA $ff,X DF STX Saa

AS BITA $ff,X E0 SUBB $ff,X

A6 LDAA $ff,X El CMPB $ff,X

A7 STAA $ff,X E2 SBCB Sff,X

A8 EORA $ff,X E4 ANDB $ff,X

A9 ADCA $ff,X E5 BITB $ff,X

AA ORAA $ff,X E6 LDAB $ff,X

AB ADDA $ff,X E7 STAB $ff,X

AC CPX $ff,X E8 EORB $ff,X

AD JSR $ff,X E9 ADCB Sff,X

AE LDS $ff,X EA ORAB $ff,X

AF STS $ff,X EB ADDB $ff,X

B0 SUBA Saaaa EE LDX $ff,X

B1 CMPA Saaaa EF STX $ff,X

B2 SBCA Saaaa F0 SUBB Saaaa

B4 ANDA Saaaa FI CMPB Saaaa

B5 BITA Saaaa F2 SBCB Saaaa

B6 LDAA Saaaa F4 ANDB Saaaa

B7 STAA Saaaa F5 BITB Saaaa

B8 EORA Saaaa F6 LDAB Saaaa

B9 ADCA Saaaa F7 STAB Saaaa

BA ORAA Saaaa F8 EORB Saaaa

BB ADDA Saaaa F9 ADCB Saaaa

BC CPX Saaaa FA ORAB Saaaa

BD JSR Saaaa FB ADDB Saaaa

BE LDS Saaaa FE LDX Saaaa

BF STS Saaaa FF STX Saaaa

CO SUBB #$dd

Cl CMPB #$dd

C2 SBCB #$dd

444 Microprocessor Instruction Set Tables

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY

CPU Control Instructions

^ ESCape

The ESC instruction allows the 8086/8088 to pass instructions to the 8087 math

coprocessor. The instructions for the coprocessor appear as a 6-bit code embedded

m the escape instruction. The 8086/8088 performs a NOP while the 8087 executes
the mstruction. IFlags affected - none]

HLT HaLT

The HLT instruction causes the 8086/8088 to stop fetching and executing

instructions and enter a halt state. To exit from the halt state the microprocessor
must receive a hardware reset or interrupt signal, fFlags affegted . nnn„j

L0CK LOCK

LOCK is a prefix which can be used in front of 8086/8088 instructions. It prevents

any other processors from gaining access to the systems buses during the following
instruction. [Flags affected - none] 6

N(“)P No OPeration

The NOP instruction simply uses up three clock cycles during which nothing is done

and no flags are affected. It is useful 1) in programs requiring time delays, and 2)

as a means to hold space open in programs so instructions can be added at a later
date. [Hags affected - none]

WAIT WAIT

The WAIT instruction causes the 8086/8088 to enter a wait state or idle condition

during which no further processing occurs (except valid interrupts) until a signal is
received on the TEST pin. fFlags afferieH - nnn.|

Data Transfer Instructions

Load AH from Flag

The LAHF instruction copies the low-order byte of the flag (status) register to AH.

The flags themselves are not affected. The low order byte of the 8086/8088 status

register is the same as that of the 8085. This instruction is used primarily to

translate 8085 software into 8086/8088 software. fFlags afferieH - nnnP]

Load Data Segment

The LDS mstruction performs two distinct operations. First it loads two

consecutive bytes of memory into one of the 16-bit general, index, or pointer

registers. Then it loads the next two consecutive bytes of memory into the 16-bit
DS register.

For example, if DI = 1000 then:

LDS BX,[DI]

copies the contents of memory locations 1000 and 1001 of the data segment

into register BX and the contents of memory locations 1002 and 1003 of the
data segment into register DS.
[Flags affected - none]

Microprocessor Instruction Set Tables 445

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

LEA

LES

MOV

SAHF

XCHG

XLAT

Flag Instructions

CLC

Load Effective Address
The LEA instruction loads one of the 16-bit general, index, or pointer registers

from another register or memory.

Example:
LEA CX,[SI]

copies the number (address) in the SI register to the CX register.

[Flags affected - none!

Load Extra Segment
The LES instruction performs two distinct operations. First it loads two consecutive

bytes of memory into one of the 16-bit general, index, or pointer registers. Then

it loads the next two consecutive bytes of memory into the 16-bit ES register.

For example, if DI = 1000 then:

LES BX,[DI]
copies the contents of memory locations 1000 and 1001 of the data segment

into register BX and the contents of memory locations 1002 and 1003 of the

data segment into register ES. [Flags affected - nonel

MOVe
The MOV instruction copies the contents of a register, memory location, or

immediate number to a register or memory location. The source and destination

must both be of the same length and both cannot be memory locations. [Flags

affected - none!

Store AH in Flags
The SAHF instruction copies AH to the low-order byte of the flag (status) register.

The low-order byte of the 8086/8088 status register is the same as that of the 8085.

This instruction is used primarily to translate 8085 software into 8086/8088 software.

After this instruction is executed SF, ZF, AF, PF, and CF will correspond to bits

7, 6, 4, 2, and 1 of AH respectively. [Flags affected - SF. ZF, AF, PF, CF1

eXCHanGe
The XCHG instruction exchanges the contents of two registers or a register and a

memory location. Segment registers cannot be used nor can two memory locations.

The source and destination must be of the same length. [Flags affected - none]

trans(X)LATe
The XLAT instruction is used to look up values in a table. First the location of the

beginning of the table must be loaded into the BX register. Then the relative

location within the table of the desired value must be placed in the AL register.

When the XLAT instruction is executed the value of BX is added to AL to form

an address. The contents of that address then replaces the former value in AL.

This instruction can be used to translate ASCII values into EBCDIC values for

example. [Flags affected - nonel

CLear Carry flag
The CLC instruction places a zero (0) in the carry flag bit of the status register.

[Flags affected - CF = 01

446 Microprocessor Instruction Set Tables

CLD

CLI

CMC

STC

STD

STI

CLear Direction flag (auto-increment)

Wh™ thD P'a“s a 2cro <°>th= direction Hag bit of the status register.
When thus nag is cleared (0), SI and DI will automatically increment when certain
string instructions are executed. fFlags affected - DF=n]

CLear Interrupt-enable flag

Ssto1 irr nlaC“ " lhe 'nterruPt'enabie flag bit of the status

pb-^ on ihe nmi p“ - « s

CoMplement Carry flag

0 hh 2? h “i""? “ver,s 0>8 “■ of Ike status register. If the CF is
(.Ip, ° c “scd 10 a L If * ts a f. t mil be changed to 0. IFlans affect.H .

SeT Carry flag

j^TC^uctaplaces a one (1) in the cnry flag bi, of the status register.

SeT Direction flag (auto-decrement)

Whefoc ,"st™ctlon Pjaees a one (1) in the direction nag bit of the status register.
When this nag is set (!) SI and DI will automatically decrement when ce,tainting
instructions are executed. fFlags affected - DF=i] ®

SeT Interrupt enable flag

register^ CilT ‘ °”'™ “ lhe “'-“Pt-aabl. Hag bit of the status
register. When this flag is set (1) the 8086/8088 will respond to interrupt signals
on the INTR pin. fFlags affected . rr-i] P Upt SlgnalS

Arithmetic Instructions

ASCII Adjust for Addition

The AAA instruction can be used after addition to adjust or alter the number in

AL to what it would be if the last two operands were ASCII numbers. AH will be

cleared. fFlags effected - AF. CF. OF (undefined!. SF (undefined! 7F
(undefined!. PF ('undefined')]

ASCII Adjust for Division

The AAD instruction is used before division by a single-digit, unpacked, BCD

number. First you must have an unpacked, two-digit, BCD number in AX. The

AAD mstruction can then be used to adjust that number. This adjustment must

occur before any division can take place. The adjustment changes the two-digit,

unpacked, BCD number in AX into its equivalent binary number in AL. AH is

changed to OOh. Next, AX can be divided by an 8-bit, single-digit, unpacked BCD

number. The binary quotient will be in AL with the binary remainder in AH.

Note: To use this instruction with ASCII numbers the "3" in the upper nibble must

be masked out of the numbers first. fFlags affected - SF. ZF. PF. OF (undefined!.
AF (undefined!. CF (undefined!]

Microprocessor Instruction Set Tables 447

AAM

AAS

ADC

ADD

CBW

CWD

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

ASCII Adjust for Multiplication
The AAM instruction adjusts the product after multiplication of two, unpacked,

single-digit, BCD numbers. To use this instruction you must have two single-digit,

unpacked, BCD numbers. One must be in AL and the other in a register or

memory location. After you multiply the two single-digit, unpacked, BCD numbers

the binary answer will be in AL. The AAM instruction will convert it to its

unpacked BCD equivalent. Note: To use this instruction with ASCII numbers you

must first mask the "3" in the upper nibble. [Flags affected - SF, ZF, PF, AF

fnndefinedL OF (undefined!. CF (undefined)]

ASCII Adjust for Subtraction
The AAS instruction can be used after subtraction to adjust or alter the number in

AL to what it would be if the last two operands were ASCII numbers. AH will be

cleared. [Flags affected - AF, CF, OF (undefined!. SF (undefined), ZF

(undefined}, PF (undefined!!

AdD with Carry
The ADC instruction works the same as the ADD instruction except that it adds

the value in the carry flag (CF) to the sum of the two operands. [Flags affected^

CF. PF. AF. ZF. SF. OF]

ADD
The ADD instruction adds a binary number in a source register, memory location,

or immediate number to a destination binary number in a register or memory

location. The result is placed in the destination location. The source and

destination are assumed to be binary, both must be of the same size (byte or word),

and both cannot be memory locations. [Flags affected - CF, PF, AF, ZF, SF, OF]

Convert Byte to Word
The CBW instruction takes bit 7 (the highest-order bit) of AL and duplicates it in

every bit of AH. This converts an 8-bit signed-binary number in AL into a 16-bit

signed-binary number in AX. This must be done before division (IDIV) involving

two 8-bit signed-binary numbers to convert the dividend (in AL) into its 16-bit form

(in AX). (For unsigned-binary numbers place 00H in AH.) It can also be used

before integer multiplication (IMUL) involving an 8-bit operand and a 16-bit

operand. The 8-bit operand can be converted to a 16-bit operand before the IMUL

instruction is executed. [Flags affected - nonel

Convert Word to Double word
The CWD instruction is similar to the CBW instruction except that it converts 16-

bit values into 32-bit values instead of 8-bit to 16-bit. It takes bit 15 (the highest-

order bit) of AX and duplicates it in every bit of DX. This converts a 16-bit

signed-binary number in AX into a 32-bit signed-binary number in DX:AX (high

16 bits in DX, low 16 bits in AX). This must be done before division involving two

16-bit numbers to convert the dividend (in AX) into its 32-bit form (in DX.AX).

[Flags affected - none!

448 Microprocessor Instruction Set Tables

DAA

DAS

DIV

IDIV

IMUL

Decimal Adjust for Addition

“ thC C°ntentS °fALfrom a binary number to a packed
(C°ded de)C,mal) number when used after addition. When addition is

packedmBCD T™* *° ^ binary numbers‘ If they were “ fact
packed BCD numbers then the DAA instruction would have to be used after the

dchbon to correct the result. Note that DAA only works on AL so each byte of

mu ti-byte packed BCD number must be moved into AL, added adjusted^ and

Decimal Adjust for Subtraction

The DAS instruction adjusts the contents of AL from a binary number to a packed

CD (binary-coded-decimal) number when used after subtraction When

subtraction is Performed the operands are assumed to be binary numbers. If they

Xr I s S f DUmberS theD the °AS instruction would have to be used

fch bt rf ° C°rrfCt the rCSUlt N°te th3t DAS only works AL so
^ a multi-byte packed BCD number must be moved into AL, subtracted,

adjusted and then the result moved back out to make room for the next byte
[Flags affected - SF, ZF. AF. PF CF, OF Amde.fin.Ht] * '

Divide (unsigned)

The DIV instruction can divide a 16-bit unsigned-binary number in AX by an 8-bit

unsigned-binary number in a register or memory location. If you want to divide one

-bit number by another you must first change the dividend in AL into a 16-bit

number by placing 00H in AH. After execution the result (quotient) will be in AL
and the remainder in AH.

D|v can also divide a 32-bit unsigned-binary number in DX:AX (high-order

word in DX, low-order word in AX) by a 16-bit unsigned-binary number in a

register or memory location. If you wish to divide one 16-bit number by another

7 ““LS2 .COnV“‘ the divid“d ” AX into a 32-bit number in DX:AX by
p acing (MOOT m DX. The result (quotient) will be in AX and the remainder in

, . .tHy^gal ~ °F fundefined!. SF fllndelinedl. ZF fllndeti-edl SB
(undefined), PF (undefined), CF (undefined^

Integer Division (signed)

The IDIV instruction can divide a 16-bit signed-binary number in AX by an 8-bit

signed-binary number in a register or memory location. The result (quotient) will

be in AL and the remainder in AH. It can also divide a 32-bit signed-binary

number in DX:AX (high-order word in DX, low-order word in AX) by a 16-bit

signed-binary number in a register or memory location. The result (quotient) will

be m AX and the remainder in DX. Important! - See CBW and CWD. fFlags

~g|ted ~ °F fllndpfined^ SF (undefined), ZF (undefined). AF (undefined PF
(undefined). CF (undefined!) --

Integer MULtiplication (signed)

The IMUL instruction multiplies a signed binary number in a register or memory

location times a signed number in AL if 8-bit or AX if 16-bit. If two 8-bit numbers

are multiplied then a 16-bit answer will be found in AX. If two 16-bit numbers are

multiplied then a 32-bit answer will be found in DX:AX (high byte in DX, low byte

in AX). To multiply an 8-bit signed binary number by a 16-bit signed-binary

number see the CBW instruction. fFlags affected - OF. CF. SF (undefined) 7F

(undefined), AF (undefined). PF (undefined)] -

Microprocessor Instruction Set Tables 449

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

MUL

SBB

SUB

Logical Instructions

AND

NEG

NOT

MULtiply (unsigned)
The MUL instruction multiplies an unsigned binary number in a register or memory

location times an unsigned number in AL if 8-bit or AX if 16-bit. If two 8-bit

numbers are multiplied then a 16-bit answer will be found in AX. If two 16-bit

numbers are multiplied then a 32-bit answer will be found in DX:AX (high byte in

DX, low byte in AX). [Flags affected - OF. CF. SF (undefined), ZF (undefined),

AF (undefinedi. PF (undefined)!

SuBtract with Borrow
The SBB instruction is the same as the SUB instruction except that the value in the

carry flag (CF) is also subtracted. That is, the source (second operand) and CF are

both subtracted from the destination (first operand). The source and destination

must both be either 8-bit or 16-bit. All values are assumed to be binary. [Flags

affected - OF. SF. ZF. AF. PF. CF]

SUBtract
The SUB instruction subtracts the contents of a source (the second operand m

8086/8088 assembly language) register, memory location, or an immediate number

from the contents of a destination (the first operand in 8086/8088 assembly

language) register or memory location. The result is placed in the destination

location. The source and destination must both be of the same size (byte or word)

and both cannot be memory locations. [Flags affected - CF, PF, AF, ZF, SF, OF]

logical AND
The AND instruction performs a logical AND of each bit of the source and

destination operands. The source (second operand in 8086/8088 assembly language)

can be an immediate number, register, or memory location. The destination can

be a register or memory location. Both source and destination cannot be memory

locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a

segment register. After execution the source is unchanged but the destination will

contain the result of the ANDing operation. [Flags affected - OF=Q, SF, ZF, PF,

CF=0. AF (undefined)!

NEGate (2’s complement)
The NEG instruction produces the 2’s complement of a binary number. This can

be done manually by inverting each bit then adding one (1). This instruction is also

essentially the same as subtracting the number from zero. [Flags affected - OF, SF,

ZF. AF. PF. CF1

NOT
The NOT instruction inverts every bit of the operand. The operand can be in a

register or memory location. [Flags affected - nonel

450 Microprocessor Instruction Set Tables

OR

The OR instruction performs a logical OR of each bit of the source and destination

operands. The source (second operand in 8086/8088 assembly language) can be an

immediate number, register, or memory location. The destination can be a register

or memory location. Both source and destination cannot be memory locations

Both operands can be 8-bit or both can be 16-bit. Neither can be a segment

register. After execution the source is unchanged but the destination will contain

the result of the ORing operation. [Flags affected - OF=Q. SF. ZF. PF CF=n AF
(undefined-)] 1 1 1-4-

exclusive OR

The XOR instruction performs a logical XOR of each bit of the source and

destination operands. The source (second operand in 8086/8088 assembly language)

can be an immediate number, register, or memory location. The destination can

be a register or memory location. Both source and destination cannot be memory

locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a

segment register. After execution the source is unchanged but the destination will

contain the result of the XORing operation. [Flags affected - OF=Q SF ZF PF
CF=Q, AF (undefined)] ~'l~’ *

Shift Instructions

Rotate through Carry to the Left

CF -MSB -*-LSB *

The RCL instruction rotates the bits of the destination as shown above. After an

RCL instruction the destination will have rotated toward the left, the carry flag will

hold the bit most recently rotated out of the MSB, and the LSB will hold the bit

most recently rotated from the carry flag. The destination can be a register or

memory location. If you want to rotate one bit position you specify a "1" in the

instruction. If you want to rotate more than one bit position place the number of
bits in the CL register and include that register in the instruction.

Examples:

RCL AX,1

rotates AX one bit position

RCL AX,CL

rotates AX the number of bit positions indicated by the
number held in the CL register.

[Flags affected - OF CF]

Microprocessor Instruction Set Tables 451

RCR

ROL

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Rotate through Carry to the Right

I—*- CF-► MSB-*- LSB —|

The RCR instruction rotates the bits of the destination as shown above. After an

RCR instruction the destination will have rotated toward the right, the carry flag

will hold the bit most recently rotated from the LSB, and the MSB wall hold the bit

most recently rotated from the carry flag. The destination can be a register or

memory location. If you want to rotate one bit position you specify a "1" in the

instruction. If you want to rotate more than one bit position place the number of

bits in the CL register and include that register in the instruction.

Examples:

RCR AX,1
rotates AX one bit position

RCR AX,CL
rotates AX the number of bit positions indicated by the

number held in the CL register.

[Flags affected - OF. CF1

ROtate Left

CF -*-MSB --LSB --1

The ROL instruction rotates the bits of the destination as shown above. After an

ROL instruction the destination will have rotated toward the left, and the carry flag

and the LSB will both contain the same bit which was most recently rotated into

them from the MSB. The destination can be a register or memory location. If you

want to rotate one bit position you specify a "1" in the instruction. If you want to

rotate more than one bit position place the number of bits in the CL register and

include that register in the instruction.

Examples:

ROL AX,1
rotates AX one bit position

ROL AX,CL
rotates AX the number of bit positions indicated by the

number held in the CL register.

[Flags affected - OF. CF1

452 Microprocessor Instruction Set Tables

ROR

SAL/SHL

ROtate Right

CF MSB-*- LSB-1

The ROR instruction rotates the bits of the destination as shown above. After an

ROR instruction the destination will have rotated toward the right, and the carry

flag and the MSB will both contain the same bit which was most recently rotated

into them from the LSB. The destination can be a register or memory location.

If you want to rotate one bit position you specify a "1" in the instruction. If you

want to rotate more than one bit position place the number of bits in the CL
register and include that register in the instruction.

Examples:

ROR AX,1

rotates AX one bit position

ROR AX.CL

rotates AX the number of bit positions indicated by the
number held in the CL register.

fFlaes affected - OF. CF]

Shift Arithmetic Left/SHift logical Left

CF ■*-MSB-*-LSB -*-0

The SAL or SHL instruction shifts the bits of the destination as shown above.

After an SAL/SHL instruction the destination will have shifted toward the left, the

carry flag will contain the bit most recently shifted out of the MSB, and the LSB

will contain a 0. The destination can be a register or memory location. If you want

to rotate one bit position you specify a "1" in the instruction. If you want to rotate

more than one bit position place the number of bits in the CL register and include
that register in the instruction.

Examples:

SHL AX,1

rotates AX one bit position

SHL AX,CL

rotates AX the number of bit positions indicated by the
number held in the CL register.

(Debug Note: DEBUG only allows the SHL mnemonic.)

fFlaes affected - OF. SF. ZF. PF. CF. AF (undefinpHi]

Microprocessor Instruction Set Tables 453

SAR

SHR

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Shift Arithmetic Right

i-► MSB-► LSB-► CF

The SAR instruction shifts the bits of the destination as shown above. After an

SAR instruction the destination will have shifted to the right, the MSB will contain

what it did before the instruction (i.e,, it duplicates itself and shifts a copy of itself

to the right), and the carry flag will hold the bit most recently shifted out of the

LSB. The destination can be a register or memory location. If you want to rotate

one bit position you specify a "1" in the instruction. If you want to rotate more than

one bit position place the number of bits in the CL register and include that

register in the instruction.

Examples:

SAR AX,1
rotates AX one bit position

SAR AX,CL
rotates AX the number of bit positions indicated by the

number held in the CL register.

[Flavs affected - OF. SF. ZF. PF, CF. AF /undefined)!

SHift logical Right

0-►MSB-► LSB-►CF

The SHR instruction shifts the bits of the destination as shown above. After an

SHR instruction the destination will have shifted toward the right, the MSB will

contain a 0, and the carry flag will hold the bit most recently shifted in from the

LSB. The destination can be a register or memory location. If you want to rotate

one bit position you specify a "1" in the instruction. If you want to rotate more than

one bit position place the number of bits in the CL register and include that

register in the instruction.

Examples:

SHR AX,1
rotates AX one bit position

SHR AX,CL
rotates AX the number of bit positions indicated by the

number held in the CL register.

[Flags affected - OF. SF. ZF. PF. CF. AF (undefined)]

4 54 Microprocessor Instruction Set Tables

Increment and Decrement Instructions

DEC DECrement

The DEC instruction decreases the value in the destination by 1. The destination

is assumed to be a binary number and can be a register (except a segment register)

or memory location. It is worthwhile to note that the CF is not affected by this
instruction. fFlags affected - OF. SF. ZF. AF. PF]

INC INCrement

The INC instruction increases the value in the destination by 1. The destination is

assumed to be a binary number and can be a register (except a segment register)

or memory location. It is worthwhile to note that the CF is not affected by this
instruction. fFlags affected - OF. SF. ZF. AF. PF]

Unconditional .Tump Instructions

imp jump

JMP is an unconditional jump instruction which causes the 8086/8088 to continue

executing instructions at some other place in the program. The jump can be

classified as short, near, or for. The short and near instructions are relative to the

current instruction pointer (IP) location. Since the IP always points to the next

instruction to be executed you start counting forward or backward from the next

instruction after the JMP instruction. A short jump can be up to a maximum of

127 memory bytes forward from the current IP position (7E16 or +12710) or up to

128 memory bytes backward from the current IP position (8016 or -12810). A near

jump can be anywhere within the current 64K code segment. The assembler will

calculate this as being up to 32,767 bytes forward (7FFF16 or +32,76710) or 32,768

bytes backward (800016 or -32,76810) from the current IP position. A far jump can

be anywhere in the 1-Mbyte addressing range of the 8086/8088. The far jump

specifies both the desired code segment (CS) and the desired instruction pointer

(IP). Debug Note: When you want to JMP you do not need to be concerned about

calculating the distance forward or backward from the current instruction pointer

(IP) position. Simply specify the location you want to go to in the form

JMP XXXX

where XXXX is the memory location (and therefore the desired instruction pointer

value) for the short and near jumps and DEBUG will determine whether this is a

forward or backward jump and will calculate the exact distance for you. Likewise

if you want to use the value in a register as your destination simply specify that

register and Debug will calculate the relative jump distance for you. In the case
of the far jump specify the location you want to jump to in the form

JMP YYYY:XXXX

where YYYY is the code segment (CS) and XXXX is the instruction pointer (IP).
[Flags affected - none]

M icr op rocessor I ns truction Set Tables 4 55

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Test (Compare) Instructions

CMP CoMPare
The CMP instruction is used to compare two operands for the purpose of affecting

flags according to the outcome. That is, the compare instruction subtracts the

source operand (the second operand) from the destination (the first operand).

Neither operand is changed; only the flags are affected. The source can be an

immediate number, a register, or a memory location. The destination can be a

register or memory location. Both operands cannot be memory locations. [Flags

affected - OR SF. ZF. AF, PF, CB

TEST TEST
The TEST instruction ANDs the source and destination operands but neither stores

a result nor changes either operand. Rather, the flags are affected by the ANDing.

This is useful before a conditional jump instruction. The source can be an

immediate number, register, or memory location. The destination can be a register

or memory location. Both operands cannot be memory locations. [Flags affected :

OF=0. CF=0. SF. ZF. AF (undefined^ PF (only lower 8 bits of destination)]

Conditional Jump (Branch) Instructions

JA/JNBE Jump if Above/Jump if Not Below nor Equal
The JA/JNBE conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if CF=0 and if ZF=0 (both must be 0). If this

condition is not true no jump occurs. When used after CMP, this instruction is

referring to the unsigned values of the operands used by the CMP instruction.

DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG

always disassembles this op code as JA. [Flags affected - nonel

JAE/JNB/JNC Jump if Above or Equal/Jump if Not Below/Jump if No Carry
The JAE/JNB/JNC conditional jump instruction will cause program execution to

transfer to another location in a range from +127 bytes to -128 bytes from the

instruction following the jump instruction if CF=0. If this condition is not true no

jump occurs. When used after CMP, this instruction is referring to the unsigned

values of the operands used by the CMP instruction. Debug Note: Regardless of

which mnemonic is used during assembly, DEBUG always disassembles this op code

as JNB. [Flags affected - nonel

JB/JNAE/JC Jump if Below/Jump if Not Above nor Equal/Jump if Carry

The JB/JNAE/JC conditional jump instruction will cause program execution to

transfer to another location in a range from +127 bytes to -128 bytes from the

instruction following the jump instruction if CF = 1. If this condition is not true no

jump occurs. When used after CMP, this instruction is referring to the unsigned

values of the operands used by the CMP instruction. DEBUG Note: Regardless of

which mnemonic is used during assembly, DEBUG always disassembles this op code

as JB. [Flags affected - nonel

456 Microprocessor Instruction Set Tables

JBE/JNA

JCXZ

JE/JZ

JG/JNLE

JGE/JNL

Jump if Below or Equal/Jump if Not Above

The JBE/JNA conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if CF=0 or ZF=1. If this condition is not true no

jump occurs. When used after CMP, this instruction is referring to the unsigned

values of the operands used by the CMP instruction. Debug Note: Regardless of

which mnemonic is used during assembly, Debug always disassembles this op code
as JBE. [Flags affected - none]

Jump if CX register is Zero

The JCXZ conditional jump instruction will cause program execution to transfer to

another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if the CX register is 0. If this condition is not true
no jump occurs. [Flags affected - none]

Jump if Equal to/jump if Zero

The JE/JZ conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if ZF=1. If this condition is not true no jump

occurs. When used after CMP, this instruction is referring to the values of the
operands used by the CMP instruction. Debug Note: Regardless of which

mnemonic is used during assembly, Debug always disassembles this op code as
JZ. [Flags affected - none]

Jump if Greater/Jump if Not Less than nor Equal

The JG/JNLE conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if (SF XOR OF) OR ZF = 0. To say it another

way, the jump occurs if the sign flag and the overflow flag are equal (both 0 or both

1) at the same time that the zero flag is 0. Only two combinations are possible.

If SF=0, OF=0, and ZF=0 the jump occurs; or if SF=1, OF=l, and ZF=0 the

jump also occurs. If this condition is not true no jump occurs. When used after

CMP, this instruction is referring to the signed values of the operands used by the

CMP instruction. DEBUG Note: Regardless of which mnemonic is used during

assembly, DEBUG always disassembles this op code as JG. [Flags affected - non*]

Jump if Greater than or Equal/Jump if Not Less

The JGE/JNL conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if SF=OF. If this condition is not true no jump

occurs. When used after CMP, this instruction is referring to the signed values of

the operands used by the CMP instruction. DEBUG Note: Regardless of which

mnemonic is used during assembly, Debug always disassembles this op code as
JGE. [Flags affected - none]

Microprocessor Instruction Set Tables 457

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

JL/JNGE Jump if Less/Jump if Not Greater than nor Equal
The JGE/JNL conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if the SF does not equal the OF. If this condition

is not true no jump occurs. When used after CMP, this instruction is referring to

the signed values of the operands used by the CMP instruction. Debug Note:

Regardless of which mnemonic is used during assembly, DEBUG always

disassembles this op code as JL. [Flags affected - none!

JLE/JNG Jump if Less than or Equal/Jump if Not Greater
The JLE/JNG conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if (SF XOR OF) OR ZF = 1. To say it another

way, the jump occurs if the sign flag and the overflow flag are not equal, or if the

zero flag is 0. Only two combinations do not produce the jump. If SF = 0, OF=0,

and ZF=0 then no jump occurs; or if SF=1, OF=l, and ZF=0 then no jump

occurs. When used after CMP, this instruction is referring to the signed values of

the operands used by the CMP instruction. Debug Note: Regardless of which

mnemonic is used during assembly, Debug always disassembles this op code as

JLE. [Flags affected - nonel

JNE/JNZ Jump if Not Equal to/jump if Not Zero
The JNE/JNZ conditional jump instruction will cause program execution to transfer

to another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if ZF = 0. If this condition is not true no jump

occurs. When used after CMP, this instruction is referring to the values of the

operands used by the CMP instruction. DEBUG Note: Regardless of which

mnemonic is used during assembly, DEBUG always disassembles this op code as

JNZ. [Flags affected - nonel

JNO Jump if Not Overflow
An overflow occurs when the result of a signed arithmetic operation is too large to

fit in the register or memory location. The JNO conditioned jump instruction will

cause program execution to transfer to another location in a range from +127 bytes

to -128 bytes from the instruction following the jump instruction if OF = 0, that is,

if an overflow has not occurred. If this condition is not true no jump occurs.

[Flags affected - nonel

JNP/JPO Jump if Not Parity/Jump if Parity Odd
When the result of an operation which affects the parity flag has a result which has

an odd number of Is in it then the PF=0. The JNP/JPO conditional jump

instruction will cause program execution to transfer to another location in a range

from +127 bytes to -128 bytes from the instruction following the jump instruction

if PF=0. If this condition is not true no jump occurs. Debug Note: Regardless of

which mnemonic is used during assembly, Debug always disassembles this op code

as JPO. [Flags affected - nonel

458 Microprocessor Instruction Set Tables

Jump if Not Sign

The JNS conditional jump instruction will cause program execution to transfer to

another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if SF=0. If this condition is not true no jump occurs.

Since a 0 in the sign flag occurs when the result of the last operation was a

positive signed number, this instruction is essentially saying to jump if the last

operation produced a positive signed result. fFlags affected - none]

Jump if Overflow

An overflow occurs when the result of a signed arithmetic operation is too large to

fit in the register or memory location. The JO conditional jump instruction will

cause program execution to transfer to another location in a range from +127 bytes

to -128 bytes from the instruction following the jump instruction if OF=l, that is,

if an overflow has occurred. If this condition is not true no jump occurs. fFlags
affected - none]

Jump if Parity/Jump if Parity Even

When the result of an operation which affects the parity flag has a result which has

an even number of Is in it then the PF=1. The JP/JPE conditional jump

instruction will cause program execution to transfer to another location in a range

from +127 bytes to -128 bytes from the instruction following the jump instruction

if PF= 1. If this condition is not true no jump occurs. DEBUG Note: Regardless of

which mnemonic is used during assembly, Debug always disassembles this op code
as JPE. fFlags affected - none]

Jump if Sign

The JS conditional jump instruction will cause program execution to transfer to

another location in a range from +127 bytes to -128 bytes from the instruction

following the jump instruction if SF= 1. If this condition is not true no jump occurs.

Since a 1” in the sign flag occurs when the result of the last operation was a

negative signed number, this instruction is essentially saying to jump if the last

operation produced a negative signed result. fFlags affected - none]

CALL procedure

The CALL instruction causes the 8086/8088 to leave its current location in the

program and to begin executing a procedure (a small special purpose program or

subroutine located in a different place in memory) and then automatically return

after that procedure is finished. The call can be classified as near or far. The near

instruction is relative to the current instruction pointer (IP) location. Since the IP

always points to the next instruction to be executed you start counting forward or

backward from the next instruction after the CALL instruction. A near call can be

anywhere within the current 64K code segment. The assembler will calculate this

as being up to 32,767 bytes forward (7FFF16 or +32,76710) or 32,768 bytes backward

(800016 or -32,76810) from the current IP position. When a near call is executed the

contents of the instruction pointer (IP) are pushed onto the stack so that the

8086/8088 will know where to return after the procedure has been finished. A far

call can be anywhere in the 1-Mbyte addressing range of the 8086/8088. The far

call specifies both the desired code segment (CS) and the desired instruction pointer

Microprocessor Instruction Set Tables 459

RET

Stack

POP

POPF

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

(IP). When a far call is executed the contents of both the instruction pointer (IP)

and the code segment (CS) are pushed onto the stack so that the 8086/8088 will

know where to return after the procedure has been finished. Debug Note: When

you want to CALL a procedure you do not need to be concerned about calculating

the distance forward or backward from the current instruction pointer (IP)

position. Simply specify the location of the procedure in the form

CALL XXXX

where XXXX is the memory location (and therefore the desired instruction pointer

value) for the near call and DEBUG will determine whether that location is forward

or backward and will calculate the exact distance for you. Likewise if you want

to use the value in a register as your destination simply specify that register and

DEBUG will calculate the relative distance for you. In the case of a far call specify

the location of the procedure in the form

CALL YYYYiXXXX

where YYYY is the code segment (CS) and XXXX is the instruction pointer (IP).

(See also RETurn.) [Flags affected - none]

RETurn from subroutine

The RET instruction is placed at the end of a procedure or subroutine. It marks

the end of that procedure and causes the 8086/8088 to return to the instruction

immediately following the CALL instruction which began this particular procedure.

The 8086/8088 knows where to return because the CALL instruction pushed the

contents of the instruction pointer (IP) onto the stack. The RET instruction pops

the value of the IP from the stack and places it in the IP. In the case of a far call

the return instruction pops both the IP value and the code segment (CS) value from

the stack. DEBUG Note: Debug accepts both RET and RETN as the mnemonics

for a return from a near call. When disassembled both will appear as RET. To

specify a return from a far call the mnemonic RETF must be used and it will be

disassembled as RETF. [Flags affected - none]

POP from stack

The POP instruction copies the word at the top of the stack to the destination

operand. The destination can be a general-purpose register, segment register, or

two consecutive memory locations. (The CS register is illegal.) After the POP, the

stack pointer (SP) is incremented by 2 to point to the new top-of-stack. [Flags

affected - none]

POP Flags from stack

The POPF instruction copies the word at the top of the stack into the flag register,

replacing the values of all flags. The stack pointer (SP) is then incremented by 2.

(Using POPF and PUSHF provides a way to change the TF. There is no

instruction for directly altering this flag.) [Flags affected - OF. DF. IF. TF. SF. ZF.

AF, PF, CF]

460 Microprocessor Instruction Set Tables

PUSH PUSH onto stack

The PUSH instruction decrements the stack pointer (SP) by 2 and then copies the

source operand (word) to the new top-of-stack. The source can be a general-

purpose register, segment register, or two consecutive memory locations. [Flags
affected - none]

PUSHF PUSH Flags onto stack

The PUSHF instruction decrements the stack pointer (SP) by 2 and then copies the
flag register to the new top-of-stack. fFlaes affected - none]

Interrupt Instructions

I NT INTerrupt

The INT instruction causes program execution to be transferred to a special type

of routine whose address is pointed to by an interrupt vector. There are 256

interrupt vectors in memory locations OOOOOh to 003FFh. Each vector is 4 bytes in

length and contains the address (CS:IP) of the routine which handles this particular

type of interrupt. The INT operand is a decimal number from 0 through 255 which

identifies which interrupt vector is to be used. The actual memory location of the

interrupt is calculated by multiplying the operand by 4. That answer forms the

decimal equivalent of the beginning of the four memory locations which hold the

interrupt vector. When the INT instruction is executed the following occur:

1. The stack pointer is decremented by 2 and the flags are pushed onto the
stack.

2. IF and TF are cleared.

3. The stack pointer is decremented by 2 and CS is pushed onto the stack.

4. The new CS is fetched from the interrupt vector and the interrupt vector
+ 1.

5. The stack pointer is decremented by 2 and IP is pushed onto the stack.

6. The new IP is fetched from the interrupt vector + 2 and the interrupt
vector + 3.

7. Begin execution of the interrupt routine located at memory location CS:IP.

The routine will continue until a IRET instruction is encountered, at which point

program execution will pick up where it left off immediately after the INT
instruction. fFlaes affected - IF and TF]

INTO INTerrupt on Overflow

The INTO instruction initiates a software interrupt which is, in all respects, the

same as that produced by the INT instruction except that the INTO instruction is

conditional, and the operand cannot be specified but is automatically type 4. That

is, the INTO instruction will branch to the interrupt routine only if OF = 1 and there

is no choice as to where the interrupt vector will come from. It will always be a

Microprocessor Instruction Set Tables 461

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

type 4 interrupt which is held in the 4 bytes starting at memory location lOh. This

instruction is most often used after arithmetic operations to handle any overflow

conditions. See the discussion for the I NT instruction for more details, [Flags

affected - IF and TF1

TRET Interrupt RETurn
The IRET instruction is used to return from an interrupt routine (whether a

hardware or software interrupt). The IP, CS, and flags are all popped from the

stack and program execution continues from the instruction immediately following

the INT instruction. The IRET instruction has no operand. [Flags affected - OF,

DF. IF. TF. SF. ZF. AF, FF. CF1

Input-Output Instructions

IN INput
The IN instruction allows a byte or word to be acquired from an I/O device

[source] and placed in AL (byte) or AX (word) [destination]. An I/O address

[source operand] from OOh through FFh can be specified directly in the instruction.

If an address larger than FFh is desired a 16-bit address can be placed in DX used

as the source operand in the IN instruction. Only AX and AL can be used as

destinations [destination operand] by the IN instruction.

Example:

IN AL,45 copy a byte from I/O address 45h into AL

IN AX,78 copy a word from I/O address 78h into AX

IN AL,DX copy a byte from the I/O address pointed to by the contents

of DX and place in AL

I/O port addresses F8h through FFh are reserved by Intel for future hardware and

software products and should not be used for any other purpose. [Flags affected -

none]

OUT OUTput

The OUT instruction allows a byte or word to be sent from AL (byte) or AX

(word) [source] to an I/O device [destination]. An I/O address [destination

operand] from OOh through FFh can be specified directly in the instruction. If an

address larger than FFh is desired a 16-bit address can be placed in DX used as the

destination operand in the OUT instruction. Only AX and AL can be used as

sources [source operand] by the OUT instruction.

Example:

OUT 45,AL copy a byte from AL to I/O address 45h

462 Microprocessor Instruction Set Tables

OUT 78,AX copy a word from AX to I/O address 78h

String Instructions

CMPS/CMPSB/CMPSW

LODS/LODSB/LODSW

MOVS/MOVSB/MOVSW

OUT DX,AL copy a byte from AL to the I/O address pointed to by the

contents of DX

I/O port addresses F8h through FFh are reserved by Intel for future hardware and

software products and should not be used for any other purpose. IFlags affected -
none]

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word

The CMPS/CMPSB/CMPSW instruction is used to compare the contents of two

memory bytes, two words, or two entire sections of memory. The SI (source index)

is used to point to the source in the DS (data segment). The DI (destination index)

is used to point to the destination in the ES (extra segment). The 8086/8088 makes

the comparison by subtracting the destination from the source. Neither operand is

changed by the comparison; only flags are affected. After the comparison DI and

SI are automatically incremented (if DF=0) or decremented (if DF=1). The

increment/decrement is 1 if the CMPB mnemonic is used or 2 if CMPW is used.

The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used with this
instruction to compare an entire section of memory. Debug Note: Only the

CMPSB and CMPSW mnemonics are accepted by DEBUG. [Flags affected - OF.
SF. ZF. AF. PF. CF]

LOaD String/LOaD String Byte/LOaD String Word

The LODS/LODSB/LODSW instruction loads (copies) either a byte (LODSB)

from the memory location pointed to by SI into AL, or a word (LODSW) from the

memory location pointed to by SI into AX. SI is either automatically incremented

by 1 (LODSB) or by 2 (LODSW) if DF=0, or SI is automatically decremented by

1 (LODSB) or by 2 (LODSW) if DF=1. The REP/REPE/REPZ and

REPNE/REPNZ repeat prefixes can be used with this instruction. DEBUG Note:

Debug only accepts the LODSB and LODSW mnemonics. IFlags affected - none],

MOVe String/MOVe String Byte/MOVe String Word

The MOVS/MOVSB/MOVSW instruction is used to transfer the contents of a

block of memory to another area in memory. The SI (source index) is used to

point to the source in the DS (data segment). The DI (destination index) is used

to point to the destination in the ES (extra segment). After the move DI and SI

are automatically incremented (if DF=0) or decremented (if DF=1). The

increment/decrement is 1 if the MOVSB mnemonic is used or 2 if MOVSW is

used. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used

with this instruction to move an entire section of memory. Debug Note: Only the

MOVSB and MOVSW mnemonics are accepted by Debug, fFlags affected - none]

Microprocessor Instruction Set Tables 463

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

REP/REPE/REPZ

REPNE/REPNZ

SCAS/SCASB/SCASW

STOS/STOSB/STOSW

Loop Instructions

LOOP

REPeat/REPeat if Equal/REPeat if Zero
REP/REPE/REPZ is a prefix which causes string instructions to be repeated the

number of times indicated by the value in CX. Each time the string instruction is

repeated CX is decremented by one. This continues 1) in the case of MOVS and

STOS, until CX = 0, or 2) in the case of CMPS and SCAS, until either CX=0 or

the compared bytes or words are not equal (ie. ZF=0). Debug Note: REP, REPE,

and REPZ are all mnemonics for the same op code and Debug disassembles all

of them as REPZ. [Flags affected - nonel

REPeat if Not Equal/REPeat if Not Zero

REPNE/REPNZ is a prefix which causes string instructions to be repeated the

number of times indicated by the value in CX. Each time the string instruction is

repeated CX is decremented by 1. This continues 1) in the case of MOVS and

STOS, until CX = 0, or 2) in the case of CMPS and SCAS, until either CX = 0 or

the compared bytes or words are equal (ie. ZF=1). DEBUG Note: REPNE and

REPNZ are mnemonics for the same op code and DEBUG disassembles all of them

as REPNZ. [Flags affected - none]

SCAn String/SCAn String Byte/SCAn String Word

The SCAS/SCASB/SCASW instruction is used to check a string for the occurrence

or non-occurrence of a particular byte or word. The instruction accomplishes this

by subtracting the byte or word in the extra segment (ES) which is pointed to by

DI from AL (if a byte) or AX (if a word). Neither the contents of the string nor

those of AX/AL are changed; however the flags are affected by the operation.

After the operation, DI is automatically incremented (if DF = 0) or decremented (if

DF = 1). DI will be incremented or decremented by 1 for byte scans or by 2 for

word scans. The REP/REPE/REPZ prefix can be used to scan for the non¬

occurrence of a byte or word. The REPNE/REPNZ prefix can be used to scan for

the occurrence of a byte or word. Debug Note: Debug only recognizes the SCASB

and SCASW mnemonics. [Flags affected - OF. SF. ZF. AF. PF. CF1

STOre String/STOre String Byte/STOre String Word

The STOS/STOSB/STOSW instruction copies a byte from AL or a word from AX

to a memory location in the extra segment (ES) pointed to by DI. After the

operation, DI is automatically incremented (if DF=0) or decremented (if DF=1).

DI will be incremented or decremented by 1 for a byte store or by 2 for a word

store. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used

with this instruction to store a certain value in a range of memory locations.

DEBUG Note: Only the STOSB and STOSW mnemonics are accepted by DEBUG.

[Flags affected - nonel

LOOP

The LOOP instruction provides a way to repeat a group of instructions the number

of times indicated by the value in the CX register. The LOOP instruction

unconditionally transfers program execution to a memory location in the range of -

128 to +127 bytes from the address of the instruction immediately following the

464 Microprocessor Instruction Set Tables

LOOP instruction if CX > 0. Each time the LOOP instruction is executed CX is

decremented by 1; then the value of CX is checked. If CX > 0, program execution

will branch to the location indicated by the operand of the LOOP instruction. If

CX = 0, the program does not branch and the instruction immediately following

the LOOP instruction is executed next. As CX is decremented wraparound occurs
from OOOOh to FFFFh. 1 Flags affected - none]

LOOPE/LOOPZ LOOP while Equal/LOOP while Zero

The LOOPE/LOOPZ instruction provides a way to repeat a group of instructions

the number of times indicated by the value in the CX register. The

LOOPE/LOOPZ instruction transfers program execution to a memory location in

the range of -128 to +127 bytes from the address of the instruction immediately

following the LOOP instruction if CX > 0 and ZF=1. Each time the LOOP

instruction is executed CX is decremented by 1; then the values of CX and ZF are

checked. If CX > 0, program execution will branch to the location indicated by the

operand of the LOOP instruction if ZF=1 also. If either CX = 0 or ZF=0, the

program does not branch, and the instruction immediately following the LOOP

instruction is executed next. As CX is decremented wraparound occurs from OOOOh
to FFFFh. fFlags affected - none]

LOOPNE/LOOPNZ LOOP while Not Equal/LOOP while Not Zero

The LOOPNE/LOOPNZ instruction provides a way to repeat a group of

instructions the number of times indicated by the value in the CX register. The

LOOPNE/LOOPNZ instruction transfers program execution to a memory location

in the range of -128 to +127 bytes from the address of the instruction immediately

following the LOOP instruction if CX > 0 and ZF=0. Each time the LOOP

instruction is executed CX is decremented by 1; then the values of CX and ZF are

checked. If CX > 0, program execution will branch to the location indicated by the

operand of the LOOP instruction if ZF=0 also. If either CX = 0 or ZF=1, the

program does not branch, and the instruction immediately following the LOOP

instruction is executed next. As CX is decremented wraparound occurs from OOOOh
to FFFFh. IFlags affected - none]

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY

CPU Control Instructions

ESC ESCape
HLT HaLT
LOCK LOCK
NOP No OPeration
WAIT WAIT

Microprocessor Instruction Set Tables 465

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Data Transfer Instructions

LAHF Load AH from Flag

LDS Load Data Segment

LEA Load Effective Address

LES Load Extra Segment

MOV MOVe

SAHF Store AH in Flags

XCHG eXCHanGe

XLAT trans(X)LATe

Flag Instructions

CLC CLear Carry flag

CLD CLear Direction flag (auto-increment)

CLI CLear Interrupt-enable flag

CMC CoMplement Carry flag

STC SeT Carry flag

STD SeT Direction flag (auto-decrement)

STI SeT Interrupt enable flag

Arithmetic Instructions

AAA ASCII Adjust for Addition

AAD ASCII Adjust for Division

AAM ASCII Adjust for Multiplication

AAS ASCII Adjust for Subtraction

ADC AdD with Carry

ADD ADD

CBW Convert Byte to Word

CWD Convert Word to Double word

DAA Decimal Adjust for Addition

DAS Decimal Adjust for Subtraction

DIV Divide (unsigned)

IDIV Integer Division (signed)

IMUL Integer MULtiplication (signed)

MUL MULtiply (unsigned)

SBB SuBtract with Borrow

SUB SUBtract

Logical Instructions

AND logical AND

NEC NEGate (2’s complement)

NOT NOT

OR OR

XOR exclusive OR

466 Microprocessor Instruction Set Tables

Rotate and Shift Instructions

RCL Rotate through Carry to the Left
RCR Rotate through Carry to the Right
ROL ROtate Left
ROR ROtate Right
SAL/SHL Shift Arithmetic Left/SHift logical LefT
SAR Shift Arithmetic Right
SHR SHift logical Right

Increment and Decrement Instructions

DEC DECrement
INC INCrement

Unconditional .TumD Instructions

JMP Jump

Test (Compare) Instructions

CMP CoMPare
TEST TEST

Conditional .TumD (Branch) Instructions

JA/JNBE Jump if Above/Jump if Not Below nor Equal
JAE/JNB/JNC Jump if Above or Equal/Jump if Not Below/Jump if No Carry
JB/JNAE/JC Jump if Below/Jump if Not Above nor Equal/Jump if Carry
JBE/JNA Jump if Below or Equal/Jump if Not Above
JCXZ Jump if CX register is Zero
JE/JZ Jump if Equal to/jump if Zero
JG/JNLE Jump if Greater/Jump if Not Less than nor Equal
JGE/JNL Jump if Greater than or Equal/Jump if Not Less
JL/JNGE Jump if Less/Jump if Not Greater than nor Equal
JLE/JNG Jump if Less than or Equal/Jump if Not Greater
JNE/JNZ Jump if Not Equal to/jump if Not Zero
JNO Jump if Not Overflow
JNP/JPO Jump if Not Parity/Jump if Parity Odd
JNS Jump if Not Sign
JO Jump if Overflow
JP/JPE Jump if Parity/Jump if Parity Even
JS Jump if Sign

Microprocessor Instruction Set Tables 467

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Subroutine Instructions

CALL

RET

Stack Instructions

POP

POPF

PUSH

PUSHF

Interrupt Instructions

INT

INTO

IRET

Input-Output Instructions

IN

OUT

String Instructions

CMPS/CMPSB / CMPSW

LODS/LODSB/LODSW

MO VS/MO VSB/MO VSW

REP/REPE/REPZ

REPNE/REPNZ

SCAS/SCASB/SCASW

STOS/STOSB/STOSW

Loop Instructions

LOOP
LOOPE/LOOPZ

LOOPNE/LOOPNZ

CALL procedure

RETurn from subroutine

POP from stack

POP Flags from stack

PUSH onto stack

PUSH Flags onto stack

INTerrupt

INTerrupt on Overflow

Interrupt RETurn

INput

OUTput

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word

LOaD String/LOaD String Byte/LOaD String Word

MOVe String/MOVe String Byte/MOVe String Word

REPeat/REPeat if Equal/REPeat if Zero

REPeat if Not Equal/REPeat if Not Zero

SCAn String/SCAn String Byte/SCAn String Word

STOre String/STOre String Byte/STOre String Word

LOOP
LOOP while Equal/LOOP while Zero

LOOP while Not Equal/LOOP while Not Zero

468 Microprocessor Instruction Set Tables

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED ALPHABETICALLY

AAA

AAD

AAM

AAS

ADC

ADD

AND

CALL

CBW

CLC

CLD

CLI

CMC
CMP---

CMPS/CMPSB/CMPSW
CWD

DAA

DAS

DEC

DIV

ESC

HLT

IDIV

IMUL

IN

INC

INT

INTO

IRET

JA/JNBE

JAE/JNB/JNC

JB/JNAE/JC
JBE/JNA

JCXZ

JE/JZ

JG/JNLE

JGE/JNL

JL/JNGE

JLE/JNG
JMP

JNE/JNZ

JNO

JNP/JPO

JNS

JO

JP/JPE
JS

LAHF

LDS

ASCII Adjust for Addition

ASCII Adjust for Division

ASCII Adjust for Multiplication

ASCII Adjust for Subtraction

AdD with Carry

ADD

logical AND

CALL procedure

Convert Byte to Word
CLear Carry flag

CLear Direction flag (auto-increment)

CLear Interrupt-enable flag

CoMplement Carry flag

CoMPare

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word
Convert Word to Double word

Decimal Adjust for Addition

Decimal Adjust for Subtraction

DECrement

Divide (unsigned)

ESCape

HaLT

Integer Division (signed)

Integer MULtiplication (signed)
INput

INCrement

INTerrupt

INTerrupt on Overflow

Interrupt RETurn

Jump if Above/Jump if Not Below nor Equal

Jump if Above or Equal/Jump if Not Below/Jump if No Carry

Jump if Below/Jump if Not Above nor Equal/Jump if Carry

Jump if Below or Equal/Jump if Not Above

Jump if CX register is Zero

Jump if Equal to/jump if Zero

Jump if Greater/Jump if Not Less than nor Equal

Jump if Greater than or Equal/Jump if Not Less

Jump if Less/Jump if Not Greater than nor Equal

Jump if Less than or Equal/Jump if Not Greater

JuMP unconditional

Jump if Not Equal to/jump if Not Zero

Jump if Not Overflow

Jump if Not Parity/Jump if Parity Odd
Jump if Not Sign

Jump if Overflow

Jump if Parity/Jump if Parity Even
Jump if Sign

Load AH from Flag

Load Data Segment

Microprocessor Instruction Set Tables 469

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED ALPHABETICALLY (Continued)

LEA

LES

LOCK
LODS/LODSB/LODSW

LOOP
LOOPE/LOOPZ

LOOPNE/LOOPNZ

MOV

MO VS/MO VSB/MOVSW

MUL

NEC

NOP

NOT

OR

OUT

POP

POPF

PUSH

PUSHF

RCL

RCR
REP/REPE/REPZ

REPNE/REPNZ

RET

ROL

ROR

SAHF

SAL/SHL

SAR

SBB

SCAS/SCASB/SCASW

SHR

STC

STD

STI

STOS/STOSB/STOSW

SUB

TEST

WAIT

XCHG

XLAT

XOR

Load Effective Address

Load Extra Segment

LOCK
LOaD String/LOaD String Byte/LOaD String Word

LOOP

LOOP while Equal/LOOP while Zero

LOOP while Not Equal/LOOP while Not Zero

MOVe
MOVe String/MOVe String Byte/MOVe String Word

MULtiply (unsigned)

NEGate (2’s complement)

No OPeration

NOT

OR

OUTput

POP from stack

POP Flags from stack

PUSH onto stack

PUSH Flags onto stack

Rotate through Carry to the Left

Rotate through Carry to the Right

REPeat/REPeat if Equal/REPeat if Zero

REPeat if Not Equal/REPeat if Not Zero

RETurn from subroutine

ROtate Left

ROtate Right

Store AH in Flags

Shift Arithmetic Left/SHift logical Left

Shift Arithmetic Right

SuBtract with Borrow

SC An String/SCAn String Byte/SCAn String Word

SHift logical Right

SeT Carry flag

SeT Direction flag (auto-decrement)

SeT Interrupt enable flag

STOre String/STOre String Byte/STOre String Word

SUBtract

TEST

WAIT

eXCHanGe (source with destination)

trans(X)LATe

exclusive OR

470 Microprocessor Instruction Set Tables

EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY

Mne- Operation Boolean/Arith Flags Address Assembler Op ~ #

mon'c _ Operation NV-BDIZC Mode Notation

CPU Control Instructions

NOP No Operation Nothing xx-xxxxx Implied NOP EA 2 1

BRK BReaK (forced

interrupt)

PC + 2 S

SP - 2 -> SP

PSR -> S

SP - 1 -» s
SFFFE -» PC

xx-lxlxx Implied BRK 00 7 1

Data Transfer Instructions

LDA LoaD Accumulator M -» A Nx-xxxZx Immediate LDA #$dd A9 2 2
Absolute LDA $aaaa AD 4 3
Zero Page LDA $aa A5 3 2
Indxd Indct LDA ($ff,X) A1 6 2
IndctIndxd LDA ($aa),Y B1 5* 2
Zero page,X LDA $ff,X B5 4 2

Absolute,X LDA $ffff,X BD 4* 3
Absolute,Y LDA $ffff,Y B9 4* 3

LDX LoaD X register M X Nx-xxxZx Immediate LDX #$dd A2 2 2
Absolute LDX $aaaa AE 4 3
Zero page LDX $aa A6 3 2
Absolute,Y LDX $ffff,Y BE 4* 3
Zero page,Y LDX $ff,Y B6 4 2

LDY LoaD Y register M -> Y Nx-xxxZx Immediate LDY #$dd AO 2 2
Absolute LDY $aaaa AC 4 3
Zero page LDY $aa A4 3 2
Zero page,X LDY $ff,X B4 4 2

Absolute,X LDY $ffff,X BC 4* 3

STA STore Accumulator A + M xx-xxxxx Absolute STA $aaaa 8D 4 3
Zero page STA $aa 85 3 2
Indxd Indct STA ($ff,X) 81 6 2
Indct Indxd STA ($aa),Y 91 6 2
Zero page,X STA $ff,X 95 4 2

Absolute,X STA $ffff,X 9D 5 3
Absolute,Y STA $ffff,Y 99 5 3

STX STore X register X -» M xx-xxxxx Absolute STX $aaaa 8E 4 3
Zero page STX $aa 86 3 2
Zero page,Y STX $ff,Y 96 4 2

STY STore Y register Y - M xx-xxxxx Absolute STY $aaaa 8C 4 3
Zero page STY $aa 84 3 2
Zero page,X STY $ff,X 94 4 2

TAX Transfer Accumulator A -> X Nx-xxxZx Implied TAX AA 2 1
to X register

TXA Transfer X register X -► A Nx-xxxZx Implied TXA 8A 2 1
to Accumulator

Notes

Microprocessor Instruction Set Tables 471

EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne¬

monic

Operation Boolean/Arith

Operation

Flags

NV-BDIZC

Address

Mode

Assembler

Notation

Op # Notes

TAY Transfer Accumulator A -» Y

to Y register

Nx-xxxZx Implied TAY A8 2 1

TYA Transfer Y register Y ■* A

to Accumulator

Nx-xxxZx Implied TYA 98 2 1

Flae Instructions

CLC CLear Carry flag 0 C xx-xxxxO Implied CLC 18 2 1

CLD CLear Decimal flag 0 -> D xx-xOxxx Implied CLD D8 2 1

CLI CLear Interrupt flag 0 + I xx-xxOxx Implied CLI 58 2 1

CLV CLear overflow flag 0 -» V xO-xxxxx Implied CLV B8 2 1

SEC SEt Carry flag 1 * c xx-xxxxl Implied SEC 38 2 1

SED SEt Decimal flag 1 * D xx-xlxxx Implied SED F8 2 1

SEI SEt Interrupt flag 1 -* I xx-xxlxx Implied SEI 78 2 1

Arithmetic Instructions

ADC AdD with Carry A + M + C -» A NV-xxxZC Immediate ADC #$dd 69 2 2 The carry flag must be cleared

Absolute ADC $aaaa 6D 4 3 before single-precision addition

Zero page ADC $aa 65 3 2 or before the first byte of

Indxd Indct ADC ($ff,X) 61 6 2 multiple-precision addition.

IndctIndxd ADC ($aa),Y 71 5* 2

Zero page,X ADC $ff,X 75 4 2

Absolute,X ADC $ffff,X 7D 4* 3

Absolute,Y ADC $ffff,Y 79 4* 3

SBC SuBtract with Carry A - M - NV-xxxZC Immediate SBC #$dd E9 2 2 The carry flag must be set

(l-C) - A Absolute SBC $aaaa ED 4 3 before single-precision

Zero page SBC Saa E5 3 2 subtraction or before the First

Note: (l-C) = Indxd Indct SBC ($ff,X) El 6 2 byte of multiple-precision

Borrow Indct Indxd SBC ($aa),Y FI 5* 2 subtraction.

Zero page,X SBC $ff,X F5 4 2

Absolute,X SBC $ffff,X FD 4* 3 The operation of the carry flag

Absolute,Y SBC Sffff.Y F9 4* 3 is inverted during subtraction.

Logical Instructions

AND logical AND A AND M -> A Nx-xxxZx Immediate AND #$dd 29 2 2

Absolute AND $aaaa 2D 4 3

Zero page AND Saa 25 3 2

Indxd Indct AND ($ff,X) 21 6 2

Indct Indxd AND ($aa),Y 31 5 2

Zero page,X AND $ff,X 35 4 2

Absolute,X AND $ffff,X 3D 4* 3

Absolute,Y AND Sffff.Y 39 4* 3

472 Microprocessor Instruction Set Tables

Mne- Operation

monic

EOR Exclusive OR

ORA OR Accumulator

BIT test memory BITs

ASL Arithmetic Shift

Left

LSR Logical Shift Right

ROL Rotate Left

ROR ROtate Right

INC INCrement memory

Boolean/Arith

Operation

Flags

NV-BDIZC

Address

Mode
Assembler

Notation

Op - #

A EOR M -> A Nx-xxxZx Immediate EOR #$dd 49 2 2
Absolute EOR Saaaa 4D 4 3
Zero page EOR $aa 45 3 2
Indxd Indct EOR ($ff,X) 41 6 2
Indct Indxd EOR ($aa),Y 51 5* 2
Zero page,X EOR $ff,X 55 4 2
Absolute,X EOR $ffff,X 5D 4* 3
Absolute,Y EOR $ffff,Y 59 4* 3

A OR M-*A Nx-xxxZx Immediate ORA #$dd 09 2 2
Absolute ORA Saaaa 0D 4 3
Zero page ORA Saa 05 3 2
Indxd Indct ORA ($ff,X) 01 6 2
IndctIndxd ORA ($aa),Y 11 5 2
Zero page,X ORA $ff,X 15 4 2
Absolute,X ORA Sffff.X ID 4* 3
Absolute,Y ORA Sffff.Y 19 4* 3

A AND M 76-xxxZx Absolute BIT Saaaa 2C 4 3
M7 -» N Zero page BIT Saa 24 3 2
m6 + v

Rotate and Shift Instructions

C «- 7...0 <- 0 Nx-xxxZC Absolute ASL Saaaa 0E 6 3
Zero page ASL $aa 06 5 2

Accumulator ASL A 0A 2 1
Zero page,X ASL $ff,X 16 6 2
Absolute,X ASL $ffff,X IE 7 3

0 ■* 7...0 -* C Ox-xxxZC Absolute LSR Saaaa 4E 6 3
Zero page LSR Saa 46 5 2
Accumulator LSR A 4A 2 1
Zero page,X LSR $ff,X 56 6 2
Absolute,X LSR $ffff,X 5E 7 3

Notes

Memory bits 7 and 6 are

transferred into the N and V

flags respectively.

Nx-xxxZC Absolute ROL

Zero page ROL

Accumulator ROL

Zero page,X ROL

Absolute,X ROL

Saaaa 2E 6 3

Saa 26 5 2

A 2A 2 1
Sff,X 36 6 2

Sffff,X 3E 7 3

a Nx-xxxZC Absolute ROR

Zero page ROR

Accumulator ROR

Zero page,X ROR

Absolute,X ROR

Saaaa 6E 6 3

Saa 66 5 2

A 6A 2 1

$ff,X 76 6 2

Sffff,X 7E 7 3

Increment and Decrement Instructions

Absolute INC Saaaa EE 6 3
Zero page INC Saa E6 5 2
Zero page,X INC $ff,X F6 6 2

Absolute,X INC Sffff,X FE 7 3

Microprocessor Instruction Set Tables 473

EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne- Operation Boolean/Arith Flags Address Assembler Op - # Notes

monic Operation NV-BDIZC Mode_Notation __

I NX INcrement X

register

X + 1 -> X Nx-xxxZx Implied INX E8 2 1

I NY INcrement Y

register

Y + 1 -> Y Nx-xxxZx Implied INY C8 2 1

DEC DECrement memory M - 1 4 M Nx-xxxZx Absolute DEC Saaaa CE 6 3

Zero page DEC $aa C6 5 2

Zero page,X DEC $ff,X D6 6 2

Absolute,X DEC $ffff,X DE 7 3

DEX DEcrement X

register

X - 1 -> X Nx-xxxZx Implied DEX CA 2 1

DEY DEcrement Y

register

Y - 1 * Y Nx-xxxZx Implied DEY 88 2 1

Unconditional Jump Instructions

JMP JuMP to new aaaa -> PC xx-xxxxx Absolute JMP Saaaa 4C 3 3 In the indirect addressing

memory location {abs addressing} Indirect JMP (Saaaa) 6C 5 3 mode, aaaa is not transferred

into the PC but rather the

(aaaa) 4 PC^ contents of memory location

(aaaa + 1) *♦ PCH aaaa and aaaa + 1 are placed in

(indirect addressing} the PC

Special Note: Care should be

used with this mode because of

a bug in the 6502 chip family. If

the indirect address is located

at a page boundary (example,

JMP ($5FFF)} an incorrect

address will be generated.

Test (Compare') Instructions

CMP CoMPare memory A-M Nx-xxxZC Immediate CMP #$dd C9 2 2

location to Absolute CMP Saaaa CD 4 3

accumulator Zero page CMP Saa C5 3 2

Indxd Indct CMP ($ff,X) Cl 6 2

Indct Indxd CMP ($aa),Y D1 5* 2

Zero page,X CMP $ff,X D5 4 2

Absolute,X CMP $ffff,X DD 4* 3

Absolute,Y CMP $ffff,Y D9 4* 3

CPX ComPare memory X- M Nx-xxxZC Immediate CPX #$dd E0 2 2

location to X Absolute CPX Saaaa EC 4 3

register Zero page CPX Saa E4 3 2

CPY ComPare memory Y - M Nx-xxxZC Immediate CPY #$dd CO 2 2

location to Y Absolute CPY Saaaa cc 4 3

register Zero page CPY Saa C4 3 2

474 Microprocessor Instruction Set Tables

Mne- Operation

monic

BCC Branch if Carry

Clear

BCS Branch if Carry

Set

BEO Branch if last

result EQual to

zero

BNE Branch if last

result Not Equal

to zero

BMI Branch if last

result a Minus

(neg) number

BPL Branch is last

result a PLus

(pos) number

BVC Branch if

oVerflow flag

Clear

BVS Branch if

oVerflow flag

Set

JSR Jump to SubRoutine

RTS ReTum from

Subroutine

PI1A PusH Accumulator

onto stack

PLA PulL Accumulator

from stack

PHP PusH Processor

status register

onto stack

Boolean/Arith Flags Address Assembler Op - #

Operation_NV-BDIZC Mode_Notation

Conditional Jump ('Branch') Instructions

PC + rr -» PC

if C = 0
xx-xxxxx Relative BCC Sit 90 2 + 2

PC + rr -> PC

if C=1
xx-xxxxx Relative BCS Srr BO 2 + 2

PC + rr ^ PC

if Z= 1
xx-xxxxx Relative BEQ Srr F0 2 + 2

PC + rr -» PC

if Z=0
xx-xxxxx Relative BNE Srr DO 2 + 2

PC + rr -> PC

if N=1
xx-xxxxx Relative BMI Srr 30 2 + 2

PC + rr + PC

if N = 0
xx-xxxxx Relative BPL Srr 10 2 + 2

PC + rr -» PC

if V = 0
xx-xxxxx Relative BVC Srr 50 2 + 2

PC + rr ^ PC

if V = 1
xx-xxxxx Relative BVS $rr 70 2 + 2

Subroutine Instructions

PC + 2 -> S

aaaa -> PC

SP - 2 -» SP

xx-xxxxx Absolute JSR Saaaa 20 6 3

S (2 bytes)

-> PC

PC + 1 -> PC

SP + 2 -> SP

xx-xxxxx Implied RTS 60 6 1

Stack Instructions

A -> S

SP - 1 ^ SP
xx-xxxxx Implied PHA 48 3 1

S -* A

SP + 1 -> SP
Nx-xxxZx Implied PLA 68 4 1

PSR -> S

SP - 1 -> SP
xx-xxxxx Implied PHP 08 3 1

Microprocessor Instruction Set Tables 475

EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Mne¬

monic

Operation Boolean/Arith

Operation

Flags

NV-BDIZC

Address

Mode

Assembler

Notation

Op ~ #

PLP PulL Processor

status register

from stack

S -> PSR

SP + 1 * SP

NV-BDIZC Implied PLP 28 4 1

TXS Transfer X

register into

Stack pointer

X->SP xx-xxxxx Implied TXS 9A 2 1

TSX Transfer Stack

pointer into

X register

SP -> X Nx-xxxZx Implied TSX BA 2 1

Interrupt Instructions

RTI ReTum from

Interrupt

S * PSR

SP + 1 -» SP

S (2 bytes)

*> PC

SP + 2 -» SP

NV-BDIZC Implied RTI 40 6 1

Input-Output Instructions

The 6502 memory-maps all

input and output rather than

using special instructions.

Notes

Address Modes Assembler Notation

Immediate Mnemonic #$dd

Absolute Mnemonic Saaaa

Zero page Mnemonic $aa

Accumulator Mnemonic A

Implied Mnemonic

Indxd Indct Mnemonic ($ff,X)

Indct Indxd Mnemonic ($aa),Y

Zero page,X Mnemonic $ff,X

Absolute,X Mnemonic $ffff,X

Absolute,Y Mnemonic $ffff,Y

Relative Mnemonic $rr

Indirect Mnemonic ($aaaa)

Zero page,Y Mnemonic $ff,Y

Abbreviations and Explanations

Indxd Indct = Indexed Indirect

Indct Indxd = Indirect Indexed

a = address (one hex digit)

d = data (one hex digit)

f = address offset (one hex digit) ($ff is an unsigned binary number

and is therefore positive)

r = relative address (one hex digit) ($rr is a 2’s-complement signed

binary number and can therefore be positive or negative)

* = add 1 cycle if page boundary crossed

+ = add 1 cycle if branch occurs; add 1 more cycle if branch crosses

page

() =the contents of the address within parentheses form the actual

address

7...0 = bits 0 through 7 of memory or the accumulator

M7, M6, etc. = Bits 7, 6, etc. of a memory location

L - low-order byte

H = high-order byte

PC = program counter

S = stack (contents of the top byte of the stack)

SP = stack pointer

PSR = processor status register (flags)

* = Add 1 cycle if crossing page boundary

Flags_

0 = flag always cleared

1 = flag always set

476 Microprocessor Instruction Set Tables

X = flag not affected

N = negative flag

V « overflow flag

B - break flag

D = decimal flag

I = interrupt flag

Z = zero flag

C = carry flag

Symbols in the Page Heading

~ = clock cycles

= # of bytes used by instruction (and following address or data
if used)

Addressing Modes - Summary

zero since both of these are 8-bit numbers). The microprocessor then

gets the contents of this memory location and the following location

to form another address where it will then find the data (operand).

Indct Indxd (Mnemonic ($aa),Y): This addressing mode is

sometimes confused with the one above though it does work

differently. First, the microprocessor goes to address $aa and the

address immediately following $aa. It uses the contents of these two

locations to form a 16-bit address to which the Y register is added.

This then forms the actual address where the operand is located.

Zero page,X (Mnemonic $ff,X): In this form of addressing the

number $ff is added to the X register to form a second address

where the operand is located. Because both $ff and X are 8-bit

binary numbers, the actual address must be in page zero. If the sum

of these two numbers exceeds $FF (the end of page zero), any carry

will be ignored and the address will "wrap around" to the beginning
of page zero.

Absolute^ (Mnemonic $fttf,X): In this case, the 16-bit number Sffff

is added to the X register to form the actual address. If this number

exceeds hexadecimal SFFFF, the carry is ignored and the address

"wraps around" to $0000 and continues from there.

Immediate (Mnemonic #$dd): The data to be operated on (#$dd)

is in the next byte of memory after the instruction itself. Therefore
no address is needed.

Absolute (Mnemonic $aaaa): The data to be operated on is found

in the memory location indicated ($aaaa). This is a 2-byte address

and can point to any place in the 6502’s 64K (65,536 byte) addressing
range.

Zero page (Mnemonic $aa): The data to be operated on is found

in the memory location indicated ($aa). This is a 1-byte address and

can point only to a place in page zero of memory. Page zero is

address S00-SFF (decimal 0-255).

Accumulator (Mnemonic A): These are instructions which use

implied addressing, where the data is already in the accumulator.

Implied (Mnemonic): These instructions indicate where the data is

or will be within the instruction itself.

Indxd Indct (Mnemonic ($ff^X)): In this form of addressing, the

operand (the number which is going to have something done to it)

is found through a multistep process. First, the offset ($ff) is added

to the X register to form an address (this address must be in page

Absolute,Y (Mnemonic Sffff,Y): This address mode works the same

as Absolute,X except that the Y register is used instead.

Relative (Mnemonic $rr): $rr is a 2’s-complement signed binary

number; that is, it can be positive or negative. This number is added

to the current contents of the program counter to determine the

actual address. $rr is different from an offset (Sffff or $ff) because

it is not added to another register but directly to the program

counter itself. It directs the microprocessor relative to its current
place in memory.

Indirect (Mnemonic ($aaaa)): In this mode, the contents of address

Saaaa and the contents of the address immediately following it are

used to form the actual address where the operand is to be found.

(Only the JMP instruction uses this addressing mode.)

Zero page,Y (Mnemonic $ff,Y): This addressing mode is exactly like

the Zero page,X" mode except that register Y is used instead.

Microprocessor Instruction Set Tables 477

SHORT TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY

Assembler

Notation

Op Boolean/Arith

Operation

Flags

NV-BDIZC

Assembler

Notation

Op Boolean/Arith

Operation

Flags

NV-BDIZC

CPU Control Instructions TAY A8 A -> Y Nx-xxxZx

TYA 98 Y * A Nx-xxxZx

NOP EA Nothing xx-xxxxx

BRK 00 PC + 2 -* S xx-lxlxx Flap Instructions
SP - 2 -> SP

PSR ■» S

SP - 1 * S CLC 18 0 + C xx-xxxxO

SFFFE -» PC

CLD D8 0 4 D xx-xOxxx

Data Transfer Instructions CLI 58 o->i xx-xxOxx

CLV B8 0 -» V xO-xxxxx

LDA #$dd A9 M + A Nx-xxxZx

LDA $aaaa AD SEC 38 1 c xx-xxxxl

LDA Saa A5

LDA ($ff,X) A1 SED F8 1 -► D xx-xlxxx

LDA ($aa),Y B1

LDA $ff,X B5 SEI 78 1 I xx-xxlxx

LDA Sffff,X BD

LDA Sffff.Y B9

Arithmetic Instructions
LDX #$dd A2 M -» X Nx-xxxZx

LDX $aaaa AE

LDX Saa A6 ADC #Sdd 69 A + M + C -> A NV-xxxZC

LDX Sffff.Y BE ADC Saaaa 6D

LDX $ff,Y B6 ADC Saa 65

ADC (Sff.X) 61

LDY #$dd AO M *♦ Y Nx-xxxZx ADC (Saa),Y 71

LDY Saaaa AC ADC $ff,X 75

LDY Saa A4 ADC $ffff,X 7D

LDY Sff.X B4 ADC Sffff.Y 79

LDY Sffff.X BC SBC #$dd E9 A - M - NV-xxxZC

SBC Saaaa ED (1-C) ■* A

STA Saaaa 8D A -> M xx-xxxxx SBC Saa E5

STA Saa 85 SBC ($ff,X) El Note: (1-C) =

STA (Sff.X) 81 SBC ($aa),Y FI Borrow

STA ($aa),Y 91 SBC $fftX F5

STA $ff,X 95 SBC Sffff.X FD

STA Sffff.X 9D SBC Sffff.Y F9

STA Sffff.Y 99

STX Saaaa 8E X -> M xx-xxxxx Logical Instructions
STX Saa 86

STX $ff,Y 96

STY Saaaa 8C Y -> M xx-xxxxx
AND #$dd 29 A AND M -» A Nx-xxxZx

STY Saa 84 AND Saaaa 2D
STY Sff.X 94 AND Saa 25

AND (Sff.X) 21
TAX AA A X Nx-xxxZx

AND ($aa),Y 31

AND Sff.X 35
TXA 8A X A Nx-xxxZx

AND Sffff.X 3D

AND Sffff.Y 39

478 Microprocessor Instruction Set Tables

Assembler

Notation

Op Boolean/A

Operation

EOR #$dd 49 A EOR M
EOR Saaaa 4D
EOR Saa 45

EOR ($ff,X) 41
EOR ($aa),Y 51

EOR $ff,X 55

EOR Sffff.X 5D

EOR Sffff.Y 59

ORA #$dd 09 A OR M -*
ORA Saaaa OD

ORA $aa 05
ORA ($ff,X) 01

ORA ($aa),Y 11
ORA Sff.X 15

ORA $ffff,X ID

ORA Sffff.Y 19

BIT Saaaa 2C A AND M
BIT Saa 24 M7 ■* N

m6*v

Flags

NV-BDIZC

Nx-xxxZx

Nx-xxxZx

76-xxxZx

Rotate and Shift Instructions

ASL Saaaa 0E
ASL Saa 06
ASL A 0A

ASL $ff,X 16

ASL $ffff,X IE

LSR Saaaa 4E
LSR Saa 46

LSR A 4A
LSR $ff,X 56

LSR $ffff,X 5E

ROL Saaaa 2E
ROL Saa 26

ROL A 2A
ROL $ff,X 36

ROL $ffff,X 3E

ROR Saaaa 6E
ROR Saa 66

ROR A 6A

ROR $ff,X 76
ROR $ffff,X 7E

C <- 7...0 <- 0

0 -» 7...0 -» C

Nx-xxxZC

Ox-xxxZC

Nx-xxxZC

Nx-xxxZC

Increment and Decrement Instructions

INC Saaaa EE
INC Saa E6

INC Sff.X F6
INC Sffff.X FE

Nx-xxxZx

Assembler

Notation

Op Boolean/Arith

Operation
Flags

NV-BDIZC

INX E8 X + 1 -> x Nx-xxxZx

INY C8 Y + 1 -» Y Nx-xxxZx

DEC Saaaa CE M - 1 -* M Nx-xxxZx
DEC Saa C6
DEC $ff,X D6
DEC $ffff,X DE

DEX CA X- 1 •» X Nx-xxxZx

DEY 88 Y - 1 ■» Y Nx-xxxZx

Unconditional Jump Instructions

JMP Saaaa 4C aaaa -> PC

(abs addressing}
xx-xxxxx

JMP (Saaaa) 6C (aaaa) -> PCL

(aaaa + 1) * PC^

(indirect addressing}

Test (Compare) Instructions

CMP #$dd C9 A-M Nx-xxxZC
CMP Saaaa CD

CMP Saa C5

CMP (Sff.X) Cl

CMP ($aa),Y D1

CMP Sff.X D5

CMP Sffff.X DD

CMP Sffff.Y D9

CPX #$dd E0 X - M Nx-xxxZC
CPX Saaaa EC
CPX Saa E4

CPY #$dd CO Y - M Nx-xxxZC
CPY Saaaa cc
CPY Saa C4

Conditional Jump (Branch) Instructions

BCC Srr 90 PC + rr -» PC

if C = 0
xx-xxxxx

BCS Srr B0 PC + rr -» PC

if C=1
xx-xxxxx

BEQ Srr P0 PC + rr -» PC

if Z=1
xx-xxxxx

Microprocessor Instruction Set Tables 470

Assembler

Notation

BNE Srr

BMI Srr

BPL Srr

BVC Srr

BVS Srr

JSR Saaaa

SHORT TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (iContinued)

Op Boolean/Arith Flags Assembler Op Boolean/Arith

Operation _NV-BDIZC Notation_Operation_

DO PC + rr * PC

if Z=0

30 PC + rr -> PC

if N = 1

10 PC + rr -> PC

if N = 0

50 PC + rr -> PC

if V = 0

70 PC + rr ^ PC

if V = 1

Subroutine Instructions

20 PC + 2 -> S

aaaa *♦ PC

SP - 2 *» SP

60 S (2 bytes)

■* PC

PC + 1 + PC

SP + 2 -> SP

Flags

NV-BDIZC

Assembler

Notation

Op Boolean/Arith

Operation

Flags

NV-BDIZC

xx-xxxxx PLA 68 S-> A

SP + 1 -> SP

Nx-xxxZx

xx-xxxxx PHP 08 PSR -* S

SP - 1 ^ SP

xx-xxxxx

xx-xxxxx PLP 28 S -* PSR

SP + 1^ SP

NV-BDIZC

xx-xxxxx TXS 9A X -> SP xx-xxxxx

TSX BA SP -> X Nx-xxxZx

Interrupt Instructions

40 s ■+ PSR

SP + l+ SP

S (2 bytes)

-► PC

SP + 2 -> SP

Input-Output Instructions

NV-BDIZC

Stack Instructions

48 A -> S

SP - 1 + SP

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY

CPU Control LDX #$dd A2

Instructions LDX Saaaa AE

LDX $aa A6

NOP EA LDX $ffff,Y BE

BRK 00 LDX $ff,Y B6

Data Transfer LDY #$dd A0

Instructions LDY Saaaa AC

LDY Saa A4

LDA #$dd A9 LDY $ff,X B4

LDA Saaaa AD LDY $ffff,X BC

LDA $aa A5

LDA ($ff,X) A1 STA Saaaa 8D

LDA ($aa),Y B1 ST A $aa 85

LDA Sff.X B5 STA ($ff,X) 81

LDA $ffff,X BD STA (Saa),Y 91

LDA Sffff.Y B9 STA $ff,X 95

STA $ffff,X 9D Flae Instructions

STA Sffff.Y 99
CLC 18

STX Saaaa 8E CLD D8

STX Saa 86 CLI 58

STX $ff,Y 96 CLV B8

SEC 38

STY Saaaa 8C SED F8

STY Saa 84 SEI 78

STY $ff,X 94
Arithmetic

TAX AA Instructions

TXA 8A
ADC #$dd 69

TAY A8 ADC Saaaa 6D

TYA 98 ADC Saa 65

ADC ($ff,X) 61

480 Microprocessor Instruction Set Tables

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY 0Continued)
ADC (Saa),Y

ADC $ff,X

ADC Sffff.X

ADC $ffff,Y

SBC #$dd

SBC Saaaa

SBC $aa

SBC ($ff,X)

SBC ($aa),Y

SBC $ff,X

SBC Sffff.X

SBC $ffff,Y

Logical

Instructions

AND

AND

AND

AND

AND

AND

AND

AND

#$dd

Saaaa

$aa

(Sff,X)
($aa),Y

$ff,X

Sffff.x
$ffff,Y

EOR #$dd

EOR Saaaa

EOR Saa

EOR ($ff,X)

EOR ($aa),Y

EOR $ff,X

EOR $ffff,X

EOR Sffff.Y

ORA #$dd

ORA Saaaa

ORA $aa

ORA ($ff,X)

ORA ($aa),Y

ORA $ff,X

71

75

7D

79

E9

ED

E5

El

FI

F5

FD

F9

29

2D

25

21

31

35

3D

39

49

4D

45

41

51

55

5D

59

09

0D

05

01

11

15

ORA $ffff,X ID INX E8 BEQ $rr F0
ORA Sffff.Y 19 INY C8 BNE Srr DO

BIT Saaaa 2C DEC Saaaa CE
BMI Srr 30

BIT Saa 24 DEC Saa C6
BPL Srr 10

BVC Srr 50
DEC $ff,X D6

Rotate and Shift DEC Sffff.X DE
BVS $rr 70

Instructions DEX CA
Subroutine

ASL Saaaa 0E
JDc Y 88

Instructions

ASL Saa 06 Unconditional
ASL A 0A Jump Instructions

JSR Saaaa 20

ASL Sff.X 16 RTS 60

ASL Sffff.X IE JMP Saaaa 4C

LSR Saaaa 4E
JMP (Saaaa) 6C

Instructions

LSR Saa 46 Test (Compare)
LSR A 4A Instructions PHA 48

LSR $ff,X 56 PLA 68

LSR Sffff.X 5E CMP #$dd C9 PHP 08

CMP Saaaa CD PLP 28

ROL Saaaa 2E CMP Saa C5 TXS 9A

ROL Saa 26 CMP ($ff,X) Cl TSX BA

ROL A 2A CMP ($aa),Y D1

ROL $ff,X 36 CMP $ff,X D5 Interrupt

ROL $ffff,X 3E CMP $ffff,X DD Instructions

CMP $ffff,Y D9

ROR Saaaa 6E RTI 40

ROR Saa 66 CPX #$dd E0

ROR A 6A CPX Saaaa EC Input-Output

ROR $ff,X 76 CPX Saa E4 Instructions

ROR $ffff,X 7E

CPY #$dd CO None

Increment and CPY Saaaa cc
Decrement CPY Saa C4

Instructions
Conditional Jump

INC Saaaa EE (Branch)

INC Saa E6 Instructions

INC $ff,X F6

INC $ffff,X FE BCC $jt 90

BCS Srr B0

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED ALPHABETICALLY

ADC ($aa),Y 71 AND $ffff,Y 39
ADC ($ff,X) 61 AND $ff,X 35
ADC Saa 65 AND #$dd 29
ADC Saaaa 6D ASL Saa 06
ADC Sffff.X 7D ASL Saaaa 0E
ADC Sffff.Y 79 ASL $ffff,X IE
ADC Sff.X 75 ASL $ff,X 16
ADC #$dd 69 ASL A 0A
AND ($aa),Y 31 BCC Srr 90
AND (Sff.X) 21 BCS Srr B0
AND Saa 25 BEQ Srr F0
AND Saaaa 2D BIT Saa 24
AND Sffff.X 3D BIT Saaaa 2C

BMI Srr 30 CMP Saaaa CD
BNE $rr DO CMP $ffff,X DD
BPL Srr 10 CMP $ffff,Y D9
BRK 00 CMP $ff,X D5
BVC Srr 50 CMP #$dd C9
BVS Srr 70 CPX Saa E4
CLC 18 CPX Saaaa EC
CLD D8 CPX #$dd E0
CLI 58 CPY Saa C4
CLV B8 CPY Saaaa CC
CMP ($aa),Y D1 CPY #Sdd CO
CMP ($ff,X) Cl DEC Saa C6
CMP Saa C5 DEC Saaaa CE

Microprocessor Instruction Set Tables 481

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED ALPHABETICALLY (Continued)

DEC Sffff,X DE LDA Sffff,X BD

DEC $ff,X D6 LDA Sffff.Y B9

DEX CA LDA $ff,X B5

DEY 88 LDA #Sdd A9

EOR (Saa).Y 51 LDX Saa A6

EOR (Sff.X) 41 LDX Saaaa AE

EOR $aa 45 LDX Sffff.Y BE

EOR Saaaa 4D LDX $ff,Y B6

EOR Sffff.X 5D LDX #$dd A2

EOR $ffff,Y 59 LDY Saa A4

EOR $ff,X 55 LDY Saaaa AC

EOR #Sdd 49 LDY Sffff.X BC

INC $aa E6 LDY Sff.X B4

INC Saaaa EE LDY #$dd AO

INC $ffff,X FE LSR Saa 46

INC Sff.X F6 LSR Saaaa 4E

INX E8 LSR Sffff.X 5E

INY C8 LSR Sff.X 56

JMP (Saaaa) 6C LSR A 4A

JMP Saaaa 4C NOP EA

JSR Saaaa 20 ORA (Saa),Y 11

LDA (Saa).Y B1 ORA (Sff.X) 01

LDA (Sff.X) A1 ORA Saa 05

LDA Saa A5 ORA Saaaa 0D

LDA Saaaa AD ORA Sffff.X ID

ORA Sffff.Y 19 SBC $ff,X F5

ORA Sff.X 15 SBC #$dd E9

ORA #$dd 09 SEC 38

PHA 48 SED F8

PHP 08 SEI 78

PLA 68 STA ($aa),Y 91

PLP 28 STA (Sff.X) 81

ROL Saa 26 STA Saa 85

ROL Saaaa 2E STA Saaaa 8D

ROL Sffff.X 3E STA Sffff.X 9D

ROL Sff,X 36 STA Sffff.Y 99

ROL A 2A STA $ff,X 95

ROR $aa 66 STX Saa 86

ROR Saaaa 6E STX Saaaa 8E

ROR Sffff.X 7E STX $ff,Y 96

ROR $ff,X 76 STY Saa 84

ROR A 6A STY Saaaa 8C

RTI 40 STY $ff,X 94

RTS 60 TAX AA

SBC ($aa),Y FI TAY A8

SBC (Sff.X) El TSX BA

SBC Saa E5 TXA 8A

SBC Saaaa ED TXS 9A

SBC Sffff.X FD TYA 98

SBC Sffff,Y F9

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY OP CODE

00 BRK 31 AND (Saa).Y

01 ORA (Sff.X) 35 AND $ff,X

05 ORA Saa 36 ROL Sff.X

06 ASL Saa 38 SEC

08 PHP 39 AND Sffff.Y

09 ORA #$dd 3D AND Sffff.X

0A ASL A 3E ROL Sffff.X

0D ORA Saaaa 40 RTI

0E ASL Saaaa 41 EOR (Sff.X)

10 BPL Srr 45 EOR Saa

11 ORA ($aa),Y 46 LSR Saa

15 ORA $ff,X 48 PHA

16 ASL $ff,X 49 EOR #$dd

18 CLC 4A LSR A

19 ORA $ffff,Y 4C JMP Saaaa

ID ORA $ffff,X 4D EOR Saaaa

IE ASL $ffff,X 4E LSR Saaaa

20 JSR Saaaa 50 BVC Srr

21 AND ($ff,X) 51 EOR ($aa),Y

24 BIT Saa 55 EOR Sff.X

25 AND Saa 56 LSR Sff.X

26 ROL Saa 58 CLI

28 PLP 59 EOR Sffff.Y

29 AND #$dd 5D EOR $ffff,X

2A ROL A 5E LSR Sffff.X

2C BIT Saaaa 60 RTS

2D AND Saaaa 61 ADC (Sff.X)

2E ROL Saaaa 65 ADC Saa

30 BMI Srr 66 ROR $aa

68 PLA 99 STA Sffff.Y

69 ADC #$dd 9A TXS

6A ROR A 9D STA $ffff,X

6C JMP (Saaaa) A0 LDY #$dd

6D ADC Saaaa A1 LDA ($ff,X)

6E ROR Saaaa A2 LDX #$dd

70 BVS Srr A4 LDY Saa

71 ADC ($aa),Y A5 LDA Saa

75 ADC Sff.X A6 LDX Saa

76 ROR Sff.X A8 TAY

78 SEI A9 LDA #$dd

79 ADC Sffff.Y AA TAX

7D ADC Sffff.X AC LDY Saaaa

7E ROR $ffff,X AD LDA Saaaa

81 STA (Sff.X) AE LDX Saaaa

84 STY Saa B0 BCS Srr

85 STA Saa B1 LDA ($aa),Y

86 STX Saa B4 LDY $ff,X

88 DEY B5 LDA $ff.X

8A TXA B6 LDX $ff,Y

8C STY Saaaa B8 CLV

8D STA Saaaa B9 LDA Sffff.Y

8E STX Saaaa BA TSX

90 BCC Srr BC LDY Sffff.X

91 STA ($aa),Y BD LDA $ffff,X

94 sty $ff,x BE LDX Sffff.Y

95 STA Sff.X CO CPY #$dd

96 STX $ff,Y Cl CMP (Sff.X)

98 TYA C4 CPY Saa

482 Microprocessor Instruction Set Tables

£
Q

8
a

Q
CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY OP CODE (Continued)

CMP $aa

DEC $aa

INY

CMP #$dd

DEX

CC CPY $aaaa

CD CMP Saaaa

CE DEC Saaaa

DO BNE Srr

D1 CMP ($aa),Y

D5 CMP $ff,X

D6 DEC $ff,X

D8 CLD

D9 CMP Sffff.Y

DD CMP Sffff,X

DE DEC Sffff.X

E0 CPX #$dd

El SBC ($ff,X)

E4 CPX $aa

E5 SBC $aa

E6 INC $aa

E8 INX

E9 SBC #$dd

EA NOP

EC CPX Saaaa

ED SBC Saaaa

EE INC Saaaa

F0 BEQ Srr

FI SBC ($aa),Y

F5 SBC $ff,X

F6 INC $ff,X

F8 SED

F9 SBC $ffff,Y

FD SBC $ffff,X

FE INC Sffff.X

Microprocessor Instruction Set Tables 483

Appendixes

APPENDIX 1. THE ANALOG INTERFACE
The data in a microprocessor is in digital form. This differs

from the outside world where data is in analog (continuous)

form. To get digital data, we need to use an analog-to-

digital <A/D) converter; it will convert analog voltage or

current into an equivalent digital word.

Conversely, after a CPU has processed data, it is often

necessary to convert the digital answer into an analog

voltage or current. This conversion requires a digital-to-

analog (D/A) converter.

The analog interface is the boundary where digital and

analog meet, where the microcomputer connects to the

outside world. At this interface, we find either an A/D

converter (input side) or a D/A converter (output side).

This chapter discusses some of the hardware and software

found at the analog interface.

A1-1 OP-AMP BASICS

Let us briefly review the operational amplifier (op amp)

because this device is used with D/A and A/D converters.

We will zero in on the key features that make the op amp

useful at the analog interface.

input voltage may be treated as 0 V. Furthermore, the input

impedance of the inverting input approaches infinity (some¬

times FETs are used for the input stage, as in B1FET op

amps). These key features, zero input voltage and infinite

input impedance, make the inverting input a virtual ground

point.

How is a virtual ground different from an ordinary

ground? An ordinary ground has zero voltage while sinking

any amount of current. A virtual ground, however, is a

ground for voltage but not for current; it has zero voltage

but can sink no current. In the discussion that follows, we

will approximate the inverting input of an op amp as a

virtual ground point: this means zero voltage and zero

current.

/ /

Fig. Al-1 Operational amplifier.

Virtual Ground

Figure Al l shows the symbol for an op amp. VOUT is the

output voltage with respect to ground. A is the open-loop

voltage gain of the op amp, often more than 100,000. When

connected as an inverter, the noninverting input (+ input)

is grounded. The inverting input (- input) receives the

signal voltage.

Because the voltage gain of an op amp is so large, the

input voltage is in microvolts. To a first approximation, the

2.5 kC2 i kn

Output Voltage and Current

Figure Al-2a shows an inverting op amp with input and

output resistors. V,N is the input voltage with respect to

ground, and VOLT is the output voltage with respect to

ground. Because of the high gain and input impedance, we

can approximate the inverting input as a virtual ground

point. Therefore, all the input voltage appears across the

input resistor, which means that the input current is

J=VlN

^IN
(All)

Summing Circuit

Figure A1-3 is an op-amp circuit whose output current is

the sum of the input currents. Here is the proof. Because

of the virtual ground point, each input voltage appears

across its resistor. This means that the input currents are

Since none of the input current can enter the virtual

ground point, it must pass through the output resistor. In

other words, the output current equals the input current.

And the output voltage is

h
Ry

h
T.

Rx
/« =

*0

Kirchhoff’s current law gives a total input current of

Tout ~ ^out (A 1-2)

The minus sign indicates phase inversion. If the input

voltage is positive, the output voltage is negative.

As an example of calculating input current and output

voltage, look at Fig. A1-2/?. The input current is

/ — h + h + /| + A)

Again, the virtual ground guarantees that all this input

current goes through the output resistor. As before,

Tqut ~ — ^out

5 V

2.5 kO
2 mA

The output voltage is

Tout ~ — 2 mA X 1 kfl = — 2 V

v3 i/, vQ

A1-2 A BASIC D/A CONVERTER

The op-amp summing circuit can be used to build a D/A

converter by selecting input resistors that are weighted in

binary progression. Figure A1-4 gives you the idea. VREH

is an accurate reference voltage, and the resistors are

precision resistors to get accurate input currents. The

switches can be open or closed. When all switches are

open, all input currents are zero and the output current is
zero.

All Bits High

When all switches are closed, the input currents are

h
Treh

R
I2

Tree

2 R
/.

= Tret-

8 R

Fig. A1-4 D/A conversion with binary-weighted resistors.

486 Appendixes

The output current with all switches closed is the

all input currents and equals

I = + 0.5 + 0.25 + 0.125)

sum of

(A 1 -3)

TABLE AM. WEIGHTE1

d3 d2 d, d0

D D/A CONVERTER

Output
current, Fraction of

mA maximum

V'ref / = 1.875-^g 0 0 0 0 0 0

R 0 0 0 1 0.125
1

15

0 0 1 0 0.25 2
15

By opening and closing switches we can produce 16 different 0 0 1 1 0.375 3
15

output currents from 0 to 1.875VREF//?. 0 1 0 0 0.5 4
15

0 1 0 1 0.625 5
1 5

Any Digital Input 0

0

1

1

1

1

0

1

0.75

0.875

(J
15

1 5

If 0 stands for an open switch and 1 for a closed switch. 1 0 0 0 1 8
'15

we can rewrite Eq. A1-3 as 1 0 0 1 1.125 f)
15

1 0 1 0 1.25 10

/ = + 0.5 D2 + 0.25 D, + 0.125D„)
R

(A 1-4)
1

1

0

1

1

0

1

0

1.375

1.5

1 1
1 5
12
15

1 1 0 1 1.625 13
15

In powers of 2, 1 1 1 0 1.75 1-1
15

1 1 1 1 1.875 15
15

/ = _^(D, + 2-'D: + 2 “-D, + 2-'D0) (Al-5)
R

This says that the output current is the sum of binary-

weighted input currents. In other words, we have a D/A

converter. For instance, suppose VREF = 5 V and R = 5

kfi. Then the total output current varies from 0 to 1.875

mA, as shown in Table A1-1.

Current Switches

Figure Al-5 shows how we can transistorize the switching.

Data bits D3 through D{) drive the bases of the transistors

through the current-limiting resistors. When a bit is high,

it produces enough base current to saturate its transistor.

When a bit is low, the transistor is cut off. Since each

transistor is saturated or cut off, it acts like a closed or

open switch. (Base resistance is not critical; it need only

be less than collector resistance multiplied by (3dc.)

If the lower 4 bits of an output port are connected to D}

to Z)0, the circuit of Fig. Al-5 will convert digital data to

analog current. For instance, assume port 22H has been

programmed as an output port in a minimum system. If the

lower 4 bits of port 22H are connected to D3 to D{), this

program segment will operate the D/A converter:

Label Mnemonic Comment

MVI A,FFH initialize accumulator

LOOP: INR A ;Count up

OUT 22H ;Output nibble

JMPLOOP ;Get next nibble

O3 Z?2 ^1 °0

Fig. Al-5 Transistor switches for D/A converter.

Appendixes 48 7

Maximum

(b)

Fig. Al-6 (a) Staircase output current; (b) each step equals an
LSB increment.

The first INR A produces accumulator contents of 00H.

Subsequent INR executions produce 01H, 02H, . . . , OFH,

10H, 11H.1FH, 20H, 21H.FFH. As far as

D3 to D0 are concerned, they see a nibble stream of 0000,

0001,0010, 0011, ...,1111,0000, 0001, and so on.

Figure Al-6 a illustrates how the output current of the

D/A converter appears. As each input nibble is latched into

port 22H, the output current moves one step higher until

reaching the maximum current. Then the cycle repeats. If

all resistors are exact and all transistors matched, all steps

are identical in size.

Resolution

In the perfect staircase of Fig. Al-6b a step is called an

LSB increment because it is produced by a change in the

LSB. One way to measure the quality of a D/A converter

is its resolution, the ratio of the LSB increment to the

maximum output. As a formula.

Resolution = —-— (Al-6)
2n - 1

For instance, a 4-bit D/A converter has a resolution of

Resolution =-= —
24 — 1 15

This is sometimes read as 1 part in 15.

The number of different steps an /7-bit converter produces

is

Steps = 2" - 1 (A 1 -6a)

Therefore, an alternative way to think of resolution is

Resolution = —!— (Al-6 b)
steps

Percent resolution is given by

Percent resolution = resolution x 100% (A 1-7)

If the resolution is 1 part in 15, then

Percent resolution = x 100% = 6.67%

The greater the number of bits, the better the resolution.

With Eqs. Al-6 and A1-7 we can calculate the resolution

and percent resolution for more bits. Table A1-2 is a

summary of the resolution for converters with 4 to 18 bits.

Because the number of bits determines the resolution in

Eq. Al-6, an indirect way to specify resolution is by stating

the number of bits. For instance, an 8-bit converter has 8-

bit resolution, a 10-bit converter has 10-bit resolution, and

so on. This is a quick and easy way to pin down the

resolution. When necessary, Eqs. Al-6, Al-6 a, and A1-7

can give additional information.

Accuracy

In a D/A converter, absolute accuracy refers to how close

each output current is to its ideal value. In Fig. A1-5

absolute accuracy depends on the reference voltage, resistor

tolerance, transistor mismatch, and so forth. In a typical

application, a trimmer adjustment is included to set the

full-scale output at a preassigned value.

Relative accuracy refers to how close each output level

is to its ideal fraction of full-scale output. With a 4-bit

TABLE Al-2. RESOLUTION

Bits Resolution Percent

4 1 part in 15 6.67

6 1 part in 63 1.59

8 1 part in 255 0.392

10 1 part in 1,023 0.0978

12 1 part in 4,095 0.0244

14 1 part in 16,383 0.0061

16 1 part in 65,535 0.00153
18 1 part in 262,143 0.000381

488 Appendixes

converter, the ideal output levels as a fraction of full-scale

should be 0, A, A, fk, and so on. Because data sheets

specify relative accuracy rather than absolute accuracy, our

subsequent discussions will emphasize relative accuracy.

Relative accuracy depends mainly on the tolerance of the

weighted resistors in Fig. A1-5. If they are exactly /?, 2R,

4/?, and 8/?, all steps equal 1 LSB increment in Fig. Al¬

ba. When the resistors depart from ideal values, the steps

may be larger or smaller than 1 LSB increment.

Error = 1 LSB

(b)

Fig. Al-7 Error specified in LSB increments.

Errors are specified in terms of LSB increments. For

instance, Fig. Al-7a shows an error of 1 LSB; the actual

output (solid line) differs from the ideal output (dashed

line) by 1 LSB increment. If a negative error follows a

positive error, the staircase can fall as shown in Fig. Al-

1b. Here you see an error of + 1 LSB followed by an error

of - 1 LSB.

Monotonicity

A monotonic D/A converter is one that produces an increase

in output current for each successive digital input. The

staircases of Fig. Al-7a and b are not monotonic because

they do not produce an increase for each digital input.

Figure Al-7a is almost monotonic, but Fig. A1-7Z? is far

from monotonic. Monotonicity is the least we can expect

from a D/A converter because it only makes sense; the

output should increase when the input does.

For a D/A converter to be monotonic the error must be

less than ±i LSB at each output level. Why? Because in

Fig. Al-8 Critical level for monotonicity.

the worst case, a +£-LSB error followed by a — i-LSB

error produces the critical level where monotonicity is about

to be lost. Figure Al-8 illustrates this critical case, an error

of LSB followed by an error of — | LSB. If the error

of a converter is less than LSB for each output level,

we are guaranteed a rising current for each successive

digital input. Almost all commercially available D/A con¬

verters are monotonic because they have an accuracy of

better than ±i LSB at each output level.

Settling Time

After you apply a digital input, it takes a D/A converter

anywhere from nanoseconds to microseconds to produce

the correct output. Settling time is defined as the time it

takes for the converter output to stabilize to within \ LSB

of its final value. This time depends on the stray capacitance,

saturation delay time, and other factors. Settling time is

important because it places a limit on how fast you can

change the digital inputs.

Disadvantages of Weighted Resistors

For a weighted-resistor circuit to be monotonic the tolerance

of the resistors must be less than the percent resolution.

For instance, if the resolution is r* (6.67 percent), resistors

with a tolerance of less than ±6.67 percent will produce a

monotonic staircase. If the resolution is 2W (about 0.4

percent), the resistors need a tolerance of better than ±0.4

percent for a monotonic output. As you see, 4 bits are no

problem, but 8 bits are.

Another difficulty arises with weighted resistors. As the

number of bits increases, the range of resistance values gets

awkward. For 8 bits, we need resistances of /?, 2/?, 4/?,

. . . , 128/?. The largest resistance is 128 times the smallest.

For a 12-bit converter, the largest resistance needs to be

2,048 times the smallest. Because of the tolerance and

range problems, mass production of weighted-resistor D/A

converters is impractical.

Appendixes 489

A1-3 THE LADDER METHOD

One way to get around the problems of a binary-weighted

resistors is to use a ladder circuit. Figure A1-9a is an

example of the R-2R ladder commonly used in integrated

D/A converters. Only two resistance values are needed; this

eliminates the range problem. Furthermore, since the resis¬

tors are on the same chip, they have almost identical

characteristics; this minimizes the tolerance problem. In

other words, as the number of bits increases, an integrated

ladder can divide the current much more accurately than a

binary-weighted circuit.

Ladder Properties

An R-2R ladder does something interesting to the impedance

at different points in the circuit. To begin with, the two

resistors at node D in Fig. A1-9a are in parallel and may

be reduced to an equivalent resistance /?, shown in Fig.

A1-9b. Now, to the right of node C we have R in series

with /?, a total of 2R. Since node C has 2R is in parallel

with 2R, the circuit reduces to Fig. Al-9r.

Looking into the left side of node B (Fig. Al-9e), we

see 2R in parallel with 2R. Therefore, the circuit reduces

to Fig. A1-9d. Again, 2R is in parallel with 2/?, so the

circuit reduces to the single R shown in Fig. A1-9^.

Figure A1-10 summarizes ladder impedances. Do you

see the point? Looking into the left side of a node, we

always see an equivalent resistance of R. Just to the right

of each node, we always see a resistance of 2R. This

impedance phenomenon is the key to analyzing modern D/

A converters because they use the ladders instead of

weighted resistors.

Binary Division of Current

Figure A1-11 shows how a ladder can divide the current

into binary levels. The typical D/A converter has a reference

current set by the user. In this example, the reference

current is 2 mA. The bottom of each 2R resistor is grounded

in either switch position. When a switch is to the right, the

current through a 2R resistor flows to the upper ground.

When a switch is to the left, the lower ground sinks the

current. With all the switches to the right, as shown in Fig.

A1-11, /OUT is zero.

Here is how the ladder divides the 2 mA of reference

current. Just to the right of node A we see an equivalent

resistance of 2R. Therefore, the 2 mA of input current

divides equally at node A. Similarly, at node B we see 2R

in parallel with 2R\ again, the current divides equally into

0.5-mA branch currents. This process continues through

the ladder, so that we wind up with the upper grounds

sinking 1, 0.5, 0.25, and 0.125 mA.

Other Switch Positions

When we move the switches, we do not change the way

the current divides at the nodes, it still divides equally at

each node. But when a switch is to the left, it steers the

Fig. AMO Ladder impedances.

490 Appendixes

4 R B R C R D

Fig. Al-11 D/A conversion with R-2R ladder.

current into the lower ground. Bits to D0 control the

transistorized switches. From previous discussions, we can

see that

/out = (Dj + 2-'D2 + 2~2£>| + 2-^D0)~ (AI-8)

Therefore, the output current of a 4-bit ladder is from 0 to
ISir
16/ref-

More Bits

the ladder remain constant; all that changes are the ground

points. Constant current implies constant voltage, which

means that stray capacitance in the ladder has little effect.

In other words, we do not get the usual exponential charge

and discharge associated with a change in voltage. This

reduces the settling time. For this reason, IC converters

often use the current-steering approach shown in Fig.
Al-11.

A1-4 THE COUNTER METHOD OF
A/D CONVERSION

A similar analysis applies to longer ladders. The output

current is

/out = (0„-1 + 2+ • • • + 2'-"D0)^p (A 1 -9)

For instance, an 8-bit ladder produces a maximum output

current of M/ref- The LSB increment is 2ib/RKF.

Figure A1 -12 shows the simplest but least used method of

A/D conversion. V1N is the analog input voltage. D1 to D0

are the digital output. The digital output drives a D/A

converter, which produces an analog output Foux. When

COUNT is high, the counter counts upward. When COUNT

is low, the counter stops. For convenience, an 8-bit D/A

converter and 8-bit counter are used, but the idea applies

to any number of bits.

Why Steer Current Operation

Current steering may seem more complicated than neces- The A/D conversion takes place as follows. First, the

sary, but there is good reason for it. The currents throughout START pulse goes low, clearing the counter. When the

Comparator

Appendixes 491

START pulse returns high, the counter is ready to go.

Initially, VOLl is zero; therefore, the op amp has a high

output and COUNT is high. The counter starts counting

upward from zero. Since the output of the counter drives a

D/A converter, the converter output is a positive voltage

staircase. As long as VlN is greater than VOUT, the op amp

has a positive output, COUNT remains high, and the

staircase voltage keeps rising.

At some point along the staircase, the next step makes

V0ut greater than Vw. This forces COUNT to go low, and

the counter stops. Now, the digital output D7 to D0 is the

digital equivalent of the analog input. The negative-going

edge of the COUNT signal is used as an end-of-conversion

signal; this tells other circuits that the A/D conversion is

finished.

If the analog input V]N is changed, external circuits must

send another START pulse to start the conversion. This

clears the count and a new cycle begins. When the digital

data is ready, the end-of-conversion signal has a falling

edge.

Disadvantage

The main disadvantage of the counter method is its slow

speed. In the worst case (maximum analog input) the

counter has to reach the maximum count before the staircase

voltage is greater than the analog input. For an 8-bit

converter, this means a conversion time of 255 clock

periods. For a 12-bit converter, the conversion time is 4,095

clock periods.

before, the output of a D/A converter drives the inverting

input of an op-amp comparator. The difference, however,

is in how the SAR register converges on the digital

equivalent. (SAR stands for successive-approximation reg¬

ister.) When the conversion is finished, the digital equivalent

is transferred to the output buffer register.

MSB First

When the start-of-conversion signal goes low, the SAR

register is cleared and VOUT drops to zero. When the start-

of-conversion signal goes high, the conversion begins.

Instead of counting up 1 bit at a time, the successive-

approximation method starts by setting the MSB. In other

words, during the first clock pulse the control circuit loads

a high MSB into the SAR register, whose output then equals

1000 0000

As soon as this digital output appears, F0ut jumps to Ml

times full-scale. If this is more than VIN, the negative output

of the comparator signals the control circuit to reset the

MSB. On the other hand, if VOUT is less than V1N, the

positive output of the comparator indicates that the MSB

is to remain set. In some designs, setting and testing the

MSB take place during the first clock pulse following the

start of conversion. In other designs, several clock pulses

may be needed to set the MSB, test it, and reset it if

necessary.

A1-5 SUCCESSIVE APPROXIMATION
Remaining Bits

The most widely used approach in A/D conversion is the Let us assume that the MSB was not reset. The SAR register

successive-approximation method (see Fig. A I-13). As contents are now 1000 0000. The next clock pulse will set

Comparator

D-j Dq i D4 Og Og D-| Do

Start of conversion

CLK

End of conversion

Fig. Al-13 A/D conversion by successive approximation.

492 Appendixes

D6, giving a digital output of

1100 0000

V0ut now steps to Mi times full-scale. If VOUT is greater

than VlN, the negative op-amp output causes Db to reset. If

V0UT is less than VIN, D6 remains set.

During the remaining clock pulses, successive bits are

set and tested. Whenever a bit causes VOUT to exceed VIN,

the bit is reset. In this way, all bits are set, tested, and

reset if necessary. With the fastest circuits, the conversion

is finished after eight clock pulses, and the D/A output is

the analog equivalent of the register contents. Slower designs

take longer because more clock pulses are needed to set,

test, and possibly reset each bit.

Output Buffer

When the conversion is finished, the control circuit sends

out a low end-of-conversion signal. The falling edge of this

signal loads the digital equivalent into the buffer register.

In this way, the digital output will remain even though we

start a new conversion cycle.

Advantage

The main advantage of the successive-approximation method

is speed. At best, it takes only n clock pulses to produce

n-b\t resolution of the analog signal. This is a big improve¬

ment over the counter method. Even with slower designs,

the successive-approximation method is still considerably

better than the counter method.

Appendixes 493

APPENDIX 2. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal

0000 0000 00 0 0 0011 0000 30 12,288 48

0000 0001 01 256 1 0011 0001 31 12,544 49

0000 0010 02 512 2 0011 0010 32 12,800 50

0000 0011 03 768 3

0000 0100 04 1,024 4 0011 0011 33 13,056 51

0000 0101 05 1.280 5
0011 0100 34 13,312 52

0000 0110 06 1,536 6
0011 0101 35 13,568 53

0000 0111 07 1,792 7
0011 0110 36 13,824 54

0000 1000 08 2,048 8
0011 0111 37 14,080 55

0000 1001 09 2,304 9
0011 1000 38 14,336 56

0000 1010 0A 2,560 10
0011 1001 39 14,592 57

0011 1010 3A 14,848 58

0011 1011 3B 15,104 59

0000 1011 OB 2,816 11 0011 1100 3C 15,360 60

0000 1100 oc 3,072 12

0000 1101 OD 3,328 13 0011 1101 3D 15,616 61

0000 1110 OE 3,584 14 0011 1110 3E 15,872 62

0000 1111 OF 3,840 15 oon nn 3F 16,128 63

0001 0000 10 4,096 16 0100 0000 40 16,384 64

0001 0001 11 4,352 17 0100 0001 41 16,640 65

0001 0010 12 4,608 18 0100 0010 42 16,896 66

0001 0011 13 4,864 19 0100 0011 43 17,152 67

0001 0100 14 5,120 20 0100 0100 44 17,408 68

0100 0101 45 17.664 69
0001 0101 15 5,376 21 0100 0110 46 17,920 70
0001 0110 16 5,632 22

0001 0111 17 5,888 23 0100 0111 47 18,176 71

0001 1000 18 6,144 24 0100 1000 48 18,432 72

0001 1001 19 6,400 25 0100 1001 49 18,688 73

0001 1010 1A 6,656 26 0100 1010 4A 18,944 74

0001 1011 IB 6,912 27 0100 1011 4B 19,200 75

0001 1100 1C 7,168 28 0100 1100 4C 19,456 76

0001 1101 ID 7,424 29 0100 1101 4D 19,712 77

0001 1110 IE 7,680 30 0100 1110 4E 19,968 78

0100 1111 4F 20,224 79
oooi mi IF 7,936 31 0101 0000 50 20,480 80
0010 0000 20 8,192 32

0010 0001 21 8,448 33 0101 0001 51 20,736 81

0010 0010 22 8,704 34 0101 0010 52 20,992 82

0010 0011 23' 8,960 35 oioi oon 53 21,248 83

0010 0100 24 9,216 36 0101 0100 54 21,504 84

0010 0101 25 9,472 37 0101 0101 55 21,760 85

0010 0110 26 9,728 38 0101 0110 56 22,016 86

0010 0111 27 9,984 39 0101 0111 57 22,272 87

0010 1000 28 10,240 40 0101 1000 58 22,528 88

0101 1001 59 22,784 89
0010 1001 29 10,496 41 0101 1010 5A 23,040 90
0010 1010 2A 10,752 42

0010 1011 2B 11,008 43 0101 1011 5B 23,296 91

0010 1100 2C 11,264 44 0101 1100 5C 23,552 92

0010 1101 2D 11,520 45 0101 1101 5D 23,808 93

0010 1110 2E 11,776 46 0101 1110 5E 24,064 94

ooio mi 2F 12,032 47 oioi nn 5F 24,320 95

494 Appendixes

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal

0110 0000 60 24,576 96 1001 0010 92 37,376 146
0110 0001 61 24,832 97 1001 0011 93 37,632 147
0110 0010 62 25,088 98 1001 0100 94 37,888 148
0110 0011 63 25,344 99 1001 0101 95 38.144 149
0110 0100 64 25,600 100 iooi ono 96 38,400 150

0110 0101 65 25,856 101 1001 0111 97 38,656 151
0110 0110 66 26,112 102 1001 1000 98 38,912 152
0110 0111 67 26,368 103 1001 1001 99 39,168 153
0110 1000 68 26,624 104 1001 1010 9A 39,424 154
0110 1001 69 26,880 105 1001 1011 9B 39,680 155
0110 1010 6A 27,136 106 1001 1100 9C 39,936 156
0110 1011 6B 27,392 107 1001 1101 9D 40,192 157
0110 1100 6C 27,648 108 1001 1110 9E 40,448 158
0110 1101 6D 27,904 109 iooi nil 9F 40,704 159
0110 1110 6E 28,160 no 1010 0000 AO 40,960 160

ono mi 6F 28,416 111 1010 0001 A1 41,216 161
0111 0000 70 28,672 112 1010 0010 A2 41,472 162
0111 0001 71 28,928 113 1010 0011 A3 41,728 163
0111 0010 72 29,184 114 1010 0100 A4 41,984 164
0111 0011 73 29,440 115 10100101 A5 42,240 165
0111 0100 74 29,696 116 ioio ono A6 42,496 166
0111 0101 75 29,952 117 1010 0111 A7 42,752 167
0111 0110 76 30,208 118 1010 1000 A8 43,008 168
0111 0111 77 30,464 119 1010 1001 A9 43,264 169
0111 1000 78 30,720 120 1010 1010 AA 43,520 170

01 11 1001 79 30,976 121 1010 1011 AB 43,776 171
0111 1010 7A 31,232 122 1010 1100 AC 44,032 172
0111 1011 7B 31,488 123 1010 1101 AD 44,288 173
0111 1100 7C 31,744 124 1010 1110 AE 44,544 174
0111 1101 7D 32,000 125 ioio ini AF 44,800 175
0111 1110 7E 32,256 126 1011 0000 BO 45,056 176
oin mi 7F 32,512 127 1011 0001 B1 45,312 177
1000 0000 80 32,768 128 1011 0010 B2 45,568 178
1000 0001 81 33,024 129 1011 0011 B3 45,824 179
1000 0010 82 33,280 130 1011 0100 B4 46,080 180

1000 0011 83 33,536 131 1011 0101 B5 46,336 181
1000 0100 84 33,792 132 ion ono B6 46,592 182
1000 0101 85 34,048 133 1011 0111 B7 46,848 183
iooo ono 86 34,304 134 1011 1000 B8 47,104 184
1000 0111 87 34,560 135 1011 1001 B9 47,360 185
1000 1000 88 34,816 136 1011 1010 BA 47,616 186
1000 1001 89 35,072 137 1011 1011 BB 47,872 187
1000 1010 8A 35,328 138 1011 1100 BC 48,128 188
1000 1011 8B 35,584 139 1011 1101 BD 48,384 189
1000 1100 8C 35,840 140 1011 1110 BE 48,640 190

1000 1101 8D 36,096 141 ion nil BF 48,896 191
1000 1110 8E 36,352 142 1100 0000 CO 49,152 192
iooo nil 8F 36,608 143 1100 0001 Cl 49,408 193
1001 0000 90 36,864 144 1100 0010 C2 49,664 194
1001 0001 91 37,120 145 1100 0011 C3 49,920 195

Appendixes 495

APPENDIX 2. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS (Continued)

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal

1100 0100 C4 50,176 196 1110 0010 E2 57,856 226

1100 0101 C5 50,432 197 1110 0011 E3 58,112 227

1100 0110 C6 50,688 198 1110 0100 E4 58,368 228

1100 0111 Cl 50,944 199 1110 0101 E5 58,624 229

1100 1000 C8 51,200 200 11100110 E6 58,880 230

1100 1001 C9 51,456 201 1110 0111 E7 59,136 231

1100 1010 CA 51,712 202 1110 1000 E8 59,392 232

1100 1011 CB 51,968 203 1 11101001 E9 59,648 233

1100 1100 cc 52,224 204 1110 1010 EA 59,904 234

1100 1101 CD 52,480 205 1110 1011 EB 60,160 235

1100 1110 CE 52,736 206 1110 1100 EC 60,416 236

iioo mi CF 52,992 207 1110 1101 ED 60,672 237

1101 0000 DO 53,248 208 1110 1110 EE 60,928 238

1101 0001 D1 53,504 209 mo nil EF 61,184 239

1101 0010 D2 53,760 210 1111 0000 FO 61,440 240

1101 0011 D3 54,016 211 1111 0001 FI 61,696 241

1101 0100 D4 54,272 212 nil ooio F2 61,952 242

1101 0101 D5 54,528 213 nn oon F3 62,208 243

1101 0110 D6 54,784 214 nil oioo F4 62,464 244

1101 0111 D7 55,040 215 nil oioi F5 62,720 245

1101 1000 D8 55,296 216 1111 0110 F6 62,976 246

1101 1001 D9 55,552 217 nil oni F7 63,232 247

1101 1010 DA 55,808 218 nn iooo F8 63,488 248

1101 1011 DB 56,064 219 nil iooi F9 63,744 249

1101 1100 DC 56,320 220 nil ioio FA 64,000 250

1101 1101 DD 56,576 221 nn ion FB 64,256 251

1101 1110 DE 56,832 222 1111 1100 FC 64,512 252

noi mi DF 57,088 223 1111 1101 FD 64,768 253

1110 0000 EO 57,344 224 1111 1110 FE 65,024 254

1110 0001 El 57,600 225 nn nn FF 65,280 255

496 Appendixes

APPENDIX 3. 7400 SERIES TTL

Number Function Number Function

7400 Quad 2-input nand gates 7455 Expandable 4-input 2-wide and-or-invert
7401 Quad 2-input nand gates (open collector) gates
7402 Quad 2-input nor gates 7459 Dual 2-3 input 2-wide and-or-invert gates
7403 Quad 2-input nor gates (open collector) 7460 Dual 4-input expanders
7404 Hex inverters 7461 Triple 3-input expanders
7405 Hex inverters (open collector) 7462 2-2-3-3 input 4-wide expanders
7406 Hex inverter buffer-driver 7464 2-2-3-4 input 4-wide and-or-invert gates
7407 Hex buffer-drivers 7465 4-wide and-or-invert gates
7408 Quad 2-input and gates (open collector)
7409 Quad 2-input and gates (open collector) 7470 Edge-triggered JK flip-flop
7410 Triple 3-input nand gates 7472 JK master-slave flip-flop
7411 Triple 3-input and gates 7473 Dual JK master-slave flip-flop
7412 Triple 3-input nand gates (open collector) 7474 Dual D flip-flop
7413 Dual Schmitt triggers 7475 Quad latch
7414 Hex Schmitt triggers 7476 Dual JK master-slave flip-flop
7416 Hex inverter buffer-drivers 7480 Gates full adder
7417 Hex buffer-drivers 7482 2-bit binary full adder
7420 Dual 4-input nand gates 7483 4-bit binary full adder
7421 Dual 4-input and gates 7485 4-bit magnitude comparator
7422 Dual 4-input nand gates (open collector) 7486 Quad exclusive-or gate
7423 Expandable dual 4-input nor gates 7489 64-bit random-access read-write memory
7425 Dual 4-input nor gates 7490 Decade counter
7226 Quad 2-input TTL-MOS interface nand 7491 8-bit shift register

gates 7492 Divide-by-12 counter
7427 Triple 3-input nor gates 7493 4-bit binary counter
7428 Quad 2-input nor buffer 7494 4-bit shift register
7430 8-input nand gate 7495 4-bit right-shift-left-shift register
7432 Quad 2-input or gates 7496 5-bit parallel-in-parallel-out shift register
7437 Quad 2-input nand buffers 74100 4-bit bistable latch
7438 Quad 2-input nand buffers (open collector) 74104 JK master-slave flip-flop
7439 Quad 2-input nand buffers (open collector) 74105 JK master-slave flip-flop
7440 Dual 4-input nand buffers 74107 Dual JK master-slave flip-flop
7441 BCD-to-decimal decoder-Nixie driver 74109 Dual JK positive-edge-triggered flip-flop
7442 BCD-to-decimal decoder 74116 Dual 4-bit latches with clear
7443 Excess 3-to-decimal decoder 74121 Monostable multivibrator
7444 Excess Gray-to-decimal 74122 Monostable multivibrator with clear
7445 BCD-to-decimal decoder-driver 74123 Monostable multivibrator
7446 BCD-to-seven segment decoder-drivers 74125 Three-state quad bus buffer

(30-V output) 74126 Three-state quad bus buffer
7447 BCD-to-seven segment decoder-drivers 74132 Quad Schmitt trigger

(15-V output) 74136 Quad 2-input exclusive-or gate

7448 BCD-to-seven segment decoder-drivers 74141 BCD-to-decimal decoder-driver
7450 Expandable dual 2-input 2-wide and-or- 74142 BCD counter-latch-driver

invert gates 74145 BCD-to-decimal decoder-driver
7451 Dual 2-input 2-wide and-or-invert gates 74147 10/4 priority encoder
7452 Expandable 2-input 4-wide and-or gates 74148 Priority encoder

7453 Expandable 2-input 4-wide and-or-invert 74150 16-line-to-1 -line multiplexer

gates 74151 8-channel digital multiplexer
7454 2-input 4-wide and-or-invert gates 74152 8-channel data selector-multiplexer

Appendixes 497

APPENDIX 3. 7400 SERIES TTL (Continued)

Number Function Number Function

74153 Dual 4/1 multiplexer 74190 Up-down decade counter
74154 4-line-to-16-line decoder-demultiplexer 74191 Synchronous binary up-down counter
74155 Dual 2/4 demultiplexer 74192 Binary up-down counter
74156 Dual 2/4 demultiplexer 74193 Binary up-down counter
74157 Quad 2/1 data selector 74194 4-bit directional shift register
74160 Decade counter with asynchronous clear 74195 4-bit parallel-access shift register
74161 Synchronous 4-bit counter 74196 Presettable decade counter
74162 Synchronous 4-bit counter 74197 Presettable binary counter
74163 Synchronous 4-bit counter 74198 8-bit shift register
74164 8-bit serial shift register 74199 8-bit shift register
74165 Parallel-load 8-bit serial shift register 74221 Dual one-shot Schmitt trigger
74166 8-bit shift register 74251 Three-state 8-channel multiplexer
74173 4-bit three-state register 74259 8-bit addressable latch
74174 Hex F flip-flop with clear 74276 Quad JK flip-flop
74175 Quad D flip-flop with clear 74279 Quad debouncer
74176 35-MHz presettable decade counter 74283 4-bit binary full adder with fast carry
74177 35-MHz presettable binary counter 74284 Three-state 4-bit multiplexer
74179 4-bit parallel-access shift register 74285 Three-state 4-bit multiplexer
74180 8-bit odd-even parity generator-checker 74365 Three-state hex buffers
74181 Arithmetic-logic unit 74366 Three-state hex buffers
74182 Look-ahead carry generator 74367 Three-state hex buffers
74184 BCD-to-binary converter 74368 Three-state hex buffers
74185 Binary-to-BCD converter 74390 Individual clocks with dip-flops
74189 Three-state 64-bit random-access memory 1 74393 Dual 4-bit binary counter

498 Appendixes

APPENDIX 4. PINOUTS AND FUNCTION TABLES

74LS83

The 74LS83 is a 4-bit full adder; the binary output is

S = A + B

74LS83

Fig. A4-1

In Fig. A4-1, pins 1, 3, 8, and 10 are the A input (A3, A2,
A,, A0)\ pins 16, 4, 7, and 11 are the B input (Z?3, B2, Z?,,

B0); and pins 15, 2, 6, and 9 are the S output (S3, S2, 5,.

S0). Pin 13 is the CARRY IN, and pin 14 is the CARRY

OUT.

74LS157

This chip is a word multiplexer. Two words of 4 bits each

are the inputs; one word of 4 bits is the output. The two

input words are designated L (left) and R (right); the output

word is Y. In Fig. A4-2, pin 1 (SELECT) and pin 15

(STROBE) are control inputs. The L word goes to pins 14,

11, 5, 2 (C3, L2, Li# L0), and the R word goes to pins 13,

10, 6, and 3 (fl3, R2, Rlt R0).

74LS157

Fig. A4-2

TABLE A4-1. FUNCTION TABLE

STROBE SELECT Y Comment

1 X 0 Output goes low
0 0 L Output equals left word
0 1 R Output equals right word

As indicated in Table A4-1, a high STROBE input

produces a low output, no matter what the input words.

When STROBE is low, the SELECT input controls the

operation. A low SELECT will send the L word to the

output; a high SELECT sends the R word to the output.

74LS173

Fig. A4-3

74LS173

The 74LS173 is a 4-bit buffer register with three-state

outputs. In Fig. A4-3, pins 14, 13, 12, and 11 are the data

inputs (D3> D2, D,, D0). Pins 3, 4, 5, and 6 are the data

outputs (<23, Q2, Qx, <2w). Pins 9 and 10 (G, and G2) are

the input control. Pins 1 and 2 (M and N) are the output

control.

As shown in Table A4-2, both M and N must be low to

get a Q output. If either M or N (or both) is high, the

output is three-stated (floating or high impedance).

When M and N are both low, Table A4-3 applies. As

indicated, a high CLEAR will clear all Q bits to 0. When

CLEAR is low, G, and G2 control input loading. If either

G, or G2 (or both) are high, no change takes place in the

Q bits. When both G, and G2 are low, the next positive

clock edge loads the input data.

TABLE A4-2. OUTPUT
CONTROL

M N Output

0 0 Connected
0 1 Hi-Z

1 0 Hi-Z
1 1 Hi-Z

TABLE A4-3. FUNCTION TABLE FOR M = 0 AND
N = 0

CLEAR CLOCK G2 D„ Q„ Comment

1 X X X X 0 Clear output

0 0 X X X NC No change
0 t 1 X X NC No change

0 t X 1 X NC No change

0 t 0 0 0 0 Reset bit n
0 t 0 0 1 1 Set bit n

Appendixes 499

74189 TABLE A4-4. FUNCTION TABLE

a3 C 1 16

CE C 2 15

WEZ 3 14

d3c 4 13

q3c 5 12

d2 C 6 11

q2 c 7 10

GND C 8 9

3Vfcc

3*2

=m0
□ ^0

□ Q0
□ 01
□ Q1

Fig. A4-4

74189

The 74189 is a 64-bit RAM organized as 16 words of 4

bits each. In Fig. A4-4 pins 1, 15, 14, and 13 are the

address inputs (A3, A2, A,, A0). Pins 4, 6, 10, and 12 are

the data inputs (D3, D2, D,, D0). Pins 5, 7, 9, and 11 are

the data outputs (Q3, Q2, Go Go)*

CE WE Output Comment

1 X Hi-Z Do nothing

0 0 Hi-Z Write complement

0 1 Stored word Read

Table A4-4 summarizes the operation of this read-write

memory. When CE is high, the output is three-stated (high

impedance). When CE is low and WE is low, the comple¬

ment of the input data word is stored at the addressed

memory location; during this write operation, the output is

three-stated. When CE is low and WE is high, the stored

word appears at the output.

500 Appendixes

APPENDIX 5. SAP-1 PARTS LIST

Chips

Cl: 74LS107, dual JK master-slave flip-flop

C2: 74LS107

C3: 74LS126, quad three-state normally open switches

C4: 74LS173, buffer register, three-state outputs, 4 bits

C5: 74LS157, 2-to-l nibble multiplexer

C6: 74189, 64-bit (16 x 4) static RAM, three-state

outputs

C7: 74189

C8: 74LS173

C9: 74LS173

CIO: 74LS173

Cl 1: 74LS173

Cl2: 74LS126

C13: 74LS126

Cl4: 74LS86, quad 2-input exclusive-or gates

Cl5: 74LS86

Cl6: 74LS83, quad full adders

Cl7: 74LS83

Cl8: 74LS126

Cl9: 74LS126

C20: 74LS173

C21: 74LS173

C22: 74LS173

C23: 74LS173

C24: 7400, quad 2-input nand gates

C25: 74LS10, triple 3-input nand gates

C26: 74LS00

C27: 7404, hex inverter

C28: NE555, timer

C29: 74LS107

C30: LM340T-5, voltage regulator, 5 V

C31: 74LS04, hex inverter

C32: 74LS20, dual 4-input nand gates

C33: 74LS20

C34: 74LS20

C35: 74LS04

C36: 74LS107

C37: 74LS107

C38: 74LS107

C39: 74LS00

C40: 74LS00

C41: 74LS00

C42: 74LS00

C43: 74LS00

C44: 74LS20

C45: 74LS10

C46: 74LS00

C47: 74LS04

C48: 74LS04

Diodes

Dl: 1N4001, rectifier diode, 50 PIV, 1 A

D2: 1N4001

D3: 1N4001

D4: 1N4001

Switches

SI: SPST DIP switch, 4 bits

S2: DPST on-off

S3: SPST DIP, 8 bits

S4: SPST push button, momentary, normally open

S5: SPDT push button, momentary

S6: SPDT push button, momentary

S7: SPDT on-on switch

Miscellaneous

Resistors: eight 1-kfi, fourteen 10-kD, one 18-kD, one

36-kO

Capacitors: 0.01-(utF, 0.1-|ulF, 1000-|ulF (50 V)

Transformer: F-25X — 115V primary, 12.6 V secondary

CT, 1.5 A

Fuse: |-A slow blow

Totals

1N4001 -4 74LS20-4

LM340T-5-1 74LS83-2

NE555-1 74LS86-2

7400-1 74LS107-6

74LS00-7 74LS126-5

7404-1 74LS157-1

74LS04—4 74LS173-9

74LS10-2 74189-2

Appendixes 501

APPENDIX 6. 8085 INSTRUCTIONS

Instruction Op Code T states

AC1 byte CE 7

ADC A 8F 4

ADC B 88 4

ADC C 89 4

ADC D 8A 4

ADC E 8B 4

ADC H 8C 4

ADC L 8D 4

ADC M 8E 7

ADD A 87 4

ADD B 80 4

ADD C 81 4

ADD D 82 4

ADD E 83 4

ADD H 84 4

ADD L 85 4

ADD M 86 7

ADI byte C6 7

ANA A A7 4

ANA B AO 4

ANA C A1 4

ANA D A2 4

ANA E A3 4

ANA H A4 4

ANA L A5 4

ANA M A6 7

ANI byte E6 7

CALL address CD 18

CC address DC 18/9

CM address FC 18/9

CMA 2F 4

CMC 3F 4

CMP A BF 4

CMP B B8 4

CMP C B9 4

CMP D BA 4

CMP E BB 4

CMP H BC 4

CMP L BD 4

CMP M BE 7

CNC address D4 18/9

CNZ address C4 18/9

CP address F4 18/9

CPE address EC 18/9

CPI byte FE 7

CPO address E4 18/9

CZ address CC 18/9

DAA 27 4

DAD B 09 10

DAD D 19 10

DAD H 29 10

Main Effect

A + B + CY

A + E

H 4- CY

A + B

A + C

A + D

A + E

A + H

A + L

A 4- Mhl

A 4- byte

A and A

A AND B

A AND C

A AND D

A AND E

A AND H

A AND L

A AND Mhl

A and byte

— address

— address if CY =

— address if S = 1

■A

- address if CY — 0

- address if Z = 0

- address if 5 = 0

- address if P = 1

1 if A = byte

- address if P = 0

- address if Z = 1

BCD number

- HL + BC

- HL 4- DE

- HL 4- HL

502 Appendixes

Instruction Op Code T states Flags Main Effect

DAD SP

DCR A

DCR B

DCR C

DCR D

DCR E

DCR H

DCR L

DCR M

DCX B

DCX D

DCX H

DCX SP

DI

El

HLT

IN byte

INR A

INR B

INR C

INR D

INR E

INR H

INR L

INR M

INX B

INX D

INX H

INX SP

JC address

JM address

JMP address

JNC address

JNZ address

JP address

JPE address

JPO address

JZ address

39

3D

05

0D

15

ID

25

2D

35

OB

IB

2B

3B

F3

FB

76

DB

3C

04

0C

14

1C

24

2C

34

03

13

23

33

DA

FA

C3

D2

C2

F2

EA

E2

CA

10
4

4

4

4

4

4

4

10

6
6
6
6
4

4

5

10
4

4

4

4

4

4

4

10
6
6
6
6
10/7

10/7

10

10/7

10/7

10/7

10/7

10/7

10/7

CY

All but CY

All but CY

All but CY

All but CY

All but CY

All but CY

All but CY

All but CY

None

None

None

None

None

None

None

None

All but CY

All but CY

All but CY

All but CY

All but CY

All but CY

All but CY

All but CY

None

None

None

None

None

None

None

None

None

None

None

None

None

HL HL + SP

A A - 1
B <- B - 1
C <-C - 1
D <— D - 1
E <— E - 1

H <— H — 1

L <— L - 1

Mhl ■*“ MHL — 1

BC BC — 1

DE DE - 1

HL <— HL - 1

SP 4- SP - 1

Disable interrupts

Enable interrupts

Stop processing

A byte

A <— A + 1
B B + 1

C <- C + 1
D <— D + 1

E <- E + 1

H <— H + 1

L <- L + 1

Mhl Mhl + 1
BC <— BC 4- 1

DE <— DE 4- 1

HL HL 4- 1

SP <- SP 4- 1

PC <— address if CY = 1

PC address if S = 1

PC <— address

PC <— address if CY = 0

PC <— address if Z = 0

PC <— address if S = 0

PC <— address if P = 1

PC «— address if P = 0

PC address if Z = 1
LDA address 3A 13 None A ^ Madr
LDAX B 0A 7 None A Mbc
LDAX D 1A 7 None A <- Mde
LHLD address 2A 16 None H <- Madr
LXI B, dble 01 10 None BC <- dble
LXI D, dble 11 10 None DE <- dble
LXI H, dble 21 10 None HL dble
LXI SP, dble 31 10 None SP dble
MOV A,A 7F 4 None A <— A
MOV A,B 78 4 None A <- B

MOV A,C 79 4 None A ^C
MOV A,D 7A 4 None A D

MOV A,E 7B 4 None A E
MOV A,H 1C 4 None A <- H

Appendixes 5 03

APPENDIX 6. 8085 INSTRUCTIONS (Continued)

Instruction Op Code T states Flags

MOV A,L 7D 4 None

MOV A,M 7E 7 None

MOV B,A 47 4 None

MOV B,B 40 4 None

MOV B,C 41 4 None

MOV B,D 42 4 None

MOV B,E 43 4 None

MOV B,H 44 4 None

MOV B,L 45 4 None

MOV B,M 46 7 None

MOV C,A 4F 4 None

MOV C,B 48 4 None

MOV C,C 49 4 None

MOV C,D 4A 4 None

MOV C,E 4B 4 None

MOV C,H 4C 4 None

MOV C,L 4D 4 None

MOV C,M 4E 7 None

MOV D,A 57 4 None

MOV D,B 50 4 None

MOV D,C 51 4 None

MOV D,D 52 4 None

MOV D,E 53 4 None

MOV D,H 54 4 None

MOV D,L 55 4 None

MOV D,M 56 7 None

MOV E,A 5F 4 None

MOV E,B 58 4 None

MOV E,C 59 4 None

MOV E,D 5A 4 None

MOV E,E 5B 4 None

MOV E,H 5C 4 None

MOV E,L 5D 4 None

MOV E,M 5E 7 None

MOV H,A 67 4 None

MOV H,B 60 4 None

MOV H,C 61 4 None

MOV H,D 62 4 None

MOV H,E 63 4 None

MOV H,H 64 4 None

MOV H,L 65 4 None

MOV H,M 66 7 None

MOV L,A 6F 4 None

MOV L,B 68 4 None

MOV L,C 69 4 None

MOV L,D 6A 4 None

MOV L,E 6B 4 None

MOV L,H 6C 4 None

MOV L,L 6D 4 None

MOV L,M 6E 7 None
MOV M,A 77 7 None

504 Appendixes

Main Effect

A L

a-mhl

B <- A

B <— B

B <— C

B <— D

B <— E

B <- H

B <-L
B -Mhl

C <- A

C <- B

c
C <- D

C ^E

C <— H

C L

C^Mhl
D A

D B

D

D <- D

D <- E

D <- H
D 4- L

D 4- Mhl

E 4- A

E <— B

E «-C

E 4- D

E «-E

E <— H

E L

E^Mhl
H 4- A

H <— B

H *-C

H D

H ^E

H <- H

H <- L

H^Mhl
L <- A

L <- B

L

L <- D

L <— E

L 4- H

L ^ L

B *— Mhl

MHl A

Instruction T states Main Effect Op Code Flags

MOV M,B

MOV M,C

MOV M,D

MOV M,E

MOV M,H

MOV M,L

MV1 A,byte

MVI B,byte

MVI C,byte

MVI D,byte

MVI E,byte

MVI H,byte

MVI L,byte

MVI M,byte

NOP

ORA A

ORA B

ORA C

ORA D

ORA E

ORA H

ORA L

ORA M

ORI byte

OUT byte

PCHL

POP B

POP D

POP H

RAL

RAR

RC

RET

RIM

RLC

RM

RNC

RNZ

RP

RPE

RPO

RRC

RST 0

RST 1

RST 2

RST 3

RST 4

RST 5

70

71

72

73

74

75

3E

06

0E

16

IE

26

2E

36

00
B7

BO

B1
B2
B3

B4

B5

B6

F6
D3

E9

Cl
D1

El

17

IF

D8

C9

20
07

F8
DO

CO

F0
E8

E0

OF

Cl
CF

D7

DF

E7

EF

7

7

7

7

7

7

7

7

7

7

7

7

7

10
4

4

4

4

4

4

4

4

7

7

10

6
10

10
10

4

4

12/6
10

4

4

12/6
12/6
12/6
12/6
12/6
12/6
4

12

12
12
12
12

12

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

All

All

All

All

All

All

All

All

All

None

None

None

None

None

CY

CY

None

None

None

CY

None

None

None

None

None

None

CY

None

None

None

None

None

None

Mhl

M«l
M„l

m„l

mhi.

A <-

- B
-C

- D

- E

- H

- L

byte

B «- byte

C <— byte

D <— byte

E <— byte

H <- byte

L byte

Mhl byte
Delay

A

A

A

A

A

A

A

A

A

Port byte «

PC HL

B «- Mstk

D <- Mstk

H Mstk

A or A

A OR B

A or C

A OR D

A or E

A or H

A or L

A or Mhl

A or byte

A

POP PSW FI 10 None F «- Mstk, A 4- Mstk - 1

PUSH B C5 12 None Mslk — 1 «— B, Mslk - 2 ^C
PUSH D D5 12 None Mstk - 1 <— D, Mstk - 2 ^ E

PUSH H E5 12 None Mstk - 1 <— H, MSIk - 2 <— L
PUSH PSW F5 12 None Mslk — 1 «— A, Mstk - 2 ^F

Rotate all left

Rotate all right

PC <— return address if CY = 1

PC return address

A <- I

Rotate left with carry

PC

PC

PC

PC

PC

PC

return address if S = 1

return address if CY = 0

return address if Z

return address if S
return address if P
return address if P

Rotate right with carry

PC <- 0000H

PC <- 0008H

PC ^ 001 OH

PC ^0018H

PC <- 0020H

PC <- 0028H

0

0

1

0

Appendixes 5 05

APPENDIX 6. 8085 INSTRUCTIONS (Continued)

Instruction Op Code T states Flags Main Effect

RST 6 F7 12 None

RST 7 FF 12 None

RZ C8 12/6 None

SBB A 9F 4 All

SBB B 98 4 All

SBB C 99 4 All

SBB D 9A 4 All

SBB E 9B 4 All

SBB H 9C 4 All

SBB L 9D 4 All

SBB M 9E 7 All

SBI byte DE 7 All

SHLD address 22 16 None

SIM 30 4 None

SPHL F9 6 None

ST A address 32 13 None

STAX B 02 7 None

STAX D 12 7 None

STC 37 4 CY

SUB A 97 4 All

SUB B 90 4 All

SUB C 91 4 All

SUB D 92 4 All

SUB E 93 4 All

SUB H 94 4 All

SUB L 95 4 All

SUB M 96 7 All

SUI byte D6 7 All

XCHG EB 4 None

XRA A AF 4 All

XRA B A8 4 All

XRA C A9 4 All

XRA D AA 4 All

XRA E AB 4 All

XRA H AC 4 All

XRA L AD 4 All

XRA M AE 7 All

XRI byte EE 7 All

XTHL E3 16 None

PC <- 0030H

PC <- 0038H

PC return address if Z

A <- A - A - CY

A <- A - B - CY

A A - C - CY

A <— A — D - CY

A <- A - E - CY

A <- A - H - CY

A <— A - L - CY

A A - M - CY

A A - byte - CY

^adr+l < H, Madr L

I A

SP HL

Madr <- A

Mbc A

Mde < A

CY <- 1

A <— A - A

A <- A - B

A <— A - C

A <- A - D

A 4- A - E

A <— A - H

A <- A - L

A <— A - M

A A — byte

HL ** DE

A <— A xor A

A <— A xor B
A <— A xor C
A <— A xor D

A <— A xor E

A A xor H

A <— A xor L

A <— A xor M

A <— A xor byte

HL ** stack

1

5 06 Appendixes

APPENDIX 7. MEMORY LOCATIONS:
POWERS OF 2

Power
Address Bits Hexadecimal Decimal of 2

0000 0000 0000 0001 0001H 1 0
0000 0000 0000 0010 0002H 2 1
0000 0000 0000 0100 0004H 4 2
0000 0000 0000 1000 0008H 8 3
0000 0000 0001 0000 001 OH 16 4
0000 0000 0010 0000 0020H 32 5
0000 0000 0100 0000 0040H 64 6
0000 0000 1000 0000 0080H 128 7
0000 0001 0000 0000 0100H 256 8
0000 0010 0000 0000 0200H 512 9
0000 0100 0000 0000 0400H 1,024 10
0000 1000 0000 0000 0800H 2,048 11
0001 0000 0000 0000 1000H 4,096 12
0010 0000 0000 0000 2000H 8,192 13
0100 0000 0000 0000 4000H 16,384 14
1000 0000 0000 0000 8000H 32,768 15

APPENDIX 8. MEMORY LOCATIONS:
16K AND 8K INTERVALS

Address Bits Hexadecimal Decimal Zone

Zone bits = A,5A,4

0000 0000 0000 0000
ooii mi mi nil

0000H
3FFFH

0
16,383

0

0100 0000 0000 0000
oin mi mi mi

4000H
7FFFH

16,384
32,767

1

1000 0000 0000 0000
ion nil nil nil

8000H
BFFFH

32,768
49,151

2

1100 0000 0000 0000
nil nil nil nil

C000H
FFFFH

49,152
65,535

3

Zone bits = AI5A14AI 13

0000 0000 0000 0000
oooi nil nil nil

0000H
1FFFH

0
8,191

0

0010 0000 0000 0000
oon nil nn nil

2000H
3FFFH

8,192
16,383

1

0100 0000 0000 0000
0101 1111 1111 1111

4000H
5FFFH

16,384
24,575

2

0110 0000 0000 0000
0111 1111 1111 1111

6000H
7FFFH

24,576
32,767

3

1000 0000 0000 0000
iooi nil nn nn

8000H
9FFFH

32,768
40,959

4

1010 0000 0000 0000

1011 1111 1111 1111

A000H

BFFFH

40,960

49,151
5

1100 0000 0000 0000

1101 1111 1111 1111

C000H

DFFFH

49,152

57,343
6

1110 0000 0000 0000

1111 1111 1111 1111

E000H

FFFFH

57,344

65,535
7

APPENDIX 9. MEMORY LOCATIONS:
4K INTERVALS

Address Bits Hexadecimal Decimal Zone

Zone bits = A^A^A^A^

0000 0000 0000 0000
0000 1111 1111 1111

0000H

OFFFH

0
4,095

0

0001 0000 0000 0000
oooi nn nn nn

1000H

1FFFH

4,096

8,191
1

0010 0000 0000 0000
ooio nn nn nn

2000H
2FFFH

8,192

12,287
2

0011 0000 0000 0000
oon nn nn nn

3000H

3FFFH

12,288

16,383
3

0100 0000 0000 0000
oioo ini nn nn

4000H

4FFFH

16,384

20,479
4

0101 0000 0000 0000
oioi nil nn nn

5000H

5FFFH

20,480

24,575
5

0110 0000 0000 0000
ono nn ini nn

6000H

6FFFH

24,576

28,671
6

0111 0000 0000 0000
0111 1111 1111 1111

7000H

7FFFH

28,672

32,767
7

1000 0000 0000 0000
1000 1111 1111 1111

8000H

8FFFH

32,768

36,863
8

1001 0000 0000 0000
1001 1111 1111 1111

9000H

9FFFH

36,864

40,959
9

1010 0000 0000 0000
1010 1111 1111 1111

A000H

AFFFH

40,960

45,055
10

1011 0000 0000 0000
1011 1111 1111 1111

B000H

BFFFH

45,056

49,151
11

1100 0000 0000 0000
1100 1111 1111 1111

C000H

CFFFH

49,152

53,247
12

1101 0000 0000 0000
1101 1111 1111 1111

D000H

DFFFH

53,248

57,343
13

1110 0000 0000 0000
1110 1111 1111 1111

E000H

EFFFH

57,344

61,439
14

1111 0000 0000 0000
nil nn nn nn

F000H

FFFFH

61,440

65,535
15

Appendixes 507

APPENDIX 10. MEMORY LOCATIONS: 2K INTERVALS

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone

Zone bits = A, 5-^ 14 A] 3 A j 2 A j |

0000 0000 0000 0000

oooooni mi mi

0000H
07FFH

0

2,047
0

1000 0000 0000 0000

iooooni mi nn

8000H
87FFH

32,768
34,815

16

0000 1000 0000 0000

0000 1111 1111 1111

0800H
OFFFH

2,048
4,095

1
1000 1000 0000 0000

1000 1111 1111 1111

8800H
8FFFH

34,816
36,863

17

0001 0000 0000 0000

oooi oni nil nil

1000H
17FFH

4,096
6,143

2
1001 0000 0000 0000

iooi oni nil nn

9000H
97FFH

36,864
38,911

18

0001 1000 0000 0000

oooi nil nil nil

1800H
1FFFH

6,144
8,191

3
1001 1000 0000 0000

1001 1111 1111 1111

9800H
9FFFH

38,912
40,959

19

0010 0000 0000 0000

ooiooni nil nil

2000H
27FFH

8,192
10,239

4
1010 0000 0000 0000

10100111 1111 1111

A000H
A7FFH

40,960
43,007

20

0010 1000 0000 0000

ooio nil nil nil

2800H
2FFFH

10,240
12,287

5
1010 1000 0000 0000

1010 1111 1111 1111

A800H
AFFFH

43,008
45,055

21

0011 0000 0000 0000

oon oni nil nil

3000H
37FFH

12,288
14,335

6
1011 0000 0000 0000

ion oni nn nn

B000H
B7FFH

45,056
47,103

22

0011 1000 0000 0000

oon nil nil nn

3800H
3FFFH

14,336
16,383

7
1011 1000 0000 0000

ion nn nn nn

B800H

BFFFH
47,104

49,151
23

0100 0000 0000 0000

0100 0111 1111 1111

4000H
47FFH

16,384
18,431

8
1100 0000 0000 0000

1100 0111 1111 1111

C000H
C7FFH

49,152
51,199

24

0100 1000 0000 0000

0100 1111 1111 1111

4800H
4FFFH

18,432
20,479

9
1100 1000 0000 0000

1100 1111 1111 1111

C800H
CFFFH

51,200
53,247

25

0101 0000 0000 0000

oioi oni nn nn

5000H
57FFH

20,480
22,527

10
1101 0000 0000 0000

1101 0111 1111 1111

D000H
D7FFH

53,248
55,295

26

0101 1000 0000 0000

0101 1111 1111 1111

5800H
5FFFH

22,538
24,575

11
1101 1000 0000 0000

noi nn nn nn

D800H
DFFFH

55,296
57,343

27

0110 0000 0000 0000

01100111 1111 1111

6000H
67FFH

24,576
26,623

12
1110 0000 0000 0000

11100111 1111 1111

E000H
E7FFH

57,344
59,391

28

0110 1000 0000 0000

0110 1111 1111 1111

6800H
6FFFH

26,624
28,671

13
1110 1000 0000 0000

1110 1111 1111 1111

E800H
EFFFH

59,392
61,439

29

0111 0000 0000 0000

0111 0111 1111 1111

7000H
77FFH

28,672
30,719

14
1111 0000 0000 0000

nn oni nn nn

F000H
F7FFH

61,440
63,487

30

0111 1000 0000 0000

0111 1111 1111 1111

7800H
7FFFH

30,720
32,767

15
1111 1000 0000 0000

nn nn nn nn

F800H
FFFFH

63,488
65,535

31

508 Appendixes

APPENDIX 11. MEMORY LOCATIONS: IK INTERVALS

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone

Zone bits = A, 5A14A| 3A|2A| j A jo

0000 0000 0000 0000
ooooooii mi mi

OOOOH
03FFH

0
1,023

0
0101 oooo oooo oooo
oioi oon nn nn

5000H
53FFH

20,480
21,503

20

0000 0100 0000 0000
oooooni nil nil

0400H
07FFH

1,024
2,047

1
0101 oioo oooo oooo
0101 0111 1111 1111

5400H
57FFH

21,504
22,527

21

0000 1000 oooo oooo
oooo ion nil nn

0800H
OBFFH

2,048
3,071

2
0101 1000 0000 0000
0101 1011 1111 1111

5800H
5BFFH

22,528
23,551

22

0000 1100 oooo oooo
0000 1111 1111 1111

OCOOH
OFFFH

3,072
4,095

3
0101 1100 0000 0000
oioi nn nn nn

5C00H
5FFFH

23,552
24,575

23

0001 oooo oooo oooo
0001 0011 1111 1111

1000H
13FFH

4,096
5,119

4
0110 oooo oooo oooo
onooon nn nn

6000H
63FFH

24,576
25,599

24

0001 0100 oooo oooo
0001 0111 1111 1111

1400H
17FFH

5,120
6,143

5
0110 0100 oooo oooo
onooin nn nn

6400H
67FFH

25,600
26,623

25

0001 1000 0000 0000
0001 1011 1111 1111

1800H
1BFFH

6,144
7,167

6
0110 1000 oooo oooo
ono ion nn nn

6800H
6BFFH

26,624
27,647

26

0001 1100 0000 0000
0001 1111 1111 1111

1C00H
1FFFH

7,168
8,191

7
0110 1100 oooo oooo
ono nn nn nn

6C00H
6FFFH

27,648
28,671

27

0010 oooo oooo oooo
0010 0011 1111 1111

2000H
23FFH

8,192
9,215

8
0111 oooo oooo oooo
oni oon nn nn

7000H
73FFH

28,672
29,695

28

0010 0100 oooo oooo
0010 0111 1111 1111

2400H
27FFH

9,216
10,239

9
0111 oioo oooo oooo
oni oni nn nn

7400H
77FFH

29,696
30,719

29

0010 1000 oooo oooo
0010 1011 1111 1111

2800H
2BFFH

10,240
11,263

10
0111 1000 0000 0000
oni ion mi nn

7800H
7BFFH

30,720
31,743

30

0010 1100 oooo oooo
0010 1111 1111 1111

2C00H
2FFFH

11,264
12,287

11
0111 1100 0000 0000
oni nil nn nil

7C00H
7FFFH

31,744
32,767

31

0011 oooo oooo oooo
0011 0011 1111 1111

3000H

33FFH
12,288
13,311

12
1000 oooo oooo oooo
looooon nn nn

8000H
83FFH

32,768
33,791

32

0011 0100 oooo oooo
oon oni nn nil

3400H
37FFH

13,312
14,335

13
1000 oioo oooo oooo
1000 0111 1111 1111

8400H
87FFH

33,792
34,815

33

0011 1000 0000 0000
oon ion nn nn

3800H
3BFFH

14,336
15,359

14
1000 1000 oooo oooo
1000 1011 1111 1111

8800H
8BFFH

34,816
35,839

34

0011 1100 0000 0000
oon nn nn nn

3C00H
3FFFH

15,360
16,383

15
1000 1100 oooo oooo
1000 1111 1111 1111

8C00H
8FFFH

35,840
36,863

35

0100 oooo oooo oooo
oioooon nn nn

4000H
43FFH

16,384
17,407

16
1001 oooo oooo oooo
iooi oon nn nn

9000H
93FFH

36,864
37,887

36

0100 0100 oooo oooo
0100 0111 1111 1111

4400H
47FFH

17,408
18,431

17
1001 0100 oooo oooo
1001 0111 1111 1111

9400H
97FFH

37,888
38,911

37

0100 1000 oooo oooo
0100 1011 1111 1111

4800H
4BFFH

18,432
19,455

18
1001 1000 0000 0000
1001 1011 1111 1111

9800H
9BFFH

38,912
39,935

38

0100 1100 oooo oooo
oioo nn nn nn

4C00H
4FFFH

19,456
20,479

19
1001 1100 0000 0000
1001 1111 1111 1111

9C00H
9FFFH

39,936
40,959

39

Appendixes 509

APPENDIX 11. MEMORY LOCATIONS: IK INTERVALS (Continued)

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone

Zone bits = Aj 5A14A13A12A1] A10

1010 0000 0000 0000
ioioooii mi mi

A000H
A3FFH

40,960
41,983

40
1101 0000 0000 0000
1101 0011 1111 1111

D000H
D3FFH

53,248
54,271

52

1010 0100 0000 0000
loiooin nil nil

A400H
A7FFH

41,984
43,007

41
1101 0100 0000 0000
noi oni nil nn

D400H
D7FFH

54,272
55,295

53

1010 1000 0000 0000
ioio ion nil nil

A800H
ABFFH

43,008
44,031

42
1101 1000 0000 0000
noi ion nil nn

D800H
DBFFH

55,296
56,319

54

1010 1100 0000 0000
ioio nil nil nil

ACOOH
AFFFH

44,032
45,055

43
1101 1100 0000 0000
1101 1111 1111 1111

DCOOH
DFFFH

56,320
57,343

55

1011 0000 0000 0000
ion ooii mi mi

B000H
B3FFH

45,056
46,079

44
1110 0000 0000 0000
1110 0011 1111 1111

E000H
E3FFH

57,344
58,367

56

1011 0100 0000 0000
ion oni nil nil

B400H
B7FFH

46,080
47,103

45
1110 0100 0000 0000
liiooin nn ini

E400H
E7FFH

58,368
59,391

57

1011 1000 0000 0000
ion ion mi nil

B800H
BBFFH

47,104
48,127

46
1110 1000 0000 0000
1110 1011 1111 1111

E800H
EBFFH

59,392
60,415

58

1011 1100 0000 0000
ion nil nil nil

BCOOH
BFFFH

48,128
49,151

47
1110 1100 0000 0000
1110 1111 1111 1111

ECOOH
EFFFH

60,416
61,439

59

1100 0000 0000 0000
noooon mi nil

C000H
C3FFH

49,152
50,175

48
1111 0000 0000 0000
nn oon nn nn

F000H
F3FFH

61,440
62,463

60

1100 0100 0000 0000
noooin nn nil

C400H
C7FFH

50,176
51,199

49
n n oioo oooo oooo
1111 0111 1111 1111

F400H
F7FFH

62,464
63,487

61

1100 1000 0000 0000
1100 1011 1111 1111

C800H
CBFFH

51,200
52,223

50
1111 1000 0000 0000
nil ion nn ini

F800H
FBFFH

63,488
64,511

62

1100 1100 0000 0000
1100 1111 1111 1111

CCOOH
CFFFH

52,224
53,247

51
1111 noo oooo oooo
nil nn nil nn

FCOOH
FFFFH

64,512
65,535

63

510 Appendixes

APPENDIX 12. PROGRAMMING MODELS

0000

0001

A 0002
d
d 0003

r 0004
e
s 0005

s 0006

s 0007

0008

0009

Fig. A12-1

0000

0001

A 0002
d
d 0003

r 0004
e
s 0005

s 0006

I 0007

0008

0009

Fig. A12-2

Accumulator
hh

X Register
hh

Y Register j
hh

1 Stack pointer
hh

PCh—-Program
hh

counter—PCL
hh

Status register
N V —BDIZC
bb — bbbbb

h | h

6502 programming model.

Accumulator A
hh

Accumulator B
hh

XH—X Register—XL
hh | hh

SPH—Stack pointer—SPL
hh | hh

PCH—Program
hh

i counter—PCL
hh

Status register
1 1 H1N ZVC
1 1 bbbbbb

h h

6800/6808 programming model.

Memory

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

Accumulator
hh

Register B
hh

Register C
hh

Register D
hh

Register E
hh

.

Register H
hh

_i

Register L
hh

i___

SPh—Stack pointer—SPL
hh | hh

PCH—Program
hh

counter—PCL
hh

Status register
SZ — A— P — C
bb—b—b —b

h | h

Fig. A12-3 8085/Z80 (8085/8080 subset) programming model.

Memory

A

d

d

r

e

s

s

e

s

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

010A

010B

010C

010D

010E

010F

0110

0111

0112

0113

0114

0115

0116

0117

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

— Accumulator AX —
AH j AL
hh D 1 dv hh -Base BX-
BH
hh

CH
hh

- Count CX-
i
i

- Data DX -

BL
hh

CL
hh

DH
hh

DL
hh

Source index
hhhh

Destination index
hhhh

Stack pointer
hhhh

Base pointer
hhhh

Code segment
hhhh

Data segment
hhhh

Extra segment
hhhh

Stack segment
hhhh

Instruction pointer
hhhh

--”22^7-r i c new yb 8085-like

-0 D 1 T
-b b b b

h | h

S Z — A— P — C
b b — b — b — b

h | h

Fig. A12-4 8088/8086 programming model.

Appendixes 511

Answers to Odd-Numbered Problems
CHAP. 1. 1-1. a. 1 b. 2 c. 2Vi 1-3. a. 10 b. 2 c. 5
d. 16 1-5. 1,024, 4,096, 8K 1-7. 1010 1100, 172 1-9.
201 1-11.11000111,199 1-13,111000 1-15.10010110
1- 17. F52B, F52C, F52D, F52E, F52F, F530 1-19.
a. 1111 1111 b. 1010 1011 1100 c. 1100 1101 0100 0010
d. 1111001100101001 1-21.0011 1110,0000 1110, 1101
0011, 0010 0000, 0111 0110 1-23. a. 4,095 b. 16,383
c. 32,740 d. 46,040 1-25. 16,384, 16K 1-27. 0000,
FFFF 1-29. a. EE b. 1D7B c. 3BFF d. B8B5 1-31.
a. 87 b. 2,043 c. 597,266 1-33. 100 1100, 100 1001, 101
'O0TT, 101 0100

CHAP. 2. 2-1 One or more, one 2-3. Nonin¬
verter 2-5.64,000000 2-7.3,9,C,F 2-9.128,1111111
2- 11.0,59 2-13. Y = A + B, low 2-15.8 2-17. 0, Y
= A + B + C, 000 to 110, 111 2-19. Y = ABC, 0 2-
21. Y = AB + CD, 16, 0000, 0001, 0010, 0100, 0101,
0110, 1000, 1001, 1010 2-23. a. 0000 b. 0001 c. JIM
d. OPR 2-25. a. Positive b. Negative c. Positive d. Negative.

CHAP. 3. 3-1. High; low; inverter 3-3. None, Z5, Z6
3- 5. Q is 1, Q is 0 3-7. Change the output nor gate of
Fig. 3-28a to a bubbled and gate; all bubbles cancel leaving
the simplified circuit of Fig. 3-28b. 3-9. 0, 1 3-11.512
3-13. 16; 0, 1, 1, 0 3-15. I, 0, inverter 3-17. a. None
b. Z7 c. Z2 d. X2 and Y2 3-19. 0, 1 3-21. 512 3-23.
Low, high 3-25. a. 0 b. 1 c. 1 d. 1 3-27. a. 1,1010b.
01001 c. 11111 d. 10010 3-29. Remove the inverter
3-31. a. CARRY = 0, SUM = 0 b. 0, 1 c. 0, 1 d. 1, 0
3-33. a. 0011 1100 b. 0101 0000 1100 c. 0001 1110 0101
1100 d. 1111 0000 1101 0010

CHAP. 4. 4-1. 1.075 mA, 1.387 mA 4-3. 5 4-5. All;
b, c, f, g

5-5.

aabbccdd

CD CD CD CD

AB

AB

AB

AB

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

5-9.
CD CD CD CD

CHAP. 5. 5-1. A BCD, ABCD, ABCD

5-3.

AABBCCDD

t>-

513

5-11. 5-15.

CD CD CD CD

5-13.
CD CD CD CD

AABBCCDD

CD CD CD CD

AABBCCDD

CHAP. 6. 6-1. a. 0001 1000, 18H b. 0010 0100, 24H
c. 0010 1010, 2AH d. 0110 0011, 63H 6-3. a. 7BH
b. 78H c. A8H d. D1H 6-5. a. +30 b. -7 c. -28
d. +49 6-7. a. F9H b. 01H c. 03H d. 1FH 6-9.
a. 1110 1101, EDH b. 1101 0000, DOH c. 0010 0101,
25H d. 1101 1111, DFH 6-11. 9BH, DDH

CHAP. 7. 7-1. a. C b. G 7-3. a. 0000 b. 1001 7-5.3
MHz; the output frequency is half the input frequency
7- 7. 0 = 0, Y = 1; Q = 1, Y = CLK

CHAP. 8. 8-1. a. 0001 0111 b. 1000 1101 8-3. 385 D
8- 5. 4 (jls 8-7. 6.4 8-9. 65,535 8-11. 1 pus, 6 |jls

8-13. 1.6 jxs, 0.2 |uls 8-15. Two answers: 7490 (divide by
10) and 7492 (divide by 6), or 7490 (divide by 5) and 7492
(divide by 12) 8-17. 136 8-19. a. 0, 1 b. 1, 1 c. 0

CHAP. 9. 9-1. 16,384 9-3. 12

Address Data

DDDD UDDD UDDU
DDDU DUUU UUDD
DDUD DDUU DUUD
DDUU DDUD DDUU
DUDD DDDU DUUU
DUDU DUDU UUUU
DUUD UUUD UUDU
DUUU UUUU UDDD

514 Answers to Odd-Numbered Problems

9-7.63 9-9. BFFFH; 49,151 9-11. a. 47, 212, 207, 110,
83, 122 b. 36,357

CHAP. 10.

10-3.

10-1. Address Mnemonic

OH LDA DH
1H ADD EH
2H SUB FH
3H OUT

4H HLT
DH OSH
EH 04H
FH 06H

Address Mnemonic

OH LDA BH
1H ADD CH
2H SUB DH
3H ADD EH
4H SUB FH
5H HLT
BH 08H
CH 04H
DH 03H
EH 05 H
FH 02H

10- 7. LDA: 1A3H or 0001 1010 0011, 2C3H or
0010 1100 0011, 3E3H or 0011 1110 0011; SUB: 1A3H
or 0001 1010 0011, 2E1H or 0010 1110 0001, 3CFH or
0011 1100 1111 10-9. a. Negative edge; CLK is on its
rising edge b. High c. Low d. High 10-11. a. Low b. Low
c. High

CHAP. 11. 11-1. Mnemonic

MVI A,64H
MVI B,96H
MVI C,C8H
HLT

11- 3.
Mnemonic

MVI A,32H
STA 4000H
MVI A,33H
STA 4001H
MVI A,34H
STA 4002H
HLT

11-5. Mnemonic

10-5.

ri T2 r3' T4 T5

MVI A,44H
MVI B,22H
ADD B
STA 5000H
HLT

11-7. a. 120 b. 119 c. Change the first instruction to MVI
C,D2H

11-9. Mnemonic

MVI A,00H
MVIB,19H
MVI C,07H
CALL F006H
STA 2000H
HLT

11-11. Label Mnemonic

IN 01H
ANI 01H
JNZ ODD
MVI A,45H
JMP DONE

ODD: MVI A,4FH
DONE: MVI C,08H
AGAIN: OUT 04H

RAR
DCR C
JNZ AGAIN
HLT

Answers to Odd-Numbered Problems 515

11-13.

11-15.

11-17.

11-19.

Address Contents

2000H DBH
2001H 02H
2002H E6H
2003H 01H
2004H CAH
2005H 00H
2006H 20H
2007 H DBH
2008H 01H
2009H 32H
200AH 00H
200BH 40H
200CH 76H

Address Contents

2000H 0EH

2001H 23H
2002H 0DH

2003H C2H
2004H 02H
2005H 20H
2006H C9H

Label Mnemonic

MVI A,05H
LOOP: CALL F020H

DCR A
JNZ LOOP
RET

Address Contents

E100H 3EH
E101H 05H
E102H CDH
E103H 20 H
E104H F0H
E105H 3DH
E106H C2H
E107H 02H
E108H E1H
E109H C9H

Address Contents

F080H 3EH
F081H 06 H
F082H 32H
F083H 93H
F084H F0H
F085H CDH
F086H 60H
F087H F0H
F088H 3AH
F089H 93H
F08AH FOH

11-21.

F08BH 3DH

F08CH 32H
F08DH 93H
F08EH FOH
F08FH C2H
F090H 85H

F091H FOH
F092H C9H

Address Contents

2000H D3H

2001H 04H
2002H 0EH
2003H 42H
2004H 0DH
2005 H C2H

2006H 04H
2007H 20H

2008H 2FH
2009H 00H
200AH C3H
200BH 00 H
200CH 20H

CHAP. 12. 12-1. Mnemonic

MVI A,00H

MVI B,01H
MVI C,59H
MVI D,02H
MVI E,F1H
ADD C
ADD E
MOV L,A
MVI A,00H
ADC B
ADD D

MOV H,A
HLT

An alternative solution is

Mnemonic

MVI A,F1H
ADI 59H
MOV L,A
MVI A,02H
ACI01H
MOV H,A
HLT

12-3. Label Mnemonic

LXI H.4FFFH
LOOP: INX H

MOV B,M
MOV A,H

516 Answers to Odd-Numbered Problems

12-5.

12-7.

ADI 40H
MOV H,A
MOV M,B
SUI 40H
MOV H,A
CPI 53H
JNZ LOOP
MOV A,L
CPI FFH
JNZ LOOP
HLT

Label Mnemonic

LXI SP.EOOOH
MVI A,00H
MVI B,FFH

LOOP: INR A
OUT 22H
CALL F010H
DCR B
JNZ LOOP
HLT

12-9. Label Mnemonic

LXI SP,E000H

LXI H,4FFFH
LOOP: INX H

MOV A,M
MOV B,08H

AGAIN: OUT 22H
CALL F010H
RAR
DCR B
JNZ AGAIN
MOV A,L
CPI FFH
JNZ LOOP
HLT

CHAP. 14. 14-1. How you would accomplish your task
without a computer. 14-3. Branch. 14-5. The subroutine
(part of the program) needs to be written only once but can
then be used many times. 14-7. Formula translation.
14-9. Creating a language which would encourage pro¬
grammers to write by using what are considered “correct”
programming practices.

Label Mnemonic

LXI SP.EOOOH
LXI H,5FFFH

LOOP: INX H
MOV A,M
OUT 22H
CALL F020H
MOV A,H
CPI 61H
JNZ LOOP
MOV A,L
CPI FFH
JNZ LOOP
HLT

CHAP. 15. 15-1. By its address. 15-3. 1,048,576.
15-5. The accumulator. 15-7. Registers are faster.
15-9. The status register (or condition code register or flag
register). 15-11. The carry flag. 15-13. No. 15-15. DE.
15-17. C581. 15-19. 8 bits. 15-21. 256 bytes. 15-23.
16 bits. 15-25. Nothing. They are always set. 15-27.
None. 15-29. It is named AX and is 16 bits wide with an
8-bit upper half (called AH) and an 8-bit lower half (called
AL). 15-31. The instruction pointer. 15-33. 65,536 bytes.

CHAP. 16. 16-1. Nothing. 16-3. The original number
in the accumulator is still there. 16-5. 00. 16-7. It copies
the contents of the Y register to the accumulator. 16-9.
STY. 16-11.01. 16-13.16. 16-15. CleaR accumulator
A.

16-17.

Addr Obj Assembler Comment

0000 C6 LDAB #$89 Load the number immediately following the LDAB
op code (C6) into accumulator B (89) 0001 89

0002 17 TBA Transfer (copy) the contents of B to A

0003 3E WAI Stop

16-19. 76. 16-21. It copies the contents of register C to
register B. 16-23. STA aaaa [LD (aaaa),A]- 16-25.
DEBUG. 16-27. Register or memory. 16-29. DL. 16-
31. The contents of memory location 4456,6. 16-33. It
stands for assemble and it translates 8088/8086 mnemonics
into machine code. 16-35. It executes one instruction and
then displays the current values of all registers and stops.

Answers to Odd-Numbered Problems 517

16-37.
-a
9522:0100 mov BL, AT
9522:dims mov CL, BL
9522:0104

-u 1DD 1D3
9522:01DD B3S9 MOV BL, 63
9522:0102 66D9 MOV CL, BL

-r
ax=oooo bx=oooo cx=cmcm DX=0000 SP-ADDE BP=0000 SI=0000 DI=0000

DS=9S22 £3=9522 SS=q525 CS=9522 IP=D1D 0 NV UP El PL NZ NA PO NC

9522:0100 B369 MOV BL, AT

-t
AX=0000 BX=0089 cx=oaaa DX=0000 SP—ADDE BP=0000 si=ooao DI=00D0

DS=9522 ES=9522 SS=^S2B CS=9522 IP=D1D2 NV UP El PL NZ NA PO NC

9522:0102 flflD9 MOV CL, BL

-t
AX=0000 BX=00fl9 CX=0069 DX=0000 SP=ADDE BP=0000 SI=0000 DI=0000

DS=9522 ES=9522 SS=9S22 CS=9S22 NV UP El PL NZ NA PO NC

Note: Answers to Chapters 18 to 23 are in the teacher’s manual.

518 Answers to Odd-Numbered Problems

Index
Note: For entries marked with (#), refer also to specific families listed under “Microprocessor families.”

Absolute accuracy, 488
Absolute addressing, 265, 333-334
Access time, 132-133
Accumulator. 142, 158, 174, 176, 184, 226,

230, 232, 233, 235 (See also ALU)
Accumulator addressing, 264-268
Accuracy, 488^189
Active low state, 98
ADD instruction, 143, 148-150, 178, 197-198
Adder-subtracter, 85-87, 142, 158
Addition, 79-87, 199, 271-272, 281-282,

284-287 , 290-292 , 294, 298-300
Addition-with-carry, 274, 276-277
Address, 12, 131, 133, 135-137, 330 (See also

Addressing mode)
Address bus, 225
Address field, 145
Address line, 131
Address mapping, 183
Address state, 147 (See also T state)
#Addressing mode, 224-226

absolute, 265, 333-334
base plus index, 340
base relative plus index, 340-341
direct, 187, 264-268
extended, 266
immediate, 187, 244, 247, 264-268
implied, 188, 264-267
indexed, 332-336
indexed indirect, 335
indirect, 205, 331,333, 336, 338-340
indirect indexed, 334-335
paging, 263-264
program direct, 268
program indirect, 340
program relative, 337-338
range, 225
register (accumulator), 188, 264—268
register indirect, 336, 338-340
register relative, 337
relative, 330, 332-333, 335, 337-338
zero page, 333-334

Alphanumerics, 14
ALU, 7, 79, 175
American Standard Code for Information Ex¬

change, 14-15, 271
ANA instruction, 184
Analog interface, 485
Analog-to-digital (A/D) converter, 485, 491-

493
and gate, 22-23, 33-34, 49, 54
and instruction, 305-306, 308-310, 312-314
and operations, 65-66
and sign, 24-25
AND-OR gate, 55
and-or-invert gate, 55-57
AN I instruction, 184
#Architecture, 224-226

of SAP-1, 140-142
of SAP-2, 173-176
of SAP-3, 195-196

#Arithmetic instructions, 271-276
Arithmetic-logic unit, 7, 79, 175
ASCII code, 14-15, 271
Assembler, 181, 222, 354-355, 357, 358 (See

also Machine language)
Assembly language, 145, 221-222, 337
Associative law, 64
Asynchronous operation, 142 (See also Clock¬

ing)

B register, 142, 158, 175
Base, 6-7
Base plus index addressing, 340
Base register, 340
Base relative plus index addressing, 340-341
BASIC, 221
BCD number, 13-14, 270-271
BCD-to-decimal conversion, 13-14
Bidirectional register, 173
Binary adder, 82-83
Binary adder-subtracter, 85-87, 142, 158
Binary addition, 79-87 (See also Addition)
Binary code, 2-3
Binary digit, 4
Binary number, 2-3, 6-15, 270, 271, 274
Binary odometer, 1-2, 84
Binary programming (see Machine language)
Binary subtraction, 80-81,85-87 (See also

Subtraction)
Binary weight, 6
Binary word, 20
Binary-coded-decimal number, 13-14, 270-271
Binary-to-decimal conversion, 3, 6-7
Binary-to-decimal decoder, 27
Binary-to-hexadecimal conversion, 10-11, 12
Bipolar families, 48
Bit, 4
Bit comparison, 42
BIT instruction, 309-310, 311
Bit position, 271
Bit-serial form (see Serial data stream; Serial

loading)
Boldface notation, 42
Boolean algebra, 19, 23-27, 64-70
Boolean function generator, 58-60
Borrow, 196, 275-276, 281
#Branch instruction, 179-180, 219, 342-343
Branch-back instruction (see Return instruction)
Breakpoint, 294
Broadside loading, 110
Bubble memory, 135
Bubbled and gate, 33-34
Bubbled or gate, 36
Buffer, 54 (See also Buffer register)
Buffer register, 54, 106-107, 110, 122
Bus, 69, 122
Bus transient, 152
Bus-organized computer, 121, 122-125, 152
Byte, 6, 189-193

defined, 345, 348, 351

C language, 221
C register, 175
CALL instruction, 180, 182, 210-211
Carry flag, 196-197, 272, 274-277, 281, 312
Cell, 134
Central processing unit (see CPU)
Chip, 4, 49
Chip enable, 134
Chunking, 11
Clear, 97
Clear-start debouncer, 158-159
Clock, 93, 158
Clock generator, 102-103
Clocking:

edge-triggered, 96-100
level, 93-97, 102
master-slave, 100-103
positive and negative, 94

CM A instruction, 184
CMOS, 48
COBOL, 221
Code, binary, 2-3
Code segment register, 268
Comment, 181-182
Commutative law, 64
#Compare and test instruction, 343
Compatibility, 51-52
Complement, 19
Complement instruction, 311, 314
Complementary MOSFETs, 48
Computer, 7

architecture, 224-226
bus-organized, 121, 122-125, 152
(See also Microprocessor)

CON (see Control unit)
Condition code register, 227-228, 232-233

Conditional jump (branching), 179, 180, 187,
342-343

Contact bounce, 92-93
Content, 131, 224-225
Control input, 90

Control matrix, 36-37, 161
Control ROM, 163
Control routine, 148-152
Control unit, 7, 146-152
Controlled buffer register, 106-107
Controlled inverter, 41-42

Controlled shift register, 108-110

Controller-sequencer, 141-142, 161, 174
Conversion, 331

analog-to-digital, 485, 491-493
BCD-to-decimal, 13-14
binary-to-decimal, 6-7
binary-to-hexadecimal, 10-11,494-496
decimal-to-binary, 8
decimal-to-hexadecimal, 13
digital-to-analog, 485, 486, 489
hexadecimal-to-binary, 10-11,270
hexadecimal-to-decimal, 11-13

Core RAM, 133

Index 519

Counter:

down, 118
mod-10, 116-118
presettable, 118-120, 162
program. 113, 140, 147, 153, 173, 227,

230-232, 234, 330
programmable modulus, 120
ring, 114—116, 146-147, 159-161
ripple, 110-113
software, 181
synchronous, 113-114
TTL, 120
up-down, 118

Counter method of A/D conversion, 491-492
#CPU, 7,213 (See also ALU; Control unit)
CPU register, 195-196
Current sink, 52
Current steering, 491

D flip-flop, 96-98
D latch, 95-96
DAD instruction, 204—205
Data, 3
Data bus, 225
Data processor, 3
Data segment, 338
Data selector, 58-59
Data settling (see Bus transient;

Settling time)
#Data transfer instructions, 241-260
Date pointer, 205
De Morgan’s theorem, 33-37, 66
Debouncer, 92-93, 158-159
DEBUG, 253, 255-260, 293-302, 337-340
Decade counter, 118, 120
Decimal addition, 284-285, 290-292, 298-300
Decimal adjust, 280, 284-285, 290, 298
Decimal flag, 279-281
Decimal number, 84—85
Decimal odometer, 1
Decimal weight, 6
Decimal-to-binary conversion, 8, 21-22
Decimal-to-hexadecimal conversion, 13
Decision-making element, 25
Decoder:

binary-to-decimal, 27
binary-to-hexadecimal, 54
decimal-to-BCD, 54
instruction, 125,. 158-159
seven-segment, 54

#Decrement instruction, 178, 180-181,200,
205, 343

Define byte, 345, 348, 351
Delay, 189-190
Digit, 1
Digital-to-analog (D/A) converter, 485, 486-489
Diode ROM, 130-131
Diode-transistor logic, 48
Direct addressing, 187, 264—268
Direct reset, 97
Direct set, 97
Disassembler, 222
Distributive law, 65
Division. 276, 302
Don’t care condition, 75-77, 95
Do-nothing state (see NOP instruction)
Double-byte addition, 199
Double-byte subtraction, 202
Double-dabble, 8
Double inversion, 34, 66
Double-precision number, 274
Down counter, 118
Driver, 54
DTL, 48

Duality theorem, 66-67
Dynamic RAM, 133-134

ECL, 48
Edge triggering, 96-100
Effective address, 330
8080/8085/Z80 family, 214, 417-422, 502-506

addressing, 266-267, 336, 409
architecture, 233-235, 329
arithmetic instructions, 286-287, 292-

293,391-395, 411-412, 416
conditional jump (branch)

instructions, 351-352, 402, 413-414,

417
CPU control instructions, 381,410, 415
data transfer instructions, 249-253, 381-

390, 410-411,415-416
flag instructions, 287-292, 390-391,408-

409,411,416
increment and decrement instructions,

398-400, 413, 416-417
input-output instructions, 408, 415, 417
interrupt instructions, 407-408, 415, 417
logical instructions, 395-398, 412, 416
programming, 511
rotate and shift instructions, 323-324,

398,412-413,416
stack instructions, 406-407, 415, 417
subroutine instructions, 370-373, 402-

406,414-415,417
test and compare instructions, 352, 401,

413.417
unconditional jump instructions, 350-351,

400.413.417
8086/8088 family, 214, 469-470

addressing, 267-269, 336-341
architecture, 235-237, 329
arithmetic instructions, 293-294, 300-

302, 447-450, 466
conditional jump (branch) instructions,

357-358, 456-459, 467
CPU control instructions, 445, 465
data transfer instructions, 253-260, 445-

446, 466
flag instructions, 294—299, 446-447, 466
increment and decrement instructions,

455, 467
input-output instructions, 462-463, 468
interrupt instructions, 461-462, 468
logical instructions, 314-317, 450-451,466
loop instructions, 464—465, 468
programming, 511
rotate and shift instructions, 324-327,

451-455, 467
stack instructions, 460-461,468
string instructions, 463-464, 468
subroutine instructions, 373-377, 459-

460, 468
test and compare instructions, 358, 456,467
unconditional jump instructions, 355-357,

455,467
Emitter-coupled logic, 48
ENABLE input, 23
Encoder, 21-22, 54
End-of-conversion signal, 492
Erasable PROM (EPROM), 132, 224
Even parity, 39, 234
exclusive-NOR gate, 42
exclusive-OR gate, 37-42, 307-309
Execution cycle, 148-152
Expandable gate, 56-57
Expander gate, 56-57
Extended addressing, 266
Extended register, 204—205

Factoring, 69, 70
Fanout, 52-53
Fetch cycle, 148, 150, 151, 227
Fetch microroutine, 152, 161
Firmware, 243, 247, 251
First-in-last-out (FILO) structure, 228, 363
#Flag instructions, 175, 175, 179, 180-181,

187, 227-228, 272-276, 310

Flip-flop, 90-103
Floating TTL input, 50-51
Flowchart, 217, 218-220
FORTH, 221
FORTRAN, 221
Full adder, 81-82
Function tables, 499—500
Fundamental product, 67

Gate:
and, 22-23, 33-34, 49,54
AND-OR, 55
and-or-invert, 55-57
expandable, 56-57
nand, 34-36, 49, 53-55, 118-120
nor, 32-34, 49, 53-54
not, 19-20
OR, 20-22, 36,54
standard TTL, 49
XNOR, 42
xor, 37-42, 49

General-purpose register, 227, 230, 232-236

Half-adder, 81
Half-carry flag, 272
Halt instruction, 143, 151, 185, 241
Hand*assembly, 178, 183, 244, 248, 251
Handshaking, 176, 186
Hardware, 3-4, 213
Hardwired control, 161
Hex inverter, 20
Hexadecimal address, 133, 136-137
Hexadecimal number, 9-13, 14, 270
Hexadecimal-to-binary conversion, 10-11,270
Hexadecimal-to-decimal conversion. 11-13

Hex-dabble, 13
High-level language, 221
High-speed TTL, 50
Hold time, 98

Immediate addressing, 187, 244, 247, 264-268
Immediate instruction, 176, 184, 201-202,

204, 206
Implied addressing, 188, 264—267
IN instruction, 185
Inactive state, 90
inclusive or (see or gate)
#Increment instruction, 147, 178, 180-181,

199-200, 205, 343
Index register, 227, 231, 232, 234, 236, 332, 340

Indexed addressing, 332, 333-336
Indexed indirect addressing, 335
Indirect addressing, 205, 331, 333, 336, 340
Indirect indexed addressing, 334-335
Indirect instruction, 205-207
Inherent addressing, 264-267
Input gate lead, 69
Input-output unit, 7
Input register, 173
Input unit, 7
Instruction cycle, 151 (See also

Machine cycle)
Instruction decoder, 125, 158-159
Instruction field, 145
Instruction pointer, 205, 236, 330
Instruction register, 125, 141, 153, 174

520 Index

Instruction set, 142-144, 240
Integrated circuit, 4, 48
Interface circuit (see Analog interface)
Inversion:

bubble, 19-20
double, 34, 66
sign, 19, 23-24
symbol, 19-20

Inverter, 19-20, 41-42
I/O unit, 7
Italic notation, 25

JK flip-flop, 99-103
JK master-slave flip-flop, 100-103
Jump flag, 187
#Jump instruction, 173, 179-180, 182, 183,

202-204, 342-343

K- (kilo-), 7
K input, 99-100
Karnaugh maps, 70-77

Label, 181-182
Ladder, 490-491
Large-scale integration, 48
Latch, 90-96
LDA instruction, 142, 148, 149, 176
LDA microroutine, 161-162
LED display, 3
Level clocking, 93-97, 102
Light-emitting diode, 3
Load the accumulator instruction, 142, 148,

149, 176, 242-248, 252-253
Loading:

parallel, 110
serial, 108-110
TTL device, 52-53

Logic circuit, 19, 68
#Logical instructions, 305-308
Loop, 181, 218-219, 342-344
Loop counter, 181
Low-level language, 221
Low-power Schottky TTL, 50, 52-53
Low-power TTL, 50
LSB (least significant byte), 274, 488
LSI, 48

Machine cycle:
definition, 151
fixed, 161-162, 163
variable, 163-164

Machine language, 145, 146, 220, 221, 337
Machine phase (see T state)
Macroinstruction, 152-153
Magnetic core, 5
Magnetic tape, 5
Manual assembly, 221
Manual-auto debouncer, 158-159
Mapping (see Address mapping)
MAR, 140, 153, 174
Mask, 131, 186, 306-308
Master-slave flip-flop, 100-103
Medium-scale integration, 48
Memory, 5-7, 130-137, 224, 268
Memory address register, 140, 153, 174
Memory data register, 174
Memory element, 90-103
Memory enable (see Chip enable; Write enable)
Memory-intensive architecture, 329
Memory location, 10-12, 331, 507-510
Memory-reference instruction, 143-144, 176—

177
Memory register (see Memory location)
Memory state, 147

Microcode (see Microprogram)
Microcomputer, 7
Microcontroller, 161-164
Microinstruction, 152
Microprocessor, 7, 213-216, 226-237, 270-

271
Microprocessor families (see 8080/8085/Z80

family; 8086/8088 family; 6502 fam¬
ily; 6800/6808 family)

Microprogram, 152-153, 161-164
Microroutine (see Microprogram)
Mnemonic, 143, 221
Modulus, 116-120
Monitor, 174, 241

assembly, 222
Monotonic D/A converter, 489
MOS families, 48
Move instruction, 177-178, 195-196, 199, 206
MRI, 143-144, 176
MSB (most significant bit), 200, 273, 274, 492
MSI, 48
Multiplexer, 58-60, 153
Multiplication, 182, 183, 276, 300-302
MVI, 189, 195-196, 199

nand gate, 34-36, 49, 53-55, 118-120
NAND latch, 92-95
Natural modulus, 120
n-channel MOSFETs, 48
neg instruction, 308, 311-312, 316-317
Negative (sign) flag, 275, 277-278, 282-283
Negative clocking, 94
Negative logic, 25
Negative toggle, 118
Nesting, 343-344

loop, 343-344
subroutine, 189-190, 364, 367, 369-371,

373-374
Nibble, 13-14
NMOS, 48
No operation instruction, 241, 242, 245, 249
Noise margin, 52
Noninverter, 20
Non saturated circuit, 4-5
Nonvolatile memory, 133
NOP instruction, 148, 185, 241, 242
nor gate, 32-34, 49, 53-54
nor latch, 91, 92
not gate, 19-20
not instruction, 308, 315-316
Notation:

boldface, 42
italic, 25
positional, 11-12
roman, 25

Number:
binary, 2, 3, 6-15, 270, 271,274
binary-coded-decimal, 13-14, 270-271
decimal, 1, 84-85
hexadecimal, 9-13, 14, 270
(See also Conversion)

Object code, 221
Object program, 145
Octet, 72, 73
Odd parity, 39, 234
Odd-parity generator, 40
Odd-parity tester, 39
Odometer, 330

binary, 1-2, 84
decimal, 1
hexadecimal, 9

Offset, 332
On-chip decoding, 131, 132

1 ’s complement, 41-42, 312
Open-collector gate, 58
Operand, 145, 176
Operation code, 144, 176-177, 241
Operational amplifier (op amp), 485^-86
or gate, 20-22, 36, 54
OR instruction, 65, 66, 184, 306-307, 309,

310, 313, 314-315
or sign, 24
OUT instruction, 143, 150-151, 185
Output buffer, 493
Output register, 7, 106-107, 110, 142, 158,

176
Overflow, 87. 196, 272-274, 279, 284, 288-

289, 296-297
Overlapping, 74

Paging, 263-264
Pair, 72 I
Parallel loading, 110 j
Parameter passing, 183
Parity, 39, 234
Parity flag, 203, 288-289, 296
Parity generator, 39-40
Pascal, 221
PC, 113. 140, 147, 153
p-channel MOSFETs, 48
Phase (see T state)
Pinouts, 499-500
PMOS, 48
Pointer, 140, 205, 227
POP instruction, 209-210
Port instruction, 185-186
Positional notation, 11-12
Positive clocking, 94
Positive logic, 25
Positive toggle, 118
Power dissipation, 49
Power of 2, 7
Power supply, 158
Preset, 97
Presettable counter, 118-120, 162
Prime memory (see Dynamic RAM; Static

RAM)
Program, 3, 216
Program counter, 113, 140, 147, 153, 173,

227, 230-232, 234, 330
Program direct addressing, 268
Program indirect addressing, 340
Program relative addressing, 337-338
Program status word, 208
Programmable modulus, 120
Programmable ROM (PROM), 131-132, 224
Programmed multiplication, 182, 183
#Programming, 135-136, 216-222

data transfer instructions, 241-260
models, 511

PROM, 131-132, 224
Propagation delay time, 49, 98
Punched cards, 5
PUSH instruction, 208-209 (See also Stack)
Pushing and popping registers, 366, 367-368,

370, 371, 374

Quad, 72-73

Race condition, 91,94, 95, 100
Radix, 6-7
RAL instruction, 185, 200, 201
Random-access memory (RAM), 133—137,

153, 224
RAR instruction, 185, 200, 201
Read-only memory (ROM), 130-133, 161-

164, 224

Index 521

Redundant Karnaugh group, 74-75
Refresh, 133-134

Register, 4, 217
bidirectional, 173
buffer, 54, 106-107, 110, 122
controlled, 106-110
CPU, 195-196
8-bit, 229-230
input, 173
output, 7, 106-107, 110, 142, 158, 176
pair, 204
shift, 108-110
shift-left, 108, 109
shift-right, 108, 109
16-bit, 230
three-state, 121-122
transfers, 122-123
width of, 229-230
(See also specific types of register)

Register addressing, 188, 264-268
Register indirect addressing, 336, 338-340
Register-intensive architecture, 329
Register parameter passing, 183
Register relative addressing, 337
Relative accuracy, 488-489
Relative addressing, 330, 332-333, 335, 337-338
Reset-and-carry, 1
Resolution, 488
Return instruction, 180, 210-211, 364—366
Ring counter, 114—116, 146-147, 159-161
Ripple counter, 110-113
Rolling, Karnaugh map, 74
ROM (see Read-only memory)
Roman notation, 25
#Rotate instruction, 185, 200, 319-321
RS latch, 90-94

SAP-1, 140-164
counters, 106, 107, 113, 116, 117
parts list, 501
RAM, 115-116

SAP-2, 144, 151, 173-193
SAP-3, 144, 195-212
Saturated circuit, 4
Saturation delay time, 4, 50
Schmitt trigger, 54-55
Schottky TTL, 50, 52-53
Segment register, 236
Serial data stream, 191-193
Serial loading, 108-110
Settling time, 489
Setup time, 98
Seven-segment decoder, 54
#Shift instruction, 319, 320
Shift register, 108-110
SHL control, 108-110
Sign bit, 83
Sign flag, 175, 179, 180-181, 287, 294-296
Signed binary number, 83, 272, 284, 289
Sign-magnitude number, 83
Single-precision number, 274
Single-step debouncer, 158-159
Sink, 52
6502 family, 214,481-483

addressing, 265, 332-335, 476, 477
architecture, 230-231, 329
arithmetic instructions, 276-277, 472,

478, 480-481
conditional jump (branch) instructions,

345-346, 475, 479-480, 481
CPU control instructions, 242, 471, 478,

480
data transfer instructions, 242-245, 471—

472, 478, 480

6502 family (Cont.)\

flag instructions, 277-281,472, 476-478,

480
increment and decrement instructions,

473-474, 479, 481
input-output instructions, 476, 480, 481
interrupt instructions, 476, 480, 481
logical instructions, 308-310, 472-473,

478-479, 481
programming, 511
rotate and shift instructions, 321-322,

473, 479, 481
stack instructions, 475-476, 480, 481
subroutine instructions, 366-369, 475,

480,481
test and compare instructions, 346, 474,

479, 481
unconditional jump instructions, 344, 474,

479, 481
6800/6808 family, 214, 434-437, 443, 444

addressing, 265-266, 335-336, 433
architecture, 329, 632-633
arithmetic instructions, 281-282, 285-

286, 424-425 , 438 , 441
conditional jump (branch)

instructions, 348-349, 429-431, 440,
442

CPU control instructions, 422, 437, 441
data transfer instructions, 245-249, 423,

437, 441
flag instructions, 282-285, 423^424, 433,

437- 438, 441
increment and decrement instructions,

428, 439, 442
input-output instructions, 432, 441, 442
interrupt instructions, 432, 441,442
logical instructions, 310-314, 425-426,

438- 439, 441-442
programming, 511
rotate and shift instructions, 322-323,

426-427, 439, 442
stack instructions, 431-432, 440-441, 442
subroutine instructions, 369-370, 431,

440, 442
test and compare instructions, 349, 428-

429, 439, 442
unconditional jump instructions, 347-348,

428, 439, 442
Small-scale integration, 48
Software, 3-4, 218
Software emulation program, 215
Source, 52
Source code, 221
Source program, 145
SSI, 48
#Stack, 195, 207-211, 228-229, 231, 233,

234, 236, 363-364
Stack pointer, 195, 207-208, 228-229, 231,

233, 234, 236, 363-364, 366-367,
369, 371, 373

Stack segment, 338
Standard TTL, 49-52
State diagram, 117
Static RAM, 133-134
Status register, 227-228, 231-234, 236
Store the accumulator, 176
Straight-line program, 218
String, 1
#Subroutine, 180, 219, 363-377

branching vs., 364
nested, 189-190, 364, 367, 369-371,

373-374
pushing and popping registers, 366, 367-

368, 370, 371, 374

Subroutine (Cont.):

return instruction, 180, 210-211, 364-366
stack and stack pointer, 363-364, 366-

367, 369, 371, 373
Subtract instruction, 143, 150, 178, 198-199
Subtraction, 80-81, 86-87, 202, 275, 285—286,

292-293, 300
Subtraction-with-carry (borrow), 196, 275-276,

281
Successive-approximation method, 492-493
Sum-of-products circuit, 67-68
Switch, current, 487^188
Switch debouncer, 92-93
Synchronous counter, 113-114

T state, 146-151, 187
Temporary register, 175
Three-state RAM, 134
Three-state register, 121-122
Three-state switch, 121
Time delay, 189-190
Timing diagram, 91, 92, 94, 95
Timing signal, 36, 116
Timing state, 146-151
Toggle, 99-100, 102, 118
Totem-pole output, 49
Trace command, 293
Traffic light, 190-191
Trainer, microprocessor, 215
Transistor, 4

inverter, 19
latch, 90-91
register, 4

Transistor-transistor logic, 48-63
Transparent latch, 95
Triple-precision number, 274
Tristate switch, 111-112
Truth table, 20, 21

deriving logic circuit from, 68
JK master-slave, 102
Karnaugh maps from, 70-77
transistor latch, 90-91, 94

TTL, 48-63, 120, 135-136, 497-498
2’s complement, 83-87, 312, 331
Two-state design, 4—6

#Unconditional jump, 179, 180, 342
Universal logic circuit, 60
Unsigned binary number, 272, 284, 289-290
Up-down counter, 118

Virtual ground point, 485
Volatile RAM, 134

Weight:
binary, 6
decimal, 6
hexadecimal, 11-12

Weighted resistors, 489
Word, 20, 208
Word comparator, 42-43
Word multiplexer, 60
Worksheet, 222
Worst-case TTL characteristics, 50-51
Write enable, 134

xnor gate, 42
xor gate, 37-42, 49
xor instruction, 313, 315
XRA instruction, 184
XRI instruction, 184

Zero flag, 175, 179, 180-181, 275, 278-279,
283-284, 287-289, 296, 332

Zero page addressing, 333-334

522 Index

